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Multicore Compilation 
Strategies and Challenges

T
 o overcome challenges stemming from 
high power densities and thermal hot 
spots in microprocessors, multicore 
computing platforms have emerged as 
the ubiquitous computing platform 

from servers down through embedded systems. 
Unfortunately, providing multiple cores does not 
directly translate into increased performance or 
better energy efficiency for most applications. The 
burden is placed on software developers and tools 
to find and exploit coarse-grain parallelism to 
effectively make use of the abundance of computing 
resources provided by these systems. Concurrent 
applications are much more complex to develop than 
their single-threaded ancestors, thus software develop-
ment tools will be critical to help programmers create 
both high performance and correct software. This article pro-
vides an overview of parallelism and compiler technology to 
help the community understand the software development 
 challenges and opportunities for multicore signal processors. 

INTRODUCTION
For more than four decades, the semiconductor industry has 
depended on Moore’s law to deliver consistent application per-
formance gains through the multiplicative effects of increased 
transistor counts and higher clock frequencies. However, power 
dissipation and thermal constraints have emerged as dominant 
design issues and forced architects away from relying on 
increasing clock frequency to improve performance. Exponential 
growth in transistor counts still remains intact and a powerful 

tool to improve performance, though the paradigm through 
which performance is perceived has shifted. Performance is now 
based on throughput and efficiency, utilizing multiple cores 
performing computation in parallel to complete a larger volume 
of work in a shorter period of time. These multicore systems 
have become the industry standard from high-end servers down 
through desktops and gaming platforms. Example systems 
include the Texas Instruments (TI) TMS320C6474 that has three 
eight-wide C64x very long instruction word (VLIW) cores, the 
Sun UltraSparc T1 that has eight cores, the Sony/Toshiba/
IBM Cell processor that consists of nine cores, the NVIDIA 
GeForce 8800 GTX that contains 16 streaming multiprocessors, 
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each with eight processing 
units, and the Cisco CRS-1 
Metro router that utilizes 192 
Tensilica  processors. 

Embedded platforms, on the 
other hand, have long consisted 
of multiprocessor systems-on-chip (MPSoC), but they are typi-
cally heterogeneous combinations of hardwired accelerators and 
standalone processors to meet cost, performance, and power 
requirements. We believe embedded systems will follow the 
trend of servers, desktops, and graphics processors of adopting 
multicores as the standard platform. This trend is evident by the 
new digital signal processor (DSP) systems proposed by compa-
nies for wireless baseband processing that all consist of multiple 
single-instruction, multiple data (SIMD) processors: Ardbeg by 
ARM, MuSIC by Infineon, NXP by Philips, and Sandblaster by 
Sandbridge. Multicores provide a systematic way to scale perfor-
mance in the face of relatively stagnant clock rates without sky-
rocketing power consumption and design complexity. Further, 
multicores have an important advantage over current MPSoC 
systems—programmability. A programmable solution offers the 
opportunity for a single platform to support multiple applica-
tions and even multiple standards within each application 
domain. Finally, programmability provides faster time to market 
as hardware and software development can proceed in parallel, 
the ability to fix bugs and add features after manufacturing, and 
higher chip volumes as a single platform can support a family of 
mobile devices. 

Unfortunately, providing multiple cores does not directly 
translate into performance. With multicores, the industry has 
already fallen short of the decades old single-thread perfor-
mance growth trend, and the trend toward simpler cores means 
performance might even degrade. Not only do sequential codes 
suffer, but multithreaded programs may degrade due to smaller 
caches per core, limited memory bandwidth, and lower single-
thread performance. 

Many new languages have been proposed to ease the burden 
of writing parallel programs, including Atomos, Cilk, and 
StreamIt. Despite these and more than 150 other parallel lan-
guages, the effort involved in creating correct and efficient par-
allel programs is still far more substantial than writing the 
equivalent single-threaded version. Developers must be trained 
to program and debug their applications with the additional 
concerns of deadlock, livelock, and race conditions. Converting 
an existing single-threaded application is often more challeng-
ing, as it may not have been developed to be easily parallelized 
in the first place. Extracting the fine-grained parallelism neces-
sary for efficient use of multicore systems is not only tedious, 
but it is a continuous cost as the machine-specific partitioning 
lack portability and forward performance compatibility. And 
finally, programmers cannot (and should not) be aware of the 
details of the hardware resources available at run time in the 
face of varying system load. 

