
Automatic Parallelization for GPUs

Thomas B. Jablin

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor David I. August

April 2013

c© Copyright by Thomas B. Jablin, 2012.

All Rights Reserved

Abstract

GPUs are flexible parallel processors capable of accelerating real applications. To

exploit them, programmers rewrite programs in new languages using intimate knowl-

edge of the underlying hardware. This is a step backwards in abstraction and ease of

use from sequential programming. When implementing sequential applications, pro-

grammers focus on high-level algorithmic concerns, allowing the compiler to target

the peculiarities of specific hardware. Automatic parallelization can return ease of

use and hardware abstraction to programmers. This dissertation presents techniques

for automatically parallelizing ordinary sequential C codes for GPUs using DOALL

and pipelined parallelization techniques. The key contributions include: the first

automatic data management and communication optimization framework for GPUs

and the first automatic pipeline parallelization system for GPUs. Combining these

two contributions with an automatic DOALL parallelization yields the first fully au-

tomatic parallelizing compiler for GPUs.

iii

Acknowledgments

First, I’d like to thank my advisor David I. August. His contributions to our work

by way of vision, intellectual support, and technical advice have been absolutely

essential to my success as a graduate student. I will always remember the valuable

lessons David has taught me about computer science, conducting research, writing

persuasively, and his general philosophy of life. I am grateful for the opportunities he

has provided.

I would also like to thank my readers Doug Clark and Scott Mahlke and my

non-readers Margaret Martonosi and David Walker.

I’d like to thank all the members of the Liberty Research group for their cama-

raderie and support through my years at Princeton. I would like thank Guilherme

Ottoni for his mentorship in my early years in the Liberty Group. I have always

strived to meet his high standards of experimental methodology and personal in-

tegrity. Prakash Prabhu has been a frequent collaborator, running experiments, giv-

ing feedback, and providing supportive insight as the occasion required. Prakash

writes bug-free code at an amazing speed, and has provided valuable and interesting

feedback on this thesis. Nick Johnson is a great software architect, and I have learned

tremendously from him. Our period of intense collaboration on the loop-sensitive alias

analysis framework was the happiest and most intellectually productive period in my

grad school career. Feng Liu has been valuable coauthor and a great and loyal friend.

He is the one of the hardest working grad students I know, and I strive to match his

dedication.

I would also like to thank the staff of the Computer Science department. The

technical staff of the department has been extremely helpful. I’m also thankful for

Melissa Lawson’s sage counsel in navigating the complexities of grad student life.

iv

Bob Dondero, Maia Ginsburg, and Donna Gabai, lecturers in courses I TA’d, have

profoundly influenced the way I teach and the way I think about learning.

The compiler passes in this thesis are built on top of the LLVM compiler. The

LLVM community has been very generous with their time, answering questions on

IRC and responding to my bug reports. I have been consistently impressed with the

high quality of the LLVM compiler infrastructure.

I am fortunate to have been born into a large and happy family. Without my

parents’ emotional support and wise advice, I would never have completed graduate

school. I’m especially grateful for my grandparents’ numerous trips to Princeton. It

was a tremendous comfort to spend time with them. Their experience and optimism

helped keep my problems in perspective. I’d also like to thank my brothers and sister:

Jamie, Michael, Aaron, and Katie. A special thank-you must be expressed to Jamie.

He has been a valuable and selfless coauthor on all of my papers and is presently

finishing a PhD in computer science himself. I appreciate the time Jamie took away

from his own research to help me meet paper deadlines.

v

Contents

Abstract . iii

Acknowledgments . iv

1 Introduction 1

1.1 Background . 3

1.1.1 Data Management and Communication Optimization 5

1.1.2 Pipeline Parallelism . 10

1.2 Dissertation Organization . 13

2 CPU-GPU Communication Management 14

2.1 Motivation and Overview . 17

2.2 Run-Time Library . 19

2.2.1 Tracking Allocation Units . 19

2.2.2 CPU-GPU Mapping Semantics 21

2.2.3 Design and Implementation 23

2.3 Data Management . 25

2.4 Optimizing CPU-GPU Communication 26

2.4.1 Map Promotion . 27

2.4.2 Alloca Promotion . 29

2.4.3 Glue Kernels . 29

vi

3 Dynamically Manage Data 31

3.1 Motivation . 32

3.1.1 Prior Approaches to Communication Optimization 34

3.1.2 Relation of Prior Work to DyManD 35

3.2 Design and Implementation . 36

3.2.1 Memory Allocation . 37

3.2.2 Run-Time Library . 39

3.2.3 Compiler Passes . 43

4 Pipelining by Replication 45

4.1 Motivation . 48

4.1.1 Prior Approaches to Pipelining 48

4.1.2 Communication and Partitioning 49

4.1.3 Code Generation . 53

4.1.4 Data Management . 55

4.2 Design and Implementation . 55

4.2.1 Random Number Generation and Malloc Folding 57

4.2.2 Partitioning . 59

4.2.3 Code Generation . 61

5 Experimental Results 63

5.1 DyManD and CGCM Evaluation . 64

5.1.1 Program Suites . 65

5.1.2 Applicability Results and Analysis 66

5.1.3 Insensitivity Results and Analysis 68

5.2 PBR Evaluation . 70

5.3 KNNImpute Case Study . 72

vii

6 Related Work 75

6.1 CGCM and DyManD Related Work 75

6.2 PBR Related Work . 78

7 Conclusion and Future Work 80

7.1 Impact . 80

7.2 Future Work . 81

7.3 Concluding Remarks . 82

viii

Chapter 1

Introduction

Today, even entry-level PCs are equipped with GPUs capable of hundreds of GFLOPS

performance. Real applications, rewritten to take advantage of GPUs, regularly

achieve speedups between 4 and 100× [17, 25, 59]. Unfortunately, most applica-

tions do not use GPUs. The dominant paradigm for GPU-driven parallelization is

laborious, requiring intensive effort to manually write and optimize code for GPUs.

These high costs prevent widespread use of GPU parallelism.

GPU programming is difficult because GPU compilers have not provided ade-

quate abstractions, forcing programmers to understand many low-level hardware de-

tails. Production GPU compilers require that programmers specify trade-offs between

register spilling and number of parallel contexts, manage GPUs’ complex memory hi-

erarchy, efficiently communicate between CPU and GPU, and identify parallel work.

GPU programmers are overwhelmed by implementation details. Consequently, high-

performance GPU programming requires intimate knowledge of the GPU hardware.

Furthermore, the lack of abstraction inhibits performance portability. Differences be-

tween GPU families or between different architectural generations in the same family

can require substantial code revision for best performance.

1

For sequential CPU programming, even compilers for low-level programming lan-

guages like C provide a robust abstraction. C compilers optimize programs through

instruction scheduling, register allocation, and vectorization to achieve high perfor-

mance on diverse CPU architectures without programmer oversight or control. Se-

quential programmers apply architecture-specific optimizations only as a last resort

when performance is critical and other options are exhausted. Consequently, sequen-

tial programmers focus on the high-level algorithmic issues and ignore the underlying

architecture.

The sequential programming model offer excellent abstractions, but sequential

CPU performance is no longer improving. The number of transistors per dollar per

unit area continues to increase, but increased transistor counts no longer provide in-

creased single-threaded performance due to power and thermal considerations. Since

computer architects could not increase sequential performance, they rapidly increased

parallel resources. Presently, these parallel resources are unused or underused by

general-purpose applications due to the difficulties of parallel software development.

GPU architectures are an extreme example of an architecture optimized for parallel

resources at the expense of sequential performance and programmability.

Ideally, new developments in compiler technologies would provide simplicity, per-

formance portability, and abstraction to parallel architectures. When superscalar

architectures created opportunities for instruction-level parallelism (ILP), advances

in computer architecture and compiler design allowed näıve programmers to benefit

from ILP performance using sequential programming languages without understand-

ing the underlying hardware.

Analyzing the features that made ILP successful and recreating them in the GPU

context could enable ubiquitous transparent GPU parallelism for general purpose ap-

plications. Two problems inhibit transparent automatic parallelism for GPUs but

2

are solved or mitigated for superscalar processors: memory consistency and cyclic

dependences. Superscalar processors resolve these problems using strong memory

consistency guarantees and pipelining, respectively. To guarantee strong memory

consistency, unicore superscalar processors provide a single shared memory and in-

sure memory operations commit in program order. To manage cyclic dependences,

superscalar architectures use pipelining and value forwarding to allow execution to

begin before all of an instruction’s dependences are satisfied.

To improve the ease of GPU programming, this dissertation presents a system for

fully-automatic parallelization for C and C++ codes for GPUs. The system consists

of a compiler and a run-time system. The compiler generates pipeline parallelizations

for GPUs and the run-time system provides software-only shared memory. The main

contributions are: the first automatic data management and communication opti-

mization framework for GPUs and the first automatic pipeline parallelization system

for GPUs.

With these components the compiler can automatically parallelize programs with

recursive data-structures and complex unpredictable dependences previously thought

unsuitable for GPUs. The system’s fully-automatic performance is evaluated on a

variety of applications and compared against the results of expert manual GPU par-

allelizations, where they exist.

1.1 Background

GPUs originated in the early 1980s as special purpose hardware devices designed to

render three-dimensional graphics [15]. Consequently, it is remarkable that the high-

est performance general-purpose processor in many computers is the GPU. Three

trends caused the current state of GPU architectures: integration, programmability,

3

and parallelism. The original GPU implementation [15, 16] consisted of twelve fixed-

function vector processor chips connected in a pipeline. Rapidly increasing transistor

counts eventually allowed a single chip to implement all the functions necessary for

three-dimensional rendering. At the same time, graphics programmers demanded

increasingly flexible hardware. Over time, each component in the original graphics

pipeline gained generality, but retained different programming interfaces and different

limitations. Eventually, computer-architects combined each of the semi-general com-

ponents into a single unified shader [35]. Unified shaders improved programmability

and ease of use by providing a single general interface to programmers and simpli-

fying hardware design. Computer architects increased GPU architectures’ parallel

resources since their target application, three-dimensional rendering, is embarrass-

ingly parallel. As a result of these three trends, modern GPUs are highly-parallel

general-purpose architectures. GPUs lack robust memory consistency guarantees,

flexible virtual memory, and fine grained synchronization primitives because these

features are not needed for three dimensional rendering.

Even before the development of unified shaders and full generality, programmers

began to see the performance potential of GPUs. For certain massively parallel prob-

lems, programmers were able to achieve impressive performance gains [58, 66, 67].

However, programming GPUs required translating programs into graphical opera-

tions, executing the operations on the GPU, and then reinterpreting the results of

the graphical operations in terms of the original problem. At that time, writing

programs for the GPU required deep knowledge of graphics, GPU hardware, and

algorithms. The Brook for GPUs language and compiler dramatically eased GPU

programming by automatically compiling from a C-like language to graphics primi-

tives [12]. Brook for GPUs dramatically increased the level of program abstraction,

4

allowing programmers to focus on parallelization and performance tuning instead of

translating programs into graphics primitives.

In 2007, NVIDIA released CUDA [44], a language and compiler derived from Brook

for GPUs. CUDA bypasses the graphics APIs to target GPU hardware directly. In

2008, the Khronos Group standardized OpenCL, a standardized language for GPU

programming [31]. However, GPU programming remains more complex than CPU

programming.

1.1.1 Data Management and Communication Optimization

Parallelizing code for GPUs is difficult because CPUs and GPUs have separate mem-

ories, and neither has access to the other’s memory. In order to share data-structures

between CPU and GPU, programs must communicate data between CPU and GPU

memories. In this work, managing data means determining what data to communi-

cate between CPU and GPU memories to achieve a consistent program state. For

performance, communication should follow acyclic patterns, since cyclic copying be-

tween CPU and GPU memories requires frequent synchronization and places commu-

nication latency on the program’s critical path. Optimizing communication means

replacing näıve cyclic communication patterns with efficient acyclic ones.

Data management presents a major problem for GPU parallelizations. The code

in Listing 1 copies an array of strings to and from GPU memory, allocating and

freeing memory as necessary. Almost every line of code in the example involves

communication, not useful computation. The example code manages data by copying

data between CPU and GPU memories using memcpy-style functions provided by the

CUDA API [45]. Low-level memcpy-style pointer manipulation is notoriously difficult

for programmers. For real codes, the hazards of manually copying to the GPU include

5

Listing 1: Manual explicit CPU-GPU memory management

char *h h array[M] = {
“as a book where men May read strange matters”,
. . .
};

� global void kernel(unsigned i, char **d array);

void bar(unsigned N) {
/* Copy elements from array to the GPU */

� char *h d array[M];
� for(unsigned i = 0; i < M; ++i) {
� size t size = strlen(h h array[i]) + 1;
� cudaMalloc(h d array + i, size);
� cudaMemcpy(h d array[i], h h array[i], size,
� cudaMemcpyHostToDevice);
� }

/* Copy array to the GPU */
� char **d d array;
� cudaMalloc(&d d array, sizeof (h d array));
� cudaMemcpy(d d array, h d array, sizeof (h d array),
� cudaMemcpyHostToDevice);

� for(unsigned i = 0; i < N; ++i)
� kernel<<<30, 128>>>(i, d d array);

/* Free the array */
� cudaFree(d d array);

/* Copy the elements back, and free the GPU copies */
� for(unsigned i = 0; i < M; ++i) {
� size t size = strlen(h h array[i]) + 1;
� cudaMemcpy(h h array[i], h d array[i], size,
� cudaMemcpyDeviceToHost);
� cudaFree(h d array[i]);
� }
}

� Useful work � Communication � Kernel spawn

6

Inspector-ExecutorNaïve Acyclic

Host Device Host Device Host Device

Useful work Communication Kernel Spawn Inspector

1

2

3

4

5

6

1

2

3

4

4

5

5

6

6

1

2

3

Savings from

acyclic communication

T
im

e

Figure 1.1: Execution schedules for näıve cyclic, inspector-executor, and acyclic com-
munication patterns

subversive type casting, pointer aliasing, complex data-structures, dynamic memory

allocation, and pointer arithmetic.

Acyclic CPU-GPU communication patterns are much more efficient than cyclic

ones. Figure 1.1 shows an example program’s execution schedule using cyclic and

acyclic communication. For cyclic communication, communication latency is on the

7

Framework
Data

Management
Comm.
Opti.

Requires Applicability

Annot. TI AA
CPU- Aliasing Pointer Max Stored
GPU Pointers Arithmetic Indirection Pointers

JCUDA [73] Annotat. × Yes No No X × × ∞ ×
Named

Annotat. × Yes No No X × × 1 ×
Regions [23, 36]

Affine [64] Annotat. Annotat. Yes No No X × × 1 ×
IE [7, 40, 61] Dynamic × Yes No No × × × 1 ×
CGCM [28] Static Static No Yes Yes X X X 2 ×
GMAC [20] Annotat. Dynamic Yes No No X X X ∞ X

DyManD [27] Dynamic Dynamic No No No X X X ∞ X

Table 1.1: Comparison between communication optimization and management sys-
tems (Annot: Annotation, TI: Type-Inference, AA: Alias Analysis)

program’s critical path, and the program achieves limited parallelism between CPU

and GPU execution. By contrast, the acyclic communication pattern keeps commu-

nication latency off the program’s critical path and allows concurrent CPU and GPU

execution.

In order to reduce errors and improve productivity, prior work proposes a variety

of manual, semi-automatic, and fully-automatic techniques for data management and

communication optimization. Table 1.1 summarizes the differences between various

techniques. CGCM and DyManD will both be presented in this dissertation.

Data management techniques can be categorized as annotation-based, static, or

dynamic. Annotation-based data management techniques require programmers to

indicate when to transfer data-structures between CPU and GPU memories. These

techniques hide the underlying complexity of the memcpy-style interface, but still

require programmers to know what data should be copied between CPU and GPU

memories and when to copy it.

By contrast, static and dynamic techniques automatically manage data without

programmer effort. Using static or dynamic data management, programmers can

write the example code in Listing 1 as Listing 2. Static data management techniques

automatically transfer data between CPU and GPU memories, but rely on strong

8

Listing 2: Automatic implicit CPU-GPU memory management

char *h h array[M] = {
“as a book where men May read strange matters”,
. . .
};

� global void kernel(unsigned i, char **d array);

void foo(unsigned N) {
� for(unsigned i = 0; i < N; ++i) {
� kernel<<<30, 128>>>(i, h h array);

}
}

� Useful work � Communication � Kernel spawn

static analysis. When static analysis is too imprecise, the programmer must man-

age data. The quality of static analysis varies unpredictably between compilers. For

example, the PGI compiler [64] can only manage communication for data-structures

that are marked with the restrict keyword and accessed exclusively in an affine man-

ner. If any either of these conditions are not met, the programmer must supplement

PGI’s static communication management with annotations or manual communication

management.

