
Deconstructing Hardware Usage for General Purpose Computation on GPUs

Budyanto Himawan
Dept. of Computer Science

University of Colorado
Boulder, CO 80309

Manish Vachharajani
Dept. of Electrical and Computer Engineering

University of Colorado
Boulder, CO 80309

E-mail: {Budyanto.Himawan,manishv}@colorado.edu

Abstract

The high-programmability and numerous compute resources
on Graphics Processing Units (GPUs) have allowed researchers
to dramatically accelerate many non-graphics applications. This
initial success has generated great interest in mapping applica-
tions to GPUs. Accordingly, several works have focused on help-
ing application developers rewrite their application kernels for the
explicitly parallel but restricted GPU programming model. How-
ever, there has been far less work that examines how these appli-
cations actually utilize the underlying hardware.

This paper focuses on deconstructing how General Purpose ap-
plications on GPUs (GPGPU applications) utilize the underlying
GPU pipeline. The paper identifies which parts of the pipeline
are utilized, how they are utilized, and why they are suitable for
general purpose computation. For those parts that are under-
utilized, the paper examines the underlying causes for the under-
utilization and suggests changes that would make them more use-
ful for GPGPU applications. Hopefully, this analysis will help de-
signers include the most useful features when designing novel par-
allel hardware for general purpose applications, and help them
avoid restrictions that limit the utility of the hardware. Further-
more, by highlighting the capabilities of existing GPU compo-
nents, this paper should also help GPGPU developers make more
efficient use of the GPU.

1. Introduction
In recent years, CPU performance growth has slowed and this

slowing seems likely to continue [1]. Thus, designers are looking
to other means to boost application performance; explicitly par-
allel hardware, especially non-traditional parallel hardware (e.g.,
IBM’s Cell Processor), is a top choice. To understand how to
best design non-standard architectures, Graphics Processing Units
(GPUs) can provide an interesting lesson. GPUs allow highly
parallel (though mostly vectorized) computations at relatively low
cost. Furthermore, the relatively simple parallel architecture of the
GPU allows the performance of these designs to scale as Moore’s
law provides more transistors. As evidence, consider that GPU
performance has been increasing at a rate of 2.5 to 3.0x annually
as opposed to 1.41x for general purpose CPUs [2].

Although older GPUs tend to sacrifice programmability for

performance, in 2001, NVidia revolutionized the GPU by making
it highly programmable [3]. Since then, the programmability of
GPUs has steadily increased, although they are still not fully gen-
eral purpose. Since this time, there has been much research and ef-
fort in porting both graphics and non-graphics applications to use
the parallelism inherent in GPUs. Much of this work has focused
on presenting application developers with information on how to
perform the non-trivial mapping of general purpose concepts to
GPU hardware so that there is a good fit between the algorithm
and the GPU pipeline.

Less attention has been given to deconstructing how these gen-
eral purpose application use the graphics hardware itself. Nor has
much attention been given to examining how GPUs (or GPU-like
hardware) could be made more amenable to general purpose com-
putation, while preserving the benefits of existing designs. In this
paper, we investigate both of these aspects of General Purpose ap-
plications on GPUs (GPGPU). We use the taxonomy of funda-
mental operations (mapping, sorting, reduction, searching, stream
filtering, and scattering and gathering) developed by Owens et
al. [4] to examine how GPGPU applications utilize GPU hardware.
We describe how each operation can be implemented on the GPU,
identify which hardware components are used, how they are used,
and why they are suitable for general purpose applications. This
should help designers determine which features to keep or improve
and which limitations to avoid in the design of the next generation
GPUs to make them more useful for general purpose computa-
tion. Furthermore, by highlighting the capabilities and limitations
of existing GPU components, this paper should also help devel-
opers build more efficient GPGPU applications. As a step in this
direction, this work also extends Owens et al. with a new funda-
mental operation, predicate evaluation.

The remainder of this paper is organized as follows. Section 2
provides an overview of the GPU architecture and shows the map-
ping between GPU and general purpose computing concepts by
showing how a simple vector scaling operation is implemented.
Section 3 examines the fundamental operations, describes how
they can be implemented on the GPU, and identifies the pieces
of GPU hardware that are utilized. In Section 4, we provide a
summary of the capabilities and limitations of the different pieces
of the GPU hardware and suggests a few modifications. This anal-
ysis can serve as the basis for further investigations into GPU ex-
tensions for GPGPU computation. Section 5 concludes.



Figure 1. Overview of a GPU Pipeline. Shaded boxes represent programmable components

2. GPU Architecture Overview

This section introduces the GPU pipeline with NVidia GeForce
6800 as a model. The graphics pipeline (See Figure 1) is tradition-
ally structured as stages of computation with data flow between
the stages [4]. This fits nicely into the streaming programming
model [5], in which, input data is represented as streams. Kernels
then perform computations on the streams at different stages of the
pipeline. More formally, a stream is a collection of records requir-
ing similar computations and a kernel is a function applied to each
element of the stream [6]. We can roughly think of GPUs as SIMD
machines under Flynn’s taxonomy of computer architectures [7].

The stages in the graphics pipeline are as follows:

Vertex Processor The vertex processor receives a stream of ver-
tices from the application and transforms each vertex into
screen positions. It also performs other functions such as
generating texture coordinates and lighting the vertex to de-
termine its color. Each transformed vertex has a screen po-
sition, a color, and a texture coordinate. Traditional vertex
processors do not have access to textures. This is a new fea-
ture in the GeForce 6800.

