
Configurable Transient Fault Detection
via Dynamic Binary Translation

George A. Reis Jonathan Chang
David I. August

Depts. of Electrical Engineering and Computer Science
Princeton University

{gareis,jcone,august }@princeton.edu

Robert Cohn Shubhendu S. Mukherjee

VSSAD and FACT Groups
Intel Massachusetts

{robert.s.cohn,shubu.mukherjee }@intel.com

ABSTRACT
Smaller feature sizes, lower voltage levels, and reduced noise mar-
gins have helped improve the performance and lower the power con-
sumption of modern microprocessors. These same advances have
made processors more susceptible to transient faults that can corrupt
data and make systems unavailable. Designers often compensate for
transient faults by adding hardware redundancy and making circuit-
and process-level adjustments. However, applications have differ-
ent data integrity and availability demands, which make hardware
approaches such as these too costly for many markets.

Software techniques can provide fault tolerance at a lower cost and
with greater flexibility since they can be selectively deployed in the
field even after the hardware has been manufactured. Most existing
software-only techniques use recompilation, requiring access to pro-
gram source code. Regardless of the code transformation method,
previous techniques also incur unnecessary significant performance
penalties by uniformly protecting the entire program without taking
into account the varying vulnerability of different program regions
and state elements to transient faults.

This paper presentsSpot, a software-only fault-detection tech-
nique which uses dynamic binary translation to provide software-
modulated fault tolerance with fine-grained control of redundancy.
By using dynamic binary translation, users can improve the relia-
bility of their applications without any assistance from hardware or
software vendors. By using software-modulated fault tolerance,Spot
can vary the level of protection independently for each register and
region of code to provide users with more, and often superior, fault-
detection options. This feature ofSpotincreases the mean work to
failure from 1.90x to 17.79x.

1. INTRODUCTION
In recent decades, microprocessor performance has been increas-

ing exponentially, due in large part to smaller and faster transistors
enabled by improved fabrication technology. While such transistors
yield performance enhancements, their smaller size and sheer num-
ber make chips more susceptible totransient faults[10]. Transient
faults, caused by external particle strikes or process-related paramet-
ric variation [1, 13, 23], do not cause permanent damage, but may
manifest as soft errors by altering signal transfers and stored values,
thereby resulting in incorrect program execution.

Designers frequently introduce redundant hardware to detect or
recover from these faults because process and material advances
are often insufficient to mitigate their effect. For example, stor-
age structures, such as caches and memory, typically include extra
information in the form of parity or error-correcting codes (ECC),
which allow these hardware structures to detect and/or recover from
such faults. However, protecting all transistors is difficult, partic-
ularly those used in combinational logic, without paying a signifi-
cant penalty in area, power, and/or performance. While higher-level
techniques, such as Lockstepping or Redundant Multithreading [19],

have been proposed for full-processor fault detection, they still re-
quire moderate to significant changes to the hardware design, and
possibly even to the operating system, significantly increasing vali-
dation time and often incurring performance penalties.

In contrast, software-only approaches to fault detection and re-
covery [14, 16, 20, 24] can significantly improve reliability without
requiring hardware modifications. This makes software redundancy
techniques significantly cheaper and easier to deploy, working even
on machines already in the field. Deployment of redundancy tech-
niques in the field may become important because of poor estimates
of the severity of the soft-error rate by designers and because of the
uncertainty in the usage condition of the machine [4, 9]. Changes
to the operating environment of the hardware can also have a no-
ticeable effect on reliability, requiring the deployment of software
redundancy techniques. For example, the soft-error rate from atmo-
spheric neutrons is 4-5x higher in Denver than in New York City be-
cause of Denver’s higher altitude [29]. Nevertheless, software-only
approaches do suffer from high performance penalties – a problem
we tackle in this paper.

Most prior approaches to software-only error mitigation [2, 14,
16, 20] have relied primarily on static compilation techniques that
require alterations to the compilation process and access to the ap-
plication’s source code. To use these techniques, a user must col-
laborate with the software vendor to acquire the application source
code, often rendering these techniques impractical for many appli-
cations.

The technique presented in this paper,Spot, provides fault detec-
tion via dynamic binary translation for all types of instructions.Spot
uses a modified version of the Pin dynamic instrumentation frame-
work [6] to perform reliability transformations for the x86 instruc-
tion set. Because Pin uses dynamic, rather than static, instrumen-
tation,Spotonly requires the program binary;Spotis applicable to
programs, legacy or otherwise, whose source code is either not easily
re-compilable or altogether unobtainable from the software vendor.
Even if the application sources are available, users typically do not
recompile libraries (such aslibc ) when recompiling an applica-
tion. Spot’s dynamic translation capabilities allow protection to be
applied to libraries as well. The dynamic nature ofSpotalso enables
it to attach and detach to already running applications to adjust reli-
ability appropriately. For example, a laptop can switch into a more
reliable mode of execution whenever it detects adverse environmen-
tal factors.

Unlike prior work,Spothelps users identify the most vulnerable
regions and state of programs and configure these regions and state
with the appropriate level of fault coverage. Generally, the higher the
number of redundant instructions (and hence fault coverage) added
to the original binary application, the greater the application’s per-
formance degradation. By allowing users to identify and protect only
regions and state of the program that are highly vulnerable to tran-
sient faults,Spot helps reduce the performance degradation from
such software reliability transformations. Thus,Spotallows appli-



cations to trade off performance for reliability and vice versa. Al-
though previous research has explored such reconfigurability in a
limited way at the function level [22] (without actually exploring the
performance and fault-coverage trade-off),Spottakes advantage of
reconfigurability at a much finer granularity. Note, however, that
Spotdoes not automatically choose regions of programs to protect,
but it provides a foundation for such automation.

To maximize fault coverage for a given performance threshold, we
take advantage of the key insight that not all faults in an unprotected
application will cause the application to produce incorrect data. For
example, a fault to a register outside of its live range will not change
the program execution, because that value will be overwritten be-
fore it is used. Due to such masking factors, unprotected applica-
tions have a natural degree of fault resistance. The natural resilience
varies not only from application to application, but also within an
application from region to region and from register to register.

While it is well-known that masking effects are common in ap-
plications and vary widely within and across applications [5, 12,
26], we demonstrate that such masking effects can be effectively ex-
ploited under software control to trade off fault-detection coverage
for increased performance.Spot identifies vulnerable regions and
registers by profiling the vulnerability of regions and registers using
fault injection into running programs. Armed with this profile infor-
mation,Spotcan selectively apply redundant transformations only
for the regions and registers deemed necessary.

