
Toward a Toolchain for Pipeline Parallel Programming on CMPs

John Giacomoni, Tipp Moseley, Graham Price, Brian Bushnell,
Manish Vachharajani, and Dirk Grunwald

University of Colorado at Boulder
{John.Giacomoni, moseleyt, Graham.Price, Brian.Bushnell, manishv, grunwald} @ colorado.edu

Abstract

Today’s processors exploit the fine grain data
parallelism that exists in many applications via
ILP design, vector processing, and SIMD instruc-
tions. Thus, future gains must come from chip-
multiprocessors, which present developers with pre-
viously unimaginable computing resources. Pro-
grammers can use these resources for coarse-grain
data-parallel computation or task parallelism. Given
the extensive research history in coarse-grain data
parallelism, we argue that the right approach is to
invest research effort on task parallelism because it
is currently poorly supported in programming lan-
guages, operating systems and performance anal-
ysis tools. Such an approach encourages refac-
toring working sequential applications into task-
parallel, and in particular pipeline-parallel, applica-
tions. Thus, we join the minority chorus that be-
lieves the best strategy for developing parallel pro-
grams may be to evolve them from sequential imple-
mentations.

There are challenges; future multi-core systems
are likely to be heterogeneous and consist of many
types of cores. Programmers need support in un-
derstanding and exploiting such systems. We be-
lieve that the systems community needs to focus
on building complete toolchains that encompass all
four stages of parallel program development for task
parallelism: identification, implementation, verifica-
tion, and runtime system support. This paper dis-
cusses this vision and our efforts in developing such
a toolchain.

1 Introduction

Traditionally, increases in transistors and fabri-
cation technology have led to increased perfor-
mance. However, these techniques are showing di-
minishing returns due to limitations arising from
power consumption, design complexity, and wire de-
lays. In response, designers have turned to chip-
multiprocessors (CMPs) that incorporate multiple
cores on a single die. While CMPs are a boon to
throughput driven applications such as web servers,
single-threaded applications’ performance remains
stagnant. This is because the typical approach to
parallelizing software (data-parallel or task-parallel)
has been to find, extract, and run nearly independent
code regions on separate processors [1]; a difficult
task for general purpose applications [2].

An alternative and more promising approach is
to use a special task-parallel organization called a
pipeline-parallel organization. This is accomplished
by decomposing a task into a series of sequen-
tial stages connected by a data-forwarding mecha-
nism. Data-dependencies are easily handled, pro-
vided each datum only references previous data. Fur-
ther, throughput may increase proportionally to the
depth of the pipeline with a short completion in-
terval. For these reasons, modern hardware sys-
tems, from microprocessors to routers, are built on
a pipeline design. While software-based pipelines
have been proposed in the past, only today’s CMPs
deliver the resources to capture the performance ben-
efits of software pipeline-parallel organizations.

