
The Liberty Simulation Environment as a Pedagogical Tool

Jason Blome Manish Vachharajani Neil Vachharajani David I. August
Departments of Computer Science and Electrical Engineering

Princeton University
{blome, manishv, nvachhar, august }@cs.princeton.edu

Abstract

This paper describes how the Liberty Simulation Envi-
ronment (LSE) and its graphical visualizer can be used in a
computer architecture course. LSE allows for the rapid con-
struction of simulators from models that resemble the struc-
ture of hardware. By using and modifying LSE models, stu-
dents can develop a solid understanding of and learn to rea-
son about computer architecture. Since LSE models are also
relatively easy to modify, the tool can be used as the basis
of meaningful assignments, allowing students to explore a
variety of microarchitectural concepts on their own. In lec-
tures where block diagrams are typically displayed, LSE’s
visualizer can be used instead to not only show block dia-
grams, but to demonstrate the machine in action. As a result,
LSE can ease the burden of conveying complex microarchi-
tectural design concepts, greatly improving the depth of un-
derstanding a computer architecture course provides.

1. Introduction
The goal of a computer architecture course is to teach

students how microprocessor hardware operates and to give
them an opportunity to experiment with microprocessor de-
sign. To do this, the students need to learn about existing mi-
croarchitecture design techniques ranging from simple con-
cepts such as pipelining to advanced organizations such as
out-of-order machines including features such as specula-
tion, branch prediction, and register renaming.

Unfortunately for the student, the expanse of the com-
puter architecture design space is vast and complex. Within
a single design, each component plays an important role in
facilitating the correct and efficient execution of a program,
however, correct execution is only ensured when interaction
of all the components is carefully orchestrated. These com-
ponent interactions are often subtle making it difficult to
convey enough information in lecture to foster a deep un-
derstanding.

To remedy this, courses are augmented with periodic as-
signments that encourage the students to discover some of
the complexities on their own. Typically, these assignments
involve drawing pipeline sketches and evaluating block di-
agrams. Unfortunately, these assignments do little to foster
an understanding of the complex dynamic interactions and
instead reinforce the students’ understanding of the archi-

tecture’s high-level structure.
An approach that leads to a much better understanding of

a microarchitecture is to have the students design the hard-
ware for a machine and run programs on it in a simulated
environment. This way students will discover, on their own,
the intricacies of how different parts of the architecture in-
teract to facilitate the correct program behavior. The insight
gained from this process of design, test, and debugging is
often deeper than any knowledge gained in lecture. Unfor-
tunately, specifying the hardware, even in a synthesizable
hardware description language like VHDL or Verilog (as
opposed to a gate level description), can take many weeks.
As a result, when this method is employed, it is typically
limited to a single course-length project. While a project of
this type is better than no design experience, it only provides
insights about the techniques employed in one particular de-
sign, which is often a small subset of the techniques taught
in the class.

A promising alternative to specifying the hardware is us-
ing, building, and modifying higher-level simulation tools
for the microarchitecture. Assignments could consist of ask-
ing students to modify a simulator to incorporate new behav-
ior. Unfortunately, current simulation environments are too
difficult to modify to make this practical for periodic home-
work assignments. Furthermore, the most common method
of building a simulator (coding it by hand in C or C++) does
little to convey the actual hardware structure or the func-
tionality of its components [1]. Consequently the process of
reasoning about and building the simulator is very different
from the way in which a computer architect would design a
microprocessor thus making it unsuitable as a pedagogical
tool. Students should think like architects, not like simulator
writers.

To be effective for use in assignments, the simulation sys-
tem should have simulator descriptions that reflect the hard-
ware being modeled. Components used in modeling should
correspond to hardware blocks and they should be intercon-
nected via communication channels like hardware blocks.
On the other hand the simulation environment should not
impose, upon the student, the burdens that hardware descrip-
tion languages like VHDL or Verilog often do. Instead, it
should allow rapid construction and modification of models
so that working with an executable model can be a part of



regular assignments.
LSE is a simulator construction tool that meets the

requirements outlined above. In this paper we give an
overview of the Liberty Simulation Environment (LSE) and
describe how it can be used in a course to enhance student
understanding of computer architecture. In the next section
we describe the Liberty Simulation Environment. In Sec-
tion 3 we describe the LSE visualizer and how it visualizes
the LSE descriptions. Then, in Section 4 we give specific
examples of how to use LSE in a course. Finally, we con-
clude in Section 5.

2. The Liberty Simulation Environment

The Liberty Simulation Environment (LSE) is an excel-
lent tool for students to learn about and explore microarchi-
tecture. LSE descriptions resemble the hardware they model
and are easy to modify. This section describes enough about
LSE so that it is possible to understand how LSE can be used
for instructional purposes. Details of how LSE enables rapid
specification while still resembling the modeled hardware as
well as details of all the concepts described in this section
can be found elsewhere [1].