The difficulty and complexity of programming for multicores 
inevitably pushes programmers, particularly those in the 

embedded community who 
have long relied on hand assem-
bly code or low-level C code, to 
rely more heavily on tools, such 
as compilers and run-time opti-
mizers. These tools automati-

cally extract threads, perform machine-dependent mappings of 
threads, and manage run-time program execution. This 
approach avoids the pitfalls resulting from exposing the multi-
core problem up through the entire software stack and allows 
the programmer to focus on problem solving and correctness. 
This article provides an overview of multicore compilers and 
their future for the signal processing community. 

FORMS OF PARALLELISM
Traditional DSPs adopted application-specific units and 
instruction set extensions to accelerate signal processing algo-
rithms. The major role of compilers in traditional DSPs was 
minimizing code size. High performance code was generally 
written by hand or with heavy use of intrinsics. Due to the 
characteristics of DSP applications, there are many ways to 
achieve higher performance and increase computational effi-
ciency through exploiting different forms of parallelism [1]. In 
this section, we explore various forms of parallelism available 
in signal processing applications. 

INSTRUCTION-LEVEL PARALLELISM
With instruction-level parallelism (ILP), multiple independent 
assembly instructions are executed in the processor at the same 
cycle [Figure 1(a)]. Superscalar, general-purpose processors 
exploit ILP by issuing multiple independent instructions in each 
cycle that are dynamically identified by the hardware. However, 
these architectures incur a considerable amount of complexity 
and power consumption, which makes them less appealing for 
embedded systems. 

The emergence of VLIW architectures introduced new 
opportunities for exploiting ILP in signal processing applica-
tions. In VLIW architectures, independent instructions are 
packed into a single large instruction word and issued in paral-
lel each cycle. Compilers perform the important task of identify-
ing ILP opportunities and scheduling independent instructions 
for execution in the same cycle. To create an instruction sched-
ule, the exact underlying architecture (e.g., number and latency 
of execution units, etc.) must be known at compile time. The TI 
C6x is the most well-known family of VLIW DSPs that can issue 
eight operations each cycle [2]. TI compilers combine sophisti-
cated optimization and scheduling techniques to identify high 
degrees of ILP, particularly in loop-intensive code. 

DATA-LEVEL PARALLELISM
The most dominant form of parallelism in signal processing is 
data-level parallelism (DLP) wherein the same instruction is 
performed on different pieces of data in parallel [Figure 1(b)]. 
DLP originated in the form of SIMD and vector computation 
models. From the mid-to-late 1990s, several major vendors of 
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general-purpose processors 
included short vector SIMD 
extensions to their instruction 
sets. Some examples are Intel 
SSE and SSE2, AMD 3DNow, 
ARM NEON, and Motorola 
AltiVec (which was implemented on several PowerPC processors 
including G4, G5, and POWER6). The introduction of these 
extensions brought the SIMD model to the forefront of DSP 
technology. These extensions enabled exploitation of limited 
DLP by inserting small data types in large registers and using 
SIMD instructions to perform the same operation on all data 
within these registers in parallel. Vectoring compilers exist to 
make automatic use of SIMD extensions, but in most cases the 
burden is still on programmers to identify DLP. 

Modern graphics processing units (GPUs) adopt wider SIMD 
implementations (128–256 b). One of the latest examples is the 
NVIDIA’s Compute Unified Device Architecture (CUDA) frame-
work [3]. CUDA is a general-purpose parallel computing archi-
tecture that consists of the CUDA instruction set and the 
compute engine in the GPU. It provides a small set of extensions 
to the C programming language, which enables straightforward 
implementation of parallel algorithms on the GPU. CUDA also 
supports scheduling the computation between the CPU and 
GPU, such that serial portions of applications run on the CPU 
and parallel portions are mapped to the GPU. Since the public 
release of CUDA framework in 2007, it has been shown that 
many compute-intensive signal processing and multimedia 
applications observe remarkable speedups using this framework 
[4], [5]. NVIDIA provides a compiler system (nvcc) as a part of 
the framework. 