Note that the proposed approach requires exten-

main()
0.0 100.0

MAIN__()
0.0 100.0

pset_()
0.0 99.9

run_()
0.0 99.9

wcont_()
6.6 8.5

dkzmh_()
3.5 6.8

dvdtz_()
2.1 5.8

dudtz_()
2.0 5.8

dtdtz_()
1.7 5.5

dcdtz_()
1.2 4.0

hyd_()
1.4 1.4

apsi.f:906
0.0 10.9

apsi.f:1012
0.0 10.9

apsi.f:950
0.0 10.9

apsi.f:1080
0.0 10.9

apsi.f:1152
0.0 7.8

apsi.f:1110
0.0 4.1

apsi.f:1041
0.0 3.9

rfftb_()
0.0 32.2

rfftb1_()
2.1 32.2

radbg_()
19.6 20.0

radb4_()
9.5 9.6

apsi.f:5100
0.5 30.5

apsi.f:5158
1.6 1.6

dctdx_()
2.0 22.0

apsi.f:1967
0.0 22.0

dctdy_()
2.3 21.8

apsi.f:2087
0.1 21.8

rfftf_()
0.0 20.6

rfftf1_()
1.5 20.6

radf4_()
6.2 6.4

apsi.f:5721
0.4 19.5

apsi.f:5779
1.0 1.0

apsi.f:5537
0.3 9.3

apsi.f:5473
0.1 4.5

apsi.f:5576
0.1 3.9

apsi.f:5569
0.1 1.4

radfg_()
12.2 12.4

apsi.f:6208
0.3 5.6

apsi.f:6190
0.0 2.6

apsi.f:6279
0.0 2.4

apsi.f:5296
0.0 8.5

smooth_()
0.0 1.6

apsi.f:1871
0.0 7.9

horsmt_()
1.7 1.7

apsi.f:6390
0.0 3.0

apsi.f:6472
0.0 2.5

apsi.f:5913
0.1 5.7

apsi.f:1780
0.0 5.8

apsi.f:1638
0.0 5.8

apsi.f:1444
0.0 5.5

ucrank_()
2.1 4.7

trid_()
4.6 4.6

dctdxf_()
2.6 2.7

apsi.f:2815
2.1 2.1

apsi.f:3190
2.6 2.6

apsi.f:3203
2.0 2.0

dpdy_()
0.8 4.1

apsi.f:2253
0.0 4.1

apsi.f:1327
0.0 4.0

dftdy_()
0.5 3.9

apsi.f:2348
0.0 3.9

dftdx_()
0.5 3.9

apsi.f:2297
0.0 3.9

dpdx_()
0.5 3.9

apsi.f:2205
0.0 3.9

smth_()
3.0 3.0

apsi.f:3445
3.0 3.0

apsi.f:3318
0.1 2.6

tcrank_()
1.1 2.3

apsi.f:2949
1.1 1.1

ccrank_()
1.1 2.3

apsi.f:2633
1.1 1.1

blsolv_()
0.1 1.9

apsi.f:3524
0.0 1.6

smthf_()
1.6 1.6

apsi.f:3471
1.6 1.6

apsi.f:1528
0.0 1.4

dwdz_()
0.3 1.3

apsi.f:2000
1.0 1.0

apsi.f:2119
1.1 1.1

apsi.f:5553
0.6 6.5

apsi.f:5544
2.5 2.5

apsi.f:5296
8.5 8.5

apsi.f:1872
0.0 7.9

apsi.f:1885
4.5 4.5

apsi.f:1873
2.1 2.1

apsi.f:5560
5.9 5.9

apsi.f:1795
0.0 5.8

apsi.f:1803
1.8 1.8

apsi.f:1653
0.0 5.8

apsi.f:1661
1.6 1.6

apsi.f:5913
5.6 5.6

apsi.f:6224
0.3 3.9

apsi.f:6215
1.5 1.5

apsi.f:1449
0.0 5.5

apsi.f:1477
1.4 1.4

apsi.f:5478
4.4 4.4

apsi.f:1328
0.0 4.0

apsi.f:5580
3.8 3.8

apsi.f:6231
3.5 3.5

apsi.f:6395
0.0 3.0

apsi.f:6408
2.9 2.9

apsi.f:3319
2.5 2.5

apsi.f:6194
2.5 2.5

apsi.f:6473
0.0 2.5

apsi.f:6283
2.3 2.3

apsi.f:5571
1.4 1.4

apsi.f:1530
1.4 1.4

apsi.f:1529
0.0 1.4

Figure 1: A partial loop/call graph for the top 1% of loops/functions in a sequential version of 301.apsi.
Highlighted nodes were parallelized by the program’s authors in the SPEC2001 OMP suite.