Primitive assembly During primitive assembly, the transformed
vertices are assembled into geometric primitives (triangles,
quadrilaterals, lines, or points).

Cull/Clip/Setup The stream of primitives then passes through the
Cull/Clip/Setup units. Primitives that intersect the view frus-
tum (view’s visible region of 3D space) are clipped. Prim-
itives may also be culled (discarded based on whether they
face forward or backward).

Rasterizer This unit determines which screen pixels are covered
by each geometric primitive, and outputs a corresponding
fragment for each pixel. Each fragment contains a pixel
location, depth value, interpolated color, and texture coor-
dinates. The z-cull unit attached to the rasterizer performs
early culling. The idea is to skip work for fragments that are
not going to be visible to begin with.

Fragment Processor A function is applied to each fragment to
compute its final color and depth. The value of a frag-
ment’s color is what is normally used as the final value in a
GPGPU computation. The fragment processor is also capa-
ble of texture-mapping, a process where an image is added
to a simple shape, like a decal pasted to a flat surface. This
feature can be used to assign a color to each fragment. The
color for each fragment is obtained by performing a lookup
into a 2D image (called a texture) using the fragment’s tex-
ture coordinates. Each element in a texture is called a tex-
ture element (texel). As we will see, texture mapping is one
of the key GPU features used in GPGPU applications.

Raster Operations (Pixel engine) The stream of fragments from
the fragment processor goes through a series of tests, namely
the scissor, alpha, depth, and stencil test. If they survive
these tests, they are written into the framebuffer. The scis-
sor test rejects a fragment if it lies outside a specified sub-
rectangle of the framebuffer. The alpha test compares a
fragment’s alpha (transparency) value against a user spec-
ified reference value. The stencil test compares the stencil
value of a fragment’s corresponding pixel in the framebuffer
with a user specified reference value. The stencil test is used
to mask off certain pixels. The depth test compares the depth
value of a fragment with the depth value of the correspond-
ing pixel in the framebuffer. Values in the depth buffer and
stencil buffer can optionally be updated for use in the next
rendering pass.

The pixel engine is also responsible for performing blend-
ing operations. During blending, each fragment’s color is
blended with the pre-existing color of its corresponding pixel
in the framebuffer. The GPU supports a wide variety of
user-controlled blending operations, including conditional
assignments.

Framebuffer The framebuffer consists of a set of pixels (picture
elements) arranged in a two dimensional array [8]. It stores
the pixels that will eventually be displayed on the screen. It
is made up of several sub buffers, namely color, stencil, and
depth buffer.



Figure 2. Block diagram of the GeForce 6 se-
ries architecture.

Figure 2 (from reference [9]) shows a block diagram of a typ-
ical GPU pipeline (in this case, the Nvidia GeForce 6800). There
are 6 vertex processors and 16 fragment processors capable of per-
forming 32 bit floating point operations. They both use the texture
unit as a random access data fetch-unit at a rate of 35GB/sec [9].
The texture unit is writable and readable by both the GPU and
CPU. The peak texture download and read back rate is 3.2 GB/sec.
The vertex and fragment processors are fully programmable. They
can execute user-programmed computation kernels, called shaders.
From here on, the terms shader, kernel, and program are used in-
terchangeably.

2.1 Mapping GPU to general purpose computing
concepts

To see how the GPU can be used to perform a general purpose
computation, we consider an example in which we perform vector
scaling using the Cg shading language. Table 1 summarizes the
GPU terms used in the example and how they map back to general
purpose computing terms.

To program the GPU one has to use a 3D library to interface
with the graphics hardware and a shading language to program the
GPU. The 3D interface library (e.g., Direct3D [10] or OpenGL [8])
is beyond the scope of this paper. Shading languages enable pro-
grammers to use a higher level C-like language instead of GPU
assembly. High Level Shading Language (HLSL), OpenGL [11],
and Cg [12] are three of the more popular shading languages.
There are also extensions to general purpose languages that pro-
vide abstractions to the parallel data structure of the GPU. [6, 13]
provides such abstractions for C++, and [14] for C#. A compiled
shader is transferred to the GPU using the appropriate 3D library
commands (see Figure 3).

2.2 The vector-scaling example
A vector scaling operation is defined as y = αx, where y and

x are vectors of the same length. We are multiplying each element
of x by a constant, α, and storing the results in vector y. Figure 3

Figure 3. Dataflow for vector scaling on the
GPU

1 float2 multiplier (
2 in float2 coords : TEXCOORD0,
3 uniform samplerRECT textureData,
4 uniform float alpha ) : COLOR {
5 float2 data = texRECT (textureData, coords);
6 return (data * alpha);
7 }

Figure 4. Cg program for vector scaling.

shows the dataflow diagram of the execution of the vector scaling
program. The application first allocates a 1D array on the CPU
memory. This is then converted to a 2D texture and transferred to
the GPU memory using OpenGL commands. Next, the Cg pro-
gram is compiled by the Cg Runtime and transferred into the frag-
ment processor. Computation is started by rendering a quad that is
the size of the texture, specifying the four vertices and their associ-
ated texture coordinates. A quad specifies the computational range
and usually corresponds to the size of the output. Texture coordi-
nates are to textures as array indices are to arrays. They are used as
lookup indices. Rendering generates a stream of vertices that be-
come the input to the GPU pipeline. The rasterizer then generates
fragments (along with texture coordinates) which are used by the
fragment processor. Our shader performs a 2D lookup into the tex-
ture using the texture coordinates that arrive with each fragment.
Each value obtained from the texture is multiplied by the scaling
factor and the output is written into the framebuffer. Note that this
multiplication is a vector operation. The results are then read-back
into the CPU memory from the framebuffer. Mapping the terms
back to the vector scaling equation, y = αx, the framebuffer is y,
the texture is x. α is passed in as a uniform parameter, which will
be explained shortly.