The Intel Larrabee [6] and IBM Cell [7] processors are 
examples of multicore architectures augmented by wide SIMD 
processing units. Scheduling is performed entirely in software, 
and the native programming model supports implementing 
various parallel applications even with irregular data struc-
tures. The Larrabee and Cell C/C11 compilers provide auto-
vectorization, and developers may program SIMD units with 

C11 vector intrinsics or inline 
assembly code. 

LOOP-LEVEL PARALLELISM
Loop-level parallelism (LLP) is 
one of the popular paralleliza-

tion methods in the scientific computing community. In this 
form of parallelization, independent iterations of the same loop 
are executed in parallel on different processors [Figure 1(c)]. 
There has been a long history of automatic parallelization efforts 
in compilers, e.g., Polaris from Illinois, SUIF from Stanford, and 
Parascope from Rice. These techniques mainly target counted 
loops that manipulate array accesses with affine indices. 

Compilers play an important role in identifying and extract-
ing parallelism from loops. Memory dependence analysis can be 
precisely performed and many loops with independent iterations 
(DOALL loops) can be statically identified at compile time. 
Furthermore, compiler transformations can be used to expose 
more parallelism from the loops that have parallelism lurking 
beneath the surface in the code [8]. One example of these trans-
formations is loop interchange, which is done on a set of nested 
loops. When parallelism exists in the inner nest, the compiler 
can exchange the loop with the outermost loop and thereby 
maximize the exploited parallelism. 

In addition to automatic parallelization of loops, the pro-
grammer can specify parallel loops by using explicit parallel 
programming constructs such as the OpenMP applicat-
ion programming interface. Using these constructs, the 
 application is executed serially until it reaches a parallel loop. 
Subsequently, several threads are spawned to execute different 
iterations of the loop, and when the loop execution is com-
pleted, parallel threads are joined and the program continues 
with sequential execution. 

PIPELINE PARALLELISM—STREAM PROGRAMMING
In the pipeline parallelism model (also called stream program-
ming, or streaming model), the application is decomposed into 
a series of stages. Each stage performs partial processing on a 

[FIG1] Various forms of exploiting parallelism: (a) ILP, (b) DLP, (c) LLP, and (d) the streaming model called pipeline parallelism.
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set of data and forwards 
it to the next stage for 
processing, and starts 
working on the next set 
of data. In this scenario, 
pipeline stages can run 
in parallel while work-
ing on different chunks of data [Figure 1(d)]. 

Stream languages are mainly motivated by the application 
style used in signal and image processing, graphics, networking, 
and other media processing domains. They enable the explicit 
specification of producer-consumer parallelism between coarse 
grain units of computation. Examples of stream languages are 
StreamIt, Brook, CUDA, SPUR, Cg, Baker, and Spidle. 

For instance, StreamIt [9] represents a program as a set of 
autonomous actors (called filters), which are similar to Java 
classes. These filters communicate through first-in, first-out 
(FIFO) data channels. StreamIt implements a synchronous 
dataflow model in which the number of data samples pro-
duced and consumed by each filter are specified a priori. Each 
filter has a separate instruction stream and an independent 
address space, thus all dependencies between filters are made 
explicit through the communication channels. A large num-
ber of signal processing applications have been implemented 
as a set of StreamIt benchmarks. Examples include fast 
Fourier transform (FFT), discrete cosine transform (DCT) and 
MPEG decoder/encoder. 

Stream programs generally contain an abundance of explicit 
parallelism. However, the central challenge is obtaining an effi-
cient mapping onto the target architecture. The gains obtained 
through parallel execution can often be overshadowed by the 
costs of communication and synchronization. Resource limita-
tions of the system must also be carefully modeled during the 
mapping process to avoid stalls. Resource limitations include 
finite processing capability, limited memory associated with 
each processing element, interconnect bandwidth, and direct 
memory access (DMA) latency. 