Spot is also the first complete software-only technique to target
the x86 architecture. Previous software-only techniques have tar-
geted the MIPS architecture [14], the IntelR©IPF architecture [20],
and a Motorola M68040 microprocessor [16]. Previous work does
target the x86 architecture, however, that work only addressed the
issue of control-flow protection [2]. Enabling full fault detection on
x86 processors is an attractive goal due to their ubiquity; x86 pro-
cessors are used in a wide variety of applications from low-power
laptops which may not require very high levels of data integrity but
which may change environments quite often, to high-end XeonR©

and OpteronR© processors that require high levels of data integrity,
such as those used in high availability systems. Hence, it is critical
to provide x86 users with the ability to tailor the level of reliability to
their needs. However, the x86 architecture presentsSpotwith a novel
set of challenges due to the high frequency of memory accesses and
the limited number of architectural registers, making the mitigation
of the performance degradation a much more challenging problem
than it is for RISC instruction set architectures.

The rest of the paper is organized as follows. Section2 defines
the fault detection design space and explains howSpotis in a unique
point in that space. Sections3 describe the methodology used to
evaluate the different implementations, in terms of reliability (3.1),
performance (3.2), and Mean Work To Failure (3.3). Section4 de-
scribes the results from three software modulations options: config-
uring protecting for registers (4.1), regions (4.2), and both simulta-
neously (4.3). Finally, the paper concludes in Section5.

2. FAULT TOLERANCE DESIGN SPACE
Table 1 shows the design space of various fault-detection tech-

niques. Each column in the table represents a different substrate
that can be used to implement the fault detection technique. Fault-
detection can be done in software alone, in hardware alone, or a
combination of the two. The rows of the table represent the different
ways of modulating the level of protection. The first row represents
existing techniques that apply protection uniformly across all appli-
cations and all parts of individual applications. The second and third
rows refer to techniques that allow the software and hardware, re-
spectively, to modulate the level of protection. In this section, we

Modulation Implementation Method
Method Software Hybrid Hardware

None SWIFT [20] CRAFT [21] RMT [11, 19]
EDDI [14] Watchdog [7] Lockstepping [27]
ACFC [25] CFCSS [15] ECC, Parity

Borin et al. [2]
Software PROFiT [22] PROFiT [22]

Spot
Hardware PER, IRTR [3]

Table 1: Fault detection design space.

Application

SWIFT
Transformation

Binary
PIN

Dynamic
Instrumentation

Framework
Binary

Reliable

Figure 1: Diagram of the framework.

explore these two axes of the design space.

2.1 Implementation Method
Numerous low-level techniques, including error correcting codes

(ECC) and parity bits, are commonly used to increase reliability.
While these are effective at protecting regular structures such as
caches, they cannot economically scale to cover all bits of a proces-
sor, specifically many of the latches and logic gates in the instruction
pipeline. To address this, many high-level hardware techniques have
also been proposed [11, 19, 27]. While such techniques are typi-
cally able to dramatically increase reliability, they still require sig-
nificant changes to the hardware design and possibly the operating
system, significantly increasing design and validation time and often
incurring performance penalties. Software-only approaches [14, 15,
16, 20, 25] have been proposed as cheaper alternatives to hardware
solutions since they require no hardware modifications. However,
most previously proposed software-only techniques have been im-
plemented as compiler passes, and thus they have all required access
to source code. Since the source code to many applications is unob-
tainable, these techniques cannot be widely applied. Recently, Borin
et al. [2] introduced a software-only technique using dynamic trans-
lation, but that work was limited solely to protecting control-flow.
Spotis the first software-only approach to increase the reliability of
non-control-flow instructions via dynamic instrumentation.Spotal-
lows users to protect themselves against the deleterious effects of
transient faultswithout the cooperation of hardware and software
vendors.

Spot’s reliability enhancements were implemented using the Pin
dynamic instrumentation framework [6]. Pin allows users to write
instrumentation code, our reliability transformation in this case, and
apply it to binaries via dynamic instrumentation. Figure1 shows a
diagram of the framework.

Upon execution, an application binary is loaded by Pin, and the
reliability transformation is applied. As the code is executed, it is
instrumented, yielding reliable code dynamically. While dynamic
instrumentation does incur a performance overhead, Pin’s caching
technique allows this cost to be amortized over the execution of the
program. Through dynamic instrumentation, Pin is able to handle
many challenging issues that cannot be solved via static instrumenta-
tion, such as variable-length instructions, mixed code and data, stat-
ically unknown indirect jump targets, dynamically generated code,

2



mov (%edx), %eax

sub %eax, %ebx

mov %ebx, (%edx)

(a) Original Code

1: cmp %edx , %edx2
2: jne faultDetect

mov (%edx), %eax
3: mov %eax , %eax2

sub %eax , %ebx
4: sub %eax2 , %ebx2
5: cmp %edx , %edx2
6: jne faultDetect
7: cmp %ebx , %ebx2
8: jne faultDetect

mov %ebx , (%edx)

(b) Reliable Code

Figure 2: Duplication and validation. Code added by our tech-
nique is in bold. Checking instructions are italicized.

and dynamically loaded libraries.
Spot’s reliability transformation is based on the SWIFT technique

[21]. Our technique dynamically duplicates all instructions, except
for those that write to memory. Since a fault causing data corruption
will only manifest itself as a program error if it changes the output,
checking is delayed until immediately before instructions that may
affect output, such as stores. An error in a dynamically dead register
or in a bit that will be masked away will not cause a failure because
that value (correct or not) will not propagate to the output. By delay-
ing validation until necessary, this technique reduces the probability
that errors will be signaled in situations where that error would not
have caused a failure. This also greatly reduces the number of check-
ing instructions that are necessary.

Figure2 is a simple example which illustratesSpot’s instruction
duplication and checking. To protect the load instruction, instruc-
tions1-2 are added to verify that the address of the load instruction
is correct. Instruction3 is inserted to add redundancy to the data
loaded from memory by copying the value to a duplicate virtual reg-
ister. Instruction4 is inserted to redundantly compute the subtrac-
tion and instructions5-8 verify that both the address and the value
sources of the store instruction are fault-free.

