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ABSTRACT have been proposed for full-processor fault detection, they still re-

Smaller feature sizes, lower voltage levels, and reduced noise maH're moderate to S|gn|f|ca_nt changes tc_) th_e_ hardvv_are de;|gn, a_nd
gins have helped improve the performance and lower the power co‘i’&QS_S'b'Y even to the o_peratmg system, S|gn|f|cantly increasing vali-
sumption of modern microprocessors. These same advances hd@lon time and often incurring performance penalties.
made processors more susceptible to transient faults that can corru jn contrast, software-only a_p_proach_es to fault _deF'?C“OF‘ and re-
data and make systems unavailable. Designers often compensate ery [.4, 16, 20, 24 Ca.”.s'g.r“f'ca”t'Y improve reliability without
transient faults by adding hardware redundancy and making circul€aUI"ng har_dwg_re modifications. This m_akes software redl_mdancy
and process-level adjustments. However, applications have diffé?—Chn'qu,eS 5|gn|f|cant[y cheaper and easier to deploy, working even
ent data integrity and availability demands, which make hardwar’ mac_hlnes already in the flelo_l. Deployment of redundancy_tech-
approaches such as these too costly for many markets. niques in th(_a field may become important because of poor estimates

Software techniques can provide fault tolerance at a lower cost af§the Severity of the soft-error rate by designers and because of the
with greater flexibility since they can be selectively deployed in thgncertainty In the usage condition of the machieq). Changes
field even after the hardware has been manufactured. Most existiffyN€ OPerating environment of Fh.e hardware can also have a no-
software-only techniques use recompilation, requiring access to prrb_eable effect on _re||ab|l|ty, requiring the deployment of software
gram source code. Regardless of the code transformation meth{)%dunQancy techr_llques. Fpr ex_ample, the softjerror rate fmm atmo-
previous techniques also incur unnecessary significant performarigd'€'iC neutrons is 4-5x higher in Denver than in New York City be-
penalties by uniformly protecting the entire program without taking@uSe of Denver's higher altitudgq). Nevertheless, software-only
into account the varying vulnerability of different program region pproachgs d(.) suffer from high performance penalties — a problem
and state elements to transient faults. we tackle In this paper. e

This paper presentSpot a software-only fault-detection tech- Most prior ap_proaghes _to software-only error mltlgat@n 14,
nique which uses dynamic binary translation to provide softwaret® 2_0] have r(_elled primarily on static compilation techniques that
modulated fault tolerance with fine-grained control of redundancy€dY!"® e}lteratlons o the compilation process and access to the ap-
By using dynamic binary translation, users can improve the reli dlication's source code. To use these teqhmques, a user MUSEEOR
bility of their applications without any assistance from hardware ofP0rate with the software vendor to acquire the application source
software vendors. By using software-modulated fault toleraBpet cer, often rendering these techniques impractical for many appli-
can vary the level of protection independently for each register arftions. . N .
region of code to provide users with more, and often superior, fault- The technique presented in this pagipot provides fault detec-

detection options. This feature 8potincreases the mean work to 10" Via dynamic binary translation for all types of instructioBmot
failure from 1.90x to 17.79x uses a modified version of the Pin dynamic instrumentation frame-

work [6] to perform reliability transformations for the x86 instruc-

tion set. Because Pin uses dynamic, rather than static, instrumen-
1. INTRODUCTION tation, Spotonly requires the program binargpotis applicable to
ograms, legacy or otherwise, whose source code is either not easily

. _pr
In recent decades, microprocessor performance has been 'ncr‘%%ompilable or altogether unobtainable from the software vendor.

ing exponentially, due in large part to smaller and faster ransistos o, it the application sources are available, users typically do not
e_nabled by improved fabrication techn_ology. Whll_e such tranastor@comp"e libraries (such aibc ) when recompiling an applica-
yield performance enhancements, their smaller size and sheer nugg, - gpots dynamic translation capabilities allow protection to be
ber make chips more susceptiblettansient fault{10]. Transient 5, jieq to libraries as well. The dynamic natureSpbtalso enables
faults, caused by extern;l particle strikes or procegs—relatedbparan]ﬂb attach and detach to already running applications to adjust reli-
ric variation [L, 13, 23], do not cause permanent damage, but may i, anpropriately. For example, a laptop can switch into a more

manifest as soft errors by altering signal transfers and stored valuggjiaple mode of execution whenever it detects adverse environmen-
thereby resulting in incorrect program execution. tal factors

Designers frequently introduce redundant hardware to detect O nlike prior work, Spothelps users identify the most vulnerable

recov]?r from tf?.e.se faults _b_ecausre: proc;fess and materlall advanggsions and state of programs and configure these regions and state
are often insufficient to mitigate their effect. For example, Story i, the appropriate level of fault coverage. Generally, the higher the

age structures, such as caches and memory, typically include exffayner of redundant instructions (and hence fault coverage) added
information in the form of parity or error-correcting codes (ECC)4, the original binary application, the greater the application’s per-

which allow these hardware structures to detect and/or recover frol’[‘;rmance degradation. By allowing users to identify and protect only

such faults. However, protecting all transistors is difficult, part'c'regions and state of the program that are highly vulnerable to tran-

ularly those used in combinational logic, without paying a signifigiany fauits, Spothelps reduce the performance degradation from

cant penalty in area, power, and/or performance. While higher-levg), oy, softyare reliability transformations. Th@&potallows appli-
techniques, such as Lockstepping or Redundant MultithreadiBjg [