ROLE OF THE COMPILER
Signal processing applications have been traditionally devel-
oped in the form of sequential algorithms. These implementa-
tions later evolved to more complex domain-specific vectorized 
computations that have been adopted extensively in DSPs. 
Explicit parallel programming models, such as stream pro-
gramming and OpenMP, provide the programmer with conve-
nient constructs to expose coarse-grain parallelism. From the 
compiler perspective, this provides a spectrum of program-
ming models in the signal processing domain that must be 
dealt with—from implicit parallelism that must be discovered 
in sequential C and C11 implementations to explicit parallel-
ism that must be  effectively managed to deliver performance 
on the target platform. The compiler’s responsibilities can be 
broken down into two major categories based on when the 
action occurs: static, which occurs offline, and dynamic, which 
occurs online. 

In the static category, one of the 
major focuses is identifying parallel-
ism: implicit parallelism in seemingly 
sequential applications and finding 
more parallelism in explicitly paral-
lelism applications, e.g., identifying 
LLP inside individual filters in a 

streaming application. These tasks are traditionally done 
through a combination of compiler analyses and transforma-
tions to understand the detailed memory access behavior of 
the application in concert with a set of transformations to 
expose more parallelism. With parallelism in hand, the static 
compiler is employed to efficiently answer the questions of 
how, when, and where should the parallel segments of the 
applications be mapped onto the underlying hardware. The 
main objective is to make intelligent decisions based on the 
available resources and the relative communication and syn-
chronization costs. 

While most signal processing software developers think of 
compilers exclusively in the static sense, multicore compilers 
will likely also have a dynamic component. These are referred 
to as just-in-time (JIT) compilers or dynamic optimizers. 
Dynamic compilers offer the opportunity for run-time customi-
zation of applications to not only processor features that were 
unknown to the static compiler (e.g., those that are only pres-
ent in a subset of a family of processors), but more importantly 
to dynamic events such as environmental conditions, load on 
the system, or application behavior. Parallelism can be throt-
tled, remapped, or reorganized to take advantage of specific 
execution circumstances known only at run time. 

STATIC COMPILATION

IDENTIFICATION AND EXTRACTION
Automatically parallelizing code poses two basic problems: 
finding an exploitable region of code through analysis and 
transforming the code into a parallel form. Analyses and 
trans  formations must work together to find and then exploit 
a specific family of parallelization. Finding code that cannot 
be transformed and transforming code that cannot be found 
is unhelpful.  

MEMORY DEPENDENCE ANALYSIS 
Data dependencies can greatly degrade the performance of par-
allelized code. In multicore architectures, cross-thread depen-
dencies require communication or synchronization to maintain 
correctness. Syn chronization and communication are undesir-
able since they are relatively expensive operations and force fast-
er threads to wait on slower threads. By careful scheduling, an 
optimizing compiler can minimize the effect of data dependen-
cies. Unfortunately, determining whether or not data dependen-
cies exist between two instructions is nontrivial in general. This 
problem gave rise to a proliferation of memory dependence 
analyses that approximate the problem by indicating either that 
instructions MAY or MAY NOT alias. The quality of  memory 
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dependence analysis strongly 
influences the performance of 
 parallelized code. 

Loops iterating over arrays 
dominate the run time of many 
signal processing applications. 
If the loop’s iterations are independent, it can be explicitly paral-
lelized on a multicore architecture or vectorized on a SIMD 
architecture. Array dependence analysis conservatively enumer-
ates array dependences between loop iterations. Even when the 
iterations are not completely independent, regular patterns of 
array dependences can still find exploitable patterns. For 
instance, if all the elements in a row of a multidimensional array 
are dependent, but all the rows are independent of each other, 
then threads can execute each row in parallel. To exploit this 
type of opportunity, an optimizing compiler may transform a 
row-column loop into a column-row loop. The technique easily 
generalizes to higher dimensional arrays and iterating over a 
series of parallel diagonals. 