Dynamic techniques manage data based on information determined at run-time.

The information gathered at run-time is more accurate and complete than the results

of static analysis. Consequently, dynamic communication management techniques

can manage a wider variety of data-structures. For example, CGCM [28] can manage

all pointer-free data-structures as well as data-structures with constant pointers to

pointer-free data-structures.

9

To improve performance, most frameworks also offer communication optimization.

Like data-management, the techniques can be classified as annotation-based, static,

or dynamic. Just as with data management, dynamic communication is preferable.

Many data-management and communication optimization frameworks have re-

stricted applicability for codes with pointers. The underlying problem is ensuring the

CPU and GPU only dereference pointers to their respective memory-spaces. This

problem is complicated for weakly typed languages like C and C++ in which it is

undecidable whether a value is a pointer or not. CGCM partially solves this problem

by using a sophisticated typing system to determine which values are pointers and

to translate them when copying data between CPU and GPU memories. GMAC [20]

and DyManD employ run-time libraries to allocate data-structures in CPU and GPU

memories at matching addresses.

1.1.2 Pipeline Parallelism

Scientific codes already benefit from GPU’s enormous parallel resources, but extend-

ing these results to general-purpose codes is challenging. GPUs are well suited loops

with fine-grained independent iterations. Unfortunately, current GPU parallelization

techniques are rarely applicable to non-scientific codes, due to frequent loop-carried

dependences.

Pipeline parallelism extends the applicability of GPUs by exposing independent

work units for code with loop-carried dependences. A pipeline consists of several

stages distributed over multiple threads. Each stage executes in parallel with data

passing from earlier to later stages through high-speed queues. Automatic pipeline

parallelization techniques [46, 54, 55] construct pipelines from sequential loops by

10

partitioning instructions into different stages. Careful partitioning segregates depen-

dent and independent operations. Stages with loop-carried dependences are called

sequential stages ; stages without loop-carried dependences are called parallel stages.

Each iteration of a parallel stage can execute independently on different processors.

Manual pipeline parallelization techniques already target GPUs. Udupa et al. [69]

use the StreamIt programing language [65] to manually parallelize the entire StreamIt

benchmark suite for GPUs to achieve a speedup of over 5.5×. Many programmers

consider explicit manual pipelining parallelization unnatural and therefore prefer au-

tomatic parallelization approaches.

Unfortunately, there are several difficulties in translating pipelining’s success on

multi-core and cluster architectures to CPU-GPU systems. All prior automatic

pipelining techniques make assumptions about hardware that are incompatible with

GPUs [26, 46, 54, 71]. Prior techniques assume a symmetric multiprocessing (SMP)

architecture with shared memory and high-performance queues. CPU-GPU systems

are asymmetric multiprocessing (AMP) architectures with a divided memory space

and no hardware or software queue implementation. Each assumption presents an

obstacle for pipelined parallelism on GPUs.

• Prior pipeline parallelization techniques assign instructions to stages based on

the implicit assumptions that the performance of each thread is identical and the

communication cost between stages is equal. AMP architectures invalidate this

assumption. The näıve strategy of assigning sequential stages to fast CPU cores

and parallel stages to numerous GPU cores ignores the significant performance

impact of CPU-GPU communication.

11

• Prior code generation algorithms for pipelining synchronize to ensure that the

parallelized program respects memory dependences. GPU systems do not sup-

port low-cost synchronization.

• Implementing pipeline parallelization on GPUs requires a queue between CPU

and GPU threads and a queue between GPU threads. Some implementations

assume specialized hardware queues [55]. Others use software queues based

on x86-64’s memory consistency model [53]. GPUs lack hardware queues or

a robust memory consistency model necessary to implement software queues.

Furthermore, there is no interface for communicating between the CPU and a

running GPU thread.

Manual StreamIt parallelizations bypass these assumptions by adopting a very

restrictive model of pipelining. Bringing the benefits of automatic pipeline parallelism

to CPU-GPU architectures will require new automatic parallelization techniques.

The PBR technique discussed in this dissertation is the first automatic pipeline

parallelization technique for GPUs. Compared to prior automatic pipelining imple-

mentations, PBR modifies both the partitioning algorithm and the code generation.

The key observation behind PBR is that for pipeline parallelizations, there is a trade-

off between communication efficiency and computation efficiency. In the original au-

tomatic pipelining implementation, each non-branch instruction executes in exactly

one thread. For example, when the result of a computation is used in multiple stages,

it is computed once and communicated many times. However, if the computation is

a pure function, each of the threads could execute the computation independently

and thereby avoid communication. Executing the computation redundantly reduces

communication overhead at the expense of computational efficiency. The original

pipelining implementation assumes fast hardware queues and a relatively low core

12

count, so it never uses redundant computation to avoid communication. Modern

GPUs have abundant parallel resources, but communication between cores on the

GPU and between GPU and CPU is very expensive. Consequently, redundant com-

putation is heavily favored.

PBR’s partitioning algorithm partitions code into redundant stages in addition

to parallel and sequential stages. Code in redundant stages can safely execute many

times. By duplicating the redundant stages inside parallel and sequential stages, PBR

dramatically reduces communication required to achieve efficient automatic pipelining

on GPUs.

1.2 Dissertation Organization

This dissertation describes three techniques CGCM, DyManD, and PBR in chapter

2, 3, and 4 respectively. CGCM is the first fully automatic system for managing data

and optimizing communication in CPU-GPU systems. CGCM eases manual GPU

parallelizations and improves the applicability and performance of automatic GPU

parallelizations. DyManD improves the applicability and performance of CGCM.

Unlike CGCM, DyManD is able to manage recursive data-structures and is insensitive

to the quality of alias analysis. Finally, PBR is the first fully automatic pipeline

parallelization technique for GPUs. Chapter 5 examines the performance results

for the CGCM, DyManD, and PBR and includes a case study demonstrating the

parallelization of KNNimpute, an important bioinformatics application. Chapter 6

reviews related work. Chapter 7 assesses the impact of the work, discusses directions

for future work, and concludes the dissertation.

13

Chapter 2

CPU-GPU Communication

Management

Currently, even entry-level PCs are equipped with GPUs capable of hundreds of

GFLOPS. Real applications, parallelized to take advantage of GPUs, regularly

achieve speedups between 4x and 100x [17, 25, 59]. Unfortunately, parallelizing code

for GPUs is difficult due to the typical CPU-GPU memory architecture. The GPU

and CPU have separate memories, and each processing unit may efficiently access only

its own memory. When programs running on the CPU or GPU need data-structures

outside their memory, they must explicitly copy data between the divided CPU and

GPU memories.

The process of copying data between these memories for correct execution is called

Managing Data. Generally, programmers manage data in CPU-GPU systems with

memcpy-style functions. Manually managing data is tedious and error-prone. Aliasing

pointers, variable sized arrays, jagged arrays, global pointers, and subversive type-

casting make it difficult for programmers to copy the right data between CPU and

14

GPU memories. Unfortunately, not all data management is efficient; cyclic communi-

cation patterns are frequently orders of magnitude slower than acyclic patterns [42].

Transforming cyclic communication patterns to acyclic patterns is called Optimizing

Communication. Näıvely copying data to GPU memory, spawning a GPU function,

and copying the results back to CPU memory yields cyclic communication patterns.

Copying data to the GPU in the preheader, spawning many GPU functions, and

copying the result back to CPU memory in the loop exit yields an acyclic commu-

nication pattern. Incorrect communication optimization causes programs to access

stale or inconsistent data.

This chapter presents CPU-GPU Communication Manager (CGCM), the first

fully automatic system for managing data and optimizing CPU-GPU communication.

Automatically managing data and optimizing communication increases programmer

efficiency and program correctness. It also improves the applicability and performance

of automatic GPU parallelization.

CGCM manages data and optimizes communication using two parts, a run-time

library and a set of compiler passes. To manage data, CGCM’s run-time library

tracks GPU memory allocations and transfers data between the CPU memory and

GPU memory. The compiler uses the run-time library to manage and optimize CPU-

GPU communication without strong analysis. By relying on the run-time library,

the compiler postpones, until run-time, questions that are difficult or impossible to

answer statically. Three novel compiler passes for communication optimization lever-

age the CGCM run-time: map promotion, alloca promotion, and glue kernels. Map

promotion transforms cyclic CPU-GPU communication patterns into acyclic commu-

nication patterns. Alloca promotion and glue kernels improve the applicability of

map promotion.

15

Framework
Data Communication Parallelism

Management Optimization Extraction

CUDA [43] Manual Manual Manual
OpenCL [31] Manual Manual Manual
BrookGPU [12] Manual Manual Manual
Baskararan et al. [6] Manual Manaul Auto.
Leung et al. [37] Manual Manaul Auto.
CUDA-lite [70] Manual Manaul Auto.
JCUDA [73] Annotation × Manual
GMAC [20] Annotation Auto. Manual
Lee et al. [36] Annotation × Auto.
PGI [64] Annotation Annotation Annotation
CGCM [28] Auto. Auto. Auto.
DyManD [27] Auto. Auto. Auto.

Table 2.1: A taxonomy of related work showing data management, communication
optimization, and parallelism extraction.

Table 2.1 shows a taxonomy of CPU-GPU data management techniques. No prior

work fully automates CPU-GPU data management, but several semi-automatic tech-

niques can manage data if programmers supply annotations [20, 36, 64, 73]. Some of

these data management techniques are strongly coupled with automatic paralleliza-

tion systems [36, 64]; others are not [20, 73]. Of the semi-automatic data management

systems only GMAC optimizes CPU-GPU communications. Some prior automatic

parallelization techniques require manual data management [6, 37, 70]. The ear-

liest GPU parallelization systems feature manual parallelization and manual data

management [12, 31, 43]. These systems remain the most popular. CGCM enables

fully-automatic data management for manual and automatic parallelizations.

Data management is also a problem for distributed memory systems. Inspector-

executor techniques automatically manage data for distributed memory systems [7,

40, 61] but have not been used for CPU-GPU systems. Inspector-executor techniques

16

can reduce the number of bytes transferred, but the overall communication pattern

remains cyclic.

We have coupled CGCM with an automatic parallelizing compiler to produce a

fully automatic GPU parallelization system. To compare a strong cyclic communica-

tion system against CGCM’s acyclic communication, we adapted inspector-executor

to GPUs. Across 27 programs, CGCM coupled with automatic parallelization shows

a geomean whole program speedup of 4.95× over sequential CPU-only execution.

2.1 Motivation and Overview

CGCM avoids the limitations of prior work by employing a run-time support library

and an optimizing compiler to automatically manage data and optimize CPU-GPU

communication, respectively. The run-time library determines the size and shape of

data-structures during execution. The compiler uses the run-time library to manage

memory then optimizes communications to produce acyclic patterns. CGCM has

two restrictions: CGCM does not support pointers with three or more degrees of

indirection, and it does not allow pointers to be stored in GPU functions. Using

CGCM, programmers can replace explicit CPU-GPU communication (Listing 1) with

automatic communication (Listing 2). Replacing explicit CPU-GPU communication

with CGCM yields dramatically shorter, simpler, clearer code and prevents several

classes of programmer error.

Figure 2.1 shows a high-level overview of CGCM’s transformation and run-time

system. The run-time library provides mapping functions which translate CPU point-

ers to equivalent GPU pointers (Section 2.2). The compiler inserts mapping functions

to manage data (Section 2.3). Map promotion optimizes CPU-GPU communica-

tion by transferring data to the GPU early and keeping it there as long as possible

17

�����������	�

�����	��

�����
���

���

�����
���

������

�����
���

���
���������

��������

������

���
�������

������
�������

���
���������

��

!���
����

�������
���

�
�
�
�
��
�
��
��

�
"
#
�
�
�

�
�
�
��
��

�

���
������$

����%�����

�	��
�&���
���

���
��������$

���������
���

'�
���(�
���

)�
�

����*����

���
�����������	���$

���
�������

���
�����
�
���

���
��������+

���

�����
���

���
��������+

���

��	�

��&����	�
 ��

��&����
���

��

��	�

��
�
�

�

'
�

�
�

�

����,-��
.
���,)�/���.

Figure 2.1: High-level overview of CGCM
18

(Section 2.4). Two enabling transformations, glue kernels and allocation promotion,

improve map promotion’s applicability.

2.2 Run-Time Library

The CGCM run-time library enables automatic CPU-GPU data management and

communication optimization for programs with complex patterns of memory alloca-

tion and unreliable typing. To accomplish this, the run-time library correctly and

efficiently determines which bytes to transfer. For correctness, the run-time library

copies data to the GPU at allocation unit granularity. A pointer’s allocation unit

comprises all bytes reachable from a pointer by valid pointer arithmetic. Using the

concept of allocation units, the run-time library can support the full semantics of

pointer arithmetic without strong static analysis. A one-to-one mapping between

allocation units in CPU memory and allocation units in GPU memory allows the

run-time library to translate pointers.

2.2.1 Tracking Allocation Units

Unlike inspector-executor systems which manage memory on a per-byte or per-word

granularity, CGCM manages memory at the granularity of allocation units. CGCM

determines which bytes to transfer by finding allocation information for opaque point-

ers to the stack, heap, and globals. In C and C++, an allocation unit is a contiguous

region of memory allocated as a single unit. Blocks of memory returned from malloc

or calloc, local variables, and global variables are all examples of allocation units.

All bytes in an array of structures are considered part of the same allocation unit, but

two structures defined consecutively occupy different allocation units. Transferring

entire allocation units between CPU and GPU memories ensures that valid pointer

19

arithmetic yields the same results on the CPU and GPU, because the C99 program-

ming standard [1] stipulates that pointer arithmetic outside the bounds of a single

allocation unit is undefined.

Copying an allocation unit between CPU and GPU memories requires information

about the allocation unit’s base and size. The run-time library stores the base and

size of each allocation unit in a self-balancing binary tree map indexed by the base

address of each allocation unit. To determine the base and size of a pointer’s allocation

unit, the run-time library finds the greatest key in the allocation map less than or

equal to the pointer. Although allocation information for global variables is known at

compile-time, stack and heap allocations change dynamically at run-time. The run-

time library uses different techniques to track the allocation information for global,

stack, and heap memory.

• To track global variables, the compiler inserts calls to the run-time library’s

declareGlobal function before main. Declaring addresses at run-time rather

than at compile-time or link-time avoids the problems caused by position inde-

pendent code and address space layout randomization.

• To track heap allocations, the run-time library wraps around malloc, calloc,

realloc, and free. These wrappers modify the allocation map to reflect the

dynamic state of the heap at run-time.

• To track escaping stack variables, the compiler inserts calls to declareAlloca.

The registration expires when the stack variable leaves scope.

Managing data at allocation unit granularity can correctly deal with pool-based

custom allocators. Pool-based allocators malloc a large pool of memory and sub-

sequently subdivide the pool into objects dynamically. Managing data at allocation

unit granularity means the entire pool of objects will be transferred between CPU

20

Function prototype Description

map(ptr)

Maps from host to device pointer, allocating
and copying memory if necessary. Increases
the allocation unit’s reference count.

unmap(ptr)

Maps to host memory if the allocation unit’s
epoch is not current. Updates the allocation
unit’s epoch.

release(ptr)

Decreases the reference count of the alloca-
tion unit. If the reference count is zero, frees
resources.

mapArray(ptr)

Maps from host to device pointer, allocating
and copying memory if necessary. Increases
the allocation unit’s reference count.

unmapArray(ptr)

Maps to host memory if the allocation unit’s
epoch is not current. Updates the allocation
unit’s epoch.

releaseArray(ptr)

Decreases the reference count of the alloca-
tion unit. If the reference count is zero, frees
resources.

declareAlloca(size)
Allocates memory on the stack and registers
it with the run-time library.

declareGlobal(name,ptr,size,isReadOnly) Registers a global with the run-time library.

Table 2.2: CGCM’s run-time library interface

and GPU memories as a single unit, even if only a single member is needed. There are

two approaches to improving this situation. The first is to replace custom allocators

with system default allocations. Berger et al. [9] show six out of eight applications

with custom allocators perform better when the custom allocator is disabled. Alter-

natively, the custom allocator could be modified to call into the run-time library to

report the size and location of allocation units within the pool.