Modulation Implementation Method

cations to trade off performance for reliability and vice versa. Al-

h h X hh lored h fi bility i Method Software | Hybrid | Hardware
though previous research has explored such reconfigurability in a None || SWIFT 0| CRAFT 21 RNIT (1L 10]
limited way at the function leveld2] (without actually exploring the EDDI [14] Watchdog 7] | Lockstepping?27]
performance and fault-coverage trade-o8pottakes advantage of BACFC [2|5]p] CFCss 19 ECC, Parity

. - y . orin et al.
reconfigurability at a much finer granul.arlty. Note, however, that Sofware || PROFIT B2 | PROFTEZ]
Spotdoes not automatically choose regions of programs to protect, Spot
but it provides a foundation for such automation. Hardware PER, IRTR B]

To maximize fault coverage for a given performance threshold, we
take advantage of the key insight that not all faults in an unprotected
application will cause the application to produce incorrect data. For
example, a fault to a register outside of its live range will not chang

Table 1: Fault detection design space.

the program execution, because that value will be overwritten ber  application
fore it is used. Due to such masking factors, unprotected applicar Binary PIN
tions have a natural degree of fault resistance. The natural resilience Dynamic Reliab1
varies not only from application to application, but also within an [T —— 1;:;,;
application from region to region and from register to register. Framework

While it is well-known that masking effects are common in ap- SWIFT
plications and vary widely within and across applicatiobs 12, Transformation

26], we demonstrate that such masking effects can be effectively ex
ploited under software control to trade off fault-detection coverage
for increased performanceSpotidentifies vulnerable regions and
registers by profiling the vulnerability of regions and registers using
fault injection into running programs. Armed with this profile infor- explore these two axes of the design space.
mation, Spotcan selectively apply redundant transformations only

for the regions and registers deemed necessary. 2.1 |mp|ementati0n Method
thesgggsa?(l;?tégfu?em ;?er?/i?)l 3tsessocf)tftwv;le:re%?]rllIyt;i%hnr;lqulges trc:at\z/aergtm_Numerous low-level techniques, including error correcting codes
eted the MIPS arcﬁitecturaéﬂ the Inte@lPlglarchiteitureE[O] ?ECC) and parity bits, are commonly used to increase reliability.
gnd a Motorola M68040 micro’ rocessdf]. Previous work doés While these are effective at protecting regular structures such as
P ’ aches, they cannot economically scale to cover all bits of a proces-

target the x86 architecture, however, that work only addressed tﬁgr, specifically many of the latches and logic gates in the instruction

'ngg € gcceosr;t(r)?é-filsognp;c;:fgctlt?vrgl- (I)Eartlla;l;g%ofutlr!;?ru:}bdieltﬁtc tlloxnsgn , (P_ipeline. To address this, many high-level hardware techniques have
P . : 9 L quity, P'%iso been proposed.], 19, 27]. While such techniques are typi-
cessors are used in a wide variety of applications from low-power

- . ) . . (Eally able to dramatically increase reliability, they still require sig-
L?ﬁitglfsmvgh'im;aing;\:ﬁg#;ixgy Bli?eh (ln(?tveerls ?of ﬂ?tﬁ_gézg%%/o?]uniﬁcant changes to the hardware design and possibly the operating
y ® 9 quite. ' 9 : . system, significantly increasing design and validation time and often
and Opterof® processors that require high levels of data |ntegr|tyi curring performance penalties. Software-only approachesip,

such as those used in.high avajlfability systems. Hence, .it iS”CI’itiCil , 20, 25] have been proposed as cheaper alternatives to hardware
to provide x86 users with the ability to tailor the level of reliability to solutions since they require no hardware modifications. However,

their needs. However, the x86 architecture presBptiwith a novel - . .
nﬁgst previously proposed software-only techniques have been im-

tsﬁé mnci{]ee:::llir&%ﬁe?ﬁ g;uﬁehclguhr;ﬁgu;Tg?’soggimor%ic;%ssgﬁoﬁ mented as compiler passes, and thus they have all required access
9 ' 9 9allol, source code. Since the source code to many applications is unob-

of the performance degradation a much more challenging prObIe{ginable, these techniques cannot be widely applied. Recently, Borin

thE_II_F;]g Irsefsc;rol:fuice: I[?as;reurcitlsocr)]rj;tniazrgglfsc tfl:)rliaos\/.\/s. SecHatefines et _al. Pl introduced a softw_a rg-only technique usin_g dynamic trans-

the fault detection design space and explains Boatis in a unique Iatlor_1, but t_hat work was limited solely to.protectlng cont_rol-_f_low.

