
A Comparison of Reuse in Object-oriented Programming
and Structural Modeling Systems

Manish Vachharajani Neil Vachharajani David I. August

Departments of Computer Science and Electrical Engineering
Princeton University
Princeton, NJ 08544

{manishv,nvachhar,august }@princeton.edu

ABSTRACT
Modeling systems in which users construct models by specifying
the interconnect between concurrently executing components are
a natural fit for hardware modeling. Theseconcurrent-structural
modeling systemsallow the specification of the model to parallel
that of the hardware making specifications clear, easy to under-
stand, and straight-forward to build and modify.

Unfortunately, many concurrent-structural modeling systems pro-
vide few mechanisms to create flexible-reusable components. Oth-
ers have built these modeling systems on object-oriented program-
ming (OOP) languages in the hope that the OOP features will al-
low the creation of useful flexible reusable components for struc-
tural modeling. Unfortunately, simply adopting OOP features is
insufficient for this task. By drawing an analogy between OOP
programs and concurrent-structural models, it is possible to under-
stand why. Furthermore, this analogy highlights what would be
needed in a concurrent-structural system to gain the same benefits
seen in OOP systems. This report compares the features necessary
to obtain reuse in concurrent-structural modeling systems by draw-
ing this analogy between object-oriented programming constructs
and concurrent-structural modeling constructs.

1. INTRODUCTION
In the digital hardware design process, decisions made very early
in the design cycle can have a large influence on final system per-
formance. The cost of designing and manufacturing a hardware
prototype for complex digital hardware to test its effectiveness is
prohibitively high. Thus, high-level (i.e. microarchitectural level)
models that can be compiled to simulators must be used to study the
performance and other properties of a design to make these critical
design decisions.

The more designs that can be explored, the better the chance of
finding the optimal high-level design. Unfortunately, building a
high-level model can take many months; model development time

is a key bottleneck preventing wide range design space exploration
early in the design cycle [?]. One reason for this is that pieces of a
model are not easily usable in models for subsequent designs, tying
models to a specific design. Higher levels of reuse among designs
would greatly reduce the development time, especially for widely
differing designs.

This lack of reuse is often caused by poor modeling methodolo-
gies. For example, in the general purpose microprocessor research
and design community, hand coding a simulator in a sequential lan-
guage such as C or C++ is the most common method of high-level
modeling.1. This method does not allow component based reuse
because the notion of a hardware component does not map well to
any type of modular block in C or C++ [5].

Special purpose modeling tools are one solution to this problem.
These tools model hardware components with concurrently exe-
cuting software components that communicate through statically
connected communication channels. Since this modeling paradigm
matches the structural composition of concurrent hardware compo-
nents, component based reuse becomes far easier [5].

Unfortunately, even in theseconcurrent-structuralmodeling sys-
tems, components are rarely reused. Components in many of these
modeling tools are inflexible and can only be reused when designs
share identical. Thus, designs with even marginally different be-
havior often require reimplementation of components.

To gain the flexibility necessary for component reuse, a common
solution is to build the high-level concurrent-structural modeling
tool around an object-oriented programming (OOP) language such
as C++ [2] or to introduce object oriented concepts to a structural
modeling system such as VHDL [4]. The goal is to make the OOP
features enable reusable components.

Unfortunately, object-oriented programming (OOP) techniques were
developed for use in general purpose software systems. The cod-
ing paradigm for these systems is significantly different than for
hardware modeling, thus the OOP techniques do not necessarily
permit reuse in the hardware modeling domain. Naı̈vely graft-
ing structural-modeling techniques to object-oriented languages or
vice-versa often makes using preexisting reusable components un-
necessarily cumbersome, creating a barrier for reuse that promotes

1In the 30th International Symposium on Computer Architecture,
out of 37 papers (including some which used no simulation), 23
used this simulation technique



reimplementation that promotes reimplementation.

This report provides a mapping of concepts in OOP languages to
analogous concepts in concurrent-structural systems to determine
what features will enable component reuse. It also explains how
common hardware reuse patterns are facilitated by these features
in concurrent structural models.

The remainder of this report is organized as follows. Section 2
gives an overview of concurrent-structural modeling concepts. Sec-
tion 3 compares object-oriented programming and structural mod-
eling. Section 4 concludes.