Uncachable loads, such as those from external devices, and loads
in multiprocess systems may cause two successive loads to the same
address to read different values. Therefore,Spotcopies loaded val-
ues in order to avoid spuriously signaling faults. Such is the case in
instruction3. Further, since there is only one instruction that fetches
data from memory in the reliable version, the address of the load
instruction must be validated. If the address is incorrect, an invalid
value will be given to both versions of the program, causing an unde-
tected error. Similar solutions have been devised for other software
and hardware techniques [11, 19, 20].

In addition to loads, other special instructions require similar han-
dling, such as theRDTSCinstruction, which reads the hardware
time-stamp counter. The x86 also has a CISC instruction set which
means that the notion of a load instruction must be applied to a much
wider class of instructions than would be the case in a RISC archi-
tecture. While this technique has been shown to demonstrably re-
duce the number of output-corrupting faults, it does suffer from a
few flaws which render its protection imperfect. First, any software-
only technique can only protect state at the architectural level, since
micro-architectural state is generally not visible to software. Second,
the technique has inherent “windows of vulnerability,” most notably
between checks and uses of the checked value. For example, a fault
to edx after instruction5 or a fault toebx after instruction7 will
go into the store undetected, corrupting memory. Third, the Pin en-
gine itself is not instrumented. As mentioned earlier, and as we will
show in Section3, Pin consumes only a small fraction of the ex-

ecution time and therefore does not contribute significantly to the
vulnerability of the technique. In addition to these limitations of the
transformation, due to current limitations with Pin frameworkSpot
does not protect floating point or multimedia instructions, nor does
our framework currently incorporate SWIFT’s control-flow protec-
tion scheme.

AlthoughSpotuses the same transformation as previous approaches,
it is the first technique to apply it dynamically, making the trans-
formation applicable to libraries, dynamically-generated code, and
variable-length instruction sets with indirect jumps. The dynamic
nature ofSpotalso removes many hurdles for users wanting to in-
crease the reliability of their system. Previously, users would have
had to physically shield their hardware, purchase more reliable hard-
ware, or obtain more reliable software to increase reliability. Static
approaches based on compiler transformations require the source
code to the application. For most applications, the source code is
unavailable, making dynamic approaches such asSpotthe only avail-
able option for increasing reliability.

2.2 Modulation Method

0

10

20

30

40

%
of

Fa
ul

tI
nj

ec
tio

ns
Ca

us
in

g
SD

C

09
9.g

o

12
9.c

om
pre

ss
13

0.l
i

14
7.v

ort
ex

16
4.g

zip

17
7.m

esa
17

9.a
rt

18
1.m

cf

18
3.e

qu
ake

18
6.c

raf
ty

19
7.p

ars
er

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

Arith
Mean

Figure 3: Variations in natural fault resilience.

Different applications have different levels of natural fault resilience.
Figure3 shows the each application’s response to inserted faults. On
average, the unprotected benchmarks fail 20.23% of the time, al-
though the percentage of executions resulting in failure ranges from
31.92% for181.mcf to 6.99% for179.art . Just as entire bench-
marks vary in their response to faults, individual registers or regions
of a particular benchmark also have varying levels of reliability. This
is analogous to the variation in Instructions Per Cycle (IPC) among
applications. The IPC will vary from application to application, de-
pending on the nature of the application. In addition, the IPC will
vary within a single application as different phases of the program
are executed.

The PROFiT technique [22] was the first technique to capitalize
on the non-uniformity of natural reliability via software modulation.
It is a coarse-grained technique, adjusting protection at the function-
level. The PROFiT technique created the reliability configuration
for the application at compile time and could be used in conjunction
with either a software-implemented technique or a hybrid technique.

Both Partial Explicit Redundancy (PER) and Implicit Redundancy
Through Reuse (IRTR) [3] add modulation at the hardware level to
an RMT processor. PER reduces the performance cost of RMT by
performing full RMT redundancy only when there are excess hard-
ware resources and scaling back the redundancy when the original
thread is utilizing all of the processor’s resources. IRTR also de-
creases the overhead of the RMT technique at the cost of some reli-
ability by reusing instructions from the original thread in the trailing
thread when the instructions and operands are identical.

Our technique,Spot, is the first software-only technique to provide
fine-grainedSoftware-Modulated Fault Tolerance(SMFT).Spotcan

3



help users tailor the reliability and performance of specific applica-
tions, critical registers of an application, or even of critical regions
of an application, as well as combinations thereof. While previ-
ous work [8, 28] has explored protecting a subset of the architec-
tural registers, we are the first to explore the reliability/performance
trade-offs associated with varying the level of protection. Other re-
search has exploited modulation at the function granularity [22], but
Spot is the first technique to help users enact software modulation
at even finer granularities, enabling superior performance and relia-
bility trade-offs. In this work, we explore two fine-grained aspects
of reconfigurability in Section4 and show how they provide a wide
range of options in terms of performance and reliability.

3. EVALUATION METHODOLOGY
This section presents the experimental methodology and shows

performance and reliability results for native program execution, base-
line Pin execution, and baselineSpotexecution. In order to effec-
tively evaluate reliability, we measure the level of data corruption as
well as the Mean Work To Failure (MWTF) [21] for each of the ex-
ecutions. In Section4 we evaluate various non-uniform applications
of Spot.

3.1 Reliability
To evaluate the reliability of the original application, the Pin frame-

work, andSpotin all of its configurations, we used simulated fault
injections under a Single Event Upset (SEU) model. At a random
point in time uniformly distributed over the execution of the pro-
gram, including the Pin framework itself, a single-bit fault was in-
serted into a random bit of a random architectural register. Each of
the 32 bits of the 8 architectural registers were equally likely to re-
ceive a fault. In order to obtain accurate results, over 1.03 million
executions were run in total on actual hardware.

After injecting a single fault into the execution, the program is run
to completion, unless it aborts, and its output is compared to a known
good output. If the program’s output and exit code were identical to
the good execution, that bit was considered Unnecessary for Archi-
tecturally Correct Execution (unACE) [10]. If the output and exit
code were different, then the fault caused a Silent Data Corruption
(SDC); data in the program was affected, but it was not detected. An
SDC can occur for numerous reasons, including early termination
due to various exceptions (segfaults, illegal instruction, divide by
zero, etc.), incorrect output of any form, or infinite execution. The
implementation labeled a program as having infinite execution if it
took more than 10x the original, non-faulty program execution time.
For Spotexecutions, if the framework detected a fault, then the bit
was classified as a Detected, Unrecoverable Error (DUE).