point in that space. Sectiorg&sdescribe the methodology used to Spotis the first sc_nftware-_only gpproach _to Increase the_ reliability of
non-control-flow instructions via dynamic instrumentati@potal-

e\é?flg?r;ea:;ggerzgé'ngﬂm\i/gtit?gsﬁéﬂutfeg?; O;;ilt'%t::%g’_ lows users to protect themselves against the deleterious effects of
P o i transient faultswithout the cooperation of hardware and software

scribes the results from three software modulations options: config-
. - . . . endors
uring protecting for registersi(1), regions ¢.2), and both simulta- Spots reliability enhancements were implemented using the Pin

neously ¢.3). Finally, the paper concludes in Sectibn dynamic instrumentation frameworK][ Pin allows users to write
instrumentation code, our reliability transformation in this case, and
2. FAULT TOLERANCE DESIGN SPACE apply it to binaries via dynamic instrumentation. Figdrshows a
Table 1 shows the design space of various fault-detection techtiagram of the framework.
niques. Each column in the table represents a different substrateUpon execution, an application binary is loaded by Pin, and the
that can be used to implement the fault detection technique. Fauteliability transformation is applied. As the code is executed, it is
detection can be done in software alone, in hardware alone, orirsstrumented, yielding reliable code dynamically. While dynamic
combination of the two. The rows of the table represent the differefstrumentation does incur a performance overhead, Pin’s caching
ways of modulating the level of protection. The first row representgechnique allows this cost to be amortized over the execution of the
existing techniques that apply protection uniformly across all appliprogram. Through dynamic instrumentation, Pin is able to handle
cations and all parts of individual applications. The second and thintany challenging issues that cannot be solved via static instrumenta-
rows refer to techniques that allow the software and hardware, réen, such as variable-length instructions, mixed code and data, stat-
spectively, to modulate the level of protection. In this section, wécally unknown indirect jump targets, dynamically generated code,

Figure 1: Diagram of the framework.



ecution time and therefore does not contribute significantly to the

1. cmp Sedx , %edx2 vulnerability of the technique. In addition to these limitations of the

2: jne faultDetect . S . .
mov (%edx), %eax mov (%edx), Y%eax transformation, due to current limitations with Pin framew&iot

3: mov %eax , %eax2 does not protect floating point or multimedia instructions, nor does
sub %eax, %bebx sub %eax , %ebx our framework currently incorporate SWIFT’s control-flow protec-

4: sub %eax2 , %ebx2 .

5. cmp %edx , %edx2 tion scheme. . .

6: jne faultDetect AlthoughSpotuses the same transformation as previous approaches,

70 cmp %ebx , %ebx2 it is the first technique to apply it dynamically, making the trans-
mov Sebx, (%edx) & "I‘T‘fo\taﬂ/'ofkf;em (pedx) formation applicable to libraries, dynamically-generated code, and

' ' variable-length instruction sets with indirect jumps. The dynamic

(a) Original Code (b) Reliable Code nature ofSpotalso removes many hurdles for users wanting to in-

crease the reliability of their system. Previously, users would have
Figure 2: Duplication and validation. Code added by our tech- had to physically shield their hardware, purchase more reliable hard-
nique is in bold. Checking instructions are italicized. ware, or obtain more reliable software to increase reliability. Static
approaches based on compiler transformations require the source
code to the application. For most applications, the source code is
unavailable, making dynamic approaches sucBmsthe only avail-

and dynamically loaded libraries. able option for increasing reliabilit
Spots reliability transformation is based on the SWIFT technique P 9 Y-

[21]. Our technique dynamically duplicates all instructions, excep2 2  Modulation Method
for those that write to memory. Since a fault causing data corruption”

will only manifest itself as a program error if it changes the output, o

checking is delayed until immediately before instructions that mayg 4o
affect output, such as stores. An error in a dynamically dead registeg
or in a bit that will be masked away will not cause a failure becauseS
that value (correct or not) will not propagate to the output. By delay- £

20 | q
ing validation until necessary, this technique reduces the probabilit _;
that errors will be signaled in situations where that error would nots ' | H H |
1 1 1 1 1 1 I:I 1 1 1 1 1 1 1
& S
X

ctio]

have caused a failure. This also greatly reduces the number of check- ! !
ing instructions that are necessary. ® o & &S0 SHEH S ST ES
. . . . . . . > > O & A P xS
Figure2 is a simple example which illustrat&pots instruction @QPQ@Q \\N ARSI fc\\@io“\%b-“ $ P Wgﬁ & %@"v@

duplication and checking. To protect the load instruction, instruc- ~
tions 1-2 are added to verify that the address of the load instruction
is correct. InstructiorB is inserted to add redundancy to the data
loaded from memory by copying the value to a duplicate virtual reg-
ister. Instructiord is inserted to redundantly compute the subtrac- Different applications have different levels of natural fault resilience.
tion and instruction$-8 verify that both the address and the valueFigure3 shows the each application’s response to inserted faults. On
sources of the store instruction are fault-free. average, the unprotected benchmarks fail 20.23% of the time, al-

Uncachable loads, such as those from external devices, and loaldsugh the percentage of executions resulting in failure ranges from
in multiprocess systems may cause two successive loads to the sa83te92% forl81.mcf to 6.99% forl79.art . Justas entire bench-
address to read different values. Theref@potcopies loaded val- marks vary in their response to faults, individual registers or regions
ues in order to avoid spuriously signaling faults. Such is the case of a particular benchmark also have varying levels of reliability. This
instruction3. Further, since there is only one instruction that fetchess analogous to the variation in Instructions Per Cycle (IPC) among
data from memory in the reliable version, the address of the loagbplications. The IPC will vary from application to application, de-
instruction must be validated. If the address is incorrect, an invalipending on the nature of the application. In addition, the IPC will
value will be given to both versions of the program, causing an undeary within a single application as different phases of the program
tected error. Similar solutions have been devised for other softwaage executed.
and hardware techniquesl] 19, 20]. The PROFIT technique2P] was the first technique to capitalize