2.2.2 CPU-GPU Mapping Semantics

Table 2.2 lists each function in the run-time library and its arguments. The run-time

library contains functions that translate between CPU and GPU pointers. The three

21

Listing 3: Listing 2 after the compiler inserts run-time functions (unoptimized
CGCM).

char *h h array[M] = {
“as a book where men May read strange matters”,
. . .
};

� global void kernel(unsigned i, char **d array);

void foo(unsigned N) {
� for(unsigned i = 0; i < N; ++i) {
� char **d d array = mapArray(h h array);
� kernel<<<30, 128>>>(i, d d array);
� unmapArray(h h array);
� releaseArray(h h array);

}
}

� Useful work � Communication � Kernel spawn

basic functions are map, release, and unmap. Each of these functions operates on

opaque pointers to CPU memory.

• Mapping a pointer from CPU to GPU memory copies the corresponding al-

location unit to GPU memory, allocating memory if necessary. The run-time

library employs reference counting to deallocate GPU memory when necessary.

Mapping a pointer from CPU to GPU memory increases the GPU allocation

unit’s reference count.

• Unmapping a CPU pointer updates the CPU allocation unit with the corre-

sponding GPU allocation unit. To avoid redundant communication, the run-

time library will not copy data if the CPU allocation unit is already up-to-date.

Since only a GPU function can modify GPU memory, unmap updates each al-

location unit at most once after each GPU function invocation.

22

Algorithm 1: Pseudo-code for map

Require: ptr is a CPU pointer
Ensure: Returns an equivalent GPU pointer
info ← greatestLTE(allocInfoMap, ptr)
if info.refCount = 0 then

if ¬info.isGlobal then
info.devptr ← cuMemAlloc(info.size)

else
info.devptr ← cuModuleGetGlobal(info.name)

cuMemcpyHtoD(info.devptr, info.base, info.size)

info.refCount ← info.refCount + 1
return info.devptr + (ptr− info.base)

• Releasing a CPU pointer decreases the corresponding GPU allocation unit’s

reference count, freeing it if necessary.

Each of the primary run-time library functions has an array variant. The array

variants of the run-time library functions have the same semantics as their non-array

counterparts but operate on doubly indirect pointers. The array mapping function

translates each CPU memory pointer in the original array into a GPU memory pointer

in a new array. It then maps the new array to GPU memory. Using run-time library

calls, the compiler rewrites Listing 2 as Listing 3.

2.2.3 Design and Implementation

The map, unmap, and release functions provide the basic functionality of the run-time

library. The array variations follow the same patterns as the scalar versions.

Algorithm 1 is the pseudo-code for the map function. Given a pointer to CPU

memory, map returns the corresponding pointer to GPU memory. The allocaInfoMap

contains information about the pointer’s allocation unit. If the reference count of the

allocation unit is non-zero, then the allocation unit is already on the GPU. When

23

Algorithm 2: Pseudo-code for unmap

Require: ptr is a CPU pointer
Ensure: Update ptr with GPU memory
info ← greatestLTE(allocInfoMap, ptr)
if info.epoch 6= globalEpoch ∧ ¬info.isReadOnly then

cuMemcpyDtoH(base, info.devptr, info.size)

info.epoch ← globalEpoch

copying heap or stack allocation units to the GPU, map dynamically allocates GPU

memory, but global variables must be copied into their associated named regions.

The map function calls cuModuleGetGlobal with the global variable’s name to get

the variable’s address in GPU memory. After increasing the reference count, the

function returns the equivalent pointer to GPU memory.

The map function preserves aliasing relations in GPU memory, since multiple calls

to map for the same allocation unit yield pointers to a single corresponding GPU

allocation unit. Aliases are common in C and C++ code and alias analysis is un-

decidable. By handling pointer aliases in the run-time library, the compiler avoids

static analysis, simplifying implementation and improving applicability.

The pseudo-code for the unmap function is presented in Algorithm 2. Given a

pointer to CPU memory, unmap updates CPU memory with the latest state of GPU

memory. If the run-time library has not updated the allocation unit since the last

GPU function call and the allocation unit is not in read only memory, unmap copies

the GPU’s version of the allocation unit to CPU memory. To determine if the CPU

allocation unit is up-to-date, unmap maintains an epoch count which increases every

time the program launches a GPU function. It is sufficient to update CPU memory

from the GPU just once per epoch, since only GPU functions alter GPU memory.

Algorithm 3 is the pseudo-code for the release function. Given a pointer to

CPU memory, release decrements the GPU allocation’s reference count and frees

24

Algorithm 3: Pseudo-code for release

Require: ptr is a CPU pointer
Ensure: Release GPU resources when no longer used
info ← greatestLTE(allocInfoMap, ptr)
info.refCount ← info.refCount − 1
if info.refCount = 0 ∧ ¬info.isGlobal then

cuMemFree(info.devptr)

the allocation if the reference count reaches zero. The release function does not free

global variables when their reference count reaches zero. Just as in CPU codes, it is

not legal to free a global variable.

2.3 Data Management

Data management is a common source of errors for manual parallelization and lim-

its the applicability of automatic parallelization. A CGCM compiler pass uses the

run-time library to automatically manage data. For each GPU function spawn, the

compiler determines which values to transfer to the GPU using a liveness analysis.

When copying values to the GPU, the compiler must differentiate between integers

and floating point values, pointers, and indirect pointers. The C and C++ type sys-

tems are fundamentally unreliable, so the compiler uses simple type-inference instead.

The data management compiler pass starts with sequential CPU codes calling

parallel GPU codes without any data management. All global variables share a single

common namespace with no distinction between GPU and CPU memory spaces. For

each GPU function, the compiler creates a list of live-in values. A value is live-in if it

is passed to the GPU function directly or if it is a global variable used by the GPU.

The C and C++ type systems are insufficient to determine which live-in values are

pointers or to determine the indirection level of a pointer. The compiler ignores these

25

types and instead infers type based on usage within the GPU function, ignoring usage

in CPU code. If a value “flows” to the address operand of a load or store, potentially

through additions, casts, sign extensions, or other operations, the compiler labels

the value a pointer. Similarly, if the result of a load operation “flows” to another

memory operation, the compiler labels the pointer operand of the load a double

pointer. Since types flow through pointer arithmetic, the inference algorithm is field

insensitive. Determining a value’s type based on use allows the compiler to circumvent

the problems of the C and C++ type systems. The compiler correctly determined

unambiguous types for all of the live-in values to GPU functions in the 27 programs

measured.

For each live-in pointer to each GPU function, the compiler transfers data to the

GPU by inserting calls to map or mapArray. After the GPU function call, the compiler

inserts a call for each live-out pointer to unmap or unmapArray to transfer data back

to the CPU. Finally, for each live-in pointer, the compiler inserts a call to release

or releaseArray to release GPU resources.

2.4 Optimizing CPU-GPU Communication

Optimizing CPU-GPU communication has a profound impact on program perfor-

mance. The overall optimization goal is to avoid cyclic communication. Cyclic com-

munication causes the CPU to wait for the GPU to transfer memory and the GPU to

wait for the CPU to send more work. The map promotion compiler pass manipulates

calls to the run-time library to remove cyclic communication patterns. After map pro-

motion, programs transfer memory to the GPU, then spawn many GPU functions.

For most of the program, Communication flows one way, from CPU to GPU. The

results of GPU computations return to CPU memory only when absolutely necessary.

26

Algorithm 4: Pseudo-code for map promotion

forall the region ∈ Functions ∪ Loops do
forall the candidate ∈ findCandidates(region) do

if ¬pointsToChanges(candidate, region) then
if ¬modOrRef(candidate, region) then

copy(above(region), candidate.map)
copy(below(region), candidate.unmap)
copy(below(region), candidate.release)
deleteAll(candidate.unmap)

The alloca promotion and glue kernels compiler passes improve the applicability of

map promotion.

2.4.1 Map Promotion

The overall goal of map promotion is to hoist run-time library calls out of loop bodies

and up the call graph. Algorithm 4 shows the pseudo-code for the map promotion

algorithm.

First, the compiler scans the region for promotion candidates. A region is either

a function or a loop body. Each promotion candidate captures all calls to the CGCM

run-time library featuring the same pointer. Map promotion attempts to prove that

these pointers point to the same allocation unit throughout the region, and that the al-

location unit is not referenced or modified in the region. If successful, map promotion

hoists the mapping operations out of the target region. The specific implementation

varies slightly depending on whether the region is a loop or a function.

For a loop, map promotion copies map calls before the loop, moves unmap after the

loop, and copies release calls after the loop. Map promotion copies the map calls

rather than moving them since these calls provide CPU to GPU pointer translation.

Copying release calls preserves the balance of map and release operations. Inserting

27

Listing 4: Listing 3 after map promotion

char *h h array[M] = {
“as a book where men May read strange matters”,
. . .
};

� global void kernel(unsigned i, char **d array);

void foo(unsigned N) {
� mapArray(h h array);
� for(unsigned i = 0; i < N; ++i) {
� char **d d array = mapArray(h h array);
� kernel<<<30, 128>>>(i, d d array);
� releaseArray(h h array);

}
� unmapArray(h h array);
� releaseArray(h h array);
}

� Useful work � Communication � Kernel spawn

map calls before the loop may require copying some code from the loop body before

the loop.

For a function, the compiler finds all the function’s parents in the call graph and

inserts the necessary calls before and after the call instructions in the parent functions.

Some code from the original function may be copied to its parent in order to calculate

the pointer earlier.

The compiler iterates to convergence on the map promotion optimization. In this

way, map operations can gradually climb up the call graph. Recursive functions are

not eligible for map promotion in the present implementation.

CGCM optimizes Listing 3 to Listing 4. Promoting the initial mapArray call above

the loop causes the run-time library to transfer h h array’s allocation units to the

GPU exactly once. The subsequent calls to mapArray inside the loop do not cause

additional communication since the GPU version of the allocation units is already

28

active. Moving the unmapArray call below the loop allows the run-time to avoid

copying allocation units back to CPU memory each iteration. The optimized code

avoids all GPU to CPU communication inside the loop. Spawning GPU functions

from the CPU is the only remaining communication inside the loop. The final result

is an acyclic communication pattern with information only flowing from CPU to GPU

during the loop.

2.4.2 Alloca Promotion

Map promotion cannot hoist a local variable above its parent function. Alloca promo-

tion hoists local allocation up the call graph to improve map promotion’s applicability.

Alloca promotion preallocates local variables in their parents’ stack frames, allowing

the map operations to climb higher in the call graph. The alloca promotion pass

uses similar logic to map promotion, potentially copying code from child to parent in

order to calculate the size of the local variable earlier. Like map promotion, alloca

promotion iterates to convergence.

2.4.3 Glue Kernels

Sometimes small CPU code regions between two GPU functions prevent map pro-

motion. The performance of this code is inconsequential, but transforming it into a

single-threaded GPU function obviates the need to copy the allocation units between

GPU and CPU memories and allows the map operations to rise higher in the call

graph. The glue kernel optimization detects small regions of code that prevent map

promotion using alias analysis and lowers this code to the GPU.

29

Interrelationships between communication optimization passes imply a specific

compilation schedule. Since alloca promotion and glue kernels improve the applica-

bility of map promotion, the compiler schedules these passes before map promotion.

The glue kernel pass can force some virtual registers into memory, creating new op-

portunities for alloca promotion. Therefore, the glue kernel optimization runs before

alloca promotion, and map promotion runs last.

30

Chapter 3

Dynamically Manage Data

The applicability of CGCM is limited by its reliance on strong static analysis. To

manage data, CGCM uses type-inference to statically determine the types of data-

structures. Determining data-structures’ types is necessary since CGCM handles

pointer and non-pointer values differently. CGCM’s static type-inference scheme

characterizes data-structures as either arrays of pointers or arrays of non-pointers.

Consequently, CGCM cannot automatically manage recursive data structures or data-

structures with pointer and non-pointer types. To optimize communication, CGCM

uses alias analysis to disprove cyclic dependences between code on the CPU and code

on the GPU. Without cyclic dependences, cyclic communication is no longer nec-

essary, so CGCM can safely optimize the program. CGCM requires static analysis

(type-inference and alias analysis) because it manages data and optimizes communica-

tion at compile-time. The imprecision of static analysis limits CGCM’s applicability

and performance.

Dynamically Managed Data (DyManD) overcomes CGCM’s limitations by com-

bining dynamic analysis with CGCM-inspired efficient acyclic communication pat-

terns. DyManD matches CGCM’s performance without requiring strong alias analysis

31

and exceeds CGCM’s applicability. DyManD creates the illusion of a shared CPU-

GPU memory, allowing DyManD to manage complex and recursive data-structures

which CGCM cannot. DyManD manages data automatically for both manual and

automatic parallelizations.

DyManD’s ability to manage and optimize recursive data-structures is crucial,

since many general purpose and scientific applications use recursive data-structures

like trees, linked lists, and graphs. The DOE, DARPA, and NSF believe next gen-

eration science requires graphs and other complex data-structures [22]. GPU pro-

grammers typically avoid recursive data-structures due to the difficulty of managing

data and optimizing communication. By removing this difficulty, DyManD allows

programmers to choose data-structures based on the problem domain.

DyManD’s contribution over prior work is that it is the first fully-automatic CPU-

GPU data management system to:

• support data-structures with pointer and non-pointer fields,

• support recursive data-structures,

• and be insensitive to alias analysis.

3.1 Motivation

To achieve performance on a CPU-GPU system, programs must manage data and

optimize communication efficiently. Manual data management is difficult and error

prone, and prior automatic data management is limited to simple data-structures.

In this section, DyManD is motivated by comparison with two prior automatic tech-

niques, inspector-executor [7, 40, 61] and CGCM [28]. Inspector-executor does not

optimize communication, so its performance on GPUs is poor. CGCM requires strong

alias analysis, but alias analysis is undecidable in theory and imprecise in practice.

32

Neither prior automatic technique manages complex recursive data-structures. Dy-

ManD efficiently manages complex data-structures without the limitations of type-

inference or alias analysis.

CGCM is an automatic CPU-GPU data management and communication opti-

mization system. To manage data, CGCM ensures that all live-in pointers to GPU

functions are translated to equivalent GPU pointers. For correctness, CGCM copies

data to the GPU at allocation unit granularity. An allocation unit comprises all

bytes reachable from a pointer by well-defined pointer arithmetic. CGCM is only

applicable to allocation units consisting entirely of pointer or non-pointer values. For

non-pointer allocation units, CGCM copies the data to GPU memory without mod-

ification, but for pointer allocation units, CGCM iterates over the allocation unit,

translating each CPU pointer to a GPU pointer. CGCM uses static type-inference to

enforce this restriction due to C and C++’s subversive type casting.

CGCM automatically manages simple data-structures but has several important

limitations due to its reliance on address translation and type-inference. To avoid

translating GPU pointers back to CPU pointers, CGCM disallows storing pointers on

the GPU. CGCM’s simple type-inference is limited to scalar values, pointers to scalar

values, and pointers to pointers to scalar values. It cannot infer the type of structures

with pointers and non-pointers, higher-order pointers, or recursive data-structures.

CGCM uses type-inference to differentiate pointer and non-pointer allocation units

because it handles them differently. Even more sophisticated type-inference would fail

in C and C++ due to frequent subversive type casting. Ideally, a data management

system should be applicable to general purpose data-structures and arbitrary GPU

functions without relying on imprecise static analysis.

In the area of manual GPU data management, prior work proposes several annotation-

based systems [23, 36, 64, 73]. None of these systems handle pointer arithmetic,

33

aliasing inputs to GPU functions, or pointer indirection. The annotation-based tech-

niques are limited to languages with strong type-systems [73], managing named re-

gions [23, 36], or affine memory accesses [64].

GMAC [20] is a semi-automatic approach to data management and communica-

tion optimization. In GMAC, programmers annotate all heap allocations to indi-

cate whether the allocated data is GPU-accessible. For manually annotated heap

allocations, GMAC automatically generates efficient acyclic communication patterns.

However, GMAC cannot manage stack allocations or global variables.

3.1.1 Prior Approaches to Communication Optimization

Acyclic CPU-GPU communication patterns are much more efficient than cyclic ones.

For cyclic communication, communication latency is on the program’s critical path,

and the program achieves limited parallelism between CPU and GPU execution. By

contrast, the acyclic communication pattern keeps communication latency off the

program’s critical path and allows parallel CPU and GPU execution.

To avoid cyclic communication, CGCM was introduced. Instead of copying data

between CPU and GPU memories once per GPU function invocation, CGCM’s com-

munication optimization transfers data only once per program region. If a data-

structure is not accessed by the CPU, CGCM copies it to GPU memory at the begin-

ning of the code region and returns it to CPU memory at the end. CGCM uses static

alias analysis to prove that the CPU will not access data-structures for the duration

of a region.