The Cg program that performs the computation is shown in
Figure 4. Compare that with the CPU version (Figure 5). Notice
that the Cg program does not have a loop. The scaling operation
is performed on every fragment of the incoming stream. The frag-
ment processors execute as many of them in parallel as hardware
resources allow.

The details of Cg are beyond the scope of this paper and read-
ers are encouraged to refer to [12] for a tutorial. In summary, the

1 for (int i=0; i<lengthOf(data); i++)
2 {
3 result[i] = data[i] * alpha;
4 }

Figure 5. CPU program for vector scaling.



GPU CPU Description
2D Texture Array Data is stored on the GPU as a 2D texture
Texture Coordinates Array Indices A texture element is accessed using texture coordinates
Framebuffer Final Output Computational results are stored in the framebuffer
Quad Computational Range We render a quadrilateral to specify the valid computational

range
Shader Computational Kernal A program that is loaded onto the vertex or fragment proces-

sor

Table 1. Mapping of GPU terminology to general purpose computing terminology.

Cg program performs a texture lookup using the texRECT rou-
tine. textureData refers to the texture (x) and coords refers
to texture-coordinates. The uniform variable qualifier indicates
that the variable is fixed. They do not vary per fragment and are
stored in constant registers.

3. GPU Hardware Utilization
In this section we deconstruct how GPGPU applications utilize

the underlying hardware. Owens et al. [4] identified a list of fun-
damental operations that can be performed on the GPU based on
the streaming programming model; mapping, reduction, sorting,
searching, scattering and gathering, and stream filtering. Their
work was targeted towards application developers. Here, we dis-
cuss the low-level implications of these fundamental operations
and how the hardware supports them. We have also identified a
new operation, predicate evaluation, that was not in the original
classification.

3.1 Mapping
This is just like the vector scaling example in Section 2.2.

Given a function and a stream, the mapping operation applies the
function to each element in the stream in parallel. On a CPU pro-
gram, one would have an inner loop to apply the operation on every
element of a vector to achieve the same effect. With the GPU, it is
as if this inner loop is unrolled and executed in parallel (as long as
hardware resources are available). The pipeline usage is shown in
Figure 6.

The GPU implementation for the mapping operation is straight-
forward. The vector on which the mapping function is to operate is
transferred to the texture unit as a 2D array. The mapping function
itself is written as a fragment shader. The results are then written
into the color buffer portion of the framebuffer.

Mapping operation is a very common data parallel operation.
The vector scaling operation discussed in section 2.1 is a classic
example. Discrete Cellular Automata used in physics simulation
can be modeled using a mapping operation [15].

3.2 Reduction
Reduction is a process where, given an input stream, one com-

putes a smaller stream or even a single value. On the GPUs, re-
ductions are implemented by alternately rendering to and reading
from a pair of textures. This gives us a running time of O(log n)
compared to O(n) on the CPU. On each rendering pass, the size of
the output is reduced by some fraction. We keep doing this until
the output is a single element buffer. For example to reduce a 2D
buffer, the fragment program reads four elements from the input
texture using four sets of texture coordinates. The output size is
halved in each dimension at each step.

Figure 7 shows the typical reduction scheme used by GPGPU
applications. From the application, we specify the computational
range by drawing a quad and specifying the vertices. In this case
our computational range would be the size of the output buffer. So
the four vertices are (0,0), (2,0), (0,2), (2,2). Recall that texture
coordinates are simply used by the fragment program as indices
into a texture. For each vertex, we can specify a set of texture
coordinates (GeForce 6800 allows up to 16).

different from the map operation, except now we perform mul-
tiple rendering passes. The output buffer of one rendering pass
becomes the input texture of the next pass. We leave the task of
re-computing the size of the output buffer and the texture coordi-
nates between rendering passes to the application.

The rasterizer linearly interpolates the coordinates at each ver-
tex to generate a set of coordinates for each fragment. The in-
terpolated coordinates are then passed as inputs to the fragment
processor. The reduction function, which is implemented as frag-
ment shader, thus takes in four texture coordinates as inputs and
applies the reduction operation between corresponding texture co-
ordinates. The application simply specifies the texture coordinates
associated with each vertex. For example, in Figure 7, the tex-
ture coordinates associated with vertex (0,0) are (0,0) for domain
0, (2,0) for domain 1, (0,2) for domain 2, and (2,2) for domain 3.
Note, to avoid GPU to CPU data transfers, the successive render-
ing passes are done completely in the GPU by having the fragment
program write its output to another texture, instead of writing di-
rectly to the framebuffer.

The pipeline usage (Figure 8) is really no
Reduction, like mapping, is used in many applications. Ex-

amples of common reduction operations are computing the max-
imum, minimum, or the sum from a set of values. In parallel re-
ductions, the reduction operation needs to be associative so that
the underlying parallel system can perform them in any order best
suited for the system.