In addition to loads, other special instructions require similar haren the non-uniformity of natural reliability via software modulation.
dling, such as theRDTSCinstruction, which reads the hardware Itis a coarse-grained technique, adjusting protection at the function-
time-stamp counter. The x86 also has a CISC instruction set whidevel. The PROFIT technique created the reliability configuration
means that the notion of a load instruction must be applied to a muébr the application at compile time and could be used in conjunction
wider class of instructions than would be the case in a RISC archivith either a software-implemented technique or a hybrid technique.
tecture. While this technique has been shown to demonstrably re-Both Partial Explicit Redundancy (PER) and Implicit Redundancy
duce the number of output-corrupting faults, it does suffer from &hrough Reuse (IRTR)3] add modulation at the hardware level to
few flaws which render its protection imperfect. First, any softwarean RMT processor. PER reduces the performance cost of RMT by
only technique can only protect state at the architectural level, sinperforming full RMT redundancy only when there are excess hard-
micro-architectural state is generally not visible to software. Secondiare resources and scaling back the redundancy when the original
the technique has inherent “windows of vulnerability,” most notablyhread is utilizing all of the processor’s resources. IRTR also de-
between checks and uses of the checked value. For example, a fauétases the overhead of the RMT technique at the cost of some reli-
to edx after instructions or a fault toebx after instruction7 will  ability by reusing instructions from the original thread in the trailing
go into the store undetected, corrupting memory. Third, the Pin ethread when the instructions and operands are identical.
gine itself is not instrumented. As mentioned earlier, and as we will Our techniqueSpot is the first software-only technique to provide
show in Sectior, Pin consumes only a small fraction of the ex-fine-grainedSoftware-Modulated Fault Toleran€¢8MFT). Spotcan

Figure 3: Variations in natural fault resilience.



help users tailor the reliability and performance of specific applica- :
tions, critical registers of an application, or even of critical regions £ 7 i

of an application, as well as combinations thereof. While previ- =

ous work B, 28] has explored protecting a subset of the architec-

tural registers, we are the first to explore the reliability/performances *

trade-offs associated with varying the level of protection. Otherre- !

search has exploited modulation at the function granula2i®;, put S &S & O A R
Spotis the first technique to help users enact software modulation & & ¥ @70® T F (I F
at even finer granularities, enabling superior performance and relia- & ; v
bility trade-offs. In this work, we explore two fine-grained aspects
of reconfigurability in Sectiod and show how they provide a wide
range of options in terms of performance and reliability.
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Figure 4: Categorization of fault injections.

(S), the baselin&pottechnique with reliability uniformly applied.
3. EVALUATION METHODOLOGY By running a total of 225,000 (5,000 per benchmark per configura-
This section presents the experimental methodology and shotign), the 95% confidence interval on these results is 1.50%.
performance and reliability results for native program execution, baseBecause not all faults inserted into an unprotected application will
line Pin execution, and baselir@potexecution. In order to effec- cause the application to fail, the unACE for each of the benchmarks
tively evaluate reliability, we measure the level of data corruption ais far from zero. Due to factors such as logical masking, dynam-
well as the Mean Work To Failure (MWTF2]] for each of the ex- ically dead instructions, and silent stores, unprotected applications
ecutions. In Sectiod we evaluate various non-uniform applicationshave a certain amount of natural fault resistance. On average, the

of Spot unprotected benchmarks have 20.23% SDC, although the SDC per-
L centage ranges from 31.92% ft81.mcf to 6.99% forl79.art
3.1 Reliability SinceSpotuses the Pin framework, we also evaluated the reliability

To evaluate the reliability of the original application, the Pin frameef the applications running under Pin, but without any protection.
work, andSpotin all of its configurations, we used simulated fault Applications running with Pin had a slightly higher SDC than run-
injections under a Single Event Upset (SEU) model. At a randoming without Pin. On average, the percentage of SDC executions
point in time uniformly distributed over the execution of the pro-was 21.94%, a 1.71% difference verswpin
gram, including the Pin framework itself, a single-bit fault was in- We also evaluated the reliability of a baseliBpotconfiguration
serted into a random bit of a random architectural register. Each wfith uniform protection across the entire application and for all ap-
the 32 bits of the 8 architectural registers were equally likely to replications. This baselin8potincreases reliability decidedly, reduc-
ceive a fault. In order to obtain accurate results, over 1.03 millioing the SDC percentage from 20.23% to 6.46%, an increase in relia-
executions were run in total on actual hardware. bility by a factor of 3.13x. Again, different benchmarks exhibit dif-