As shown in Figure 1, LSE consists of three main parts:
the Liberty Structural Specification Language (LSS), a com-
ponent library, and the Liberty Simulator Constructor. To
use the system, the user describes a machine by specifying,
in the LSS language, a set of interconnected instances of
components. These components, calledmodules, are typi-
cally taken from the module library although custom mod-
ules can be created if necessary. The user then invokes the
simulator constructor, and the constructor reads the specifi-
cation and the code from the module library and builds an
executable simulator for the described machine. This sec-
tion will discuss in more detail the properties of modules,
module communication, and collection of data from a run
of the simulator executable.

2.1. Modules

Each module is a parameterized template that is instan-
tiated in an LSS machine description to create amodule in-
stance(or simply instance). Much like components in hard-
ware design, modules can be leaves of a hierarchy, or they
can be constructed hierarchically by grouping collections
of other interconnected module instances. Like hardware
blocks, module instances execute concurrently [2] and com-
municate with other instances by passing data across com-
munication channels.

However, unlike hardware design, the details of instance
behavior (hierarchical or leaf) can be customized via module
parameters. When a user instantiates a module in a machine
description, the user specifies values for the parameters de-
clared by the module (or accepts the default value specified
by the module). These parameters are used to customize
the behavior of the module instance for the particular de-

LSS
Machine

Description

Liberty
Simulator

Constructor

Module

Simulator

Executable
C Code or

Library

Figure 1: Overview of main LSE components.

scription. Parameters can control simple configuration op-
tions (e.g. the cache line size or whether a 2-level branch
predictor has a global or per-address predictor table). Fur-
ther, parameters can also be used to allow control of algo-
rithms allowing users to customize complex behavior. For
example, the branch predictor has a parameter that allows
users to override the predictor state-machine code to imple-
ment a custom predictor if none of the provided predictor
options is suitable. Parameters can even control the instanti-
ation of hardware structures in lower levels of the hierarchy.

2.2. Communication Channels

Modules specify a communication interface for module
instances by declaringports. Each instance may have one or
moreport instancesper port. Each port instance is a com-
munication channel and may have exactly one value sent on
it per cycle. For example, the register file module may have
an input port on which register read requests are made. Each
port instance would accept one register read request per cy-
cle. If two register reads per cycle were needed, there would
be 2 port instances of the register read request port, and two
instances of the output port on which these read requests
were returned. Another example is thetee module which
is used to fanout a given value to multiple receivers. The
tee duplicates the value received on its input port instances
on multiple output port instances.

Users specify how modules communicate by intercon-
necting port instances from one module to port instances
on the same or other modules. While details regarding
ports and the communication system can be found in [1],
other work describes LSE’s execution and messaging se-
mantics [2].

2.3. Data Collection

To allow modularity and flexibility even for data collec-
tion, LSE provides a data collection mechanism that avoids



Figure 2: Simple source to sink description.

the pitfalls of embedding instrumentation code directly into
the simulator code. Each LSE module may declare that
its instances emit certaineventsduring the execution of the
simulator. Each event includes data related to the event and
a dynamic identifier (dynID) that represents the system level
object that caused the event to occur. Orthogonal to the dec-
laration of events, users may associate, with any event, a
data collectorwhich captures the event and records data or
computes statistics.

For example, a branch predictor module may emit an
event every time it makes a prediction. The event could in-
clude information about what prediction was made and what
predictor made that prediction. The dynID for the event
would identify the dynamic instruction instance that caused
the prediction to occur. A user could hook this event with a
data collector to count the number of predictions made or to
calculate a branch misprediction rate for example.

In addition to recording data or computing statistics, the
LSE visualizer (described in Section 3) hooks these events
to visualize the flow of data through the machine at runtime.
An example of this is described in Section 4.

3. Visualization
The LSE Visualizer provides a means to view LSS de-

scriptions as block diagrams. In addition, the LSE Visual-
izer provides an interface for compiling an LSS design into
an executable simulator, and it provides tools for observing,
via animation, the execution of the simulator. In this section
we will describe the visualizer in enough detail so that it is
possible to understand the discussion of how the visualizer
can be used in a computer architecture course as described
in Section 4.

Figure 2 is an LSE Visualizer screenshot showing the
block diagram of a simple system. In this system, a mod-
ule instance, called Generator, sends data to another module
instance, called Blackhole, which discards it. Generator is
an instance of thedatasource module, and Blackhole is
an instance of thesink module. Both thedatasource
andsink modules are provided by the LSE module library.
During simulator execution, a unit of data will be transfered
from Generator to Blackhole in each and every cycle until
the simulation is terminated manually.