3.3 Sorting

Sorting is one of the most fundamental problems in computer
science. Studies have shown that the performance of sorting algo-
rithms on CPUs is limited by cache misses [16] and instruction de-
pendencies [17]. This makes the GPU, which has a high memory
bandwidth (up to 35 GB/sec for GeForce 6800) and a high degree
of parallalelism in their fragment processors, a perfect candidate
for improving sort performance.

However, classic sorting algorithms like quicksort do not nat-
urally port to the GPU. They are data-dependent and they require
scatter operations. To avoid write-after-read (WAR) hazards be-
tween multiple fragment processors, current graphics processors
do not support scatter operations from the fragment processors
(i.e., they cannot write to arbitrary memory locations). Thus, sort-



Figure 6. Mapping operation pipeline usage (shaded boxes indicate the components that are used in
the operation).

Figure 7. GPU reduction. Cells labeled with
the same number are reduced to single cell.

ing implementations on the GPUs employ some variety of sorting
network [18]. We will present the implementation by Govindaraju
et al. [19], which is based on the Periodic Balanced Sorting Net-
works (PBSN) [20]. Among the GPU sorting implementations [21,
22], this seems to make the most use of the pipeline and yields
better performance. In general, sorting networks have a time com-
plexity of O(n log2 n). They sort the input sequence in log2 n
phases and each phase requires n comparisons. However, since
the GPUs can perform many comparisons in parallel during each
phase, in practice, they outperform the CPU based algorithms, es-
pecially for large n.

3.3.1 Sorting Networks
A sorting network is comprised of a set of two-input and two-

output comparators. An unordered set of items are placed on the
input ports and the smallest of the inputs appear on the first output
port, the second smallest on the second output port, etc. [20].

Figure 9 shows a block in a PBSN with 8 inputs. Values enter
from the left and exit to the right. The circles connected by vertical
lines represent values being compared by a comparator. The dark
circles represent the greater of the two values. Notice that, in each
phase, each pair of data points is distinct and can be compared in
parallel.

Sorting networks proceed by performing comparisons in sev-
eral phases (Figure 9). The phases are chained such that the output
from one phase becomes an input for the next phase. During each

phase, a comparator mapping is needed in which every pixel on
the screen is compared against exactly one other pixel. For each
pair of pixels, a deterministic order for storing the output value is
defined. The minimum is stored in one of the two pixels, and the
maximum on the other. To implement this algorithm on the GPU,
two primitive operations are needed:

Comparions We need a way to perform comparisons between
any two pixels. Govindaraju et al. [19] use blending opera-
tions to perform the comparisons efficiently. More specifi-
cally, we perform conditional assignments on the pixels and
store either the maximum or minimum for each comparison
in the sorting network.

Mapping In each phase, we need to determine, for each pixel,
with whom it will be compared. Govindaraju et al. [19] use
the texture mapping feature of the GPU to do this. Each pair
is compared twice. The first one writes the maximum, and
the second the minimum.

Figure 10 summarizes the pipeline usage. The data values to
be sorted are stored in 2D textures. Each texture value, can have
four channels; red, green, blue, and alpha (RGBA). We split the
data values into the four channels. Next, we stream the data once
to the GPU’s texture unit, instruct it to copy the texture into the
framebuffer so that the blending operations can have access to it,
and let the GPU perform the computations. When the GPU is
done, we read back the data into the CPU. The GPU is able to
sort the four color components in parallel. The four sorted lists
are then merged back in the CPU in O(n) time. Dowd [20] proved
that PBSN requires log2 n steps (log n blocks, each with log n
phases). Since each step requires n comparisons, PBSN sorts in
O(n log2 n) time. However, on the GPU, the comparisons in each
phase are done in parallel. In practice, the performance is better
than CPU sorting algorithms [19].

Sorting is an intermediate step in many applications. Govin-
daraju et.al. made use of GPU sorting to implement an efficient
JOIN operation for database and data mining computation [23].
Purcell et. al. showed how GPU sorting can be used, in con-
junction with GPU search, to sort photons on a grid for Photon
Mapping [21].



Figure 8. Reduction operation pipeline usage.

Figure 9. A block in the PBSN

3.4 Searching

Searching enables us to determine if a particular element exists
in a given stream. Perhaps one of the simplest forms of searching
is binary search, where an element is located from a sorted list in
O(log n). The element being sought is compared with the element
in the middle of the sorted list. If the searched element is smaller,
the search continues recursively using the left half of the list and
if it is greater, using the right half of the list.

Binary search is inherently serial. To date, there is no paral-
lel implementation of binary search on the GPU [4]. Thus, the
focus has shifted from reducing the latency of a single search to
increasing the bandwidth of the search from a given set of data.
Purcell [24] showed a straightforward implementation of binary
search on the GPU. The search is implemented just like it would
have been on the CPU but with a fragment shader. The element
being searched corresponds to a single texel in a 2D texture. So
each pixel written into the framebuffer represents the result of a
single search. The data set to be searched is passed into the frag-
ment shader as a uniform parameter, or it can simply be another
texture. To really get an advantage from GPU’s binary search, one
must do multiple searches using the same data set. The pipeline
usage is shown in Figure 11.