After injecting a single fault into the execution, the program is rurferences in their reliability, witld81.mcf having the lowest SDC
to completion, unless it aborts, and its output is compared to a know(h.95%), and300.twolf  having the highest SDC (8.98%). How-
good output. If the program’s output and exit code were identical tever, using the baselirgpottool does not provide 100% reliability.
the good execution, that bit was considered Unnecessary for Arcifis mentioned in SectioR.1, Spotinherits various vulnerabilities
tecturally Correct Execution (UnACE)L(]. If the output and exit from SWIFT.
code were different, then the fault caused a Silent Data Corruption 181.mcf is an example of a benchmark where the basedipet
(SDC); data in the program was affected, but it was not detected. Arerforms well. The reliability improves by 10.72x owsspin with
SDC can occur for numerous reasons, including early terminatidittle reduction in unACE. Because of the memory-intensive nature
due to various exceptions (segfaults, illegal instruction, divide bgf 181.mcf , most failures in this application are due to segmenta-
zero, etc.), incorrect output of any form, or infinite execution. Théion faults and the baselir@potsuccessfully catches most of them.
implementation labeled a program as having infinite execution if ithe baselineSpotapplied tol47.vortex  also greatly increases
took more than 10x the original, non-faulty program execution timets reliability, but with a much more noticeable reduction in unACE.
For Spotexecutions, if the framework detected a fault, then the bit Spot like most fault detection implementations, will detect some
was classified as a Detected, Unrecoverable Error (DUE). unACE bits as DUE. Spotdetects faults in the system which, if

SDC and DUE are two mutually exclusive components of the softllowed to propagate through the program, would not cause an error.
error rate of a chip. The SDC rate can be further decomposed inteor example, a silent store which stores an incorrect value will not
SDC= AVFspc x intrinsic raw error rate, where AVF represents thecause an error because the value in memory will not be used before
Architectural Vulnerability Factor, the fraction of faults to a structurebeing overwritten.Spotwill detect the faulty value propagating to
that result in a user-visible error. The SDC rate is inversely propomemory and signal a DUE despite the fact that the fault would not
tional to the Mean Time To Failure (MTTF). have caused an error.

This reliability evaluation only considers faults into the architec-
tural register file. Hence, it is not a complete hardware reliability'-?’-2 Performance
analysis. It does not model faults to micro-architectural state such We evaluated the performance of each configuration by running
as bypass networks. Nevertheless, the evaluation yields quantitativatively on an Inté® Pentiund® D with aclock frequency of 2.80GHz
AVF results for an x86 processor’s register file and insights into thand 4 GB of RAM running Fedora Core 3 with a 2.6.15 kernel. All
fault detection coverage on an important section of a proce26pr [ binaries were compiled statically with gcc 3.4.4 and the user time of

Figure4 shows the percentage of executions that resulted in utlhe execution was measured.

ACE, DUE, and SDC for each benchmark and each configuration. Figures5(a)shows the execution time of the baselBgotnormal-
The three configurations anepin(N), the original, compiled binary ized to the native, uninstrumented application. Fida(i® shows the
without any instrumentatiohasepin(B), a binary translation in the same execution time normalized to the execution time of the appli-
Pin framework with no reliability or other additional code, edot cation running under Pin, but without any reliability transformation



of adding reliability varies greatly for each individual benchmark,
detection with 181.mcf having the smallest performance cost (2.3x) and

P eon 254.gap having the largest performance cost (4.6x). Benchmarks

A\ basepin . . A ) .

[ nopin like 181.mcf which contain many cache misses have excess in-
struction level parallelism with which to execute the redundant and
checking code without affecting the critical path. Benchmarks with
high checking-code costs, such2it.gap , do so because of their
large number of memory instructions. This includes not only mem-
ory loads and stores, but also arithmetic operations that act directly
on memory locations, such axl (%eax)

As Figure5(c) shows,Spotspends 46.2% of its time on average
checking memory instructions. As explained in Secfah x86 ap-
plications contain numerous memory operations because of the lim-

5 ited number of architectural registers. Floating point applications

like 177.mesa and179.art spend less time iSpotcode since

they typically spend most of their time performing floating point
operations which are not checke@54.gap , on the other hand,
spends 62.8% of its time in validation code.

While the baselin&pottechnique incurs a significant performance
cost, we will demonstrate in the following section that this cost can
be dramatically reduced by using software-modulation.

3.3 Mean Work To Failure

Although metrics of reliability such as AVF and MTTF are useful
in most situations, they cannot be used as easily to compare systems
in which both reliability and performance differ. For example, if a
system reduces the SDC failure rate%)yvhile increasing execution
time by 4x, the original system will be able to accomplish more work
between SDC failures. Mean Work To Failure (MWTRY] is a
metric which takes into account both the AVF and the performance
to give a more meaningful comparison in these cases.

S R
T T

Normalized Execution Time

Normalized Execution Time

Normalized Execution Time

[ basepin
Spot 1

(c) Performance normalized 8pot

Figure 5: Performance breakdown for dynamic fault detection.

Normalized Mean Work To SDC

applied.