Array dependence analysis operates by encoding the con-
straints of the offset, or offsets in the case of multidimensional 
arrays, into a linear constraint problem. When the linear con-
straint problem admits no integer solution, there will be no 
aliasing between array elements between loop iterations. 
Unfortunately, determining that no integer solutions exist for a 
linear constraint problem is NP-hard. Therefore, compilers use 
heuristics. Pugh’s Omega test [10] implements a complete algo-
rithm with reasonable run time on real programs. 

Pointer analysis attempts to determine whether two pointers 
can alias. In general, pointer analysis algorithms propagate facts 
about pointers throughout a program mostly using data flow 
analyses. The specifics of which facts propagate and how they 
propagate varies substantially among pointer analyses. For 
example, some analyses keep an explicit can-point-to set, others 
do not. Some analyses propagate information from a possible 
call site to all possible return sites, others match call and return 
sites accurately. 

Shape analysis techniques use separation logic to determine 
the properties of recursive data structures (such as linked lists) 
directly from code. A shape analysis, for example, may conclude 
that no memory address recursively reachable from a tree’s left 
child is recursively reachable from the tree’s right child. Many 
of these analysis have been implemented in research compilers 
such as OpenImpact. 

AUTOMATIC VECTORIZATION 
Vector hardware performs the same operation on many inputs 
simultaneously. Analyses detect vectorization opportunities 
through array dependence analysis. If the dependence distance 
(the minimal distance between two dependent iterations) is less 
than the size of the hardware-specific vector, then the code can 
be vectorized. 

The Cray-1 supercomputer, first introduced in 1976, featured 
Cray Fortran, the first automatic vectorizing compiler [11]. In 
its initial implementation, Cray Fortran could automatically 

vectorize Fortran DO loops 
without cross-thread dependen-
cies, as determined by array 
dependence analysis, and with-
out control-flow statements. 

Thirty years later, IBM’s 
state-of-the-art XL compiler for the Cell architecture relies on 
modern vectorization techniques to exploit the Cell’s synergistic 
processing elements [7]. XL’s vectorization is able to target a 
much broader collection of loops including loops with induction 
(“counting” in a regular way), deduction (computed by commu-
tative operations such as sum, min, max, and product), loop-
scoped, and loop-invariant accesses. Additionally, the XL 
compiler will also search individual basic blocks for vectoriza-
tion opportunities. This is useful when a loop has already been 
completely unrolled. The XL compiler also implements loop dis-
tribution, allowing it to break a loop into several pieces each of 
which can be parallelized according to a different strategy. The 
advent of predicated vector operations allows vectorization of 
loops with control flow. 

DOALL AND DOACROSS PARALLELIZATION
DOALL parallelization methods are the threaded multicore 
equivalent of vectorization techniques. If a loop has no cross-it-
eration dependencies and its iteration space is statically divisi-
ble, then the loop can execute in several threads in parallel with 
each thread covering a disjoint subset of the iteration space. 
DOALL parallelization methods are highly efficient since there 
is no cross-thread communication while the loop is iterating. 
However, the requirement that the iteration space be divisible 
prohibits pointer-chasing loops, which are common in general 
purpose applications. There have been successful attempts of 
DOALL parallelization in the research community such as the 
SUIF  compiler system. 

In DOACROSS parallelization, adjacent iterations execute in 
alternating threads. As soon as one thread has completed the 
loop’s critical path, execution of the loop’s next iteration begins 
on the next core while the current iteration is still being execut-
ed. In contrast to the restrictions imposed on DOALL loops, 
DOACROSS loops are universally applicable. However, 
DOACROSS loops only offer performance advantages when the 
critical path of the loop plus the time necessary to complete the 
critical path and to communicate between adjacent iterations is 
low relative to the amount of time spent executing code outside 
the critical path. 

DECOUPLED SOFTWARE PIPELINING
Decoupled software pipelining (DSWP) partitions each loop 
iteration into a pipeline such that communication happens 
strictly from earlier stages in the pipeline to later stages [12]. 
Communication between stages is buffered, so unlike 
DOACROSS techniques, it is very latency tolerant. Figure 2 
contrasts the effects of latency on the performance of DOALL, 
DOACROSS, and DSWP loops. Doubling the latency does not 
affect DOALL’s performance, since DOALL loops have no 
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cross-thread communication. Although DSWP engages in 
cross-thread communication, the communication is not on 
the critical path, so increasing latency increases run time by 
only a constant factor. For DOACROSS, communication from 
a previous iteration must complete before the next iteration 
can begin; increasing latency drastically diminishes 
DOACROSS’s performance. The requirement that later stages 
in the pipeline not communicate with earlier stages, makes 
DSWP sensitive to the quality 
of memory analysis. 