sive tools support. Without tools to identify pipeline-
parallelism, implement pipeline constructs, and val-
idate a pipelined application it will be difficult for
this model to gain wide spread acceptance. Thus, we
have been working on a new generation of tools that
encompass the entire pipeline-parallel program de-
velopment cycle. For identification, we have Loop-
Sampler, LoopProf [3, 4], and ParaMeter [5]. Loop-
Prof and LoopSampler permit developers to visual-
ize the relationship between functions and hot loops
in a loop/call-graph without recompilation and with
negligible overhead. ParaMeter permits developers
to visualize pipeline-parallelism and explore depen-
dences on traces with over a billion instructions in
only 1 GB of RAM. For implementation we have
built the FastForward [6] software engine for sup-
porting micro-and macro-scale pipeline-parallel con-
structs called Concurrent Threaded Pipelines [6].
These pipelines yield performance even in situations
requiring communication to complete in less than a
main-memory access (≈35ns per operation) while
handling sequential inter-data dependencies. For
verification we are developing a tool to support in-
telligent static analysis of programs, with the intent
of characterizing their run-time behavior. This infor-
mation will then allow the same tool to assist in test
generation, verify portions of the program, perform
post-mortem root-fault analyses, and apply perfor-

mance optimizations. Additionally, we have begun
developing a virtualization environment to abstract
away the heterogeneous execution environments of
the future that will mix general purpose processing
cores with specialized execution units and even re-
configurable FPGA fabrics.

2 Work in Progress

Our work in progress discussion is organized as fol-
lows. First, we discuss our work on LoopProf, Loop-
Sampler, and ParaMeter. Then we discuss our work
with Concurrent Threaded Pipelines followed by our
work on verification. We conclude with a discussion
on the need for virtualized execution environments.

LoopProf and LoopSampler Given a sequential
program or an algorithm, deciding where and how
to parallelize the code is often tedious and time con-
suming. Traditional profilers are well suited to ana-
lyzing hot spots in code and increasing performance
in inner loops, but effective thread-level paralleliza-
tion requires coarse granularity that is not exposed
by modern profiling tools (e.g., gprof).

LoopProf [3] and LoopSampler [4] generate a
loop/call graph (see Figure 1). Loops are oval nodes

2

and functions rectangular. Each node presents the
function’s name or loop’s filename:lineno. In addi-
tion, each node contains the percentage of self and
total execution that it contributes. With this view of
structure combined with an execution profile, decid-
ing which loops to try to parallelize is greatly sim-
plified. Those loops that reside high in the hierarchy
and account for the largest percentage of total exe-
cution are the best targets. These loops may execute
very few instructions themselves, but loops may be
nested deeply within them.

LoopProf can generate much more detailed infor-
mation than presented here. LoopSampler can gen-
erate the loop/call graphs with almost no overhead.

ParaMeter Unlike LoopProf and LoopSampler,
ParaMeter is focused on providing developers with
an interactive visualization and analysis tool to iden-
tify opportunities for pipeline parallelism through
global analyses of fine-grain data-dependence struc-
tures in a large program trace. Figure 2 shows sample
output from a ParaMeter prototype [7]. On the hori-
zontal axis is the earliest time a particular instruction
may execute, under ideal circumstances. On the ver-
tical axis, we have the position of the instruction in
the original trace (i.e., the dynamic instruction num-
ber). A line from lower-left to upper-right represents
a tightly coupled dependence chain. Each of these
dependence chains could be extracted as a pipeline
stage. Nearby dependence chains are extracted as
neighboring stages in the pipeline. Note that as one
focuses in on a particular point in time each line will
exhibit additional dependence chains and thus more
threads. The bottom graph helps developers focus on
important regions by showing the maximum instruc-
tions per cycle that are possible at each time step.