SDC and DUE are two mutually exclusive components of the soft
error rate of a chip. The SDC rate can be further decomposed into:
SDC= AVFSDC× intrinsic raw error rate, where AVF represents the
Architectural Vulnerability Factor, the fraction of faults to a structure
that result in a user-visible error. The SDC rate is inversely propor-
tional to the Mean Time To Failure (MTTF).

This reliability evaluation only considers faults into the architec-
tural register file. Hence, it is not a complete hardware reliability
analysis. It does not model faults to micro-architectural state such
as bypass networks. Nevertheless, the evaluation yields quantitative
AVF results for an x86 processor’s register file and insights into the
fault detection coverage on an important section of a processor [26].

Figure4 shows the percentage of executions that resulted in un-
ACE, DUE, and SDC for each benchmark and each configuration.
The three configurations arenopin(N), the original, compiled binary
without any instrumentation,basepin(B), a binary translation in the
Pin framework with no reliability or other additional code, andSpot

0

25

50

75

100

%
of

Fa
ul

tI
nj

ec
tio

n

N B S N B S N B S N B S N B S N B S N B S N B S N B S N B S N B S N B S N B S N B S N B S N B S

09
9.g

o

12
9.c

om
pre

ss
13

0.l
i

14
7.v

ort
ex

16
4.g

zip

17
7.m

esa
17

9.a
rt

18
1.m

cf

18
3.e

qu
ake

18
6.c

raf
ty

19
7.p

ars
er

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

Arith
Mean

SDC

DUE

unACE

Figure 4: Categorization of fault injections.

(S), the baselineSpottechnique with reliability uniformly applied.
By running a total of 225,000 (5,000 per benchmark per configura-
tion), the 95% confidence interval on these results is 1.50%.

Because not all faults inserted into an unprotected application will
cause the application to fail, the unACE for each of the benchmarks
is far from zero. Due to factors such as logical masking, dynam-
ically dead instructions, and silent stores, unprotected applications
have a certain amount of natural fault resistance. On average, the
unprotected benchmarks have 20.23% SDC, although the SDC per-
centage ranges from 31.92% for181.mcf to 6.99% for179.art .
SinceSpotuses the Pin framework, we also evaluated the reliability
of the applications running under Pin, but without any protection.
Applications running with Pin had a slightly higher SDC than run-
ning without Pin. On average, the percentage of SDC executions
was 21.94%, a 1.71% difference versusnopin.

We also evaluated the reliability of a baselineSpotconfiguration
with uniform protection across the entire application and for all ap-
plications. This baselineSpotincreases reliability decidedly, reduc-
ing the SDC percentage from 20.23% to 6.46%, an increase in relia-
bility by a factor of 3.13x. Again, different benchmarks exhibit dif-
ferences in their reliability, with181.mcf having the lowest SDC
(5.95%), and300.twolf having the highest SDC (8.98%). How-
ever, using the baselineSpottool does not provide 100% reliability.
As mentioned in Section2.1, Spot inherits various vulnerabilities
from SWIFT.

181.mcf is an example of a benchmark where the baselineSpot
performs well. The reliability improves by 10.72x overnopin, with
little reduction in unACE. Because of the memory-intensive nature
of 181.mcf , most failures in this application are due to segmenta-
tion faults and the baselineSpotsuccessfully catches most of them.
The baselineSpotapplied to147.vortex also greatly increases
its reliability, but with a much more noticeable reduction in unACE.

Spot, like most fault detection implementations, will detect some
unACE bits as DUE. Spotdetects faults in the system which, if
allowed to propagate through the program, would not cause an error.
For example, a silent store which stores an incorrect value will not
cause an error because the value in memory will not be used before
being overwritten.Spotwill detect the faulty value propagating to
memory and signal a DUE despite the fact that the fault would not
have caused an error.

3.2 Performance
We evaluated the performance of each configuration by running

natively on an IntelR©PentiumR©D with a clock frequency of 2.80GHz
and 4 GB of RAM running Fedora Core 3 with a 2.6.15 kernel. All
binaries were compiled statically with gcc 3.4.4 and the user time of
the execution was measured.

Figures5(a)shows the execution time of the baselineSpotnormal-
ized to the native, uninstrumented application. Figure5(b)shows the
same execution time normalized to the execution time of the appli-
cation running under Pin, but without any reliability transformation

4



0
1
2
3
4
5
6
7
8

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

09
9.g

o

12
9.c

om
pre

ss
13

0.l
i

14
7.v

ort
ex

16
4.g

zip

17
7.m

esa
17

9.a
rt

18
1.m

cf

18
3.e

qu
ake

18
6.c

raf
ty

19
7.p

ars
er

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

GeoM
ean

detection
duplication
basepin
nopin

(a) Performance normalized tonopin.

0

1

2

3

4

5

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

09
9.g

o

12
9.c

om
pre

ss
13

0.l
i

14
7.v

ort
ex

16
4.g

zip

17
7.m

esa
17

9.a
rt

18
1.m

cf

18
3.e

qu
ake

18
6.c

raf
ty

19
7.p

ars
er

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

GeoM
ean

detection
duplication
basepin
nopin

(b) Performance normalized tobasepin.

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

09
9.g

o

12
9.c

om
pre

ss
13

0.l
i

14
7.v

ort
ex

16
4.g

zip

17
7.m

esa
17

9.a
rt

18
1.m

cf

18
3.e

qu
ake

18
6.c

raf
ty

19
7.p

ars
er

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

GeoM
ean

detection
duplication
basepin
nopin

(c) Performance normalized toSpot.

Figure 5: Performance breakdown for dynamic fault detection.

applied.
Pin has two distinct sources of overhead, a one-time Just In Time

(JIT) compilation cost, and an steady-state runtime cost. The first
is associated with performing a one-time translation of the original
instructions to instructions within the Pin framework. Even when
no reliability transformation is applied (basepin), the code is still
nonetheless translated. This compilation cost only occurs once per
region in the application, since Pin caches translated regions as men-
tioned in Section2.1. The other cost is the increase in execution
time due to executing the translated code. The translated code is less
efficient than the original binary’s version because additional checks
are inserted to ensure that control transfers to new regions go through
the Pin virtual machine [6].

This steady-state overhead is much more important than the one-
time compilation overhead, as the cost of the one-time compilation
can be amortized for long running programs. For the benchmarks in
the performance evaluations, the percent of time consumed by the
one-time compilation ranges from 2% - 11%. By using the notion
of persistence in run-time translation systems introduced by Reddi
et al. [17, 18], this one-time cost can be further reduced.