3.5 Scatter and Gather

All the operations presented so far only use the back-end of the
graphics pipeline (from the fragment processor on) for good rea-

sons. First, there are usually many more fragment processors than
vertex processors. The GeForce 6800 has 16 fragment processors
and only 6 vertex processors. Thus, we can get more parallelism
using the fragment processor. Second, until recently, the vertex
processor could not perform a texture fetch. Textures are impor-
tant data structure for general purpose computation and without
them the vertex processor’s utility is limited. Third, the fragment
processor is closer to the framebuffer, where computational results
are stored. Vertex processors cannot write to the framebuffer with-
out going through the fragment processor.

With the GeForce 6800, things have changed a bit. The GeForce
6800 introduced texture fetch from the vertex processor, thus the
vertex processor can be used to perform scatter operations. We
explain how below.

A gather operation is an indirect-read operation such as x =
a[i] [25]. This can easily be implemented in the fragment pro-
cessor by doing a texture lookup with a dependent-texture-read.
A dependent-texture-read is basically a texture fetch at an offset
from the current fragment’s texture coordinates.

A scatter operation is just the opposite of gather. It is an indirect-
write of the form a[i] = x. This cannot be implemented directly
using the fragment processor. The position in the framebuffer
to which the fragment processor writes for each fragment is pre-
determined by the rasterizer.

A vertex processor, however, can specify the position of ver-
tices. In fact it is one of the tasks that a vertex processor is respon-
sible for. So, now we can use a vertex program to perform scatter.
Instead of rendering a quad, now we render a point. Previously,
when a quad was rendered, the rasterizer generates fragments for
every pixel covered by the quad. For a point, the rasterizer gen-
erates fragments for every pixel intersecting the point. We can
control the number of fragments generated by controlling the size
of the point. The application simply issues points to render and
the vertex processor fetches, from a texture, the scatter position
and assigns it to the rendered point’s position, along with the ap-
propriate data. When the fragment processor writes to the frame-
buffer it will use the position specified by the vertex processor.
The pipeline usage is shown in Figure 12.

3.6 Stream Filtering

Stream filtering is the ability to filter a subset of elements from



Figure 10. Sorting operation pipeline usage.

Figure 11. Searching operation pipeline usage.

a stream and discard the rest. This is similar to the reduction oper-
ation. The difference is that, in the reduction operation, the output
size is known in advance. So we can render a quad using that
size. In stream filtering, we do not have that information. The re-
duction decision is now made on a per-element basis. A method
called filtering through compaction [26] will help filter the incom-
ing stream.

First choose a value to be the invalid value. The fragment pro-
gram generates this invalid value to represent output that will be
filtered out from the final output stream. The most straightforward
way to filter the output stream is to sort the stream to eliminate
invalid values. But sorting, as shown earlier, takes O(n log2 n) on
the GPU. Instead, we can use a counting method called a running
sum scan (Figure 13). The running sum scan counts the number
of invalid values in the current element and the (current − 2i)
element, where i is the ith rendering pass, starting from 0. The re-
sults are written into the framebuffer and used as input for the next
pass. After log n rendering passes, the value at the right end of the
stream indicates the total number of invalid values in the stream.
This tells us the final size of the output needs to be the total length
of the stream minus the value at the right end of the stream. The
total running time of the sum scan is O(n log n). There are log n
rendering passes, and each pass computes sums for a maximum of
n elements.

At this point each output position knows the number of invalid
values to its left, starting from its own position. Ideally we want to
have a fragment program sample the valid outputs and send them
into the right positions in the filtered output by shifting each valid
element to the left n positions, where n is the number of invalid
values to its left (as shown in Figure 14). This is basically a scatter
operation. However, recall that fragment processors do not support
scatter operations. We could use the vertex processor to perform
the scatter (Section 3.5) but it is inefficient for large numbers of
element because it does not make full use of the rasterizer.

We can, however, convert the scatter operation into a gather
operation (Figure 15). One of the nice properties of the running
sum scan is that the result of the scan is a monotonically increasing
sorted list. So we can use a parallel binary search to find the correct
place to gather from.

Each position in the filtered output is an input for a parallel bi-
nary search. The search pool is the running sum output. For each
position in the filtered output, the search stops when it finds the
first running sum, whose value in the original output is valid, and
whose sum is equal to the distance from the element being exam-
ined to the position of the running sum. For example, if we were
examining the second position in the filtered output in Figure 14,
the binary search would stop at the third position in the running
sum output. The running sum at that value is 1 and the distance



Figure 12. Scatter operation pipeline usage.

Figure 13. Running sum scan requires log n
rendering passes.

Figure 14. Stream filtering if scatter were
available. Values are pushed into the filtered
output.

between that running sum and the value being examined is one po-
sition. It means that, in the original output, the third element has
one invalid value to its left. So, we need to move it one position to
the left during compaction. From Section 3.4, we see that binary
search on the GPU takes log n time for each search. So for an
output of size n, the running time would be O(n log n). But again,
the searches can be done in parallel. Since running sum scan also
takes n log n, the total time is still O(n log n).

The pipeline usage for stream filtering is shown in Figure 16.
Using render to texture, the original output would be a texture that
is attached to the framebuffer. On top of that, we need two more
textures to compute the running sum (one for input and one for
putput). Once we know the size of the final output, i.e. after the
running sum is done, we can render a quad of that size, perform
parallel binary search, and store the results (the gather offset) in

Figure 15. Stream filtering with gather. Values
are pulled from the original output.

another texture.
After that, we need one more rendering pass with a quad the

size of the final output. The original output texture and the gather
offset texture are both passed to a fragment program. The job of
the fragment program is to fetch from the gather offset and then
fetch from the original output using that offset.