Pin has two distinct sources of overhead, a one-time Just In Time
(JIT) compilation cost, and an steady-state runtime cost. The first Figure 6: Normalized Mean Work To Failure.
is associated with performing a one-time translation of the original
instructions to instructions within the Pin framework. Even when Figure6 shows the MWTF fobasepirand uniformly applie&pot
no reliability transformation is appliecdbésepin, the code is still baseline normalized to the native application without instrumenta-
nonetheless translated. This compilation cost only occurs once gern. For these MWTF measurements, we consider SDCs to be fail-
region in the application, since Pin caches translated regions as memes. The mean normalized MWTF of basepin is 0.72x. This metric
tioned in Sectior2.1. The other cost is the increase in executionis less than 1.0, meaning that the basepin will, on average, suffer
time due to executing the translated code. The translated code is lessre SDCs during the time it takes to complete a given application
efficient than the original binary’s version because additional check&rsus running without Pin. This result is not surprising since the
are inserted to ensure that control transfers to new regions go througtiability of the Pin tool was roughly equivalent to that of the native
the Pin virtual machineq]. execution, but the execution time was slightly longer. This results

This steady-state overhead is much more important than the orie-an application which is just as susceptible to failures, but which
time compilation overhead, as the cost of the one-time compilationill take longer to complete and therefore be exposed for a longer
can be amortized for long running programs. For the benchmarks amount of time.
the performance evaluations, the percent of time consumed by theThe baselineéSpottool also has a worse MWTF than the native
one-time compilation ranges from 2% - 11%. By using the notiompplication, with an average normalized MWTF of 0.71x. While
of persistence in run-time translation systems introduced by Redtfiis may seem surprising because of the dramatic decrease in SDC
et al. [L7, 18], this one-time cost can be further reduced. that Spotprovides, the execution time of baseliBpotis also in-

On average, the execution time of the baseBpetis 4.19x slower creased by a factor greater than the reduction in SDC. This exam-
than a native execution. When factoring out the framework oveple shows that reliability analysis must go beyond the SDC percent-
head, the execution time is 3.22x slower. The performance coage and include performance as well. For certain benchmarks, like



181.mcf and183.equake , baselineSpotimproves the MWTF.
As demonstrated in Figurg the SDC improvements undgpotfor

these benchmarks are among the high#8i.mcf has the lowest
performance cost und&potwhile 183.equake has an average ¢
performance cost. The SDC improvement for these benchmarks oug- oso |
weighs the performance cost, resulting in a overall gain in terms og
MWTF.

1.00

s Causing SDC

The baselin&pottool suffers from a large performance cost, and% 000 P D ! T !
in this often negates the benefit from the decrease in SDC. Howevet, F & & & & s &

Spotcan apply fault detection non-uniformly via software modula-
tion. By exploiting the variations in SDC throughout the applica-
tion (and among different applications§potshows a clear benefit

in terms of reliability and MWTF. As the following sections will
show, selectively applying fault detection can significantly lower the2

2

SDC while keeping the performance cost in check, thereby increasz - | ]

ing the MWTF ofSpotwell beyond that of the baseline. d
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(a) 181.mcf
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4. SOFTWARE MODULATION RESULTS

Spotenables software-modulated fault detection and can trade-o
between reliability and performance at a fine granularit8sotcan
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add reliability in certain environments, for specific applications, or ‘3‘% & § ‘o& & @ <
even for critical regions of an application, thus maximizing the reli- Architectural Registers
ability while minimizing the costs. This enabl&potto protect as
much or as little of the program as is required by the user’s perfor- (b) 254.gap

mance and reliability budget. In the futur@pots dynamic nature
will also allow the level of protection to be dynamically adapted to
changing performance and reliability requirements.

In this section, we explore two axes along which the protectiong
can be modulated. We show how these axes provide a wide range ¢
options in terms of performance and reliability. Although we have s 025 ﬂ o S D

|
&

ing SDC
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explored this space across all benchmarks, for brevity’s sake, we wilf ‘ ‘ L L

examine three benchmarks in dep2s4.gap , 300.twolf , and Q 4 & 5 o & 8
181.mcf , which represent the worse, average, and best perform- < ¢ © ©
ing benchmarks from the baseliSpotexecutions. In SectioA.1,

we present the variations available when protecting only a subset of
the architectural registers, and in Sectib2 we explore different (c) 300.twolf
reliability configurations based on regions.

4.1 Varying Protection on Registers

Just as different applications differ in their native reliability, differ-
ent architectural registers differ in their reliability within an applica-
tion. Figures7(a), 7(b), and7(c) show the AVF of each architectural protected. The lastinstruction is a store instruction which steB¥
register for each of our three benchmarks. The horizontal dash&althe addresEDX Instructions2-3 verify that the addres&€DX is
line denotes the average AVF across all registers. correct, but the valu&BX is written to memory without checking.
Registers with above-average AVF are good candidates for spe-Spotwas run in 256 different configurations for each benchmark.
cialized protection. Figur@ clearly demonstrates that certain reg-Each configuration protected a subset of the registers and we eval-
isters, namelfEBPand to a lesser exte®SP, are very susceptible. uated the protection and performance for all combinations of the 8
Since these registers are used primarily as pointers loading and stGP architectural registers. For an accurate evaluation, each configu-
ing to memory, faults to these registers will likely cause segmentaation was injected with 500 faults for each of the 256 combinations

0.00

% o

Architectural Registers

Figure 7: Percentage of faults causing SDC for each architec-
tural register.

tion faults.EDI is also a significant source of failure fd81.mcf .  for each benchmark, giving a 95% confidence interval for the SDC
Similar toEBP, this register is heavily used in certain memory oper-of 5.00% .
ations. Figures9(a), 9(b), and9(c) show the performance and reliability