2. CONCURRENT-STRUCTURAL MODEL-
ING

Concurrent-structural modeling systems are those systems in which
computation is encapsulated in concurrently executing system com-
ponents that communicate values to one another by sending and re-
ceiving data on a predefined communication interface. Typically,
each component defines a set of input and output ports. A send-
ing component sends a value on an output port and this value is
received by all instances that have an input port connected to this
output port. The important characteristic of this style of compo-
sition is the separation between functionality and communication.
A component defines a computational relation between its inputs
and its outputs, while the communication between components is
orthogonally specified by the interconnectivity of the components.

In contrast, traditional programming languages encapsulate com-
putation inside of objects and functions. Two functions communi-
cate through function invocation; the calling function collects argu-
ments, calls the other function, and then processes the return value.
In this style of composition, the communication pattern among
functions is intermingled with the function computation. While
this style of composition is very powerful, it is inappropriate for
hardware modeling[5].

In this report we are concerned withhigh-levelconcurrent-structural
modeling ofhardware. That means that within a component, the
use of the traditional function invocation paradigm is not only ac-
ceptable, but preferred over low-level (i.e. gate-level) specifica-
tions.

3. COMPARISONS TO OBJECT ORIENTED
PROGRAMMING

The object-oriented programming (OOP) paradigm eases the de-
velopment of reusable software components by providing the pro-
grammer encapsulation, polymorphism, and hierarchy. These tech-
niques make producing a single reusable component easier, allow
easy customization of existing components, and allow the creation
of components which are more powerful since they are more generic.
In this section, the concurrent-structural analogues of OOP tech-
niquess will be identified. The techniques important for reuse iden-
tified in this section can serve as the foundation for the design of
a structural specification language that supports component-based
reuse.

3.1 Objects and Components
The foundation of the analogy between object-oriented program-
ming and concurrent-structural modeling is the structural analogues
of the object, member variables, and member functions. It is obvi-
ous that the analogue of objects are components. Components are

the building block in the concurrent-structural domain; objects are
the building block in OOP systems. Since member variables main-
tain an object’s state, the obvious analogue to an object’s member
variables is a component’s internal state. Identifying the structural
analogue for an object’s member functions is not as straightfor-
ward.

An object’s member functions can be roughly split into three cate-
gories. First, there is typically a function or set of functions, called
constructors, responsible for initializing an object. Second, there
is a set of pure functions which return the object’s internal state
or some value which results from computation on input arguments
and the object’s internal state. Finally, there are functions which
are responsible for updating the object’s internal state. A function
does not necessarily belong to only one of the three categories; hy-
brid member functions do certainly exist. In the next few sections,
a structural analogue for each of these types of functions will be
identified.

3.1.1 Constructors
An object is typically instantiated from aclassand then initialized
through the invocation of the object’s constructor. In addition to
initializing state, the constructor typically customizes the instance
using arguments passed to it. For example, a class that represents a
window in a GUI environment may be instantiated with parameters
that will define the specific window appearance, modality, title, etc.
This customizability of the class enables its implementation to be
reusable in a variety of situations rather than being specific only to
one purpose.

In order to obtain any reuse in a structural modeling system, com-
ponents, just like objects, will need to be instantiated from compo-
nent abstractions. Just like classes, these abstractions will need to
be flexible so that component instances may be customized. Clearly,
the degree of parameterization possible will directly affect the amount
of reuse a component can get. The complexity of defining and us-
ing this flexibility, however, will further influence the amount of
reuse seen in practice [3].

While the notions of object instantiation and component instanti-
ation are similar, there are differences. During the program exe-
cution, many objects are dynamically created and destroyed. In
hardware systems, and thus concurrent-structural modeling the set
of components that exist during simulation is fixed. Thus, a compo-
nent’s constructor can be run once during model compilation rather
than being run once for each simulation. This in turn means that the
language in which a component’s constructor is written and called
can bedifferent than the language in which its behavior is imple-
mented. This allows for the creation ofdomain-specificlanguages
to handle object instantiation, customization, and composition.

3.1.2 Pure Functions
A pure member function, one that does not side-effect internal ob-
ject state, represents a computation path that takes input arguments
and internal state and computes the function’s return value. Ob-
jects typically contain many member functions and a client may
call none, some, or all of the functions. If certain object behavior
is not needed, there is no obligation to invoke a particular member
function. Conversely, if a computation is needed multiple times, a
member function may be invoked multiple times even with differ-
ent input arguments.