On average, the execution time of the baselineSpotis 4.19x slower
than a native execution. When factoring out the framework over-
head, the execution time is 3.22x slower. The performance cost

of adding reliability varies greatly for each individual benchmark,
with 181.mcf having the smallest performance cost (2.3x) and
254.gap having the largest performance cost (4.6x). Benchmarks
like 181.mcf which contain many cache misses have excess in-
struction level parallelism with which to execute the redundant and
checking code without affecting the critical path. Benchmarks with
high checking-code costs, such as254.gap , do so because of their
large number of memory instructions. This includes not only mem-
ory loads and stores, but also arithmetic operations that act directly
on memory locations, such asincl (%eax) .

As Figure5(c) shows,Spotspends 46.2% of its time on average
checking memory instructions. As explained in Section2.1, x86 ap-
plications contain numerous memory operations because of the lim-
ited number of architectural registers. Floating point applications
like 177.mesa and179.art spend less time inSpotcode since
they typically spend most of their time performing floating point
operations which are not checked.254.gap , on the other hand,
spends 62.8% of its time in validation code.

While the baselineSpottechnique incurs a significant performance
cost, we will demonstrate in the following section that this cost can
be dramatically reduced by using software-modulation.

3.3 Mean Work To Failure
Although metrics of reliability such as AVF and MTTF are useful

in most situations, they cannot be used as easily to compare systems
in which both reliability and performance differ. For example, if a
system reduces the SDC failure rate by1

2 while increasing execution
time by 4x, the original system will be able to accomplish more work
between SDC failures. Mean Work To Failure (MWTF) [21] is a
metric which takes into account both the AVF and the performance
to give a more meaningful comparison in these cases.

0

1

2

3

N
or

m
al

iz
ed

M
ea

n
W

or
k

To
SD

C

09
9.g

o

12
9.c

om
pre

ss
13

0.l
i

14
7.v

ort
ex

16
4.g

zip

17
7.m

esa
17

9.a
rt

18
1.m

cf

18
3.e

qu
ake

18
6.c

raf
ty

19
7.p

ars
er

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

GeoM
ean

basepin
Spot

Figure 6: Normalized Mean Work To Failure.

Figure6shows the MWTF forbasepinand uniformly appliedSpot
baseline normalized to the native application without instrumenta-
tion. For these MWTF measurements, we consider SDCs to be fail-
ures. The mean normalized MWTF of basepin is 0.72x. This metric
is less than 1.0, meaning that the basepin will, on average, suffer
more SDCs during the time it takes to complete a given application
versus running without Pin. This result is not surprising since the
reliability of the Pin tool was roughly equivalent to that of the native
execution, but the execution time was slightly longer. This results
in an application which is just as susceptible to failures, but which
will take longer to complete and therefore be exposed for a longer
amount of time.

The baselineSpot tool also has a worse MWTF than the native
application, with an average normalized MWTF of 0.71x. While
this may seem surprising because of the dramatic decrease in SDC
that Spotprovides, the execution time of baselineSpot is also in-
creased by a factor greater than the reduction in SDC. This exam-
ple shows that reliability analysis must go beyond the SDC percent-
age and include performance as well. For certain benchmarks, like

5



181.mcf and183.equake , baselineSpotimproves the MWTF.
As demonstrated in Figure4, the SDC improvements underSpotfor
these benchmarks are among the highest.181.mcf has the lowest
performance cost underSpotwhile 183.equake has an average
performance cost. The SDC improvement for these benchmarks out-
weighs the performance cost, resulting in a overall gain in terms of
MWTF.

The baselineSpottool suffers from a large performance cost, and
in this often negates the benefit from the decrease in SDC. However,
Spotcan apply fault detection non-uniformly via software modula-
tion. By exploiting the variations in SDC throughout the applica-
tion (and among different applications),Spotshows a clear benefit
in terms of reliability and MWTF. As the following sections will
show, selectively applying fault detection can significantly lower the
SDC while keeping the performance cost in check, thereby increas-
ing the MWTF ofSpotwell beyond that of the baseline.

4. SOFTWARE MODULATION RESULTS
Spotenables software-modulated fault detection and can trade-off

between reliability and performance at a fine granularities.Spotcan
add reliability in certain environments, for specific applications, or
even for critical regions of an application, thus maximizing the reli-
ability while minimizing the costs. This enablesSpotto protect as
much or as little of the program as is required by the user’s perfor-
mance and reliability budget. In the future,Spot’s dynamic nature
will also allow the level of protection to be dynamically adapted to
changing performance and reliability requirements.

In this section, we explore two axes along which the protection
can be modulated. We show how these axes provide a wide range of
options in terms of performance and reliability. Although we have
explored this space across all benchmarks, for brevity’s sake, we will
examine three benchmarks in depth,254.gap , 300.twolf , and
181.mcf , which represent the worse, average, and best perform-
ing benchmarks from the baselineSpotexecutions. In Section4.1,
we present the variations available when protecting only a subset of
the architectural registers, and in Section4.2 we explore different
reliability configurations based on regions.

4.1 Varying Protection on Registers
Just as different applications differ in their native reliability, differ-

ent architectural registers differ in their reliability within an applica-
tion. Figures7(a), 7(b), and7(c)show the AVF of each architectural
register for each of our three benchmarks. The horizontal dashed
line denotes the average AVF across all registers.

Registers with above-average AVF are good candidates for spe-
cialized protection. Figure7 clearly demonstrates that certain reg-
isters, namelyEBPand to a lesser extentESP, are very susceptible.
Since these registers are used primarily as pointers loading and stor-
ing to memory, faults to these registers will likely cause segmenta-
tion faults.EDI is also a significant source of failure for181.mcf .
Similar toEBP, this register is heavily used in certain memory oper-
ations.

Spotcan individually protect or leave unprotected any subset of
the architectural registers. Leaving a register unprotected reduces the
steady-state performance overhead of reliability by not duplicating
instructions that only affect an unprotected register and also by not
having to insert check instructions for that register.