Interactive visualization and analysis of this graph
requires rapid global analysis and random-access to
billions of sequential instructions. If stored uncom-
pressed, these traces can take terabytes of storage,
making the required global analysis and random-
access too slow for the interactivity required for the
tools to be useful. We have developed a compression
technique based on Binary Decision Diagrams [8]
that permits developers to access over a billion in-
structions with only 1 GB of RAM [5]. Unlike pre-
vious techniques which require decompression for

0

2 · 109

4 · 109

6 · 109

8 · 109

D
y
n

am
ic

In
st

ru
ct

io
n

N
u

m
b

er

0 2.5 · 107 5 · 107 7.5 · 107 1 · 108 1.25 · 108

0

2500

5000

7500

IP
C

0 2.5 · 107 5 · 107 7.5 · 107 1 · 108 1.25 · 108

Cycle

������
��

J
J

JJ]

�
Potential threads

Figure 2: Dynamic instruction number vs. Ready-
Time plot of SPEC CINT 2000 benchmark 254.gap.
Circled areas represent potential threads.

access, our compression technique permits random-
access and analysis without decompression.

Concurrent Threaded Pipelining Our implemen-
tation toolchain efforts are based on optimiz-
ing pipeline-parallel structures called Concurrent
Threaded Pipelines (CTP) [6]. CTPs comple-
ment existing task- and data-parallel (e.g., paralleliz-
ing outer loops) techniques by permitting applica-
tions to easily handle sequential inter-data depen-
dencies without synchronization. CTPs may im-
prove throughput proportionally to the depth of the
pipeline. Figure 3(a) depicts a two-stage pipeline
demonstrating potential throughput improvements
with pipeline-parallelism. Unfortunately, with insuf-
ficient dedicated computations resources it is impos-
sible to reify performance improvements, Figure 3(b)
depicts this. Examples of applications parallelizable
with CTPs include video decoding, scientific com-
puting, and network intrusion detection.

Concurrent Threaded Pipelines address the previ-
ous issues by requiring a very low-cost communica-
tion mechanism and that every stage of a pipeline to
be concurrently scheduled. With FastForward [6],

3

Pipelined
Execution

Stages 1 & 2 run concurrently on processors 1 & 2

Stage1
Stage1

Stage1

T/2 T/2 T/2 T/2 T/2
Datum 1
Datum 2
Datum 3

Stage2
Stage2

Stage2
T

Execution StagesStage1

Time

T/2

Stage2
Stage1

T/2

Datum 4 Stage2

(a) Concurrent

Stage1
Stage 2 runs on processor 1Stage 1 runs on processor 1

Stage1 Stage2
Stage1 Stage2

Stage1 Stage2

T/2 T/2 T/2 T/2 T/2
Datum 1
Datum 2
Datum 3

Stage2
Stage2

Stage2
T

Execution StagesStage1

Time

T/2

Stage2
Stage1

T/2

Datum 4

(b) Sequential

Figure 3: Pipeline Timing

software-only communication costs were reduced
from 600-20,000ns (experimentally found) to ≈35ns
per operation [6] using architecturally tuned con-
current lock-free queues. This permits CTPs to
be used for a wide range of micro- and macro-
scale optimizations that were previously not feasible.
CTPs were used to build the Frame Shared mem-
ory (FShm) [9] architecture, permitting us to for-
ward a record breaking 1.488 million frames per sec-
ond (672ns per frame) in user-space with commodity
hardware. Micro-scale optimizations that hide main
memory latencies may also be possible, including
Decoupled Access/Execute architectures [10] and
DSWP [11].

Verification and Validation While our work on
validation is in its early stages, it is a critical com-
ponent given the difficulty of writing parallel pro-
grams. Current work is focused on identifying the
frontier of program states that could lead to a pre-
viously observed failure (e.g., a core-dump or asser-
tion failure). Note, however, that pipeline-parallel
structures may be easier to validate given that the
component-to-component interaction follows a well-
known well-understoond pattern (i.e., stage to stage
interconnections with localized pipeline state).

For the future work, unlike many automated ap-
proaches, we envision an interactive process where
the user helps the verifier when it has difficulty. A
promising approach may be to use formal methods to
identify “fault lines” along which failures are likely,
and then use guided test-generation to exercise code
along these fault lines.