Alias analysis quality strongly affects CGCM’s ability to optimize CPU-GPU com-

munication. Precise alias analysis is difficult to achieve in production compilers and

remains an ongoing topic of research. CGCM’s initial evaluation used a customized

34

Framework
Data

Management
Comm.
Opti.

Requires Applicability

Annot. TI AA
CPU- Aliasing Pointer Max Stored
GPU Pointers Arithmetic Indirection Pointers

JCUDA [73] Annotat. × Yes No No X × × ∞ ×
Named

Annotat. × Yes No No X × × 1 ×
Regions [23, 36]

Affine [64] Annotat. Annotat. Yes No No X × × 1 ×
IE [7, 40, 61] Dynamic × Yes No No × × × 1 ×
CGCM [28] Static Static No Yes Yes X X X 2 ×
GMAC [20] Annotat. Dynamic Yes No No X X X ∞ X

DyManD [27] Dynamic Dynamic No No No X X X ∞ X

Table 3.1: Comparison between communication optimization and management sys-
tems (Annot: Annotation, TI: Type-Inference, AA: Alias Analysis)

alias analysis suite developed in tandem with CGCM. Consequently, the CGCM alias

analysis gives precise results for the programs in the CGCM paper.

3.1.2 Relation of Prior Work to DyManD

Table 3.1 summarizes the differences between prior annotation-based manual data

management systems, inspector-executor, CGCM, and DyManD. DyManD avoids

the limitations of inspector-executor and CGCM by replacing static compile-time

analysis with a dynamic run-time library. Static type-inference is unnecessary for

DyManD since it does not translate CPU pointers to GPU pointers. By replacing

standard allocation functions and modifying the GPU code generation, DyManD

ensures that every allocation unit on the CPU has a corresponding allocation unit

on the GPU at the same numerical address. Consequently, pointers copied to GPU

memory point to equivalent allocation units in GPU memory without any translation.

By avoiding pointer translation, DyManD removes the need for static type-inference.

DyManD dynamically optimizes communication, avoiding the need for static alias

analysis. DyManD uses the page protection system to optimize communication by

transferring data from GPU to CPU memory only when needed. To determine when

a page is needed on the CPU, DyManD removes read and write privileges from the

allocation units in CPU memory after copying them to GPU memory. If the CPU

35

accesses the pages later, the program will fault, and DyManD will transfer the affected

allocation units back to CPU memory, mark the pages readable and writable, and

continue execution. Cyclic communication is very infrequent in DyManD since data

moves from GPU to CPU only if it is needed.

DyManD’s communication optimization system is somewhat similar to software

distributed shared memory (SDSM) [39] specialized for two nodes (the CPU and

GPU). However, SDSMs rely on exception handling on all nodes to copy data on-

demand. This scheme is unworkable on GPUs for two reasons. First, GPUs lack

robust exception handling; the GPU equivalent of a segmentation fault kills all threads

and puts GPU memory into an undefined state. Second, GPUs are presently unable

to initiate copies from CPU memory. Consequently, DyManD conservatively copies

data to GPU memory that may be accessed on the GPU, but copies data to CPU

memory that will be accessed on the CPU. GMAC [20] also uses exception handling

to optimize communication.

3.2 Design and Implementation

The DyManD data management and communication optimization system consists of

three parts: a memory allocation system, a run-time library, and compiler passes. The

memory allocation system ensures that addresses of equivalent allocation units on the

CPU and GPU are equal, relieving the run-time system of the burden of translation.

The run-time system dynamically manages data and optimizes communication. The

compiler inserts calls to the memory allocation system and to the run-time library

into the original program, and it generates DyManD compliant assembly code for

the GPU. Table 3.2 summarizes DyManD’s memory allocation and run-time library

36

Function prototype Description

blockAlloc(size)
Allocate a block of memory at numerically
equivalent addresses on the CPU and GPU.

cuMemAlloc(size)
CUDA driver API for allocating aligned mem-
ory on the GPU.

map(ptr)
Indicates ptr and any values it points to recur-
sively may be used on the GPU.

launch(gpuFunc)
Launch a function on the GPU, copying data
from CPU to GPU if necessary.

dymandExceptionHandler(addr)

Called when the CPU tries to access an alloca-
tion unit in GPU memory, copies the allocation
unit to CPU memory.

Table 3.2: DyManD’s run-time library and related functions from the CUDA driver
API

interface. The remainder of the section will discuss the design and implementation

of DyManD’s memory allocator, run-time library, and compiler passes.

3.2.1 Memory Allocation

DyManD’s memory allocation system keeps CPU and GPU versions of equivalent al-

location units at numerically equivalent addresses in CPU and GPU memories. Using

CPU addresses on the GPU without translation allows DyManD to avoid the appli-

cability limitations of CGCM and inspector-executor. Address translation prevents

prior work from managing data-structures with pointer and non-pointer fields and

from managing data for GPU functions which store pointers.

The foundation of DyManD’s memory allocation system is the blockAlloc func-

tion. The blockAlloc function (algorithm 5) allocates two blocks of memory, one on

the CPU and a second on the GPU. The two blocks have the same size and address.

Presently, there is no way to allocate memory at fixed GPU addresses. Therefore,

37

Algorithm 5: Pseudo-code for blockAlloc

Require: size is a multiple of page size
Ensure: Returns the address of equivalent allocation units in CPU and GPU

memory
devptr← cuMemAlloc(size)
addr← devptr | MapMask
mmap(addr, size,MAP FIXED)
return addr

blockAlloc first allocates GPU memory normally and then uses mmap to map a

numerically equivalent address in CPU memory.

DyManD uses bitmasks to ensure that GPU allocations do not overlap with

programs’ static memory allocations. Static allocations start at low addresses so

blockAlloc sets a high address bit to avoid overlapping static and dynamic alloca-

tions. A bitwise mask operation before each GPU memory access recovers the original

GPU pointer. DyManD modifies code generation for the GPU to emit masking op-

erations before load or store operations. When a pointer is compared or stored, the

high bits are preserved. Consequently, storing and comparing pointers yields identical

results on the CPU and GPU. From the programmer’s perspective, addresses on the

CPU and GPU are identical.

Allocation units come from dynamic allocations, from global variables, and from

the stack. DyManD uses different techniques to manage allocation units depending

on their source.

• For dynamic allocations, DyManD provides a customized version of malloc, calloc,

and realloc based on blockAlloc. This implementation is similar to mmap-based

malloc implementations [8, 41]. DyManD tracks all dynamic memory allocations.

• To manage global variables, a DyManD compiler pass replaces all global variables

with equivalently sized dynamic allocations. To maintain program semantics,

38

DyManD allocates memory for global variables and copies any initial values before

executing the main function.

• To manage stack allocations, a DyManD compiler pass replaces all escaping stack

variables with dynamic allocations. The compiler pass ensures the dynamic allo-

cations have the same scope and size as the original stack allocations. In general,

escape analysis is undecidable, but in practice for stack variables, it is easily de-

cidable.

3.2.2 Run-Time Library

DyManD’s run-time library manages data and optimizes communication. For each

allocation unit, the run-time maintains an ordered map from the base address to the

size and state. The map can be used to determine if a pointer-sized value points

within an allocation unit. The three states of an allocation unit are: CPU Exclusive

(CPUEx), Shared, and GPU Exclusive (GPUEx). Allocation units in the Shared

state may be accessed on the CPU but will become GPUEx on the next GPU function

invocation. Figure 3.1 shows the state diagram for allocation units.

CPUEx to Shared via map All allocation units begin in the CPUEx state. In

the CPUEx state, the CPU has exclusive access to the allocation unit. The map

function (Algorithm 6) changes the state of CPUEx allocation units to Shared but

does not copy the allocation unit to the GPU. The Shared state signifies that a

specific allocation unit and any other allocation units it points to recursively should

be copied to the GPU before invoking the next GPU function.

Shared to GPUEx via launch The run-time library’s launch function (Algo-

rithm 7) intercepts calls to GPU functions and copies data to the GPU. The launch

39

����������	

���
 �����	

����

������������

������

��������

�����

���������

��������

���	���
��������

�����
����

Figure 3.1: DyManD’s state transition diagram for allocation units. The solid lines
indicate transitions necessary for correctness. The dashed transitions improve perfor-
mance heuristically, but are not necessary.

function selects a Shared allocation unit, copies it to GPU memory, and marks it

GPUEx. After marking the allocation unit, launch scans the allocation unit for

values that may be pointers. When a pointer is found, launch calls map with the

new pointer and marks it Shared if it is not already. This is conservative, since

non-pointer values that happen to point to valid addresses will cause unnecessary

copying. Finally, launch calls mprotect to remove read and write permissions from

the allocation unit’s pages. Protecting pages prevents the CPU from accessing data

in the GPUEx state. When no Shared allocation units remain, the GPU will have

up-to-date versions of all allocation units it may access.

40

Algorithm 6: Pseudo-code for map

Require: ptr is a pointer sized value
Ensure: If ptr points to an allocation unit, mark all CPUEx allocation units

sharing a page with ptr Shared
if ¬isPointer(ptr) then

return

basePtr← getBase(ptr)
forall the base ∈ getTransitiveClosure(basePtr, sharesPage) do

if getState(base) = CPUEx then
setState(base, Shared)
push(sharedAllocs, base)

Algorithm 7: Pseudo-code for launch

Require: gpuFunc is a GPU function
Ensure: All Shared allocation units become GPU exclusive
while ¬empty(sharedAllocs) do

base← pop(sharedAllocs)
size← getSize(base)
cuMemCopyHtoD(base, base, size)
setState(base,GPUEx)
foreach value ∈ loadAllValues(base, base + size) do

if isPointer(value) ∧ getState(value) 6= GPUEx then
map(value)

mprotect(base, size,PROT NONE)

gpuFunc()

GPUEx to Shared via segfault handler The run-time library installs an excep-

tion handler (Algorithm 8) to detect accesses to pages in the GPUEx state. Touching

any byte in a protected allocation unit triggers an exception. The exception handler

copies the allocation unit back to CPU memory. For each allocation unit sharing a

page with the faulting allocation unit, the exception handler restores read and write

permissions, updates CPU memory, and marks the pages as Shared. DyManD pre-

serves POSIX [49] semantics for access violations. When an access violation occurs

41

Algorithm 8: Pseudo-code for the exception handler which transfers allocation units
back to the CPU on segmentation faults.

Require: ptr is the faulting address
Ensure: If ptr points to an allocation unit on the GPU, return it to the CPU
if ¬isPointer(ptr) ∨ getState(ptr) 6= GPUEx then

defaultSignalHandler()
return

basePtr← getBase(ptr)
forall the base ∈ getTransitiveClosure(basePtr, sharesPage) do

size← getSize(base)
mprotect(base, size,PROT READ | PROT WRITE)
cuMemcpyDtoH(base, base, size)
setState(base, Shared)

to an address not protected by the run-time system, DyManD invokes the program’s

default exception handler.

The DyManD run-time system manages data and optimizes communication for

complex recursive data-structures. The recursive nature of launch allows DyManD

to successfully manage recursive data-structures with pointer and non-pointer fields.

Additionally, the system naturally handles mapping the same allocation unit multiple

times. If an allocation unit is live-in to a GPU function through multiple sources, it

will only be transferred to the GPU once. By transferring data-structures from GPU

to CPU memory only when necessary, the exception handler ensures a mostly acyclic

communication pattern.

Shared and GPUEx to CPUEx via ping-pong heuristic DyManD has one

additional state transition to improve performance by returning Shared data to the

CPUEx state when it is no longer needed by the GPU. Sometimes a value enters

the Shared state early in a program, and later the value is accessed on the CPU

between two calls to GPU functions. In this case, the value will ping-pong between

CPU and GPU memories even though it is never used on the GPU. To avoid this

42

problem, DyManD needs a way to restore Shared allocation units to the CPUEx state.

It is unsound to mark one Shared allocation unit CPUEx since the GPU may still

have a pointer to it. However, it is safe to transfer all allocation units off the GPU

at once, restoring all allocation units to the CPUEx state. When ping-ponging is

detected, the run-time library copies all GPUEx and Shared values back to the CPU,

restores their read and write permissions, and marks them CPUEx. In practice, this

heuristic resolves ping-ponging. If the run-time library detects that ping-ponging

persists after intervening, it will not intervene again. This optimization improves the

whole-program speedup of the srad program from 0.76× to 19.64×.

DyManD suffers from ping-ponging due to false sharing when allocation units

frequently used on the GPU share a page with allocation units frequently used on

the CPU. To avoid ping-ponging due to false sharing, the memory allocator uses

three heuristics to arrange allocation units in memory. First, allocation units smaller

than a page should never span a page boundary because this would force both pages

to change state together. Second, allocation units larger than a page are always

page aligned to prevent multiple large allocation units from transitioning together

unnecessarily. Finally, allocation units are segregated by size since allocation units

with a common size tend to transition from CPU to GPU memory as a group. For

example, all the nodes of a binary tree will transition at once. Allocating them to

the same page will not decrease performance.

3.2.3 Compiler Passes

The DyManD compiler’s input is a program with CPU and GPU functions but with-

out data management. For each GPU function, a DyManD compiler pass determines

all live-in values. A value is live-in to a GPU function if it is passed to the GPU

43

function as an argument or if it is a global variable used by the GPU function or

its callees. For each live-in value, the compiler pass inserts a call to DyManD’s map

function.

DyManD uses two compiler passes to create opportunities for dynamic communi-

cation optimization: alloca promotion and glue kernels. Both optimization techniques

were initially used in CGCM [28].

Alloca promotion increases the scope of stack allocated values to improve opti-

mization scope. Occasionally, programs will execute a loop in parallel on the GPU but

allocate the loop’s scratchpad arrays in CPU memory. Communication optimization

fails since the stack allocated array falls out of scope between GPU function invoca-

tions. To remedy this situation, alloca promotion pre-allocates stack allocated arrays

of predictable size, increasing their scope and allowing communication optimization.

Glue kernels prevent small sequential code regions from inducing cyclic communi-

cation. Sometimes a small sequential code region between two GPU functions uses an

allocation unit that is on the GPU. The performance impact of the sequential code

is trivial, but running it on the CPU induces cyclic communication which decreases

performance. The glue kernel optimization transforms small sequential code regions

into single threaded GPU functions. Surprisingly, the performance benefit of reduced

cyclic communication outweighs the cost of single threaded execution on the GPU.

44

Chapter 4

Pipelining by Replication

The low applicability of GPUs and the high difficulty of writing efficient GPU code

prevent widespread use of GPUs for parallel computation. Improving the applicability

of GPU parallelizations can improve performance not only by accelerating the tar-

geted loops, but also by avoiding CPU-GPU communication. Achieving high applica-

bility for parallelizations on the GPU is critically important for performance because

communication between CPU and GPU memories has high latency [20, 27, 28]. Even

scientific applications contain irregular non-DOALL sections. If the non-DOALL

sections access data-structures computed on the GPU, the communication latency of

copying data between CPU and GPU memories will be on the program’s critical path.

Consequently, prior work has gone to great lengths to avoid cyclic communication on

the program’s critical path. For example, some implementations have improved per-

formance by executing sequential code on the GPU to reduce communication [28].

Automatic pipeline parallelization techniques offer a compelling solution to in-

crease both the applicability of GPUs and their ease of programming. Pipeline paral-

lelism extends the applicability of GPUs by exposing independent work units for code

with loop-carried dependences [69]. A pipeline consists of several stages. Each stage

45

executes in parallel with data passing unidirectionally from earlier to later stages

through queues. Pipeline parallelization techniques [46, 54, 55] construct pipelines

from sequential loops by partitioning instructions into different stages. Careful par-

titioning segregates dependent and independent operations. Stages with loop-carried

dependences are called sequential stages, and stages without loop-carried dependences

are called parallel stages. Each iteration of a parallel stage can execute independently

on different processors.

Pipelining is a necessary but not sufficient component in an automatic paralleliza-

tion framework. The primary benefit of pipelining is enabling scalable performance

in combination with other automatic transformations [26]. Pipelining creates oppor-

tunities for DOALL [54] and LocalWrite [26] based parallelizations. Similarly,

speculation [71], privatization [11], and parallel reductions enable pipelining. Conse-

quently, pipelining is a stepping-stone towards automatic parallelization for general-

purpose programs on GPUs, motivating further research on GPU-based speculation

and privatization.

Implementing efficient pipelining for GPUs is challenging due to the limitations

of GPU architectures. All prior automatic pipelining techniques [26, 46, 54, 71] as-

sume a CPU-style execution environment with moderate core and thread counts, low-

cost fine-grained synchronization primitives, simple and efficient queues for commu-

nication, and independent multi-threading. GPU architectures differ radically from

this baseline. Specifically, GPUs have very high core and thread counts, high-cost

coarse-grained synchronization primitives, no hardware or software queue support,

and tightly coupled threads. The combination of these differences creates several

challenges for a GPU pipelining implementation.

