
IEEE SIGNAL PROCESSING MAGAZINE [55] NOVEMBER 2009

 Digital Object Identifier 10.1109/MSP.2009.934117

1053-5888/09/$26.00©2009IEEE

Multicore Compilation
Strategies and Challenges

T
 o overcome challenges stemming from
high power densities and thermal hot
spots in microprocessors, multicore
computing platforms have emerged as
the ubiquitous computing platform

from servers down through embedded systems.
Unfortunately, providing multiple cores does not
directly translate into increased performance or
better energy efficiency for most applications. The
burden is placed on software developers and tools
to find and exploit coarse-grain parallelism to
effectively make use of the abundance of computing
resources provided by these systems. Concurrent
applications are much more complex to develop than
their single-threaded ancestors, thus software develop-
ment tools will be critical to help programmers create
both high performance and correct software. This article pro-
vides an overview of parallelism and compiler technology to
help the community understand the software development
 challenges and opportunities for multicore signal processors.

INTRODUCTION
For more than four decades, the semiconductor industry has
depended on Moore’s law to deliver consistent application per-
formance gains through the multiplicative effects of increased
transistor counts and higher clock frequencies. However, power
dissipation and thermal constraints have emerged as dominant
design issues and forced architects away from relying on
increasing clock frequency to improve performance. Exponential
growth in transistor counts still remains intact and a powerful

tool to improve performance, though the paradigm through
which performance is perceived has shifted. Performance is now
based on throughput and efficiency, utilizing multiple cores
performing computation in parallel to complete a larger volume
of work in a shorter period of time. These multicore systems
have become the industry standard from high-end servers down
through desktops and gaming platforms. Example systems
include the Texas Instruments (TI) TMS320C6474 that has three
eight-wide C64x very long instruction word (VLIW) cores, the
Sun UltraSparc T1 that has eight cores, the Sony/Toshiba/
IBM Cell processor that consists of nine cores, the NVIDIA
GeForce 8800 GTX that contains 16 streaming multiprocessors,

[Mojtaba Mehrara, Thomas Jablin, Dan Upton,

 David August, Kim Hazelwood, and Scott Mahlke]

[An overview of parallelism
 and compiler technology]

© PHOTO F/X2

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 26, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [56] NOVEMBER 2009

each with eight processing
units, and the Cisco CRS-1
Metro router that utilizes 192
Tensilica processors.

Embedded platforms, on the
other hand, have long consisted
of multiprocessor systems-on-chip (MPSoC), but they are typi-
cally heterogeneous combinations of hardwired accelerators and
standalone processors to meet cost, performance, and power
requirements. We believe embedded systems will follow the
trend of servers, desktops, and graphics processors of adopting
multicores as the standard platform. This trend is evident by the
new digital signal processor (DSP) systems proposed by compa-
nies for wireless baseband processing that all consist of multiple
single-instruction, multiple data (SIMD) processors: Ardbeg by
ARM, MuSIC by Infineon, NXP by Philips, and Sandblaster by
Sandbridge. Multicores provide a systematic way to scale perfor-
mance in the face of relatively stagnant clock rates without sky-
rocketing power consumption and design complexity. Further,
multicores have an important advantage over current MPSoC
systems—programmability. A programmable solution offers the
opportunity for a single platform to support multiple applica-
tions and even multiple standards within each application
domain. Finally, programmability provides faster time to market
as hardware and software development can proceed in parallel,
the ability to fix bugs and add features after manufacturing, and
higher chip volumes as a single platform can support a family of
mobile devices.

Unfortunately, providing multiple cores does not directly
translate into performance. With multicores, the industry has
already fallen short of the decades old single-thread perfor-
mance growth trend, and the trend toward simpler cores means
performance might even degrade. Not only do sequential codes
suffer, but multithreaded programs may degrade due to smaller
caches per core, limited memory bandwidth, and lower single-
thread performance.

Many new languages have been proposed to ease the burden
of writing parallel programs, including Atomos, Cilk, and
StreamIt. Despite these and more than 150 other parallel lan-
guages, the effort involved in creating correct and efficient par-
allel programs is still far more substantial than writing the
equivalent single-threaded version. Developers must be trained
to program and debug their applications with the additional
concerns of deadlock, livelock, and race conditions. Converting
an existing single-threaded application is often more challeng-
ing, as it may not have been developed to be easily parallelized
in the first place. Extracting the fine-grained parallelism neces-
sary for efficient use of multicore systems is not only tedious,
but it is a continuous cost as the machine-specific partitioning
lack portability and forward performance compatibility. And
finally, programmers cannot (and should not) be aware of the
details of the hardware resources available at run time in the
face of varying system load.

The difficulty and complexity of programming for multicores
inevitably pushes programmers, particularly those in the

embedded community who
have long relied on hand assem-
bly code or low-level C code, to
rely more heavily on tools, such
as compilers and run-time opti-
mizers. These tools automati-

cally extract threads, perform machine-dependent mappings of
threads, and manage run-time program execution. This
approach avoids the pitfalls resulting from exposing the multi-
core problem up through the entire software stack and allows
the programmer to focus on problem solving and correctness.
This article provides an overview of multicore compilers and
their future for the signal processing community.