Virtualization General purpose platforms have
begun to incorporate heterogeneous and reconfig-

urable hardware with wildly varying performance
characteristics, capabilities, and programming mod-
els [12]. Leveraging all the resources while main-
taining the general purpose nature of these proces-
sors will require a new virtualized system platform.

The FastForward [6] engine takes the initial steps
by isolating pipeline stages on shared-memory sys-
tems with a portable communication engine. How-
ever, stronger virtualization will be necessary as sys-
tems begin to include specialized components not ca-
pable of sharing memory directly. We have begun in-
vestigating more generalized virtualization abstrac-
tions to ensure programmers do not have to reason
about the specific number and microarchitecture of
computational resources on a particular platform to
ensure correct execution.

3 Conclusion

In conclusion, we reiterate our belief that the best
long term strategy for developing parallel programs
is to aid developers in extracting task parallelism,
and in particular, pipeline parallelism, from applica-
tions. However, finding, implementing, and support-
ing pipeline-parallel applications on a CMP proces-
sor requires extensive software tool support in each
of these areas. A number of researchers, including
the authors, have made substantial strides towards
this end.

References
[1] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I.

August, “Decoupled software pipelining with the synchro-
nization array,” in 13th International Conference on Par-
allel Architecture and Compilation Techniques (PACT’04).

4

Los Alamitos, CA, USA: IEEE Computer Society, 2004,
pp. 177–188.

[2] S. Amarasinghe, “Multicores from the compiler’s perspec-
tive: A blessing or a curse?” in 2005 International Sympo-
sium on Code Generation and Optimization (CGO), 2005.
[Online]. Available: http://cag.lcs.mit.edu/commit/papers/
05/amarasinghe-CGO-Keynote-Abstract-03-05.pdf

[3] T. Moseley, D. Grunwald, D. A. Connors, R. Ramanujam,
V. Tovinkere, and R. Peri, “Loopprof: Dynamic techniques
for loop detection and profiling,” in Proceedings of the
2006 Workshop on Binary Instrumentation and Applica-
tions (WBIA), 2006.

[4] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri,
“Identifying potential parallelism via loop-centric profil-
ing,” in Proceedings of the 2007 International Conference
on Computing Frontiers, May 2007.

[5] G. Price and M. Vachharajani, “A case for compressing
traces with bdds,” in Computer Architecture Letters; Vol-
ume 5, Nov. 2006, 2006.

[6] J. Giacomoni, M. Vachharajani, and T. Moseley, “FastFor-
ward for concurrent threaded pipelines,” Univerity of Col-
orado at Boulder, Tech. Rep. CU-CS-1023-07, 2007.

[7] M. Iyer, C. Ashok, J. Stone, N. Vachharajani, D. A. Con-
nors, and M. Vachharajani, “Finding parallelism for future

epic machines,” in Proceedings of the 4th Workshop on Ex-
plicitly Parallel Instruction Computing, March 2005.

[8] R. E. Bryant, “Graph-based algorithms for Boolean func-
tion manipulation,” IEEE Transaction on Computers, vol.
C-35, no. 8, pp. 677–691, August 1986.

[9] J. Giacomoni, J. K. Bennett, A. Carzaniga, M. Vachhara-
jani, and A. L. Wolf, “FShm: High-rate frame manipula-
tion in kernel and user-space,” Univerity of Colorado at
Boulder, Tech. Rep. CU-CS-1015-07, 2006.

[10] J. E. Smith, “Decoupled access/execute computer architec-
tures,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 289–
308, 1984.

[11] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Auto-
matic thread extraction with decoupled software pipelin-
ing,” in 38th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’05). Los Alamitos, CA,
USA: IEEE Computer Society, 2005, pp. 105–118.

[12] Advanced Micro Devices, “AMD completes ATI
acquisition and creates processing powerhouse,”
http://www.amd.com/us-en/Corporate/VirtualPressRoom/
0,,51 104 543∼113741,00.html, October 2006.

5