Figure 3 is an example of a 
DSWP parallelization. Figure 
3(b) shows the dependencies 
in the original  program 
[Figure 3(a)]. Read and print 
depend on prior invocations of 
themselves, but work is independent from prior iterations. 
The loop can be parallelized for four threads, with the first 
thread executing the read function and communicating the 
results to the second and third threads, which execute the 
work function of alternating iterations in parallel. Finally, 
the second and third threads communicate to the fourth 
thread which executes the print function. By reading from the 
second and third threads in alternating iterations, the fourth 
thread will maintain the original order of printing. 

STATIC MAPPING
For pipelined parallelization, excessively long or unbalanced 
stages are undesirable, since the rate of execution is limited to 
at most that of the slowest stage. Excessively short stages are 

equally undesirable when the cost of communication between 
stages dominates the cost of the stages themselves. Therefore, 
an ideal static mapping from code to stages produces exactly 
enough stages to keep all cores busy, while minimizing com-
munication and the latency of the slowest stage. DSWP operates 
on loop nests and attempts to balance the execution time of 
each stage using a simple greedy algorithm. 

Stream graph modulo scheduling (SGMS) [13] is part of 
the StreamRoller compiler, 
which is a fully automatic 
compilation system that maps 
StreamIt application onto Cell 
 architecture platforms. SGMS 
applies the traditional instruc-
tion-level modulo scheduling 
algorithm on a coarse-grain 

stream graph to pipeline the filters across multiple cores. The 
objective is to maximize concurrent execution of filters while 
hiding communication overhead to minimize stalls. This 
approach consists of two steps. First, an integrated filter fis-
sion and partitioning step is performed to assign filters to 
each processor to ensure maximum work balance. Parallel 
data filters are selectively replicated and split to increase the 
opportunities for evenly distributed work. The second step is 
stage assignment wherein each filter is assigned to a pipeline 
stage for execution. Stages are assigned to ensure data depen-
dences are satisfied and interprocessor communication laten-
cy is maximally overlapped with  computation. The result is a 
fully orchestrated stream program that resembles the right 
hand portion of Figure 1(d). 

[FIG2] Execution schedules of loops using DOALL, DSWP, and DOACROSS. Solid lines represent intra-iteration, and dashed lines 
represent loop-carried (critical path) dependences. Initiation rate (IR) is the number of iterations started per cycle. (a) Communication 
latency 5 1. (b) Communication latency 5 2.
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MEMORY AND 
COMMUNICATIONS OPTIMIZATIONS
While identifying and managing parallel 
computation is important for multicore 
systems, inefficient use of the memory 
system can cause cache stalls to dominate 
program execution. For array-dominated 
applications, compiler trans  formations 
can overcome this problem. Loop tiling 
or loop blocking is a technique where a 
compiler will reorder the iterations of a 
loop to achieve better memory locality 
and thus better caching behavior. For 
instance, if a loop updates in row-column order and an entire 
row cannot fit in the cache at once, then the data loaded into 
the cache gets evicted before being reused. Instead, loop tiling 
will break the iteration space into a series of small enough 
squares to fit in the cache. The 
cache hit rate and thus perfor-
mance will increase. 

RUN-TIME MANAGEMENT 
AND OPTIMIZATION
Exposing the parallelism pres-
ent on the underlying hard-
ware can be a double-edged sword. While compilers and 
programmers can leverage their knowledge about the under-
lying hardware to perform various optimizations, the result-
ing code may then become tightly tied to the underlying 
system, limiting the true “portability” of the program. 
Correct execution may be possible on various hardware con-
figurations, but the program is likely optimized for just one 
of those configurations. Even when executing on the specific, 
targeted configuration, performance can suffer when unex-
pected run-time events (such as cache misses) or resource 
contention occur. A lack of flexibility to adapt to unexpected 
events can be a significant downfall and 
is in fact considered to be a major weak-
ness of statically scheduled VLIW codes. 
Therefore, researchers are now focusing 
on providing run-time flexibility and 
adaptation for multicore systems. 