FORMS OF PARALLELISM
Traditional DSPs adopted application-specific units and
instruction set extensions to accelerate signal processing algo-
rithms. The major role of compilers in traditional DSPs was
minimizing code size. High performance code was generally
written by hand or with heavy use of intrinsics. Due to the
characteristics of DSP applications, there are many ways to
achieve higher performance and increase computational effi-
ciency through exploiting different forms of parallelism [1]. In
this section, we explore various forms of parallelism available
in signal processing applications.

INSTRUCTION-LEVEL PARALLELISM
With instruction-level parallelism (ILP), multiple independent
assembly instructions are executed in the processor at the same
cycle [Figure 1(a)]. Superscalar, general-purpose processors
exploit ILP by issuing multiple independent instructions in each
cycle that are dynamically identified by the hardware. However,
these architectures incur a considerable amount of complexity
and power consumption, which makes them less appealing for
embedded systems.

The emergence of VLIW architectures introduced new
opportunities for exploiting ILP in signal processing applica-
tions. In VLIW architectures, independent instructions are
packed into a single large instruction word and issued in paral-
lel each cycle. Compilers perform the important task of identify-
ing ILP opportunities and scheduling independent instructions
for execution in the same cycle. To create an instruction sched-
ule, the exact underlying architecture (e.g., number and latency
of execution units, etc.) must be known at compile time. The TI
C6x is the most well-known family of VLIW DSPs that can issue
eight operations each cycle [2]. TI compilers combine sophisti-
cated optimization and scheduling techniques to identify high
degrees of ILP, particularly in loop-intensive code.

DATA-LEVEL PARALLELISM
The most dominant form of parallelism in signal processing is
data-level parallelism (DLP) wherein the same instruction is
performed on different pieces of data in parallel [Figure 1(b)].
DLP originated in the form of SIMD and vector computation
models. From the mid-to-late 1990s, several major vendors of

UNFORTUNATELY, PROVIDING MULTIPLE
CORES DOES NOT DIRECTLY TRANSLATE

INTO PERFORMANCE.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 26, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [57] NOVEMBER 2009

general-purpose processors
included short vector SIMD
extensions to their instruction
sets. Some examples are Intel
SSE and SSE2, AMD 3DNow,
ARM NEON, and Motorola
AltiVec (which was implemented on several PowerPC processors
including G4, G5, and POWER6). The introduction of these
extensions brought the SIMD model to the forefront of DSP
technology. These extensions enabled exploitation of limited
DLP by inserting small data types in large registers and using
SIMD instructions to perform the same operation on all data
within these registers in parallel. Vectoring compilers exist to
make automatic use of SIMD extensions, but in most cases the
burden is still on programmers to identify DLP.

Modern graphics processing units (GPUs) adopt wider SIMD
implementations (128–256 b). One of the latest examples is the
NVIDIA’s Compute Unified Device Architecture (CUDA) frame-
work [3]. CUDA is a general-purpose parallel computing archi-
tecture that consists of the CUDA instruction set and the
compute engine in the GPU. It provides a small set of extensions
to the C programming language, which enables straightforward
implementation of parallel algorithms on the GPU. CUDA also
supports scheduling the computation between the CPU and
GPU, such that serial portions of applications run on the CPU
and parallel portions are mapped to the GPU. Since the public
release of CUDA framework in 2007, it has been shown that
many compute-intensive signal processing and multimedia
applications observe remarkable speedups using this framework
[4], [5]. NVIDIA provides a compiler system (nvcc) as a part of
the framework.

The Intel Larrabee [6] and IBM Cell [7] processors are
examples of multicore architectures augmented by wide SIMD
processing units. Scheduling is performed entirely in software,
and the native programming model supports implementing
various parallel applications even with irregular data struc-
tures. The Larrabee and Cell C/C11 compilers provide auto-
vectorization, and developers may program SIMD units with

C11 vector intrinsics or inline
assembly code.

LOOP-LEVEL PARALLELISM
Loop-level parallelism (LLP) is
one of the popular paralleliza-

tion methods in the scientific computing community. In this
form of parallelization, independent iterations of the same loop
are executed in parallel on different processors [Figure 1(c)].
There has been a long history of automatic parallelization efforts
in compilers, e.g., Polaris from Illinois, SUIF from Stanford, and
Parascope from Rice. These techniques mainly target counted
loops that manipulate array accesses with affine indices.

Compilers play an important role in identifying and extract-
ing parallelism from loops. Memory dependence analysis can be
precisely performed and many loops with independent iterations
(DOALL loops) can be statically identified at compile time.
Furthermore, compiler transformations can be used to expose
more parallelism from the loops that have parallelism lurking
beneath the surface in the code [8]. One example of these trans-
formations is loop interchange, which is done on a set of nested
loops. When parallelism exists in the inner nest, the compiler
can exchange the loop with the outermost loop and thereby
maximize the exploited parallelism.