Figure8 is a simple example to illustrate the instruction duplica-
tion and verification ofSpotwhen protecting only a subset of the reg-
isters. In this example, registerEBX is left unprotected. SinceEAX
is protected, instruction1 is inserted, as before, to add redundancy to
the data loaded from memory. Thesub instruction which reads from
EAXandEBXand writes toEBX is not duplicated, sinceEBX is not

0.00

0.25

0.50

0.75

1.00

%
of

Fa
ul

tI
nj

ec
tio

ns
Ca

us
in

g
SD

C

EAX
EBP

EBX
ECX EDI

EDX ESI
ESP

Architectural Registers

(a) 181.mcf

0.00

0.25

0.50

0.75

1.00

%
of

Fa
ul

tI
nj

ec
tio

ns
Ca

us
in

g
SD

C

EAX
EBP

EBX
ECX EDI

EDX ESI
ESP

Architectural Registers

(b) 254.gap

0.00

0.25

0.50

0.75

1.00
%

of
Fa

ul
tI

nj
ec

tio
ns

Ca
us

in
g

SD
C

EAX
EBP

EBX
ECX EDI

EDX ESI
ESP

Architectural Registers

(c) 300.twolf

Figure 7: Percentage of faults causing SDC for each architec-
tural register.

protected. The last instruction is a store instruction which storesEBX
to the addressEDX. Instructions2-3 verify that the address,EDX, is
correct, but the value,EBX, is written to memory without checking.

Spotwas run in 256 different configurations for each benchmark.
Each configuration protected a subset of the registers and we eval-
uated the protection and performance for all combinations of the 8
GP architectural registers. For an accurate evaluation, each configu-
ration was injected with 500 faults for each of the 256 combinations
for each benchmark, giving a 95% confidence interval for the SDC
of 5.00% .

Figures9(a), 9(b), and9(c) show the performance and reliability
for each of the register configurations for that benchmark. Perfor-
mance, as normalized execution time compared with a basepin exe-
cution, is on the Y-axis. Reliability, as percent of executions which
resulted in failure, is on the X-axis. The most desirable position for
a configuration to be is the lower-left corner, since lower means less
performance cost and left means low failure percentage.

The three figures also have noted a line for the performance/ relia-
bility frontier. The configurations on the frontier are strictly better, in
terms of lower performance, higher reliability, or both, than all other
points not on the frontier. When choosing the specific configuration
to execute, the best options are those on the frontier.

6



mov (%edx), %eax

sub %eax, %ebx

mov %ebx, (%edx)

(a) Original Code

mov (%edx), %eax
1: mov %eax , %eax2

sub %eax , %ebx
2: cmp %edx , %edx2
3: jne faultDetect

mov %ebx , (%edx)

(b) Reliable Code

Figure 8: Fault detection, skipping protection for EBX. Code
added by our technique is in bold. Checking instructions are
italicized.

Figures10(a), 10(b), and10(c)show the normalized Mean Work
To Failure for the respective benchmarks. Those figures show the
basepin Pin and the baselineSpotnormalized MWTF (as shown in
Figure 6). The two new bars represent the best configuration for
modulating fault detection with registers and with regions (as will
be explained in Section4.2). The three illustrative benchmarks rep-
resenting the best, worst, and average responses to theSpot tool.
Utilizing software modulated fault detection,Spotis able to achieve
reliability near the baselineSpotexecutions but at near zero perfor-
mance cost. Notice that for all three benchmarks, the normalized
MWTF is 17.79x , 2.03x , and 1.80x . All benchmarks have a greater
than one normalized MWTF, meaning it is advantageous to apply re-
liability.

Notice the two distinct clusters in Figure9(c) for 300.twolf .
Those two clusters correspond to theEBPregister. All in upper left
region protectEBP, while all points in lower right do not.EBP is
used very frequently in300.twolf , so protection of that register
has corresponding cost. Protecting that register increase the perfor-
mance from 1.0-1.9x to 2.0-3.0x.

Also notice in Figure9(c) the knee in the frontier near 15% SDC.
The unprotected version of300.twolf has an SDC percentage of
21.15%. Points on the configuration frontier have SDC percentages
as low as 16.33% before incurring a noticeable performance cost.
(16.33% SDC percentage for 8% executing time increase).

The point with the highest MWTF and represented in Figure6
protectsEAX, EBP, andESPregisters all of which, from Figure7(c)
have greater than average SDC percentage.

The other two benchmarks show similar trends in Figures9(a)and
9(b). Both of these benchmarks have a long, mostly flat frontier very
close to no performance cost until 10.5% SDC. For254.gap , one
of the worst performing benchmarks, the performance cost sharply
rises as SDC is further reduced, whereas for181.mcf , the bench-
mark with the best performance, the performance cost rises much
more gradually. As can be seen in Figures10(a)and10(b), the nor-
malized MWTF of the configuration techniques shows it is beneficial
to apply the transformation.

4.2 Varying Protection for Regions
Just as the natural resistance to failures varies for different regis-

ters, the natural fault resistance also varies when looking at different
code regions of an application. Since different regions respond dif-
ferently to faults, a non-uniform application of reliability can provide
substantial benefits to reliability with reduced performance costs.

Figure11(a), 11(b), and11(c) show the percentage of faults in-
jected into a code region which resulted in a program failure. The
entire program was divided into regions of 256 bytes (an x86 in-
struction takes 1 - 7 bytes) and the faults that were injected were
mapped back to the regions into which they were injected. If the
first byte of the current instruction was within the range, the fault
was considered injected in the range. The X-axis of the graphs show
the code regions into which the fault was injected, and the Y-axis

0

1

2

3

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

0 5 10 15 20 25
% of Fault Injections Causing SDC

(a) 181.mcf

0

2

4

6

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

0 5 10 15 20 25
% of Fault Injections Causing SDC

(b) 254.gap

0

1

2

3

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

0 5 10 15 20 25
% of Fault Injections Causing SDC

(c) 300.twolf

Figure 9: Performance and reliability when protecting different
registers.

details the percentage of faults which resulted in a failure. The taller
lines depict less reliable code regions. Similar to the depiction of the
non-uniform per register, the dashed horizontal line represents the
benchmark average SDC across all regions.

Those figures show a wide variety in the native percentage of SDC
across the ranges of instructions executed. For example, in Fig-
ure11(c)for 300.twolf , there are a significant number of regions
which are much less reliable than the average for that benchmark,
22.15%. In fact, there are 8 code regions which are more than twice
as unreliable as the average for this benchmark. We can leverage
this non-uniformity to optimize the tradeoff between protection and
reliability.