46

• Prior code generation algorithms for pipelining synchronize to ensure that the

parallelized program respects memory dependences. GPU systems do not sup-

port low-cost or fine-grained synchronization.

• In the earliest CPU-based pipelines, threads communicate through specialized

hardware queues [55]. GPUs lack hardware queues. Subsequent pipelining im-

plementations use software queues [53]. However, software queues require either

a robust memory consistency model or low-cost fined-grained synchronization

instructions. GPUs presently lack these features.

• GPUs parallelizations typically use thousands of threads. The performance of

software queues used in prior pipelining implementations falls precipitously at

high thread counts [29].

• Prior pipelining algorithms assume all threads are completely independent.

GPU architectures have best performance when groups of threads share a com-

mon control-flow path.

To resolve these issues, we present Pipelining by Replication (PBR), the first

automatic CPU-GPU pipeline parallelization system. While current automatic par-

allelization techniques for GPUs only apply to embarrassingly parallel loops, PBR

parallelizes loops with more complex control and data dependences. To demonstrate

the correctness and performance of this pipelining implementation and its suitability

as a framework for further research into automatic GPU parallelization, we present

a detailed case study of the parallelization of the em3d program from the Olden

benchmark suite [13]. After parallelization, em3d shows a speedup of 3.5× over best

sequential execution. Additionally, PBR is applicable to 124 loops across 39 programs

47

that were not previously automatically parallelizable for GPUs. This parallelization

result is in addition to the 554 DOALLable loops in the same programs.

4.1 Motivation

GPUs provide massively parallel resources, but current GPU hardware is heavily op-

timized for DOALL-style parallelizations. GPUs’ weak memory model and lack of

light-weight synchronization primitives make it difficult to implement more complex

parallelization strategies. Pipeline parallelization exposes DOALL opportunities hid-

den in apparently sequential codes. PBR adapts pipeline parallelization to GPUs,

expanding the GPUs’ applicability. PBR consists of two parts: partitioning and code

generation. Partitioning divides code into parallel and sequential stages and deter-

mines which loops can be profitably parallelized. Code generation takes partitions as

input and generates code for efficient GPU execution.

4.1.1 Prior Approaches to Pipelining

In order to understand PBR, it is useful to review the most related work, the DSWP-

MTCG family of automatic pipeline parallelization algorithms. The algorithms con-

sist of two parts, a partitioner (DSWP [55]) and a code generator (MTCG [46]).

The partitioner divides each loop iteration into a series of stages with communication

proceeding from earlier stages to later stages. Given a partition, MTCG generates cor-

rectly parallelized code by inserting queues to communicate values from earlier stages

to later stages as necessary. PS-DSWP generalizes DSWP by generating stages that

can run in parallel across several threads.

Manual pipeline parallelization techniques already target GPUs. Udupa et al. [69]

use the StreamIt programming language to manually pipeline parallelize the StreamIt

48

benchmark suite for GPUs. However, many programmers consider explicit manual

pipeline parallelization unnatural and therefore prefer automatic parallelization ap-

proaches. The manual StreamIt parallelizations adopt a very restrictive model of

pipelining. Specifically, StreamIt requires that each stage enqueue a constant number

of values, determined at compile-time, per iteration. Consequently, StreamIt is inap-

plicable to programs with even moderately complex control dependences. Bringing

the benefits of automatic pipeline parallelism to CPU-GPU architectures requires a

more flexible approach.

4.1.2 Communication and Partitioning

Efficient communication between different stages in a pipeline is a major difficulty for

GPU pipelining. In prior pipelining implementations, different stages communicate

through high-bandwidth queues implemented in either hardware or software, with one

queue allocated per thread. GPUs lack hardware queues. High-bandwidth software

queues require either fine-grained lightweight synchronization or a robust memory

consistency model. Unfortunately, GPUs lack these features as well.

Even if efficient software queues were possible on GPUs, they would not scale to

typical GPU thread counts. Software queues achieve high bandwidth by amortizing

the cost of synchronization operations over numerous enqueue operations. Figure 4.1

plots the bandwidth of a software queue implementation [29] versus the total number

of bytes transmitted. The sustained bandwidth declines as the total number of bytes

transmitted declines because the expensive synchronization operations are amortized

over fewer enqueue operations. As thread count increases the number of bytes trans-

mitted per queue falls, since each thread executes fewer iterations. Typical GPU

49

1 KB/s

32 KB/s

1 MB/s

32 MB/s

1 GB/s

32 GB/s

32 B
1 K

B
32 K

B

1 M
B

32 M
B

1 G
B

B
an

d
w

id
th

 (
lo

g
2
 s

ca
le

)

Amount of Data Sent (log2 scale)

Effect of Amount of Data Sent on Bandwidth

Figure 4.1: Average bandwidth of queues versus total bytes transmitted

parallelizations require thousands of threads, leading to very low numbers of bytes

transmitted per queue and consequently very low queue bandwidths.

The key observation behind PBR is that for pipeline parallelizations, there is a

trade-off between communication efficiency and computation efficiency. In the original

automatic pipelining implementation [46], each non-branch instruction executes in

exactly one thread. Consequently, a load instruction with uses in multiple stages

may require considerable cross-thread communication. However, if the loaded value

were constant, each of the threads could execute the load independently. This can be

achieved by executing the load redundantly, reducing communication overhead at the

expense of computational efficiency. Modern GPUs have abundant parallel resources

50

but communication between cores on the GPU is very expensive. Consequently,

redundant computation is heavily favored for GPU architectures.

Figure 4.2a.i shows a timing diagram for a PS-DSWP parallelization consisting

of a sequential stage followed by a parallel stage. Every iteration of the sequential

stage executes in the same thread. The values computed in the sequential stage are

communicated to one of two threads executing the parallel stage. In a PS-DSWP

parallelization, each instruction executes in only one thread. In practice almost all

sequential stages are side-effect free. Side-effect free code can execute multiple times

without affecting the program semantics. For example, sequential stages are com-

monly used to iterate over a recursive data-structure, producing each element of the

data-structure to a parallel stage for further processing.

Figure 4.2a.ii shows a timing diagram for an equivalent execution exploiting a

side-effect free sequential stage. In the diagram, each iteration of the sequential stage

executes in two different threads. Each thread executing a sequential stage communi-

cates with a single thread executing a parallel stage. The first thread communicates

the results of odd sequential stages to the first parallel-stage thread and the second

thread communicates the results of even sequential stages to the second parallel-stage

thread. Duplicating the sequential stage has the same performance as the PS-DSWP

parallelization but requires an extra thread. Since each sequential stage communi-

cates with only a single thread, merging each parallel stage with its private sequential

stage would increase efficiency by avoiding communication.

In figure 4.2a.iii, the replicated sequential stages are merged with parallel stages

to avoid communication; replicated computation replaces communication. For low

thread counts, PS-DSWP-style parallelizations are more efficient. Increasing the

thread count to eight (Figures 4.2a.iv and v) decreases the performance gap between

communicating and replicating pipelines. As thread count approaches iteration count,

51

p = Parallel Stage s = Sequential Stage I = Iterations T = Number of Threads

time
I = 16
T = 9

time = 25

(iv)

I = 16
T = 8

time = 32

(v)

I = 6
T = 3

time = 27

(i)

I = 6
T = 4

time = 27

(ii)

I = 6
T = 2

time = 30

(iii)

p
p

p
p

p
p

s
s
s
s
s
s p

p

p
p

p
p

s
s
s
s
s
s

s
s
s
s
s
s p p

p p

p p

s s

s
s

s
s

s

s
s

s
s

s
s
s
s
s
s p

p

p
p

s
s
s
s
s
s
s
s
s
s

p
p

p
p

p
p

p
p

p
p

p
p

p

s

p

s
s

p

s
s
s

s
s
s
s

s
s
s
s
s

s
s
s
s
s
s

s
s
s
s
s
s
s

s
s
s
s
s
s
s
s

p p p p p

s
s
s
s
s
s
s

p

s
s
s
s
s
s
s
s

s
s
s
s
s
s
s

s
s
s
s
s
s
s

s
s

s
s
s
s
s

s
s
s

s
s
s
s

s
s
s
s

s
s
s

s
s
s
s
s

s
s
s
s
s
s
s
s

s

p pp p p p p

1

1

2

1
2

3

1
2
3

1
2
3
4

1
2
3
4
5

1
2
3
4
5
6

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

4 5 6 7 8

2
3
4
5
6
7
8

9

9
10
11
12
13
14
15
16

9
10
11
12
13
14
15

8

9
10
11
12
13
14

8
7

9
10
11
12
13

8
7
6

9
10
11
12

8
7
6
5

9
10
11

8
7
6
5
4

9
10

8
7
6
5
4
3

9

10 1611 12 13 14 15

1
2
3
4
5
6 1

2

9
10

7
8
9
10
11
12
13
14
15
16

3
4

5
6

7
8

11
12

13
14

15
16

1
2

3
4

5
6

1
2
3
4
5
6 1

2

3
4

5
6

1
2
3
4
5
6

1
2
3
4
5
6 1 2

3 4

5 6

1 2

3
4

5
6

1

3
2

4
5

(a) Figures (i)-(iii) show the execution of the same 6 iterations of a loop, with s=1 and p=8: (i)
PS-DSWP with 3 threads; (ii) PS-DSWP variation with 4 threads, where the extra thread is
used for replication of the sequential stage so that even and odd iterations read from different
threads; (iii) PBR example with 2 threads; Figures (iv)-(v) show the execution of the same
16 iterations of a loop: (iv) PS-DSWP with 9 threads; (v) PBR with 8 threads

sI + pI

max(sI + p, d pI
T−1e+ s)

(b) PS-DSWP speedup equa-
tion over sequential

sI + pI

sI + p + pb (I−1)
T
c

(c) PBR speedup equa-
tion over sequential

lim
T→∞

sI + p + pb (I−1)
T
c

max(sI + p, d pI
T−1e+ s)

=
sI + p

sI + p
= 1

(d) PS-DSWP speedup equation over PBR as T→∞

10000 + 100 + d100∗(10000−1)
3840

e
max(10000 + 100, d100∗10000

3840−1 e+ 1)
=

10361

max(10100, 262)
= 1.03×

(e) PS-DSWP speedup over PBR with I=10000, T=3840, s=1, p=100

Figure 4.2: Comparison of timing diagram and speedup equations for PS-DSWP and
PBR

52

the two pipelining techniques (Figures 4.2b and c) share a common performance limit

(Figure 4.2d). Since GPU parallelizations typically use thousands of threads, the limit

is approached very closely in practice (Figure 4.2e).

4.1.3 Code Generation

Generating efficient code for GPU architectures requires careful attention to control

flow. In GPU architectures, groups of threads share a common program counter.

GPUs can emulate independent control flow, but näıve code generation can yield

disastrous performance consequences. Control flow divergence occurs when threads

in a group do not behave identically at a branch. When a group of threads diverge, the

GPU temporarily disables the threads that do not take the branch. The threads that

take the branch execute until they reach the nearest post-dominator. Subsequently,

the threads that took the branch are disabled, and the threads that did not take the

branch execute until they reach the nearest post-dominator. Upon convergence, all

threads continue execution. If the GPU encounters multiple divergent branches, the

procedure repeats recursively until only a single thread remains and further divergence

is impossible.

The performance impact of control flow divergence can be significant. On CUDA

architectures a group of threads sharing a program counter is called a warp. A warp

consists of thirty-two threads. A full warp of threads executes one instruction every

other cycle. In the worst case of control flow divergence, only one thread in the warp

executes an instruction every other cycle. Due to architectural limitations, threads

cannot migrate from one warp to another, so the performance difference between ideal

execution and worst case divergence is 32×.

53

(a) Original CFG (b) Optimized for GPU
Execution

Figure 4.3: Inner/Outer refers to the inner/outer-loop.
(a) Inner-loops whose immediate post-dominator is the function exit will have poor
performance if control flow diverges between threads. (b) Insertion of a sentinel post-
dominator node allows warp divergence in the inner loop to resynchronize after the
inner loop invocation rather than at the function exit.

Unfortunately, control flow will never converge when the nearest post-dominator

is the function exit. Figure 4.3a shows the CFG for a simple loop nest. Suppose

each thread in a warp exits the inner loop on a different iteration. The nearest

post-dominator of the inner-loop’s backedge is the function’s exit. Consequently, any

control flow divergence on the inner-loop’s backedge will cause the diverging thread

to continue executing until the exit. The non-diverging threads must wait until the

divergent thread exits to continue. However, if the threads converged after each inner

loop iteration then the whole warp could execute the next iteration of the outer-loop

in parallel. Figure 4.3b shows the same loop with the CFG transformed to create

a non-exit post-dominator, which we call the sentinel post-dominator, for the inner-

loop. This achieves thread convergence after each inner loop invocation.

54

Creating sentinel post-dominators is vital to PBR’s performance. Typically, merged

sequential stages have at least two distinct exits: one to execute a parallel stage and

one to exit the function. The loop exit is always in an initial sequential stage be-

cause all instructions in a loop are control dependent on the branch that determines

whether the function continues or exits.

4.1.4 Data Management

PBR uses the DyManD [27] data management and communication optimization

framework. DyManD is an enabling technique for automatic GPU pipeline par-

allelism because it manages data and optimizes communication for programs with

recursive data-structures, arbitrary casting, and unrestricted pointer arithmetic.

DyManD transfers data to GPU memory eagerly based on simple conservative

static analysis and returns data to the CPU only when necessary using a dynamic

demand-based scheme implemented using page protections. PBR uses an enhanced

version of DyManD. Originally, DyManD waited for all executing GPU kernels to

finish before exiting the program. However, since DyManD synchronizes when neces-

sary to satisfy dependences between CPU and GPU, any values still being computed

at program exit must be unused. By killing all current GPU tasks at program exit

rather than synchronizing, enhanced DyManD enables a simple form of dynamic dead

code elimination.

4.2 Design and Implementation

Figure 4.4 shows a diagram of the flow through the entire PBR system. The PBR

system takes as input the original, unmodified, sequential C/C++ source code and

produces a parallel GPU application. PBR makes use of a new technique, malloc

55

Unmodified
Sequential

Source CodeIn
p

u
ts

Malloc Folding

Section 3.1E
n

ab
lin

g

Te
ch

n
iq

u
e

DOALL
Transformation

PBR

Section 3

Glue Kernel
Optimization

Alloca
Promotion

P
ar

al
le

liz
at

io
n

Te
ch

n
iq

u
es

O
p

ti
m

iz
at

io
n

CPU
Backend

GPU
Backend

DyManD
Runtime

Application
Parallel GPU

Loops

GPU
Code

E
xe

cu
ti

o
n

B
ac

ke
n

d
s

O
u

tp
u

ts

CPU
Code

Figure 4.4: High level Overview of System

folding, to extend the applicability of automatic parallelization for GPUs to loops that

dynamically allocate memory. GPU kernels cannot allocate memory. To overcome

this, malloc folding calculates and preallocates memory required by a loop that will

execute on the GPU.

Given DOALL transformation’s high efficiency, all loops automatically identified

as DOALLable are automatically DOALL parallelized. Next, PBR identifies and

56

Listing 9: Original version of hot loop in make neighbor in em3d from the Olden
Benchmark Suite.

for(cur_node = nodelist; cur_node;

cur_node=cur_node ->next) {

cur_node ->to_nodes =

malloc(degree * (sizeof(node_t *)));

for(j = 0; j < degree; ++j) {

do {

other_node = table[lrand48 () % tablesz];

for(k = 0; k < j; ++k)

if(other_node == cur_node ->to_nodes[k])

break;

} while(k < j);

cur_node ->to_nodes[j] = other_node;

other_node ->from_count ++;

}

}

transforms loops using pipeline parallelism. Subsequently, the glue kernel and alloca

promotion optimizations from prior work [28] are applied to increase GPU execution

efficiency. The resulting optimized program is finally run through CPU and GPU

backends to lower the program to executable code. Finally, during program execution,

the DyManD runtime [27] is used to automatically manage and optimize CPU-GPU

communication.

4.2.1 Random Number Generation and Malloc Folding

Listing 9 shows the original sequential C version of make neighbors. There are

two apparent difficulties. First, the method calls lrand48, a deprecated POSIX [49]

random number generator. Random number generators impede automatic paral-

lelization due to cyclic dependences on the generator’s internal state. By default,

the PBR system replaces calls to lrand48 and other well-known sequential random

57

number generators with independent parallel random number generators of equiva-

lent strength. Prior work addresses the problem of random number generation by

adding annotations to indicate either that calls to the generator commute [11, 51] or

that the generator’s internal state may be privatized.