Unlike an object, a hardware component does not perform com-



putation on demand. Instead the component is constantly comput-
ing all of its outputs concurrently. The component reacts to value
changes on its input ports and responds by altering values on its
output ports. It is logical to compare an object’s pure functions
with the computation paths that exist inside of a hardware compo-
nent model. In this comparison, function arguments are replaced
with values on input ports and return values with values on output
ports.

Notice that there is a loss in flexibility when consuming a com-
ponents computation in the concurrent-structural domain. First, all
the computation paths of the component are constantly enabled and
thus, there is a responsibility to provide the component with all its
inputs during each clock cycle. Additionally, a particular computa-
tion cannot be invoked twice during the same cycle since the values
on the input ports must be fixed for the whole cycle.

To obtain reusability similar to that obtained in object-oriented pro-
gramming, a concurrent-structural modeling system must remove
these limitations on flexibility. The modeling system needs to in-
troduce concepts analoguous to not invoking a function and to in-
voking a function multiple times with distinct input arguments.

3.1.3 State-Updating Functions
Many member functions are not pure functions like those described
in the previous section. Instead, these functions alter the internal
object state and thus the sequence in which they are invoked relative
to all other function invocations is significant.

Conversely, in a hardware component, due to the system’s concur-
rency, there typically does not exist a well defined order between
the computations occurring in a single cycle. To avoid race con-
ditions, all state updates are typically synchronized to the rising or
falling edge of a clock signal. Thus, we can compare state-updating
functions to those computation paths whose outputs are sampled at
the rising or falling edge of a clock. This behavior can be encap-
sulated in a state element component (e.g. a component which rep-
resents a buffer or a queue) or can be internal to a more complex
component (e.g. a branch predictor or cache memory).

3.2 Polymorphism
Member functions in object oriented languages, and functions in
general in certain sequential programming languages, may be poly-
morphic. The degree of polymorphism allowed varies, but there
are three general flavors: parametric polymorphism, function over-
loading, and subtyping. The next few sections will discuss the ap-
plicability of each of these types of polymorphism to the concurrent
structural domain.

3.2.1 Parametric Polymorphism
Parametric polymorphism allows the definition of a class or func-
tion to be abstract with respect to some set of types. The class or
function abstractions (sometimes calledtemplatesor generics) can
be instantiated with a set of concrete types to make a concrete class
or function. This polymorphism is particularly useful when defin-
ing abstract data type objects such as lists, sets, hash maps, etc. The
behavior of these objects is type neutral and thus allowing the type
stored in the object to be specified parametrically greatly increases
their reusability.

Similarly, in structural modeling, certain components’ behaviors
are type neutral, and thus parametric polymorphism can greatly in-
crease the reuse these objects will experience. For example, queues,

memories, and routing components are typically type neutral. Forc-
ing reimplementation of the components for various data types is
a significant, unnecessary burden that can be avoided by a struc-
tural modeling language that supports parametric polymorphism on
component state, computation, and interfaces.

While increasing the reusability of components, parametric poly-
morphism may also cause programs to become cluttered with type
instantiations. To avoid this problem, many programming languages
employtype inferenceto automatically infer the types with which
functions must be instantiated. This convenience, which allows
parametric polymorphism to be used with no additional overhead,
is particularly important in strucutral modeling due to the poten-
tially large number of parametrically polymorphic components.

3.2.2 Function Overloading
A second type of polymorphism used in object-oriented program-
ming languages is function overloading. With parametric polymor-
phism, a single function definition could be used with arguments of
varying types. While this type of polymorphism is useful in many
cases, it is often necessary to tailor the computation of a function
based on the types of its arguments. Function overloading allows a
single function to be defined with multiple signatures and bodies,
thus allowing custom behavior based on the types of arguments.

In the structural domain, the natural extension of overloading is to
allow a component to define various type signatures for its ports,
and to implement different behaviors based on the types actually
used. Just as in the object-oriented case, this can improve reusabil-
ity by increasing the components applicability.

3.2.3 Subtyping
The third type of polymorphism available in object-oriented pro-
gramming languages is subtyping. Subtyping allows a value of one
type to be used where a value of another type is required, provided
that first type is a subtype of the latter. Thus in function invocation,
rather than supplying arguments of the types specified in the func-
tion signature, one could alternatively provide data whose types are
subtypes of the arguments’ types.

The language’s subtype relation defines which types are subtypes
of which other types. While some portion of the subtype relation is
fixed by the programming language, the relation can be extended
via subclassing. Subclassing will be discussed in section 3.3.2,
however its relation to subtyping will be discussed here.