In Figure 2 the module instances are represented by the
large boxes, while their ports are represented by the small
boxes. The single line between the box labeleddest and
the box labeledsrc represents a connection between the
respective port instances on the module instances Generator

Figure 3: Simple x + x description.

and Blackhole.
Figure 3 shows a screenshot of a slightly more sophis-

ticated machine configuration. Here, thedatasource
module instantiated as Generator is connected to an instance
of the tee module named Tee. The Tee in turn fans out the
data originating from Generator into port instances of ports
op1 andop2 of the instance ALU. ALU then computes the
sum of the values passed into it on these port instances and
sends the result to Blackhole to be thrown out. The function
of this machine is simply to compute the value ofx + x,
wherex is the value generated by Generator, and then throw
away the result.

In this diagram, there are a few interesting features to
note. First, notice that Tee’sdest port is connected twice,
meaning that there are two port instances of thedest port.
Also notice that the Tee and ALU instances have been given
custom shapes for their visual representation. In general
each module instance can be given a custom shape. This
feature allows the visualized modules to be recognizable
on sight instead of having each module be a nondescript
blue rectangle. We use this feature in the next section to
make the machine visualizations resemble diagrams found
in computer architecture textbooks.

In addition to the above schematic rendering features, the
visualizer can interface the generated simulator executable
and display execution information as it occurs. This is use-
ful for following instructions as they flow through a pipeline
or observing the status of ports in the system. Screenshots
of the visualizer interacting with the generated simulator are
shown in the next section.

4. Applications

In this section, we will give examples of how LSE can
be used in lecture to illustrate computer architecture con-
cepts and how LSE can be used to formulate assignments
that allow students to explore the myriad of interactions be-
tween architectural techniques. All the examples are cen-
tered around a simple Tomasulo-style [3] machine that exe-
cutes the DLX [4] instruction set.

4.1. LSE in the Classroom

Standard presentation tools do a fine job of illustrating
the static aspects of a design. However, dynamic interac-
tions are generally only briefly described or illustrated with
static pipeline diagrams. The LSE system and its visualizer,
however, can demonstrate thedynamicbehavior of the ma-



chine by displaying, over time, events produced by the ex-
ecutable machine model. In a lecture environment, this can
be used to show the flow of data and update of state through
the modeled architecture.

To illustrate this we will show a few screenshots of the
Visualizer showing the flow of instructions through a simple
Tomasulo-style pipeline. A screen shot of the Visualizer is
shown in Figure 4. Notice that the structure of the machine
is fairly obvious. The block labeledRegister File is
the register file, horizontally stacked tall vertical blocks are
the reservation stations, the ALU looks like an ALU, and
the shifter, LSU, and branch unit are clearly labeled. The
machine does not support precise exceptions or speculation
and so there is no need for a reorder buffer.

Figure 5 shows a screen shot of the visualizer displaying
a table showing instruction arrival at various stages in the
pipeline and reservation station occupancy of the Tomasulo-
style machine shown in Figure 4. This table is dynamically
updated with data from the running simulator.

In Figure 5 we can clearly see theor instruction that suc-
ceeds the jump instruction stall in the fetch stage starting at
cycle 5 while the machine resolves the branch (recall that
the sample Tomasulo-style machine does not support spec-
ulation). We can also see thesll instruction stuck in the
reservation station awaiting operands during cycle 3. In cy-
cle 4, we see thesll instruction issue to the EX stage but
subseqently lose arbitration for the common data forcing a
re-issue in cycle 5. The instruction once again loses arbi-
tration and re-issues in cycle 6 and finally writes back in
cycle 7.

The table is constructed by specifying the appropriate
data collectors in the simulator description. The visualizer
then monitors the output of these collectors to generate the
table as the simulator runs. The table is completely generic
and thus users of LSE may specify the column headings
and how the table entries get filled via the specific messages
emitted by the data collectors.

As discussed in the literature, the power of this kind of
demonstration is invaluable since both the static machine
structure and its dynamic behavior can be seen simultane-
ously [5]. With the Liberty Simulation Environment, these
demonstrations can easily be constructed for many different
types of machines so that students can easily understand the
differences in the architectural techniques presented.

4.2. LSE for Student Exploration

As was described in Section 1, designing and implement-
ing a machine with an RTL level description is too time con-
suming to do regularly throughout an architecture course.
On the other hand, block diagrams do little to cement un-
derstanding of the dynamic elements of an architecture. The
Liberty Simulation Environment, however, provides an ex-
cellent middle ground between hand-drawn hardware block
diagrams and RTL level descriptions. Regular assignments

can be given in which the student is required to modify an
existing configuration to produce a new configuration. For
example, students may be asked to modify a Tomasulo-style
machine that does not execute loads and stores to one that
does execute loads and stores in order, in 2 clock cycles.
As the following example will demonstrate, this problem is
certainly tractable for students in a week long assignment.