The second difficulty is the call to malloc. Presently, the CUDA framework only

allows small fixed quantity allocations of GPU global memory in kernels. By contrast,

the DyManD framework allows memory allocated in CPU code to be used seamlessly

in GPU kernels. The malloc folding transformation modifies the code to calculate

the number of calls to malloc and the total number of bytes. These two numbers

are used to call mallocPool. The mallocPool function allocates a region of memory

that will not be freed until free has been called on pointers to the region once for

each call to malloc in the original sequential code. In this way, the malloc folding

transformation preserves semantics of the memory allocations with respect to free.

Finally, calls to malloc are replaced with equivalent sized allocations from the newly

created memory pool. Executing mallocPool on the CPU avoids calls to malloc

inside otherwise parallelizable loops.

To automatically perform malloc folding, the PBR system gathers the transitive

data and control dependences of the call to malloc. If dependence analysis shows

these instructions do not modify memory (except the malloc itself) and are not

affected by stores inside the original loop, they can be safely replicated. Replicating

the transitive dependences and inserting them before the original loop creates a new

loop that calls malloc the same number of times with the same values as the original

loop. Malloc folding replaces calls to malloc in a skeleton version of the loop with

bookkeeping code to calculate the total number of calls to malloc and the total number

of bytes allocated. These values feed a call to mallocPool inserted into the original

loop’s preheader. Finally, calls to malloc in the original loop are replaced with code

58

Listing 10: Loop in make neighbor after applying malloc folding.

int numAlloc = 0;

int numBytes = 0;

for(cur_node = nodelist; cur_node;

cur_node=cur_node ->next) {

++ numAlloc;

numBytes += degree * (sizeof(node_t *)));

}

int8_t *malloc_pool =

mallocPool(numAccess , numBytes);

for(cur_node = nodelist; cur_node;

cur_node=cur_node ->next) {

cur_node ->to_nodes = malloc_pool;

malloc_pool += (degree * sizeof(node_t *));

for(j = 0; j < degree; ++j) {

do {

other_node = table[lrand48 () % tablesz];

for(k = 0; k < j; ++k)

if(other_node == cur_node ->to_nodes[k])

break;

} while(k < j);

cur_node ->to_nodes[j] = other_node;

other_node ->from_count ++;

}

}

recording the current address of the pool and then incrementing it by the number of

bytes “allocated.” Listing 10 shows the make neighbors function after the malloc

folding transformation.

4.2.2 Partitioning

The goal of PBR’s partitioner is to divide code in a target loop into a parallel stage and

a replicable sequential stage. Algorithm 11 shows the pseudo-code for the partitioning

algorithm. At a high level, the partitioner finds a candidate replicable sequential

59

Algorithm 11: Pseudo-code for partitioning algorithm

Input: loopInstSet: Set of all instructions in loop
Output: Set of instructions in sequential and parallel stages
seqInstSet = getAllInstWithCrossIterRegDep(loop)
foreach instruction i ∈ seqInstSet do

footPrint = getMemoryFootPrint(i)
if !isLoopInvariant(footPrint) then

return false

parInstSet = loopInstSet - seqInstSet
foreach instruction i ∈ parInstSet do

if hasCrossIterMemDep(i) then
return false

return true

stage, checks that the candidate sequential stage is replicable, and then checks if

the remaining instructions can form a parallel stage. To form the initial candidate

stage, the partitioner identifies all instructions participating in cyclic register and

control dependences. Verifying the candidate sequential stage requires checking that

no instruction in the sequential stage writes to memory and that values loaded in the

sequential stage are not modified by instructions in the parallel stage. Finally, the

algorithm uses loop-sensitive dependence analysis to demonstrate that instructions

in the parallel stage do not have cross-iteration memory dependences. Branches that

control the loop’s exits must appear in the sequential stage since they are necessarily

cyclic. For the make neighbors function, the sequential stage consists of only walking

the linked list, and incrementing the malloc pool variable. Invocations of the inner-

loop can proceed in parallel.

60

Algorithm 12: Generic form of final GPU code generated by PBR.

foreach i = 0 → threadId do
doOnlyRedundant()

while origLoopCondition do
doParallelAndRedundant()
foreach i = 0 → threadCount - 1 do

doRedundant()

4.2.3 Code Generation

Code generation is relatively straightforward. The code-generation algorithm trans-

forms the original sequential code for at most threadId iterations. After finishing

the initial threadId iterations of the sequential stage, the program alternates be-

tween executing one iteration of a combined sequential-parallel stage and executing

threadNum iterations of the sequential stage. All threads will exit in the same itera-

tion since the partitioning ensures the loop exit is contained in the sequential stage

and all threads execute every iteration of the sequential stage. Algorithm 12 shows

the generic form of the generated code and Listing 13 shows the final parallel form of

make neighbors.

61

Listing 13: Loop in make neighbor after applying malloc folding.

cur_node = nodelist;

for(i = 0; cur_node && i < threadId; ++i) {

malloc_pool += (degree * sizeof(node_t *));

cur_node=cur_node ->next;

}

while(cur_node) {

cur_node ->to_nodes = malloc_pool;

malloc_pool += (degree * sizeof(node_t *));

for(j = 0; j < degree; ++j) {

do {

other_node = table[lrand48 () % tablesz];

for(k = 0; k < j; ++k)

if(other_node == cur_node ->to_nodes[k])

break;

} while(k < j);

cur_node ->to_nodes[j] = other_node;

other_node ->from_count ++;

}

cur_node=cur_node ->next;

for(i = 0; cur_node && i < threadCount - 1;

++i) {

malloc_pool += (degree * sizeof(node_t *));

cur_node=cur_node ->next;

}

}

62

Chapter 5

Experimental Results

A single platform is used to evaluate CGCM, DyManD, and PBR. The performance

baseline is an Intel Core 2 Quad clocked at 2.40 GHz with 4 MB of L2 cache. The Core

2 Quad is also the host CPU for the GPU. All GPU parallelizations were executed on

an NVIDIA GeForce GTX 480 video card, a CUDA 2.0 device clocked at 1.40 GHz

with 1,536 MB of global memory. The GTX 480 has 15 streaming multiprocessors

with 32 CUDA cores each for a total of 480 cores. The CUDA driver version is

285.05.05. CGCM, DyManD, and PBR are all tuned for best performance on this

reference platform.

The parallel GPU version of each program is always compared with the original

single-threaded C or C++ implementation running on the CPU unless otherwise ex-

plicitly noted. All figures show whole program speedups, not kernel or loop speedups.

For the automatic parallelizations, no programs are altered manually.

The sequential baseline compilations are performed by the clang compiler version

3.0 (trunk 139501) at optimization level three. The clang compiler produced SSE

vectorized code for the sequential CPU-only compilation. The clang compiler does

63

not use automatic parallelization techniques beyond vectorization. The nvcc com-

piler release 4.0, V0.2.1221 compiled all CUDA C and CUDA C++ programs using

optimization level three.

We use the same performance flags for all programs; no programs receive special

compilation flags. The optimizer runs the same passes with the same parameters in

the same order for every program. A simple DOALL GPU parallelization system cou-

pled with an open source PTX backend [57] performed all automatic parallelizations.

5.1 DyManD and CGCM Evaluation

DyManD is insensitive to alias analysis quality and more applicable than prior sys-

tems. To demonstrate DyManD’s insensitivity to alias analysis, we compare the

performance of DyManD and CGCM on a selection of 27 programs including all

24 programs tested in CGCM’s original evaluation [28]. Since these programs are

already applicable to CGCM, they cannot demonstrate DyManD’s applicability im-

provements. Therefore, we manually parallelize three programs with recursive data-

structures and compare the performance of manual data management and communi-

cation optimizations with DyManD’s automatic data management.

To highlight CGCM’s sensitivity to alias analysis quality, CGCM’s performance

is evaluated with no alias analysis, LLVM’s production alias analysis [33], an alias

analysis stack of three research-grade analyses [24, 34, 38], and perfect alias analysis

performed manually.

The research-grade alias analysis stack consists of three analyses that are state-

of-the-art in terms of both precision and scalability. These analyses are:

• Hardekopf and Lin’s semi-sparse flow sensitive pointer analysis [24] which is inclusion-

based, context insensitive, field sensitive, and flow sensitive.

64

• Lhoták and Chung’s points-to analysis [38] which is context insensitive, semi-flow

sensitive, and supports efficient strong updates.

• Lattner et al.’s pointer analysis [34] which is unification based, context sensitive,

flow insensitive, and supports heap cloning.

5.1.1 Program Suites

We use different sets of programs to show DyManD’s improved applicability and

insensitivity to alias analysis relative to CGCM. To evaluate DyManD’s performance

on recursive data-structures, we compare DyManD with manual data management

on manual parallelizations. We select three programs from the Olden benchmark

suite [13] based on suitability for GPU parallelization and manually parallelized them

using best practices. The Olden suite consists entirely of programs with recursive

data-structures considered difficult to parallelize. The other programs in the suite

were discarded because no suitable GPU parallelization could be found. Figure 5.1

shows the performance results for the selected Olden programs.

The alias analysis experiments consist of 27 programs drawn from the Poly-

Bench [50], Rodinia [14], StreamIt [63], and PARSEC [10] benchmark suites. The 27

programs consist of all 24 programs in CGCM’s original evaluation as well as three

new programs selected from the same suites (backprop, heartwall, and filterbank).

The PolyBench, Rodinia, and StreamIt suites have very few complex or recursive

data-structures because the suites were designed for evaluating parallel compilers,

architectures, and languages respectively.

PolyBench [5, 19] is a suite composed of 16 programs designed to evaluate imple-

mentations of the polyhedral model of DOALL parallelism in automatic parallelizing

65

compilers. Prior work demonstrates that kernel-type micro-benchmarks do not re-

quire communication optimization since they invoke a single hot loop once. The

jacobi-2d-imper, gemm, and seidel programs have been popular targets for evalu-

ating automatic GPU parallelization systems [6, 36]. Figure 5.2 shows performance

results for the entire PolyBench suite.

The Rodinia suite consists of 12 programs with CPU and GPU implementations.

The CPU implementations contain OpenMP pragmas, but the DOALL parallelizer

ignores them. PARSEC consists of OpenMP parallelized programs for shared mem-

ory systems. The StreamIt suite features pairs of applications written in C and the

StreamIt parallel programming language. Our simple DOALL parallelizer found op-

portunities in eight of the 12 Rodinia programs and from three selected programs

from PARSEC and StreamIt suites. The 11 applications from Rodinia, StreamIt,

and PARSEC are larger and more realistic than the PolyBench programs.

5.1.2 Applicability Results and Analysis

Figure 5.1 shows whole program speedup over sequential CPU-only execution for three

manually parallelized Olden programs using manual data management or DyManD.

Across all three benchmarks, manual data management did not confer a substan-

tial performance advantage and was significantly more difficult to implement than

automatic data management.

The treeadd program has the simplest data-structure, an unsorted binary tree

implemented as a recursive data-structure. CGCM is inapplicable to treeadd because

it contains a recursive data-structure and structures with pointer and non-pointer

elements. In order to manage data, the programmer made a temporary copy of each

node in the tree, replaced the copy’s pointers with GPU pointers, transferred the copy

66

0.25x

0.5x

1x

2x

4x

8x

16x

32x

64x

128x

treeadd em3d bh geomean

W
h

o
le

 P
ro

g
ra

m
 S

p
ee

d
u

p
 (

L
o

g
2
)

Manual
DyManD

Figure 5.1: Whole program speedup over sequential CPU-only execution for manual
parallelizations with manual and DyManD data management and communication
optimization for programs with recursive data-structures.

to GPU memory, and freed the copy. The use of a temporary copy is unnecessary

with DyManD because in DyManD, CPU and GPU pointers are equivalent. DyManD

manages data by adding a call to map for the root of the binary tree before invoking

the GPU function.

The em3d program uses two linked-lists to implement a many-to-many bipartite

graph. Each node in the first linked-list contains an array of pointers to the second

linked-list and vice-versa. Manual data management is somewhat more complicated

than treeadd since identical pointers appear many times in the data-structure. To

ensure each pointer is translated consistently, the programmer uses a map between

CPU and GPU pointers. The manual data management performs a depth-first traver-

sal starting from both roots of the bipartite graph. For each node in the graph, the

programmer updates the map, uses the map to translate pointers in a temporary

copy, transfers the copy to the GPU, and frees the copy. To manage data, DyManD

inserts two calls to map, one for each root of the bipartite graph.

67

The bh program emulates Java-style object inheritance in C using careful data-

structure layout and abundant casting. Although all subclasses are recursive data-

structures, each subclass features different numbers and types of pointers at different

structure offsets. In addition to the temporary copy and CPU to GPU pointer map

used for em3d, the programmer must downcast abstract types to the appropriate

subclasses. Manual data management requires the programmer to write custom code

to translate each subclass. DyManD manages data by adding three calls to map before

invoking the GPU function.

Surprisingly, in bh DyManD outperforms manual data management, even though

both implementations transfer the same number of bytes in the same number of copies

and use identical kernels. The performance difference is due to pointer translation.

The programmer uses a temporary CPU copy to translate pointers, but DyManD

does do not translate pointers. Ordinarily, the cost of the extra copy would be trivial,

but the parallelized region is so much faster than the original sequential code that

data management becomes a performance bottleneck.

5.1.3 Insensitivity Results and Analysis

Figure 5.2 shows whole program speedup over sequential CPU-only execution be-

tween DyManD and CGCM with no alias analysis, LLVM’s production alias analysis,

research-grade alias analysis, and perfect manual alias analysis. The figure’s y-axis

starts at 0.25× although some programs have lower speedups. Overall, DyManD’s

performance without alias analysis matches or exceeds CGCM’s performance with

production grade or research quality alias analysis.

For the PolyBench programs (2mm through seidel), the results indicate that the

performance overhead of DyManD is comparable to CGCM even though DyManD has

68

0.25x

0.5x

1x

2x

4x

8x

16x

32x

64x

128x

2
m

3
m

m

ad
i

atax

b
icg

co
rrelatio

n

co
v
arian

ce

d
o

itg
en

g
em

m

g
em

v
er

g
esu

m
v

g
ram

sch
m

id
t

jaco
b
i-2

d
-im

p
er

lu lu
d
cm

p

seid
el

b
ack

p
ro

p

cfd

h
eartw

all

h
o

tsp
o

t

k
m

ean
s

lu
d

n
w

srad

b
lack

sch
o

les

filterb
an

k

fm g
eo

m
ean

g
eo

m
ean

 (m
in

 1
x
)

PolyBench Rodinia Other

W
h

o
le

 P
ro

g
ra

m
 S

p
ee

d
u

p
 (

L
o

g
2
)

CGCM No-AA
CGCM LLVM-AA

CGCM Research-AA
CGCM Perfect-AA

DyManD No-AA

Figure 5.2: Whole program speedup over sequential CPU-only execution for CGCM
with LLVM alias analysis, CGCM with custom alias analysis, and DyManD with no
alias analysis.

a more complex run-time library. Differences in performance between DyManD and

CGCM are usually due to the run-time overhead and not communication optimization

because PolyBench has very few communication optimization opportunities. Most

PolyBench programs consist of a single large GPU function that executes exactly once.

Additionally, since the PolyBench programs do not dynamically allocate memory, very

simple alias analysis can be precise. Consequently, the performance of DyManD and

CGCM on the PolyBench suite is similar even with weak alias analysis.

The Rodinia, StreamIt, and PARSEC programs show more performance variabil-

ity since these applications are more complex and require communication optimiza-

tion for best performance. For these applications DyManD almost always performs

better than CGCM with automatic alias analysis. Surprisingly, the research grade

alias analysis system is not significantly superior to LLVM’s production alias analysis

system. LLVM’s alias analysis was sufficient to optimize communication for nw and

srad; the research alias analysis was not. The situation is reversed for blackscholes

where LLVM’s alias analysis is worse than the research grade implementation.

Across all the benchmarks, CGCM with perfect alias analysis outperforms Dy-

ManD very slightly. This reflects CGCM’s lower run-time overhead. However, real

69

compilers do not have perfect alias analysis so DyManD performs better in practice.

CGCM may be practical for languages that require less complex alias analysis such

as FORTRAN or when programmer aliasing annotations are present. Nevertheless,

DyManD’s geomean overhead is 6.61% of whole program execution.