3.7 Predicate Evaluation

This operation was not in Owen’s original taxonomy [4]. How-
ever, people have used it, especially in database applications [27],
and thus, it is a valuable addition to the taxonomy.

Predicate evaluation compares each element in a stream against
a constant value [27]. A single predicate evaluation can be done
using the depth test. The depth test compares the depth value of
a fragment with the depth value of the corresponding pixel in the
depth buffer. If the fragment passes the depth test it is written into
the framebuffer, and the depth buffer at the fragment’s position is
updated with the fragment’s depth value. Otherwise it is discarded.
With the color buffer initialized to zero, portions of the color buffer
with non-zero values are those that pass the predicate evaluation.
The depth test comparison function is user specified. It includes
the standard less than, and greater than comparators [8].

To perform the comparison, attribute values that need to be
compared are stored in a 2D texture and then attached to the depth
buffer portion of the framebuffer. We then render a quad with
depth d, the value we want to compare the attributes against.

A series of predicate evaluations combined with the logical op-
erator AND, OR, and NOT form a Boolean combination. We can
use a combination of stencil and depth tests to perform Boolean



combinations. The stencil test compares the stencil value of a
fragment’s corresponding pixel in the stencil buffer against a ref-
erence value and a mask. A fragment that fails the stencil test is
discarded. The comparison function is user-specified and is sim-
ilar to the functions available for the depth test [8]. The stencil
value in the stencil buffer can be updated based on whether the
stencil test and the depth test pass or fail. There are three possible
outcomes:

1. The stencil test fails.

2. The stencil test passes but the depth test fails.

3. Both the stencil and depth test pass.

A different operation can be specified for each case:

1. KEEP: keeps the current stencil value.

2. ZERO: sets the stencil value to zero.

3. REPLACE: sets the stencil value to the reference value.

4. INCR: increment the current stencil value.

5. DECR: decrement the current stencil value.

6. INVERT: bitwise inverts the current stencil value.

Each rendering pass corresponds to a predicate evaluation and
after each evaluation, the stencil buffer is updated with the result
of the evaluation. After the last rendering pass, non-zero values in
the stencil buffer are those that pass the Boolean combination.

Figure 17 shows the pipeline usage for predicate evaluation.
Notice that we do not need to use the fragment processor. Frag-
ments will pass through the fragment processor unmodified. The
texture unit is still shown as being used because the stencil buffer
and depth buffer are actually textures that are attached to the frame-
buffer.

An operation that is closely related to predicate evaluation is
counting the number of attributes that pass a predicate evaluation
(or Boolean combination). The GPU provides a feature called an
occlusion query. It returns the number of fragments that pass the
depth test.

Database operations have also benefited from predicate evalu-
ation on the GPU [27]. A basic SQL query is in the form “SE-
LECT A from T where C”, where A is a list of attributes and C

is a Boolean combination of predicates. The stencil test can be
used repeatedly to perform a series of predicate evaluations with
the intermediate results stored in the stencil buffer.

4. GPU Hardware Utilization Summary
As we have seen in Section 3, the GPU as a whole is capable of

many operations. Figure 18 shows all the hardware used by the op-
erations in Section 3. Each of the pictured GPU components have
their own strengths and weaknesses within the context of general
purpose computation. Clearly, one would expect that applications
would use the GPU components whose strengths outweight their
weaknesses. This section looks at the profile of various applica-
tions to see how much different applications use the programmable
components of the GPU, namely the fragment processor, the ver-
tex processor, and the pixel engine. Based on this analysis, the
section draws conclusions about the strengths and weaknesses of
each piece of hardware for GPGPU applications.

Note that one can view the GPU pipeline as having two halves,
with the rasterizer as the junction between the two halves. The ras-
terizer, in GPGPU applications, is used solely to interpolate ver-
tices and their associated texture coordinates. While the rasterizer
is used in every single operation discussed in this paper, its use is
implicit so it is not highlighted in the pipeline diagrams.

4.1 Application Profiles
To quantify how much each piece of the GPU is used, several

GPGPU applications were profiled. Figure 19 shows the percent-
age of time each application spends in using each programmable
component. These numbers are obtained from GPU hardware
counters sampled using NVPerfKit [28]. Counters that track the
percentage of time the fragment processor, the vertex processor,
or the pixel engine was busy were sampled. Any time one of these
units was not in use, the GPU could be idle, waiting for texture
data, or writing to the framebuffer.

The first application is Conway’s Game of Life [29]. This ap-
plication simulates a Discrete Cellular Automaton and it is mod-
eled using a mapping operation which was implemented on the
GPU. The second application is GPUSort [23] (described in Sec-
tion 3). The third and fourth applications are Fast Fourier Trans-
form (FFT) and Discrete Cosine Transform (DCT) as implemented
on NVidia developer’s website [28]. The FFT algorithm is imple-
mented as a multipass algorithm using the fragment processor. The

Figure 16. Stream filtering operation pipeline usage.



Figure 17. Predicate evaluation pipeline usage.

Figure 18. Summary of pipeline usage. Shaded boxes represent hardware that is used explicitly.

Figure 19. GPU hardware utilization by
GPGPU applications.

DCT algorithm, the basis for JPEG compression, is also imple-
mented as a fragment program. The fifth application, the Particle
Engine, simulates the motion of particles as governed by the laws
of physics (e.g., gravity, local forces, and collisions with primitive
geometric shapes) [30].