In structural modeling, it is natural to allow subtyping when making
connections between components’ ports. Note, however, that when
leveraging subtyping in this way, the augmented subtype relation
is irrelevant. Components are not being sent along connections be-
tween components, and thus, only the language defined subtyping
relation is relevant.

In object-oriented programming, the use of subtyping is not re-
stricted to computation function invocation, but can also be used
when invoking an object’s constructor. When an object is passed to
another object’s constructor, typically, the receiving object stores
the passed object in a member variable, and the member functions
act as clients of the passed object. The subtype relation guarantees
that the passed object will conform to a specific interface, however,
since the actual type of the argument can vary, the behavior the
passed object provides is polymorphic.



Component B

Component A

1

3

4

5 6

2

(a) Subtyping in Structural Com-
position

Component B
3

4

5

1 2 6

Component A

(b) Subtyping in Structural Com-
position (redrawn)

3

1 2 6

Component B
4

5

Component A

Component C

(c) Modified Interface

Figure 1: Using Structural Composition in Place of Subtyping

Subtyping could be used in this way in concurrent-structural mod-
eling, however, alternative techniques exist to achieve more gen-
eral reusability. The effect of passing one component to another
component’s constructor is shown in Figure 1(a). The passed com-
ponent (component B in the figure) is used to define the receiv-
ing component’s (component A in the figure) behavior. In object-
oriented programming, it is necessary to pass objects to other ob-
jects because computation must be actively requested from the ob-
ject which will perform it. In concurrent-structural modeling, com-
putation is not demand driven but is constantly occurring. Thus,
provided that a client exposes the correct interface to drive a com-
putation and receive its results, it is unnecessary to pass a compo-
nent into the constructor of another component. Figure 1(b) illus-
trates this style of composition which is a simple transformation
of the original figure. This style of composition ismore power-
ful than the subtyping analogue since the interface that a computa-
tion provider exposes need not be fixed. Figure 1(c) illustrates an
augmented interface where the component providing computation
requires more inputs than the client can produce. The two com-
ponents, however, can still be used together because an auxiliary
component can supply the additional inputs.

3.3 Extending and Composing Objects
Object-oriented languages also provide features for easily being
able to define complex objects by composing or augmenting the
behavior of existing objects. These features significantly improve
the reuse of an object by easily allowing it to be extended beyond its
initial applications. The next two sections will relate these object-
oriented constructs to the concurrent-structural domain.

3.3.1 Object Composition
Object composition is the simplest way to build complex objects.
A class is defined that contains other objects and implements its be-
havior by invoking the functions on the objects which it contains.
Just as before, these complex components are parameterizable via
arguments to the object’s constructor. These arguments can guide
the instantiation and parameterization of the contained objects and
can additionally influence how the object will orchestrate the con-
tained objects’ functions to define its own behavior.

Analogously, in the concurrent-structural modeling domain, com-
ponents may be composed to form hierarchical components. In
this style of component definition (shown in Figure 2), rather than
providing behavioral functions which describe the various compu-
tation paths of the component, the component’s behavior is imple-
mented by instantiating other components and connecting them to
each other as well as this component’s input and output ports. Thus,

1’

2’

3’

4’

42

1 3

Component C

Component B

Component A

Figure 2: Component Composition

the interconnectivity of the contained components determines the
hierarchical component’s behavior.

Just as in the object-oriented case, it is important to retain the abil-
ity to parameterize hierarchical components. To allow these com-
ponents to be truly flexible, a structural modeling system must not
only allow component parameters to be passed to contained com-
ponents, but also allow parameters to guide the instantiation and
connectivity of contained components.

3.3.2 Inheritance
The second mechanism provided by object oriented programming
languages to define complex objects is inheritance. This technique
allows an existing component to have its state and behavior aug-
mented without reimplementation of the entire component. Inheri-
tance dramatically increases a class’s reusability since its behavior
can be customized in ways that were unpredictable to the class’s
original author.

A similar mechanism should exist in structural modeling to extend
the reusability of model components. Components should be able
to expose the equivalent of virtual functions to allow computation
to be overridden. Further, it should be possible to inherit another
component and augment its state and interface definitions.