For programs where CGCM and DyManD are both slower than sequential ex-

ecution, DyManD is almost always slower than CGCM. DyManD and CGCM’s

slowdowns are usually due to necessary cyclic communication between the CPU and

GPU. DyManD and CGCM can only remove unnecessary cyclic communication. In

CGCM, the program will copy data between CPU and GPU before and after every

GPU function call. DyManD performs the same copies but must also frequently call

into the operating system to protect and unprotect pages. Consequently, the perfor-

mance penalty for cyclic communication is higher for DyManD than for CGCM.

5.2 PBR Evaluation

PBR is the first automatic GPU pipeline parallelization technique. Although pipeline

parallelization typically requires enabling transformations such as reductions, specu-

lation, and privatization to achieve scalable performance, pipelining alone is sufficient

to achieve performance for em3d.

Automatic parallelization for em3d achieved a whole program speedup of 3.65×.

The loop in the make neighbors function accounts for 71.0% of the total execution

time and had a speedup of 2.13×. The loop in compute nodes accounts for 5.62% of

the total execution time and had a speedup of 1.16×. Surprisingly, whole program

speedup is greater than speedups of either parallelized loop. The reason is that

results of many invocations of compute nodes are never actually used on the CPU.

70

Benchmark Program Description DOALL PBR

- otter Theorem prover using first order logic 78 36

Olden em3d Simulates the propagation of electro-magnetic waves in a 3D object 0 6

Olden bh Solves the N-body problem using hierarchical methods 0 0

Olden treeadd Adds the values in a tree 0 0

Olden bisort Sorts by creating two disjoint bitonic sequences and then merging them 0 0

Olden health Simulates the Colombian health-care sytem 0 0

Olden mst Computes the minimum spanning tree of a graph 0 0

Olden perimeter Computes the perimeter of a set of quad-tree encoded raster images 0 0

Olden power Solves the Power System Optimization problem 0 0

Olden tsp Computes an estimate of teh best hamiltonian circuit for the traveling-
salesman problem

0 0

Olden voronoi Computes the Voronoi Diagram of a set of points 0 0

ptrdist ks Kernighan-Schweikert graph partitioning tool 3 5

ptrdist bc GNU BC calculator 6 1

ptrdist ft Minimum spanning tree calculation 0 0

ptrdist yacr2 Yet another channel routiner 4 3

rodinia backprop Machine-learning algorithm for a layered neural network 10 0

rodinia bfs Graph Traversal 0 0

rodinia cfd Unstructured grid finite volume solver for three-dimensional Euler equa-
tions

7 0

rodinia heartwall Tracks movement of mouse heart through ultrasound images 21 2

rodinia hotspot Thermal simulation for estimating processor temperature based floor
plan and power measurements

2 0

rodinia kmeans K-means clustering algorithm 0 2

rodinia leukocyte Detects and tracks white-blood cells in medial imaging 128 31

rodinia lud Dense linear algebra solver 6 0

rodinia nw Global optimization method for DNA sequence alignment 3 0

rodinia particlefilter Statistical estimator of location given noisy location measurements 13 0

rodinia srad Diffusion algorithm based on partial differential equations used to re-
move speckles from images

6 1

rodinia streamcluster Solves online clustering problem 5 1

SPEC2000 179.art Image Recognition / Neural Networks 21 2

SPEC2000 181.mcf Combinatorial Optimization 1 2

SPEC2000 183.equake Seismic Wave Propagation Simulation 3 0

SPEC2006 456.hmmer Protein sequence analysis using profile hidden Markov models 183 30

stamp kmeans K-means clustering 3 0

StreamIt filterbank Creates a filter bank to perform multirate signal processing 7 0

StreamIt audiobeam Performs real-time beamforming on a microphone input array 17 2

StreamIt bitonic High performance sorting network 4 0

StreamIt dct Implements Discrete Cosine Transforms and Inverse Discrete Cosine
Transforms

12 0

StreamIt fft Fast Fourier Transform kernel 3 0

StreamIt fm Software FM radio with equalizer 4 0

StreamIt matmul-block Blocked matrix multiply 4 0

- Total 554 124

Table 5.1: Applicability of DOALL and Pipeline parallelism across 39 programs. The
DOALL column shows the number of loops identified as DOALLable. The PBR
column indicates the number of non-DOALLable loops parallelized by PBR.

Consequently, when the CPU reaches the end of the program, all pending work for

the GPU is canceled and the program exits.

Table 5.1 shows the results of an applicability test across 39 benchmarks from a

variety of benchmark suites. In total, 554 loops were identified as DOALL. Of the

remaining loops in the programs, 124 were identified as being applicable to PBR.

71

Listing 14: The hottest loop in KNNimpute.

size_t gcnt = GenesIn.GetGenes ();

for(unsigned i = 0; i < gcnt; ++i) {

if(!(i % 100))

printStatus ();

if((iOne = veciGenes[i]) == -1)

continue;

adOne = PCL.Get(iOne);

for(unsigned j = i + 1; j < gcnt; ++j)

if((iTwo = veciGenes[j]) != -1)

Dat.Set(i, j, pMeasure ->Measure(...));

}

5.3 KNNImpute Case Study

In order to demonstrate the strengths and limitations of the proposed system, we pro-

vide a case study showing how the KNNimpute program is automatically parallelized

after only minor modifications by a programmer. KNNimpute is an important and

influential tool in the field of bioinformatics with over a thousand citations in the last

decade [52, 62, 68]. KNNimpute calculates values for missing data in gene expression

microarray experiments. In bioinformatics, impute means to infer a missing experi-

mental value based on empirical measurements of processes to which it contributes.

KNNimpute uses weighted K-nearest neighbors to impute missing values for DNA

microarray experiments.

Listing 14 shows pseudo-code for the hottest loop in KNNimpute, accounting for

over 92% of total runtime. Both the outer and inner loops are DOALLable, but

two difficulties prevent automatic parallelization. First, every hundredth iteration

of the outer loop prints a status message to the console. Since the GPU cannot

72

perform IO, the code to print status message must run on the CPU. This prevents

the compiler from parallelizing the outer loop for the GPU. The situation could

be resolved through loop fission, since the contents of the status are independent

of the loop’s computations. However, the result would be printing all of the status

messages before completing any of the computations. Rescheduling IO in this way is

allowed by the C specification [1], but it clearly violates the programmer’s intention of

reassuring the user that the program is making progress. Alternatively, the program

could parallelize only the inner loop, and allow the outer loop to run on the CPU, but

the inner loop iterates only a few thousand times on reference inputs, so the overhead

of invoking the GPU parallelization outweighs most of the benefit. Consequently, we

removed the status messages in order to enable an outer-loop parallelization.

The second difficulty lies in the invocation of the Message function in the inner

loop. Message is a virtual function which would be implemented using an indirect

function call. Although, some recent GPUs have added support for indirect function

calls, the GPU compiler backend used in this thesis cannot generate them [57]. This

difficulty could be avoided by devirtualizing the function as in Java [21], but doing so

requires dynamic recompilation to handle the case where new implementations of a

virtual method are loaded dynamically. The programmer’s intention in this function

is to encourage reuse by allowing users to supply their own function for computing

the pairwise correlation between two points. Implementations of Measure include

functions based on Euclidean distance, Pearson correlation, Spearman rank correla-

tion, and others. All these implementations are relatively simple pure functions, so

the programmer intended pMeasure to be a functor. The original implementation is

inefficient even for sequential compilation, since the Measure virtual function cannot

be inlined. Inlining the Measure function would improve performance by avoiding call

and return overhead in a tight loop and providing opportunities for specialization.

73

Listing 15: The hottest loop in KNNimpute after modifications.

size_t gcnt = GenesIn.GetGenes ();

for(unsigned i = 0; i < gcnt; ++i) {

if((iOne = veciGenes[i]) == -1)

continue;

adOne = PCL.Get(iOne);

for(unsigned j = i + 1; j < gcnt; ++j)

if((iTwo = veciGenes[j]) != -1)

Dat.Set(i, j, Measure(...));

}

Instead of using virtual functions to implement functors, a programmer could use

template-based metaprogramming to achieve greater performance without sacrificing

flexibility [2]. To avoid indirect function calls, we modified the program by replacing

pMeasure->Measure function with template parameter named Measure. Listing 15

shows the KNNimpute’s hottest loop after both modifications.

After performing these two simple modifications, the system is able to automat-

ically parallelize KNNimpute for a whole program speedup of 1.5× over the best se-

quential compilation with the same modifications. KNNImpute is typically run once

per experiment, and the results are saved and used in many analyses. The subsequent

analyses are independent and can run in parallel on a cluster, so the KNNImpute pro-

gram is a sequential bottleneck in an otherwise highly parallel computation. Conse-

quently, parallelizing KNNImpute reduces the latency between running an experiment

and examining the result and thereby accelerates the pace of science.

74

Chapter 6

Related Work

This chapter presents a summary of prior work related to CGCM, DyManD, and

PBR. Since CGCM and DyManD are both data management and communication

optimization techniques, their related work is described together and the related work

for PBR follows in a separate subsection.

6.1 CGCM and DyManD Related Work

There are two techniques for managing data automatically: inspector-executor [7, 40,

61] and CGCM [28]. Inspector-executor systems manage data in clusters with dis-

tributed memory by inspecting program access patterns at run-time. Prior inspector-

executor implementations are only applicable to simple array-based data structures.

Some inspector-executor systems achieve acyclic communication when dependence

information is reusable [56, 60]. This condition is rare in practice.

CGCM is the first fully-automatic data management and communication opti-

mization system for GPUs. CGCM manages data using a combined run-time compile-

time system. CGCM depends on compile-time type-inference to correctly transfer

75

data between CPU and GPU memories. The type-inference algorithm limits CGCM’s

applicability to simple array-based codes. Furthermore, CGCM depends on alias

analysis for optimization, so the strength of alias analysis significantly affects overall

performance.

DyManD does not require strong alias analysis for communication optimization

and matches the performance of CGCM while achieving greater applicability. In con-

trast to CGCM, DyManD manages data and optimizes communication dynamically.

For production compilers, DyManD is a more practical target than CGCM, since alias

analysis is undecidable in theory and difficult to implement precisely and efficiently

in practice.

Inspector-executor systems [56, 60] create specialized inspectors to identify precise

dependence information among loop iterations. Salz et al. assume a program anno-

tation to prevent unsound reuse [60]. Rauchwerger et al. dynamically check relevant

program state to determine if dependence information is reusable [56]. The dynamic

check requires expensive sequential computation for each outermost loop iteration. If

the check fails, the technique defaults to cyclic communication.

CUDA 4.0’s Unified Virtual Addressing (UVA) [45] also achieves a unified address

space between CPU and GPU memories but has very different properties from Dy-

ManD. UVA allows programs to detect whether a value is a CPU pointer or a GPU

pointer at run-time but does not facilitate data management or communication opti-

mization. UVA distinguishes CPU pointers from GPU pointers by ensuring no valid

address on the GPU is valid on the CPU and vice versa. By contrast, in DyManD,

numerically equivalent addresses refer to equal size allocation units in CPU and GPU

memories. From the perspective of the programmer, the DyManD run-time system

keeps the contents of these allocation units identical.

76

Integrated GPUs, including CUDA and Fusion [3] devices, have the same data

management and communication optimization problem as discrete devices. In most

integrated GPUs, the CPU and GPU share the same physical memory. However,

CPU-GPU communication still requires copying between memory allocated to the

CPU and memory allocated to the GPU. Pinning memory renders it accessible to

both CPU and GPU, but pinned memory has major limitations [3, 45]. Pinned

memory is relatively scarce and requires programmers or compilers to determine which

allocation units may be accessible on the GPU at allocation time. Additionally,

pinned-memory cannot be swapped to disk so programs using pinned memory can

adversely affect other programs running on the same computer.

Several semi-automatic systems exist that manage data using programmer anno-

tations [20, 23, 36, 64, 73], but none handle recursive data structures. “OpenMP to

GPGPU” [36] and hiCUDA [23] use annotations to automatically transfer arrays to

GPU memory. JCUDA [73] uses the Java type system to transfer arrays to the GPU

but requires the programmer to annotate whether parameters are live-in, live-out, or

both. The PGI Fortran and C compiler [64] requires programmers to use the C99

restrict keyword to provide aliasing information. GMAC [20] requires annotations

to manage specially marked heap allocations. Of all the semi-automatic techniques,

only GMAC and the PGI accelerator optimize communication across GPU function

invocations. GMAC’s automatic communication optimization uses a page-protection

based system similar to DyManD. For the PGI accelerator, optimizing communication

requires additional programmer annotations.

Some automatic parallelization systems for GPUs require manual data manage-

ment and communication optimization. CUDA-lite [70] translates low-performance,

näıve CUDA functions into high performance code by coalescing and exploiting GPU

77

shared memory. However, the programmer must insert transfers to the GPU man-

ually. “C-to-CUDA for Affine Programs” [6] and “A mapping path for GPGPU”

[37] automatically transform programs similar to the PolyBench programs into high

performance CUDA C using the polyhedral model. Like CUDA-lite, they require the

programmer to manage memory.

6.2 PBR Related Work

There are two main bodies of work related to PBR: pipeline parallelism techniques

and automatic GPU parallelization techniques. No prior automatic technique adapts

pipelined parallelism to GPUs.

DOPIPE [18, 47] is the first pipeline parallelization technique. Unlike later pipelin-

ing techniques, DOPIPE does not handle loops with control flow. DOPIPE generates

parallel stages only when they correspond to a nested DOALLable loop in the original

code.

DSWP generalizes DOPIPE by adding support for arbitrary control flow [55]. The

original DSWP implementation is a manual technique limited to sequential stages and

assumed hardware specialized hardware queues [55]. Subsequent implementations au-

tomate DSWP [46], add parallel stages [54], introduce speculation [71], and aid par-

allelization using programmer annotations [72]. By replacing the proposed hardware

queues with a high performance software implementation, more recent publications

demonstrate DSWP on commodity multi-core [53] and cluster [32] architectures. The

earliest pipelining research describes pipeline parallelism as more general, but less

scalable, than DOALL parallelism. Later works emphasize the pipelining’s role as an

enabling technique [26].

78

The StreamIt [65] programming language has built-in support for manual pipeline

parallelization. Unlike DOPIPE and DSWP, StreamIt assumes shared memory, re-

quiring programs to use queues for all communication between threads. The StreamIt

compiler can compile and optimize parallel programs for GPUs [69].

All prior automatic GPU parallelization techniques only implement DOALL-style

techniques. Several compilers implement semi-automatic GPU parallelizations, re-

quiring programmers to add annotations to the targeted loops [36, 64]. “C-to-CUDA

for Affine Programs” [6] and “A mapping path for GPGPU” [37] automatically trans-

form program kernels into high performance CUDA C using the polyhedral model.

The idea of using the replicated stage to regenerate cross-iteration register depen-

dences is similar to that of speculative prematerialization [74]. However, speculative

prematerialization is only used to prematerialize cross-iteration register dependences

which are defined in every iteration and therefore can be recomputed through pre-

execution of at most one iteration. In contrast, PBR makes use of the massively

parallel resources of the GPU to recompute cross-iteration register dependences for

each loop iteration and is therefore not as constrained as prematerialization.

79

Chapter 7

Conclusion and Future Work

This dissertation presents an compiler-based automatic parallelization system for

CPU-GPU architectures. The system is already capable of parallelizing many real

applications. This chapter summarizes the impact of this system on research outside

Princeton, highlights avenues for future work, and concludes the thesis.

7.1 Impact

Two publications by outside authors extend CGCM. Pai et al. propose X10CUDA+AMM,

data management and communication optimization framework for the X10 parallel

programming language [48]. X10CUDA+AMM extends CGCM by associating meta-

data with objects in order to track when the GPU’s copy of the data becomes stale.

The authors report a whole-program speedup 1.29× over their implementation of

CGCM for X10. X10CUDA+AMM’s implementation of metadata is not suitable for

C, C++, or other weakly-typed languages.

PAR4ALL extends CGCM by increasing the granularity from allocation units to

arrays [4]. Managing data at the array rather than the allocation unit granularity

80

reduces unnecessary communication, but requires that programmers abstain from

subversive typecasting. The PAR4ALL framework achieves a geomean whole-program

speedup of 4.43× over best sequential execution for the Rhodinia and Polybench

suites.

7.2 Future Work

DyManD is sufficient to efficiently manage data and optimize communication for many

programs, but not for all data-sets. In the current implementation, DyManD halts

the program and prints an error message when GPU memory is exhausted. Typical

GPUs have between 2 and 16GB of memory, but some scientific publications have

larger working sets. Presently, GPUs do not support demand paging, but this may

change in the near future. Even with GPU hardware that supports demand paging,

new parallelization techniques may be required to minimize paging. One approach

might be breaking large data-sets into chunks and then processing the data one chunk

at a time. Automatically chunking data may require sophisticated data-flow analysis.