Figure 4, described earlier, shows a Tomasulo-style ma-
chine that does not execute loads and stores. Figure 6 shows
that same machine with a load store unit added. Adding this
load store unit is relatively straightforward.

First, the reservation station module needs to be aug-
mented to force instructions to be issued in order. This aug-
mented module will form the load-store issue queue (LSQ).
This hierarchical module, shown in Figure 7 is built by tak-
ing the reservation station module and connecting it so that
all the slots of the reservation station go to aserializer
module, calledserialize in the figure, followed by an
aligner module, calledalign . The serialize and
align instances, combined with the default control seman-
tics in LSE, force instructions to come out of thealign in-
stance in order. Both theserializer andaligner are
available in the standard LSE module library, and the reser-
vation station is part of the original Tomasulo-style config-
uration.

Next, several additional module instances (created from
modules in the library) are connected to the output of the
LSQ and are used to extract the destination register (rd) from
the data output by the reservation station, compute the load
or store address, and generate the control signal that decides
if the request will be a read or write. The specific fields that
the module instance extracts and the function it performs
are specified via algorithmic parameters (discussed in Sec-
tion 2) provided by the modules.

The output of these module instances is then connected
to a latch to end the first cycle of memory instruction ex-
ecution. The output of this latch is then connected to the
request ports of the data memory. Another module instance
then combines the output of the data memory (generated for
load requests) with the destination register field from the
reservation station (arriving via the latch) and sends them
off to the common data bus arbiter.

All of these modifications were performed in a few hours.
Students moderately familiar with LSE should be able to
complete such an assignment fairly easily. Furthermore, in
the configuration just described, the default control seman-
tics in LSE would allow students to vary the latency of the
memory module (while keeping the initiation interval fixed
at 1) and have the load-store logic stall waiting for the mem-
ory. Students could then explore the merits of their own de-
sign in the presence of different core-memory latencies with
very little additional effort.

When used in this way, LSE enables instructors to give
regular assignments that require students to build executable



Figure 4: Simple Tomasulo-style pipeline that executes the DLX ISA.

Figure 5: Table showing instruction arrival and reservation station occupancy in a Tomasulo-style DLX machine



Figure 6: A Tomasulo-style DLX machine with a load-store capability.



Figure 7: Load-Store issue queue.

models to verify that their understanding of an architectural
concept is sufficient (i.e. the model runs programs cor-
rectly). The students can learn about most of the techniques
presented in class with hands-on projects, instead of only a
handful they would see by doing a single class project.

As a further example, students can explore machines not
described in lecture by having them add architectural mech-
anisms to existing designs. For example, students could be
asked to add rename logic to a scoreboarded machine before
discussing advanced scoreboarded machines. In this way
students can appreciate the relationship between renaming
and WAR hazards and why scoreboards stall in circum-
stances where Tomasulo’s machine does not. LSE makes
this kind of exploration feasible in week long assignments.

5. Conclusion
To understand computer architecture, students must un-

derstand thedynamicinteractions of all the hardware com-
ponents in a microarchitecture. Unfortunately, conveying
the many subtleties of this interaction during lecture is diffi-
cult. For many students,static illustrations and assignments
do not build intuition about dynamic systems. Class projects
which require students to build RTL simulation models are
extremely useful, but the overhead in low-level model con-
struction and modification often limits the scope of concepts
explored. Modifying or writing a high-level simulator in a
sequential language such as C allows students to avoid get-
ting bogged down in irrelevant low-level hardware details,
but it does so by obscuring the model. Students spend much
of their time dealing with sequential language simulator is-
sues rather than thinking about computer architecture.

In this paper, we have shown that the Liberty Simula-
tion Environment (LSE) is an alternative to tools currently
used in lecture and take-home assignments. LSE’s simulator
description resembles hardware, allowing students to think
about hardware rather than simulator design issues. LSE
descriptions are relatively easy to modify and use, allow-
ing students to study the dynamic execution behavior of a
wide range of machines. Furthermore, the LSE Visualizer
improves LSE’s use as a pedagogical tool by tying this all

together with an easy to use dynamic and graphical visual-
ization system.

References
[1] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I.

August, “Microarchitectural exploration with Liberty,” inProceedings
of the 35th International Symposium on Microarchitecture, pp. 271–
282, November 2002.

[2] D. Penry and D. I. August, “Optimizations for a simulator construction
system supporting reusable components,” inProceedings of the 40th
Design Automation Conference, June 2003.

[3] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arith-
metic units,” IBM Journal of Research and Development, vol. 11,
pp. 25–33, January 1967.

[4] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quan-
titative Approach. San Francisco, CA: Morgan Kaufmann, 1996.

[5] C. T. Weaver, E. Larson, and T. Austin, “Effective support of simula-
tion in computer architecture instruction,” inProceedings of the 2002
Workshop on Computer Architecture Education (WCAE), May 2002.