One way this extension can be achieved is through hierarchical
composition. Rather than directly extending a component, the com-
ponent can be wrapped inside of a hierarchical component. Figure
2 demonstrates how this can be done. Those computation paths
which should be inherited from the base component are connected
directly to the wrapping component’s input and output ports. In
the figure, component C inherits the behavior of ports 1, 2, and 3
from component A. The component’s interface can be augmented



by adding ports, its behavior modified by adding components along
any computation path, and its state augmented by adding additional
components. The figure shows component C overriding the be-
havior of component A’s output port 4 by inserting component B
between component A’s output and component C’s corresponding
output.

While this implementation of inheritance is extremely powerful, it
is not always sufficient or desirable to use. First, forcing all inheri-
tance to occur structurally can cause an explosion in the number of
components and connections in the system. Figure 2 required six
connections just to override the behavior of only one output port. A
mechanism is necessary to allow a component to be inherited and
its behavior and state augmented using a convenient imperative or
functional syntax rather than structural composition.

Additionally, performing inheritance through wrapping only allows
overriding computation which is exposed via the component’s ports.
Internal computation and state update functions, however, can not
be overridden or augmented. Thus, for complete inheritance, it is
necessary that a component be able to export an interface allowing
users to override internal and intermediate calculations.

In practice, one-off inheritance is very common in hardware mod-
eling. For example, it is extremely convenient to have a single
component handle arbitration with inheritance used to customize
the arbitration policy. Since arbitration policies are often very spe-
cific to a particular situation, the inherited component will prob-
ably only be instantiated once andnot be useful in other designs.
A similar situation occurs when writing event handlers to process
Java AWT events. In Java, it is common to use anonymous inner
classes which inherit from event adapters to reduce the syntactic
overhead of full-fledged inheritance and to prevent namespace clut-
ter. A structural modeling language needs a similar mechanism to
eliminate any overhead associated with inheritance.

3.4 Aspect-Oriented Programming
Despite the success of the object-oriented programming in produc-
ing reusable code, certain kinds of reuse patterns are still hard to
achieve. Specifically, the inheritance mechanism, while allowing a
user to augment the behavior of one object, does little to help the
user augment system-wide behavior or implement behavior which
crosses object boundaries. For example adding logging behavior to
an object-oriented system would typically involve modifying every
object in the system.

Another programming methodology, aspect-oriented programming [1],
alleviates this burden by allowing code designed for a specific pur-
pose (e.g. logging) to be grouped together and have the code be
automatically weaved together with the base program in order to
implement the complete desired behavior.

In hardware modeling, gathering statistics about a simulation is a
cross-cutting concern. It involves almost all the components in the
system and depending on the statistics desired, the code necessary
to gather the data can vary dramatically. Thus, incorporating code
to gather statistics is very similar to inserting code into objects to
handle logging. For a component to be reusable and a user to have
control over the statistics gathered. An aspect-oriented approach to
data collection is necessary andshouldbe supported by a hardware
modeling language.

4. CONCLUSION

Object-Oriented Programming (OOP) languages are designed to
facilitate component based reuse in traditional programming lan-
guages. Our analysis shows that simply grafting a structural mod-
eling language on top of an OOP language (or vice-versa) does not
allow the same level of component based reuse in hardware model-
ing systems as it does in traditional software systems.

In this report, we examined OOP features and mapped them to the
concurrent-structural hardware modeling system domain to iden-
tify the language techniques needed to enable component based
reuse in hardware modeling systems. The techniques described
only need to concern themselves with instantiation, interconnec-
tion, parameterization, computation customization, and composi-
tion. Thus, they can be used in a wide range of different modeling
systems.

5. REFERENCES
[1] K ICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA ,

C., LOPES, C., LOINGTIER, J.-M., AND IRWIN, J.
Aspect-oriented programming. InProceedings of the 11th
European Conference for Object-Oriented Programming
(1997), pp. 220–242.

[2] OPEN SYSTEMC INITIATIVE (OSCI).Functional
Specification for SystemC 2.0, 2001. http://www.systemc.org.

[3] PUTZKE-ROMING, W., RADETZKI , M., AND NEBEL, W.
Objective VHDL: Hardware reuse by means of object oriented
modeling.
http://eis.informatik.uni-oldneburg.de/research/request.html.

[4] SWAMY, S., MOLIN , A., AND CONVOT, B. OO-VHDL
Object-Oriented Extensions to VHDL.IEEE Computer
(October 1995).

[5] VACHHARAJANI , M., VACHHARAJANI , N., PENRY, D. A.,
BLOME, J. A., AND AUGUST, D. I. Microarchitectural
exploration with Liberty. InProceedings of the 35th
International Symposium on Microarchitecture(November
2002), pp. 271–282.