Spotcan protect or skip protection for any set of address ranges.
When doing the dynamic translation,Spotchecks the set of regions
it knows to add protection to (or skip protection for) in order to de-
termine if the current region should be protected. Since a region with
a certain level of reliability may transfer control to a region with a
different level of reliability,Spotmust ensure that the reconciliation
code by copying the original version of the registers into their re-
dundant versions. A fault during this phase will be propagated to
both the original and the redundant versions. When transferring to

7



0

5

10

15

20

N
or

m
al

iz
ed

M
ea

n
W

or
k

To
SD

C

bas
epi

n
Spo

t

bes
t-re

gis
ter

bes
t-re

gio
n

(a) 181.mcf

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

M
ea

n
W

or
k

To
SD

C

bas
epi

n
Spo

t

bes
t-re

gis
ter

bes
t-re

gio
n

(b) 254.gap

0

1

2

3

N
or

m
al

iz
ed

M
ea

n
W

or
k

To
SD

C

bas
epi

n
Spo

t

bes
t-re

gis
ter

bes
t-re

gio
n

(c) 300.twolf

Figure 10: MWTF incorporating software modulated fault de-
tection.

a region of the same type (reliable to reliable or unreliable to unre-
liable) no reconciliation code is necessary. When a reliable region
transfers to an unreliable region, the unreliable region will simply
ignore the redundant registers; in this case there is also no necessary
reconciliation code.

Like the evaluation of register modulation,Spotwas run in 256
configurations of different regions for each benchmark. We selected
the 7 regions with the worst reliability and computed the reliability
and performance when protecting the entire application except the
current combination of regions selected for this experiment. Each
combination of the 7 regions were evaluated for a total of 128 con-
figurations. Since the selected regions did not cover the entire ad-
dress space of executed instructions, we also computed the perfor-
mance and reliability when protecting the inverse of each configura-
tion; Spotwas configured to protect none of the application except
for the regions selected. We also evaluated each of the 128 inverse
configurations for a total of 256 region-based configurations.

We evaluated the performance and reliability in the same manner
as the rest of the paper. For confidence in the reliability percentages,
each of the 256 configuration for each benchmark was injected with
500 faults for a total of 384,000 fault injections.

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
Fa

ul
tI

nj
ec

tio
ns

Ca
us

in
g

SD
C

0x80494xx 0x8049Exx 0x804A8xx 0x804B2xx
Static Code Addresses

(a) 181.mcf

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
Fa

ul
tI

nj
ec

tio
ns

Ca
us

in
g

SD
C

0x807AAxx 0x808A4xx 0x8099Exx 0x80A98xx
Static Code Addresses

(b) 254.gap

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

Fa
ul

tI
nj

ec
tio

ns
Ca

us
in

g
SD

C

0x804BCxx 0x806B0xx 0x808A4xx 0x80A98xx
Static Code Addresses

(c) 300.twolf

Figure 11: Percentages of faults causing SDC for each region.

Figures12(a), 12(b), and12(c)show the performance and reliabil-
ity for the various regions of the three illustrative benchmarks. Each
graph shows two distinct clusters. The regions chosen were based
on their impact on the SDC percentage rather than their impact on
performance. The two clusters represent protecting the entire ap-
plication except the subset of the regions (upper left clusters), and
protecting none of the application except the subset of the regions
(lower right clusters). The regions selected do not have a large im-
pact on performance. This causes the clusters to be very flat, one
near 1.0 (no performance cost) and one near the baselineSpotper-
formance cost.

The wide range in the X-axis (SDC) is due to protecting or leaving
unprotected the vulnerable regions of the application. Figure12(c)
shows that the best reliability for300.twolf is the configuration
that has no performance cost (at a normalized execution time of 1.0
and 17.5% SDC).

Just as for the register analysis, the best configuration points are
shown on the plot with a solid frontier line. Figure12(c)has a fron-
tier boundary that encompasses only two main points, one for the
cluster with no performance cost, and the other point for the cluster
with baselineSpotperformance. The frontier actually encompasses
3 points in the high performance cost cluster, but they are extremely
close together (the variation in MWTF is less than 0.08). Although

8



0

1

2

3
N

or
m

al
iz

ed
Ex

ec
ut

io
n

Ti
m

e

0 10 20 30 40
% of Fault Injections Causing SDC

(a) 181.mcf

0

2

4

6

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

0 10 20 30 40
% of Fault Injections Causing SDC

(b) 254.gap

0

1

2

3

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

0 10 20 30 40
% of Fault Injections Causing SDC

(c) 300.twolf

Figure 12: Performance and reliability when protecting different
regions.

these regions only provide a binary decision as to the best configura-
tions to consider, the lower right points have the same execution time
as the baseline, but at3

4 the SDC percentage (a reduction of 4.5%).
For this benchmark, as shown in Figure10(c), the MWTF for the
best region configuration is 1.60x the native application, but slightly
less reliable that the MWTF for the register configurations (2.03x).

For the other benchmarks shown in detail there are also two dis-
tinct clusters. While the other two benchmarks only have 2 points
on their frontiers,181.mcf has thirteen lines along its frontier line.
The region configuration MWTF is more reliable and better perform-
ing than the register configuration MWTF. Notice in Figures10(a)
and10(b)that the MWTF of the region configurations for181.mcf
and254.gap are 17.79x and 1.90x respectively, whereas the MWTF
for register configurations are 12.72x and 1.76x respectively.

While these regions provide a large range in SDC options and pro-
vide beneficial MWTF, they do not provide a wide range of perfor-
mance options. The regions were chosen based on their SDC region
ranking, but regions based on frequency of execution or percentage
of execution time could be selected. This would give a wide range
in execution time, and the more reliable configuration within accept-
able performance loss can be selected.

0

1

2

3

4

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

0 10 20 30 40
% of Fault Injections Causing SDC

Figure 13: Performance and reliability when protecting different
regions and different registers (300.twolf).

4.3 Varying Protection for Regions & Registers
In Sections4.1and4.2we showed two different fine-grained con-

figurations for the tradeoff between reliability and performance. These
configurations are not mutually exclusive; they can be combined for
an even wider range of reliability and performance options.

Figure13 shows the combinations of the 3 most unreliable regis-
ters and 4 most unreliable regions in all possible configurations (256
in all, when including the inverse of the region protection). We in-
jected 500 faults for each experiment to determine the unACE, DUE,
and SDC percentages.

Unsurprisingly, the plot of SDC and performance for300.twolf
when using configurations protecting regions and registers resem-
bles the two configuration plots, Figures9(c) and12(c), combined.
The plot is segmented into two clusters, but there is less variation
within a cluster relative to the register-only plot in Figure9(c)due to
the influence of different region configurations. Conversely, there is
more variation within a cluster compared to the region-only plot in
Figure12(c)due to different register configurations.