As seen from Figure 19, applications make extensive use of
the fragment processor. Furthermore, GPUSort and DCT use the
pixel engine heavily. This is to be expected since we know (from
Section 3.3) that the pixel engine’s blending operation is used for
sorting. Note, however, that only the Particle Engine uses the vex-
tex processor, other applications do not use the vertex processor at
all.

A key observation is that there is far greater utilization of the
second half (post rasterizer) of the pipeline for GPGPU. This is
an artifact of the nature of computation in the two halves. Before
the rasterizer, the operations performed are per-vertex. After, they
are per-fragment. Since there are many more fragments than ver-
tices in a given rendering pass, GPUs have more fragment proces-
sors. Thus there are more opportunities to exploit parallelism after
the rasterizer. Note that maximizing the exploited parallelism in
each rendering pass is of key importance in GPGPU applications
because transfers of data between the GPU and CPU are expen-
sive. (As an example, in the simple vector-scaling example in Sec-
tion 2.2, the observed transfer rate is 1GB/sec and the observed



read back rate is 300MB/sec.) In fact, this communication is often
the main bottleneck in GPGPU application performance.

4.2 Component Usage Analysis

4.2.1 Fragment Processors
The fragment processor is, by far, the most useful part of the

GPU. First, there are simply many more of them than there are
vertex processors. Second, they have access to the texture memory
which is an important data structure for GPGPU. Their location
towards the end of the pipeline also means that they can write to
the framebuffer directly.

Unfortunately, the fragment processor is not able to write to
random locations (scatter) in memory. The output position for
each fragment is computed by the rasterizer and the fragment pro-
cessor has no way of altering it. This makes some algorithms dif-
ficult to implement. To overcome this limitation, one has to re-
sort to either using the vertex processor (Section 3.5) to perform
the scatter or convert the scatter to a gather (Section 3.6), neither
of which is very appealing as they require additional rendering
passes and hence degrade performance. The reason that fragment
processors do not support the scatter operation is that scattering
introduces write-after-read (WAR), and write-after-write (WAW)
hazards. Handling these hazards adds complexity and reduces par-
allelism as some fragment processors have to, for example, delay
their writes until the reads of some other fragment processors com-
plete. However, it could be desirable to support scatter anyway
and let programmers explicitly avoid the hazards manually. This
provides extra flexibility for the programmers and eliminates the
additional rendering passes.

4.2.2 Vertex Processor
Like the fragment processor, the vertex processor is fully pro-

grammable. However, the vertex processor has, at best, only been
sparingly used for GPGPU. There are several reasons for this.
First, the vertex processor is designed to operate on vertices. Since
there are not as many vertices as there are fragments in single ren-
dering pass, GPUs do not have as many vertex processors. As a re-
sult there are fewer opportunities for parallelization. Second, ver-
tex processors cannot write to the framebuffer directly since they
are early in the pipeline; framebuffer writes must go through the
fragment processors. Third, until recently, vertex processors did
not have access to texture memory, a central GPGPU data struc-
ture. The main use of the vertex processor is to make up for the
short comings of the fragment processor (i.e. to perform scatter
operations).

4.2.3 Pixel Engines
Pixel engines perform user-specified operations on each frag-

ment and determine if that fragment ultimately updates the frame-
buffer. They are somewhat programmable. One can specify one of
several functions, mostly comparison based, that are used in each
rendering pass. One can also specify the action to be taken if the
condition passes or fails (e.g., incrementing or decrementing the
stencil value in the stencil buffer). Their use is typically limited
to comparisons but they do prove useful for operations that are
compare-intensive such as predicate evaluation and sorting.

5. Conclusion

Graphics Processing Units (GPUs) are now sufficiently pro-
grammable that they could be considered a non-traditional pro-
grammable processor design. Indeed, quite a number of researchers
have used GPUs for general purpose applications, an area known
as GPGPU. This puts GPUs in a class of designs, along with IBM’s
Cell processor among others, that are of great interest to processor
designers. In this paper, we show that by studying how GPU hard-
ware is used by GPGPU applications, one can gain insight in how
to design non-traditional parallel machines.

In order to understand how application developers are using
GPU hardware, we examined how each operation in Owen’s tax-
onomy [4] utilized the underlying hardware. Since this taxonomy
of GPGPU operations (augmented with the predicate-evaluation
operation) covers the space of currently known GPGPU applica-
tions, this examination clearly illustrates the portions of the GPU
pipeline that are sufficiently “general-purpose”.

Of the two halves of the GPU pipeline (the first half consists
of the stages before the rasterizer, the second half the stages after),
we find that the second half of the pipeline is most suited to general
purpose computation. One reason for this is that there are simply
more fragments than there are vertices in graphics applications,
and thus GPUs are designed with more hardware resources in the
second half of the pipeline. More hardware resources leads to
more opportunities for exploiting parallelism, and amortizing the
costs of transporting data to and from the main CPU. We found that
another reason for the bias toward the second half of the pipeline is
that, until recently, only the fragment processors had sufficient ac-
cess to a general-purpose-like memory (the framebuffers and tex-
ture memory). In fact, the vertex processor is the only hardware in
the first half of the pipeline that is explicitly used for GPGPU. Its
sole purpose is to perform scatter operations that the fragment pro-
cessor cannot perform. If the fragment processor were enhanced
to support scattering, the vertex processor would be useless in ex-
isting GPGPU applications. Given these observations, we believe
that (1) supporting scatter (with limited hazard detection) in the
fragment processor is worthwhile, and (2) that it is worth explor-
ing processor designs that resemble the second half of the GPU
pipeline as an alternative (or addition) to traditional Von-Neumann
machines.