Spotcan individually protect or leave unprotected any subset dbr each of the register configurations for that benchmark. Perfor-
the architectural registers. Leaving a register unprotected reduces thance, as normalized execution time compared with a basepin exe-
steady-state performance overhead of reliability by not duplicatingution, is on the Y-axis. Reliability, as percent of executions which
instructions that only affect an unprotected register and also by nr#sulted in failure, is on the X-axis. The most desirable position for
having to insert check instructions for that register. a configuration to be is the lower-left corner, since lower means less

Figure8 is a simple example to illustrate the instruction duplicaperformance cost and left means low failure percentage.
tion and verification oSpotwhen protecting only a subset of thereg- The three figures also have noted a line for the performance/ relia-
isters. In this example, registBEBXis left unprotected. SincEAX  bility frontier. The configurations on the frontier are strictly better, in
is protected, instructiohis inserted, as before, to add redundancy taerms of lower performance, higher reliability, or both, than all other
the data loaded from memory. Theb instruction which reads from points not on the frontier. When choosing the specific configuration
EAXandEBXand writes taEBXis not duplicated, sinc&BXis not  to execute, the best options are those on the frontier.



mov (%edx), %eax mov (%edx), %eax
1: mov %eax , %eax2

sub %eax, %ebx sub %eax , %ebx
2: cmp %edx , %edx2
3: jne faultDetect

® o o 5O
ooo(’e.;aocz; ° @0000 S
° o 0@0 o ° Sé)g ;}f%

oo
°o° ogoOO %8 o

Normalized Execution Time

mov %ebx, (%edx) mov %ebx , (%edx) 1} B
(a) Original Code (b) Reliable Code N ‘ ‘ ‘ ‘
Figure 8: Fault detection, skipping protection for EBX Code 0 5 o 15 20 B
added by our technique is in bold. Checking instructions are 7 of Fault Injections Causing SDC

italicized.
(a) 181.mcf

Figures10(a) 10(b), and10(c)show the normalized Mean Work
To Failure for the respective benchmarks. Those figures show th
basepin Pin and the baseliBpotnormalized MWTF (as shown in
Figure 6). The two new bars represent the best configuration for§ 47
modulating fault detection with registers and with regions (as will &
be explained in Sectiod.2). The three illustrative benchmarks rep-
resenting the best, worst, and average responses tSpb&ool.
Utilizing software modulated fault detectioBpotis able to achieve
reliability near the baselin8potexecutions but at near zero perfor-
mance cost. Notice that for all three benchmarks, the normalized
MWTF is 17.79x, 2.03x, and 1.80x . All benchmarks have a greater

&
=
g

Normalized

% of Fault Injections Causing SDC

than one normalized MWTF, meaning it is advantageous to apply re- (b) 254.9ap
liability.

Notice the two distinct clusters in Figugic) for 300.twolf . L3
Those two clusters correspond to BBPregister. All in upper left £ o %21;;“ ° ge%
region protecEBP, while all points in lower right do notEBPis £, %%% %0; |
used very frequently i800.twolf , so protection of that register 2 gaéém%oo oogo
has corresponding cost. Protectlng that register increase the perfay- L JS???’B 3 =]
mance from 1.0-1.9x to 2.0-3.0x. 3

Also notice in Figureéd(c) the knee in the frontier near 15% SDC. 2 0 ‘ ‘ ‘ ‘
The unprotected version 800.twolf  has an SDC percentage of 0 5 10 15 2 25
21.15%. Points on the configuration frontier have SDC percentages % of Fault Injections Causing SDC
as low as 16.33% before incurring a noticeable performance cost.
(16.33% SDC percentage for 8% executing time increase). (c) 300.twolf

The point with the highest MWTF and represented in Figire
protectsEAX EBP, andESPregisters all of which, from Figuré(c)
have greater than average SDC percentage.

The other two benchmarks show similar trends in Fig@(e$and
9(b). Both of these benchmarks have a long, mostly flat frontier very
close to no performance cost until 10.5% SDC. E64.gap , one
of the worst performing benchmarks, the performance cost sharplietails the percentage of faults which resulted in a failure. The taller
rises as SDC is further reduced, whereaslf®t.mcf , the bench- lines depict less reliable code regions. Similar to the depiction of the
mark with the best performance, the performance cost rises muabn-uniform per register, the dashed horizontal line represents the
more gradually. As can be seen in Figui€ga)and10(b), the nor- benchmark average SDC across all regions.
malized MWTF of the configuration techniques shows it is beneficial Those figures show a wide variety in the native percentage of SDC

Figure 9: Performance and reliability when protecting different
registers.

to apply the transformation. across the ranges of instructions executed. For example, in Fig-
. . . urel1(c)for 300.twolf , there are a significant number of regions
4.2 Varylng Protection for Reg|0ns which are much less reliable than the average for that benchmark,

Just as the natural resistance to failures varies for different regi22.15%. In fact, there are 8 code regions which are more than twice
ters, the natural fault resistance also varies when looking at differeas unreliable as the average for this benchmark. We can leverage
code regions of an application. Since different regions respond difhis non-uniformity to optimize the tradeoff between protection and
ferently to faults, a non-uniform application of reliability can providereliability.
substantial benefits to reliability with reduced performance costs.  Spotcan protect or skip protection for any set of address ranges.