5. CONCLUSION
As transient faults become more prevalent across a wide range

of markets, techniques which can tailor the level of protection to
each user’s specific performance and reliability requirements will be
needed. The technique presented in this paper, calledSpot, is the first
software-only fault-detection technique to address this need by pro-
viding software-modulated fault tolerance at fine granularities.Spot
is also the first technique to use dynamic binary translation to pro-
vide full instruction protection, allowing users to dramatically im-
prove the reliability of their applications without relying on hardware
modifications or access to application source code.Spot’s ability to
vary the level of protection for different registers and regions of code
provides users with more, and often superior, fault detection options,
allowing it to increase the mean work to failure from 1.90x to 17.79x.

6. REFERENCES
[1] R. C. Baumann. Soft errors in advanced semiconductor

devices-part I: the three radiation sources.IEEE Transactions
on Device and Materials Reliability, 1(1):17–22, March 2001.

[2] E. Borin, C. Wang, Y. Wu, and G. Araujo. Software-Based
Transparent and Comprehensive Control-Flow Error
Detection.Code Generation and Optimization, 2006. CGO
2006. International Symposium on, pages 333–345, 2006.

[3] M. A. Gomaa and T. N. Vijaykumar. Opportunistic
transient-fault detection. InProceedings of the 32nd Annual
International Symposium on Computer Architecture, pages
172–183, 2005.

[4] K. W. Harris. Asymmetries in soft-error rates in a large cluster
system.IEEE Transactions on Device and Materials
Reliability, 5(3):336–342, September 2005.

9



[5] X. Li, S. Adve, P. Bose, and J. Rivers. SoftArch: An
Architecture Level Tool for Modeling and Analyzing Soft
Errors.Dependable Systems and Networks, 2005. DSN 2005.
Proceedings. International Conference on, pages 496–505,
2005.

[6] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. InProceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, June 2005.

[7] A. Mahmood and E. J. McCluskey. Concurrent error detection
using watchdog processors-a survey.IEEE Transactions on
Computers, 37(2):160–174, 1988.

[8] G. Memik, M. Kandemir, and O. Ozturk. Increasing Register
File Immunity to Transient Errors.Proceedings of the
conference on Design, Automation and Test in Europe-Volume
1, pages 586–591, 2005.

[9] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala,
and S. A. Wender. Predicting the number of fatal soft errors in
los alamos national labratory’s ASC Q computer.IEEE
Transactions on Device and Materials Reliability,
5(3):329–335, September 2005.

[10] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft error
problem: an architectural perspective. InProceedings of the
11th International Conference on High-Performance
Computer Architecture, pages 243–247, 2005.

[11] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
design and evaluation of redundant multithreading
alternatives. InProceedings of the 29th Annual International
Symposium on Computer Architecture, pages 99–110. IEEE
Computer Society, 2002.

[12] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin. A systematic methodology to compute the
architectural vulnerability factors for a high-performance
microprocessor. InProceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, page 29. IEEE
Computer Society, 2003.

[13] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P.
Muhlfeld, I. C. J. Montrose, H. W. Curtis, and J. L. Walsh.
Field testing for cosmic ray soft errors in semiconductor
memories. InIBM Journal of Research and Development,
pages 41–49, January 1996.

[14] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by
duplicated instructions in super-scalar processors. InIEEE
Transactions on Reliability, volume 51, pages 63–75, March
2002.

[15] J. Ohlsson and M. Rimen. Implicit signature checking. In
International Conference on Fault-Tolerant Computing, June
1995.

[16] M. Rebaudengo, M. S. Reorda, M. Violante, and
M. Torchiano. A source-to-source compiler for generating
dependable software. InIEEE International Workshop on
Source Code Analysis and Manipulation, pages 33–42, 2001.

[17] V. J. Reddi. Deploying dynamic code transformation in
modern computing environments. Master’s thesis, Department
of Electrical and Computer Engineering, University of
Colorado, Boulder, CO, November 2005.

[18] V. J. Reddi, D. A. Connors, and R. S. Cohn. Persistence in
dynamic code transformation systems. InProceedings of the
Workshop on Binary Instrumentation and Applications,
September 2005.

[19] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection
via simultaneous multithreading. InProceedings of the 27th
Annual International Symposium on Computer Architecture,
pages 25–36. ACM Press, 2000.

[20] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
August. SWIFT: Software implemented fault tolerance. In
Proceedings of the 3rd International Symposium on Code
Generation and Optimization, March 2005.

[21] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I.
August, and S. S. Mukherjee. Design and evaluation of hybrid
fault-detection systems. InProceedings of the 32th Annual
International Symposium on Computer Architecture, pages
148–159, June 2005.

[22] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I.
August, and S. S. Mukherjee. Software-controlled fault
tolerance. InACM Transactions on Architecture and Code
Optimization (TACO), volume 2, December 2005.

[23] J. Segura and C. F. Hawkins.CMOS Electronics: How It
Works, How It Fails. Wiley-IEEE Press, April 2004.

[24] P. P. Shirvani, N. Saxena, and E. J. McCluskey.
Software-implemented EDAC protection against SEUs. In
IEEE Transactions on Reliability, volume 49, pages 273–284,
2000.

[25] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray.
Low-cost on-line fault detection using control flow assertions.
In Proceedings of the 9th IEEE International On-Line Testing
Symposium, pages 137–143, July 2003.

[26] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel.
Characterizing the effects of transient faults on a
high-performance processor pipeline. InProceedings of the
2004 International Conference on Dependable Systems and
Networks, pages 61–72, June 2004.

[27] A. Wood. Data integrity concepts, features, and technology.
White Paper, Tandem Division, Compaq Computer
Corporation, 1999.

[28] J. Yan and W. Zhang. Compiler-guided register reliability
improvement against soft errors. pages 203–209, 2005.

[29] J. F. Ziegler and H. Puchner.SER - History, Trends, and
Challenges: A Guide for Designing with Memory ICs.
Cypress Semiconductor Corporation, 2004.

10


	Introduction
	Fault Tolerance Design Space
	Implementation Method
	Modulation Method

	Evaluation Methodology
	Reliability
	Performance
	Mean Work To Failure

	Software Modulation Results
	Varying Protection on Registers 
	Varying Protection for Regions 
	Varying Protection for Regions & Registers 

	Conclusion
	References