Furthermore, determining the appropriate size for a chunk varies with the capabilities

of the hardware and the behavior of the target program.

Automatic pipeline parallelization is an important stepping stone towards scalable

automatic parallelization for general-purpose programs. Pipelining creates scalable

performance opportunities in conjunction with other techniques such as speculation,

privatization, and reductions. Implementing these techniques on GPUs may require

extensions to hardware. For example, memory protections frequently enable specula-

tion and privatization on CPUs, but current GPU architectures do not expose flexible

interfaces for manipulating GPU memory. Furthermore, implementing sophisticated

81

low-overhead synchronization could enable high-speed queues and consequently en-

able a wider variety pipelining techniques on GPUs.

At present there is no way to communicate between the CPU and a running thread

on the GPU. Creating hardware that supports this kind of pipelining would enable

CPU-GPU pipelining where different CPUs cores execute sequential stages and the

GPU executes parallel stages. Pipelining techniques are very insensitive to latency

when communication is acyclic, so a CPU-GPU-CPU pipeline can be efficient as long

as the initial and final CPU in the pipeline are different.

The applicability of the automatic DOALL and pipeline parallelizations presented

in this thesis are limited by infrequent and spurious dependences. In multicore and

cluster systems, speculative execution has also been used to enable automatic paral-

lelization [32, 71, 53]. Unfortunately, these prior techniques rely on high-performance

queues and flexible virtual memory systems. Neither are presently available on GPUs.

Adapting shadow memory-based approaches to speculation for GPUs may be more

fruitful [30].

7.3 Concluding Remarks

Despite GPUs enormous performance potential, they remain underutilized. Auto-

matic compiler-based parallelism has the potential to radically reduce the difficulty

of exploiting CPU-GPU architectures. This dissertation presents the CGCM, Dy-

ManD, and PBR techniques for automatically parallelizing ordinary sequential C and

C++ codes for GPUs.

CGCM is the first fully automatic system for managing and optimizing CPU-GPU

communication. CGCM has two parts, a run-time library and an optimizing compiler.

82

The run-time library’s semantics allow the compiler to manage and optimize CPU-

GPU communication without programmer annotations or strong static analysis. The

compiler breaks cyclic communication patterns by transferring data to the GPU early

in the program and retrieving it only when necessary.

DyManD extends CGCM; by replacing static analysis with a dynamic run-time

system, DyManD avoids the performance and applicability limitations of CGCM.

CGCM’s communication requires strong alias analysis and is very sensitive to analy-

sis precision. By contrast, DyManD does not use alias analysis. DyManD consists of

a run-time library and a set of compiler passes. The run-time library is responsible

for managing data and optimizing communication while the compiler is responsible

for code generation and creating optimization opportunities for the run-time. The

run-time library manages data without requiring address translation since the Dy-

ManD memory allocator keeps equivalent allocation units at numerically equivalent

addresses in CPU and GPU memories. The run-time library dynamically optimizes

communication by using memory protections to return allocation units to the CPU

only when necessary. DyManD outperforms CGCM equipped with production-quality

and research grade alias analyses, achieving a whole program geomean speedup of

4.21x over best sequential execution versus geomean speedups of 2.35x and 1.28x,

respectively, for CGCM.

PBR is the first fully automatic pipeline parallelization technique for GPUs. Au-

tomatic pipeline parallelization for GPUs increases GPU applicability for general-

purpose codes. The key to enabling pipeline parallelization for the GPU is the use

of redundant computation to avoid communication. Increasing computational redun-

dancy decreases the overall amount of synchronization. This trade-off is favorable

because the GPU has abundant parallel resources and limited synchronization prim-

itives. Although automatic pipelining is only a stepping stone towards parallelizing

83

general purpose codes, it is already sufficient to parallelize em3d achieving a speedup

of 3.65×.

This dissertation presents a fully-automatic parallelizing compiler supporting DOALL

and pipeline parallelizations and using DyManD to manage data and optimize CPU-

GPU communications. The compiler is able to achieve promising performance for

many small but real applications.

84

Bibliography

[1] ISO/IEC 9899-1999 Programming Languages – C, Second Edition, 1999.

[2] A. Alexandrescu. Modern C++ Design. Addison-Wesley, 2001.

[3] AMD. AMD Accelerated Parallel Processing, August 2011.

[4] M. Amini, F. Coelho, F. Irigoin, and R. Keryell. Static compilation analysis for

host-accelerator communication optimization. In The 24th International Work-

shop on Languages and Compilers for Parallel Computing (LCPC’11), Sept.

2011.

[5] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proceedings

of the Third ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), 1991.

[6] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA

code generation for affine programs. In Compiler Construction (CC), 2010.

[7] A. Basumallik and R. Eigenmann. Optimizing irregular shared-memory applica-

tions for distributed-memory systems. In Proceedings of the Eleventh ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),

2006.

85

[8] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard: a scalable

memory allocator for multithreaded applications. SIGPLAN Not., 35:117–128,

November 2000.

[9] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering custom memory

allocation. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications, pages 1–

12, New York, NY, USA, 2002. ACM Press.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:

Characterization and architectural implications. In Proceedings of the 17th In-

ternational Conference on Parallel Architectures and Compilation Techniques

(PACT), 2008.

[11] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting

the sequential programming model for multi-core. In Proceedings of the 40th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pages 69–84, 2007.

[12] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-

rahan. Brook for GPUs: Stream computing on graphics hardware. ACM Trans-

actions on Graphics, 23, 2004.

[13] M. C. Carlisle and A. Rogers. Software caching and computation migration in

Olden. In Proceedings of the fifth ACM SIGPLAN symposium on Principles and

practice of parallel programming, PPOPP ’95, pages 29–38, New York, NY, USA,

1995. ACM.

86

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.

Rodinia: A benchmark suite for heterogeneous computing. IEEE International

Symposium on Workload Characterization (IISWC), 2009.

[15] J. H. Clark. Special Feature A VLSI Geometry Processor For Graphics. Com-

puter, 13:59–68, 1980.

[16] J. H. Clark. The Geometry Engine: A VLSI Geometry System for Graphics. In

Proceedings of the 9th annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’82, pages 127–133, New York, NY, USA, 1982. ACM.

[17] D. M. Dang, C. Christara, and K. Jackson. GPU pricing of exotic cross-currency

interest rate derivatives with a foreign exchange volatility skew model. SSRN

eLibrary, 2010.

[18] J. R. B. Davies. Parallel loop constructs for multiprocessors. Master’s thesis,

Department of Computer Science, University of Illinois, Urbana, IL, May 1981.

[19] P. Feautrier. Some efficient solutions to the affine scheduling problem: I. one-

dimensional time. International Journal of Parallel Programming (IJPP), 1992.

[20] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-m. W. Hwu. An

asymmetric distributed shared memory model for heterogeneous parallel systems.

SIGPLAN Not., 45:347–358, March 2010.

[21] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-

Wesley, Reading, MA, August 1996.

[22] Graph 500 specifications. http://graph500.org/specifications.html.

87

[23] T. D. Han and T. S. Abdelrahman. hiCUDA: a high-level directive-based lan-

guage for GPU programming. In Proceedings of 2nd Workshop on General Pur-

pose Processing on Graphics Processing Units, GPGPU-2, pages 52–61, New

York, NY, USA, 2009. ACM.

[24] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer analysis. In Proceed-

ings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’09, pages 226–238, New York, NY, USA, 2009.

ACM.

[25] D. R. Horn, M. Houston, and P. Hanrahan. Clawhmmer: A streaming HMMer-

Search implementation. Proceedings of the Conference on Supercomputing (SC),

2005.

[26] J. Huang, A. Raman, Y. Zhang, T. B. Jablin, T.-H. Hung, and D. I. August.

Decoupled Software Pipelining Creates Parallelization Opportunities. In Proceed-

ings of the 2010 International Symposium on Code Generation and Optimization,

April 2010.

[27] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August. Dynamically

Managed Data for CPU-GPU Architectures. In Proceedings of the 2012 Inter-

national Symposium on Code Generation and Optimization, April 2012.

[28] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. Au-

gust. Automatic CPU-GPU communication management and optimization. In

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 2011.

88

[29] T. B. Jablin, Y. Zhang, J. A. Jablin, J. Huang, H. Kim, and D. I. August.

Liberty Queues for EPIC Architectures. In Proceedings of the 8th Workshop on

Explicitly Parallel Instruction Computing Techniques, April 2010.

[30] N. P. Johnson, H. Kim, P. Prabhu, A. Zaks, and D. I. August. Speculative

separation for privatization and reductions. to appear Programming Language

Design and Implementation (PLDI), June 2012.

[31] Khronos Group. The OpenCL Specification, September 2010.

[32] H. Kim, A. Raman, F. Liu, J. W. Lee, and D. I. August. Scalable specula-

tive parallelization on commodity clusters. In Proceedings of the 43rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2010.

[33] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the Annual International Sympo-

sium on Code Generation and Optimization (CGO), pages 75–86, 2004.

[34] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-to anal-

ysis with heap cloning practical for the real world. In Proceedings of the 2007

ACM SIGPLAN conference on Programming language design and implementa-

tion, PLDI ’07, pages 278–289, New York, NY, USA, 2007. ACM.

[35] M. M. Leather and E. Demers. Unified Shader. United States Patent No.

7,796,133. ATI Technologies ULC, December 2003.

[36] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a compiler framework

for automatic translation and optimization. In Proceedings of the Fourteenth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), 2009.

89

[37] A. Leung, N. Vasilache, B. Meister, M. M. Baskaran, D. Wohlford, C. Bastoul,

and R. Lethin. A mapping path for multi-GPGPU accelerated computers from

a portable high level programming abstraction. In Proceedings of the 3rd Work-

shop on General-Purpose Computation on Graphics Processing Units (GPGPU),

pages 51–61, 2010.

[38] O. Lhoták and K.-C. A. Chung. Points-to analysis with efficient strong updates.

In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Prin-

ciples of programming languages, POPL ’11, pages 3–16, New York, NY, USA,

2011. ACM.

[39] K. Li and P. Hudak. Memory coherence in shared virtual memory systems.

In Proceedings of the fifth annual ACM symposium on Principles of distributed

computing, PODC ’86, pages 229–239, New York, NY, USA, 1986. ACM.

[40] S.-J. Min and R. Eigenmann. Optimizing irregular shared-memory applications

for clusters. In Proceedings of the 22nd Annual International Conference on

Supercomputing (SC). ACM, 2008.

[41] O. Moerbeek. A new malloc (3) for openbsd. In Proceedings of the 2009 European

BSD Conference, EuroBSDCon ’09, 2009.

[42] NVIDIA Corporation. CUDA C Best Practices Guide 3.2, 2010.

[43] NVIDIA Corporation. NVIDIA CUDA Programming Guide 3.0, February 2010.

[44] NVIDIA Corporation. NVIDIA CUDA Programming Guide 3.1.1, July 2010.

[45] NVIDIA Corporation. NVIDIA CUDA Programming Guide 4, April 2011.

[46] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extrac-

tion with decoupled software pipelining. In Proceedings of the 38th Annual

90

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

105–118, 2005.

[47] D. A. Padua. Multiprocessors: Discussion of some theoretical and practical prob-

lems. PhD thesis, Department of Computer Science, University of Illinois, Ur-

bana, IL, United States, November 1979.

[48] S. Pai and M. J. Thazhuthaveetil. ”fast and efficient automatic memory manage-

ment for gpus using compiler-assisted runtime coherence scheme”. In Proceedings

of the 2011 International Conference on Parallel Architectures and Compilation

Techniques, PACT ’12, Washington, DC, USA, 2012. IEEE Computer Society.

[49] POSIX.1-2008. The open group base specifications. (7), 2008.

[50] L.-N. Pouchet. PolyBench: the Polyhedral Benchmark suite.

http://www-roc.inria.fr/ pouchet/software/polybench/download.

[51] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August. Commutative

set: A language extension for implicit parallel programming. In Proceedings of

the 32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), 2011.

[52] P. Prabhu, T. B. Jablin, A. Raman, Y. Zhang, J. Huang, H. Kim, N. P. John-

son, F. Liu, S. Ghosh, S. Beard, T. Oh, M. Zoufaly, D. Walker, and D. I. Au-

gust. A survey of the practice of computational science. Proceedings of the 24th

ACM/IEEE Conference on High Performance Computing, Networking, Storage

and Analysis (SC), November 2011.

[53] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Speculative

parallelization using software multi-threaded transactions. In Proceedings of the

91

Fifteenth International Symposium on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2010.

[54] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August. Parallel-stage

decoupled software pipelining. In Proceedings of the Annual International Sym-

posium on Code Generation and Optimization (CGO), 2008.

[55] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. Decoupled

software pipelining with the synchronization array. In Proceedings of the 13th

International Conference on Parallel Architectures and Compilation Techniques,

pages 177–188, September 2004.

[56] L. Rauchwerger, N. M. Amato, and D. A. Padua. A scalable method for run-

time loop parallelization. International Journal of Parallel Programming (IJPP),

26:537–576, 1995.

[57] H. Rhodin. LLVM PTX Backend.

http://sourceforge.net/projects/llvmptxbackend.

[58] M. Rumpf and R. Strzodka. Using graphics cards for quantized fem computa-

tions. In in IASTED Visualization, Imaging and Image Processing Conference,

pages 193–202, 2001.

[59] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W.

Hwu. Optimization principles and application performance evaluation of a mul-

tithreaded GPU using CUDA. In Proceedings of the Thirteenth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP), 2008.

[60] J. Saltz, R. Mirchandaney, and R. Crowley. Run-time parallelization and schedul-

ing of loops. IEEE Transactions on Computers, 40, 1991.

92

[61] S. D. Sharma, R. Ponnusamy, B. Moon, Y.-S. Hwang, R. Das, and J. Saltz. Run-

time and compile-time support for adaptive irregular problems. In Proceedings

of the Conference on Supercomputing (SC). IEEE Computer Society Press, 1994.

[62] Google Scholar.

http://scholar.google.com/scholar?cites=3619060742417172543.

[63] StreamIt benchmarks.

http://compiler.lcs.mit.edu/streamit.

[64] The Portland Group. PGI Fortran & C Accelator Programming Model. White

Paper, 2010.

[65] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for

streaming applications. In Proceedings of the 12th International Conference on

Compiler Construction, 2002.

[66] C. J. Thompson, S. Hahn, and M. Oskin. Using modern graphics architectures

for general-purpose computing: a framework and analysis. In Proceedings of the

35th annual ACM/IEEE international symposium on Microarchitecture, MICRO

35, pages 306–317, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[67] C. Trendall and A. J. Stewart. General calculations using graphics hardware with

applications to interactive caustics. In Proceedings of the Eurographics Workshop

on Rendering Techniques 2000, pages 287–298, London, UK, UK, 2000. Springer-

Verlag.

[68] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani,

D. Botstein, and R. B. Altman. Missing value estimation methods for dna mi-

croarrays. Bioinformatics, 17(6):520–525, 2001.

93

[69] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software pipelined

execution of stream programs on GPUs. In CGO ’09: Proceedings of the 2009

International Symposium on Code Generation and Optimization, pages 200–209,

Washington, DC, USA, 2009. IEEE Computer Society.

[70] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W.-m. W. Hwu. CUDA-Lite:

Reducing GPU Programming Complexity. In Proceeding of the 21st International

Workshop on Languages and Compilers for Parallel Computing (LCPC), 2008.

[71] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I.

August. Speculative decoupled software pipelining. In PACT ’07: Proceedings

of the 16th International Conference on Parallel Architecture and Compilation

Techniques, pages 49–59, Washington, DC, USA, 2007. IEEE Computer Society.

[72] H. Vandierendonck, S. Rul, and K. De Bosschere. The Paralax infrastruc-

ture: Automatic parallelization with a helping hand. In Proceedings of the 19th

International Conference on Parallel Architecture and Compilation Techniques

(PACT), pages 389–400, 2010.

[73] Y. Yan, M. Grossman, and V. Sarkar. JCUDA: A programmer-friendly interface

for accelerating Java programs with CUDA. In Proceedings of the 15th Interna-

tional Euro-Par Conference on Parallel Processing. Springer-Verlag, 2009.

[74] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering hidden loop

level parallelism in sequential applications. In Proceedings of the 14th Interna-

tional Symposium on High-Performance Computer Architecture (HPCA), 2008.

94