Figure11(a) 11(b) and11(c) show the percentage of faults in- When doing the dynamic translatioBpotchecks the set of regions
jected into a code region which resulted in a program failure. Thié knows to add protection to (or skip protection for) in order to de-
entire program was divided into regions of 256 bytes (an x86 intermine if the current region should be protected. Since a region with
struction takes 1 - 7 bytes) and the faults that were injected weeecertain level of reliability may transfer control to a region with a
mapped back to the regions into which they were injected. If thdifferent level of reliability,Spotmust ensure that the reconciliation
first byte of the current instruction was within the range, the faulcode by copying the original version of the registers into their re-
was considered injected in the range. The X-axis of the graphs shaundant versions. A fault during this phase will be propagated to
the code regions into which the fault was injected, and the Y-axisoth the original and the redundant versions. When transferring to
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Figure 11: Percentages of faults causing SDC for each region.
Figure 10: MWTF incorporating software modulated fault de-
tection.

Figuresl2(a) 12(b) and12(c)show the performance and reliabil-
ity for the various regions of the three illustrative benchmarks. Each

a region of the same type (reliable to reliable or unreliable to unregraph shows two distinct clusters. The regions chosen were based
liable) no reconciliation code is necessary. When a reliable regiam their impact on the SDC percentage rather than their impact on
transfers to an unreliable region, the unreliable region will simplyperformance. The two clusters represent protecting the entire ap-
ignore the redundant registers; in this case there is also no necesgaligation except the subset of the regions (upper left clusters), and
reconciliation code. protecting none of the application except the subset of the regions

Like the evaluation of register modulatio8potwas run in 256 (lower right clusters). The regions selected do not have a large im-
configurations of different regions for each benchmark. We selectgmict on performance. This causes the clusters to be very flat, one
the 7 regions with the worst reliability and computed the reliabilitynear 1.0 (no performance cost) and one near the bas&fintper-
and performance when protecting the entire application except tfigrmance cost.
current combination of regions selected for this experiment. Each The wide range in the X-axis (SDC) is due to protecting or leaving
combination of the 7 regions were evaluated for a total of 128 conunprotected the vulnerable regions of the application. Fig@(e)
figurations. Since the selected regions did not cover the entire ashows that the best reliability f&00.twolf  is the configuration
dress space of executed instructions, we also computed the perftivat has no performance cost (at a normalized execution time of 1.0
mance and reliability when protecting the inverse of each configurand 17.5% SDC).
tion; Spotwas configured to protect none of the application except Just as for the register analysis, the best configuration points are
for the regions selected. We also evaluated each of the 128 inverd®gwn on the plot with a solid frontier line. Figut@(c)has a fron-
configurations for a total of 256 region-based configurations. tier boundary that encompasses only two main points, one for the

We evaluated the performance and reliability in the same manneluster with no performance cost, and the other point for the cluster
as the rest of the paper. For confidence in the reliability percentagesith baselineSpotperformance. The frontier actually encompasses
each of the 256 configuration for each benchmark was injected withpoints in the high performance cost cluster, but they are extremely
500 faults for a total of 384,000 fault injections. close together (the variation in MWTF is less than 0.08). Although
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Figure 12: Performance and reliability when protecting different
regions.
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Figure 13: Performance and reliability when protecting different
regions and different registers (300.twolf).

4.3 Varying Protection for Regions & Registers

In Sectionst.1and4.2we showed two different fine-grained con-
figurations for the tradeoff between reliability and performance. These
configurations are not mutually exclusive; they can be combined for
an even wider range of reliability and performance options.

Figure 13 shows the combinations of the 3 most unreliable regis-
ters and 4 most unreliable regions in all possible configurations (256
in all, when including the inverse of the region protection). We in-
jected 500 faults for each experiment to determine the unACE, DUE,
and SDC percentages.

Unsurprisingly, the plot of SDC and performance360.twolf
when using configurations protecting regions and registers resem-
bles the two configuration plots, Figur@é) and12(c), combined.

The plot is segmented into two clusters, but there is less variation
within a cluster relative to the register-only plot in Fig@) due to

the influence of different region configurations. Conversely, there is
more variation within a cluster compared to the region-only plot in
Figure12(c)due to different register configurations.

5. CONCLUSION

As transient faults become more prevalent across a wide range
of markets, techniques which can tailor the level of protection to
each user’s specific performance and reliability requirements will be
needed. The technique presented in this paper, capjetlis the first
software-only fault-detection technique to address this need by pro-
viding software-modulated fault tolerance at fine granularitggsot
is also the first technique to use dynamic binary translation to pro-
vide full instruction protection, allowing users to dramatically im-
prove the reliability of their applications without relying on hardware

these regions only provide a binary decision as to the best configugodifications or access to application source cfgots ability to
tions to consider, the lower right points have the same execution timgyry the level of protection for different registers and regions of code
as the baseline, but dtthe SDC percentage (a reduction of 4.5%).provides users with more, and often superior, fault detection options,

For this benchmark, as shown in Figuté(c) the MWTF for the

allowing it to increase the mean work to failure from 1.90x to 17.79x.

best region configuration is 1.60x the native application, but slightly
less reliable that the MWTF for the register configurations (2.03x).6 REFERENCES
For the other benchmarks shown in detail there are also two dis-’ ) )
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