Aside from adapting to specific hard-
ware resources, several run-time events 
present additional opportunities for 
dynamic adaptation and optimization. 
For one, system utilization changes 
(from competing tasks) at run time will 
mean that the number and type of avail-
able computational resources is in a con-
stant state of flux. Meanwhile, the 
behavior of an application itself changes 
over time as it moves through various 
application phases. Phased behavior has 
been widely investigated in the high- 

performance computing arena and has been shown to present 
numerous opportunities and challenges. Above all, phase 
changes should result in periodic re-evaluation of compile-
time decisions. 

Finally, both transient and 
persistent symptoms may arise 
that relate to the temperature 
and reliability of the system. For 
instance, it is possible to a) 
adjust a sequence of instruc-
tions to change the temperature 
profile (often at the expense of 

performance), b) adjust computation to avoid unreliable hard-
ware, or c) adjust the fidelity of certain applications in response 
to depleting battery power. 

RUN-TIME SUPPORT
As depicted in Figure 4, an application can be regularly 
profiled and adjusted at run time. Dynamic adaptation can 
be enabled by a variety of means, including compile-time 
multiversioning, JIT compilation with continuous optimi-
zation, or dynamic binary translation. Each of these mecha-
nisms allows an application to be tailored to a particular 

[FIG3] Example compiler parallelization using decoupled software pipelining to a 
traditionally sequential while loop. (a) Example code. (b) Static stage dependences. 
(c) Potential task execution.

    while (condition) {

A:  line = read ();

B:  result = work (line);

C:  printf (result);

    }
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[FIG4] A run-time adaptation engine continuously profiles and modifies a program as it 
runs. Profile information can come from the hardware, the operating system, the 
compiler (via statically inserted hints), or the application itself. 
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hardware platform and run-
time environment. 

Compile-time multiver-
sioning involves embedding 
several versions of a particular 
function into a compiled bina-
ry, and using a dynamic trig-
ger to select the appropriate version at run time. The version 
that is ultimately executed can remain fixed for the duration 
of a program’s execution time, or it can vary, based on some 
dynamic factor. 

JIT compilation involves postponing the act of machine code 
generation until the application executes. A static compiler gen-
erates an intermediate representation that targets a generic, 
stack-based architecture. Then, at run time, a machine specific 
compiler converts the intermediate code into native machine 
code. Adaptive JIT compilers will then regularly revisit the gen-
erated code to determine whether to apply additional optimiza-
tions to the code. 

Finally, dynamic binary translation systems are software-
based systems that take previously compiled machine code and 
modify it at run time. These systems have the benefit of func-
tioning on legacy code that was written in any language and was 
compiled with any compiler.  

ONLINE APPLICATION 
MONITORING AND PROFILING
The first step in supporting run time adaptation is to provide 
and leverage support for application profiling and system moni-
toring. A run-time system can gather information about an exe-
cuting application for a variety of reasons. An obvious reason is 
to uncover bottlenecks, which can be reported back to the pro-
grammer. Another reason is to gather information that can be 
used to trigger run-time adaptation. 

The profile information used to trigger program transforma-
tions is less likely to be aggregated over an entire run but is 
instead a means for efficiently detecting critical anomalies. The 
information can come in a variety of forms:

Run-time program inputs will often trigger comparisons 1) 
with expected values and assumptions that were made at 
compile time. Any significant deviation from these expecta-
tions can trigger transformations. 

Run-time performance and resource contention, as gath-2) 
ered by hardware performance counters, will also adjust the 
level of parallelism attempted at run time. 

System load and competition from colocated threads, as 3) 
measured by the  operating system, can be used to trigger a 
variety of rescheduling and remapping events. 