6. References
[1] M. Ekman, F. Wang, and J. Nilsson, “An in-depth look at

computer performance growth,” SIGARCH Comput. Archit.
News, vol. 33, pp. 144–147, March 2005.

[2] P. Trancoso and M. Charalambous, “Exploring graphics
processor performance for general purpose applications,” in
8th Euromicro Conference on Digital System Design (DSD),
pp. 306–313, 2005.

[3] E. Lindholm, M. Kilgard, and H. Moreton, “A
user-programmable vertex engine,” in Proceedings of ACM
SIGGRAPH, Computer Graphics Proceedings, Annual
Conference Series, pp. 149–158, 2001.

[4] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. Lefohn, and T. Purcell, “A survey of general-purpose
computation on graphics hardware,” in Eurographics 2005,
State of the Art Reports, pp. 21–51, August 2005.

[5] J. Owens, “Streaming architectures and technology trends,”
GPU Gems 2, pp. 457–470, March 2005.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan, “Brook for gpus: Stream



computing on graphics hardware,” ACM Transactions on
Graphics (TOG), vol. 23, pp. 777–786, 2004.

[7] M. Flynn, “Some computer organizations and their
effectiveness,” IEEE Transactions on Computers, vol. C-21,
pp. 948–960, September 1972.

[8] M. Segal and K. Akeley, “The opengl graphics system: A
specification, version 2.”
http://www.opengl.org/documentation/specs/, October 2004.

[9] E. Kilgariff and R. Fernando, “The GeForce 6 series GPU
architecture,” GPU Gems 2, pp. 471–491, March 2005.

[10] “Microsoft’s directx sdk.”
http://msdn.microsoft.com/directx/sdk/readmepage/default.aspx,
February 2006.

[11] J. Kessenich, D. Baldwin, and R. Rost, “The opengl shading
language, version 1.10, rev. 59.”
http://www.opengl.org/documentation/specs/, October 2004.

[12] E. Kilgariff and R. Fernando, The Cg Tutorial: The
definitive Guide to Programmable Real-Time graphics.
Addison-Wesley, 2003.

[13] C. Thompson, S. Hahn, and M. Oskin, “A framework and
analysis of modern graphics architectures for
general-purpose computing,” in Proceedings of the 35th
Annual International Symposium on Microarchitecture,
pp. 215–226, November 2002.

[14] D. Tardity, S. Puri, and J. Oglesby, “Accelerator: simplified
programming of graphics processing units for
general-purpose uses via data parallelism,”
MSR-TR-2005-184, Microsoft, 2005.

[15] M. Harris, G. Coombe, T. Scheuermann, and A. Lastra,
“Physically-based visual simulation on graphics hardware,”
in Proc. 2002 SIGGRAPH / Eurographics Workshop on
Graphics Hardware, pp. 1–10, 2002.

[16] A. LaMarca and R. Ladner, “The influence of caches on the
performance of sorting,” in Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 370–379, 1997.

[17] J. Zhou and K. Ross, “Implementing database operations
using SIMD instructions,” in Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pp. 145–156, June 2002.

[18] D. Knuth, The Art of Computer Programming Volume 3.
Addison-Wesley, 1973.

[19] N. Govindaraju, N. Raghuvanshi, and D. Manocha, “Fast
and approximate stream mining of quantiles and frequencies
using graphics processors,” in Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pp. 611–622, 2005.

[20] M. Dowd, Y. Perl, L. Rudolph, and M. Saks, “The periodic
balanced sorting network,” Journal of the ACM (JACM),
vol. 36, no. 4, pp. 738–757, 1989.

[21] T. Purcell, C. Donner, M. Cammarano, H. Jensen, and
P. Hanrahan, “Photon mapping on programmable graphics
hardware,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, pp. 41–50, July 2003.

[22] P. Kipfer, M. Segal, and R. Westermann, “Uberflow: A
GPU-based particle engine,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, pp. 115–122, August 2004.

[23] N. Govindaraju, N. Raghuvanshi, M. Henson, D. Tuft, and
D. Manocha, “A cache-efficient sorting algorithm for
database and data mining computations using graphics
processors,” Tech. Rep. TR05-016, University of North
Carolina, 2005.

[24] T. Purcell, I. Buck, and P. Hanrahan, “Ray tracing on
programmable graphics hardware,” ACM Transactions on
Graphics (TOG), vol. 21.

[25] I. Buck, “Taking the plunge into GPU computing,” GPU
Gems 2, pp. 509–519, March 2005.

[26] D. Horn, “Stream reduction operations for GPGPU
applications,” GPU Gems 2, pp. 573–589, March 2005.

[27] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha, “Fast computation of database operations
using graphics processors,” in Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pp. 215–226, June 2004.

[28] “developer.nvidia.com.”
http://developer.nvidia.com/page/home.html.

[29] M. Gardner, “Mathematical Games, The fantastic
combinations of John Conway’s new solitaire game of life,”
Scientific American 223, pp. 120–123, October 1970.

[30] L. Latta, “Building a million particle system,” Game
Developers Conference, 2006.