Temperature and reliability anomalies can trigger code 4) 
reoptimization and resource avoidance, and battery informa-
tion can trigger algorithm fidelity adjustments. 

DYNAMIC ADAPTATION
Given the appropriate profile trigger, various opportunities exist 
for dynamically transforming programs to adapt to changing 

conditions. Options include a) 
removing excessive parallelism 
that the run-time environment 
cannot support, either due to 
hardware limitations or due to 
contention from other process-
es, b) verifying the correctness 

of compile-time assumptions and modifying the application 
accordingly, c) leveraging run-time information to detect addi-
tional opportunities for parallelism, and d) rescheduling certain 
application threads to execute on processor cores with less con-
tention, lower temperatures, higher reliability, and/or more 
synergy with colocated threads. 

In summary, exploiting parallelism requires a multi-
pronged approach. A static compiler can perform the task of 
aggressively maximizing the potential for parallelization 
assuming unbounded resources and no system load. It will be 
the task of the run-time system to then adapt the parallelism 
to the available hardware resources as they change over time, 
and also to exploit further parallelization opportunities based 
on dynamic behavior. 

CONSIDERATIONS FOR SIGNAL PROCESSING
While run-time adaptation is important for managing par-
allelism in the high-performance computing domain, adap-
tation is critical for signal processing applications for two 
reasons: a) the highly dynamic nature of the applications 
and operating environments and b) the heterogeneity of 
the devices. Each of these traits presents challenges to the 
DSP software developer (who must write device-specific 
code for each and every platform) and to the compiler 
(which must attempt to predict and optimize for a variety 
of dynamic events). 

The main challenges that arise when designing a run-time 
manager for an embedded system is the memory and computa-
tion overhead of the system itself. JIT compilers, multiversioned 
code, and dynamic binary instrumentation systems all consume 
memory and require additional computational resources. This 
overhead must be offset by the adaptation, or alternatively, the 
benefits to the programmer must be significant enough for the 
overheads to be tolerable. Researchers have already made great 
strides toward reducing the footprint and overhead of adapta-
tion engines. Meanwhile, the benefits to the DSP software devel-
oper for masking the heterogeneity of the underlying system are 
long overdue. 

FUTURE TRENDS
As multicore becomes the de facto platform in computing, sig-
nal processing algorithm and software developers face new and 
difficult challenges. First and foremost, parallelism rather than 
sequential measures of work (e.g., instruction count) become 
the critical factor for performance. Coarse-grain parallelism 
must be exploited to extract meaningful performance gains by 
spreading out work across cores. We expect data, loop, and 
pipeline parallelism to dominate the landscape, since they are 

AS MULTICORE BECOMES THE DE 
FACTO PLATFORM IN COMPUTING, 

SIGNAL PROCESSING ALGORITHM AND 
SOFTWARE DEVELOPERS FACE NEW 

AND DIFFICULT CHALLENGES.
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easiest to identify in media and signal processing  applications. 
However, with this challenge comes the opportunity of har-
nessing enormous single-chip computing capabilities. 
Platforms such as the NVIDIA GeForce GTX 295 provide peak 
performances of over 1.7 teraflops at a modest cost, while plat-
forms such as ARM Ardbeg provide tens of giga-operations/s in 
less than 300 mW. 

The second challenge is that the complexity of signal pro-
cessing algorithms is expected to continue growing. 
Complexity ranging from more signal formats and process-
ing standards to more complex encoding methods and usage 
scenarios will force developers to produce more sophisticat-
ed software implementations. More complex code will 
require traditional assembly and low-level C implementa-
tions to utilize better software engineering methodologies 
and libraries provided by object oriented programming (e.g., 
C11 and Java). As a result, signal processing applications 
will start to resemble general-purpose programs as opposed 
to traditional scientific applications. Further, applications 
will have less statically predictable behavior, requiring run-
time systems to continually adapt to the changing perfor-
mance demands of the application. Harnessing and 
managing this complexity without the aid of software devel-
opment tools will quickly become a skill that only few pro-
grammers possess. Thus, the signal processing community 
must embrace compilers and other software development 
tools to manage this complexity and develop effective appli-
cations for multicore systems. 
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