In addition to automatic parallelization of loops, the pro-
grammer can specify parallel loops by using explicit parallel
programming constructs such as the OpenMP applicat-
ion programming interface. Using these constructs, the
 application is executed serially until it reaches a parallel loop.
Subsequently, several threads are spawned to execute different
iterations of the loop, and when the loop execution is com-
pleted, parallel threads are joined and the program continues
with sequential execution.

PIPELINE PARALLELISM—STREAM PROGRAMMING
In the pipeline parallelism model (also called stream program-
ming, or streaming model), the application is decomposed into
a series of stages. Each stage performs partial processing on a

[FIG1] Various forms of exploiting parallelism: (a) ILP, (b) DLP, (c) LLP, and (d) the streaming model called pipeline parallelism.

a = b + c

d = e * f

g = h − i

S
o
u
rc

e
 C

o
d
e

va = vb + vc

PE

DOALL Loop

Input Data

Stream

Input Data

Stream

Vector

Inst

PE 1 PE 2

P
E

 1

P
E

 2

P
E

 3

VLIW Compiler

D
a
ta

Issued in

One Cycle

i =
 0

–
3
9 A

A
A

B
B
B

C
C
C

PE

PE

Output

Data

Stream
PE Output Data

Stream

(a) (b) (c) (d)

a = b + c d = e * f g = h − i

i =
 0

–
1
9

i =
 2

0
–
3
9

Filter A

Filter B

Filter C

THE MOST DOMINANT FORM OF
PARALLELISM IN SIGNAL PROCESSING

IS DATA-LEVEL PARALLELISM.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 26, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [58] NOVEMBER 2009

set of data and forwards
it to the next stage for
processing, and starts
working on the next set
of data. In this scenario,
pipeline stages can run
in parallel while work-
ing on different chunks of data [Figure 1(d)].

Stream languages are mainly motivated by the application
style used in signal and image processing, graphics, networking,
and other media processing domains. They enable the explicit
specification of producer-consumer parallelism between coarse
grain units of computation. Examples of stream languages are
StreamIt, Brook, CUDA, SPUR, Cg, Baker, and Spidle.

For instance, StreamIt [9] represents a program as a set of
autonomous actors (called filters), which are similar to Java
classes. These filters communicate through first-in, first-out
(FIFO) data channels. StreamIt implements a synchronous
dataflow model in which the number of data samples pro-
duced and consumed by each filter are specified a priori. Each
filter has a separate instruction stream and an independent
address space, thus all dependencies between filters are made
explicit through the communication channels. A large num-
ber of signal processing applications have been implemented
as a set of StreamIt benchmarks. Examples include fast
Fourier transform (FFT), discrete cosine transform (DCT) and
MPEG decoder/encoder.

Stream programs generally contain an abundance of explicit
parallelism. However, the central challenge is obtaining an effi-
cient mapping onto the target architecture. The gains obtained
through parallel execution can often be overshadowed by the
costs of communication and synchronization. Resource limita-
tions of the system must also be carefully modeled during the
mapping process to avoid stalls. Resource limitations include
finite processing capability, limited memory associated with
each processing element, interconnect bandwidth, and direct
memory access (DMA) latency.

ROLE OF THE COMPILER
Signal processing applications have been traditionally devel-
oped in the form of sequential algorithms. These implementa-
tions later evolved to more complex domain-specific vectorized
computations that have been adopted extensively in DSPs.
Explicit parallel programming models, such as stream pro-
gramming and OpenMP, provide the programmer with conve-
nient constructs to expose coarse-grain parallelism. From the
compiler perspective, this provides a spectrum of program-
ming models in the signal processing domain that must be
dealt with—from implicit parallelism that must be discovered
in sequential C and C11 implementations to explicit parallel-
ism that must be effectively managed to deliver performance
on the target platform. The compiler’s responsibilities can be
broken down into two major categories based on when the
action occurs: static, which occurs offline, and dynamic, which
occurs online.

In the static category, one of the
major focuses is identifying parallel-
ism: implicit parallelism in seemingly
sequential applications and finding
more parallelism in explicitly paral-
lelism applications, e.g., identifying
LLP inside individual filters in a

streaming application. These tasks are traditionally done
through a combination of compiler analyses and transforma-
tions to understand the detailed memory access behavior of
the application in concert with a set of transformations to
expose more parallelism. With parallelism in hand, the static
compiler is employed to efficiently answer the questions of
how, when, and where should the parallel segments of the
applications be mapped onto the underlying hardware. The
main objective is to make intelligent decisions based on the
available resources and the relative communication and syn-
chronization costs.

While most signal processing software developers think of
compilers exclusively in the static sense, multicore compilers
will likely also have a dynamic component. These are referred
to as just-in-time (JIT) compilers or dynamic optimizers.
Dynamic compilers offer the opportunity for run-time customi-
zation of applications to not only processor features that were
unknown to the static compiler (e.g., those that are only pres-
ent in a subset of a family of processors), but more importantly
to dynamic events such as environmental conditions, load on
the system, or application behavior. Parallelism can be throt-
tled, remapped, or reorganized to take advantage of specific
execution circumstances known only at run time.

STATIC COMPILATION

IDENTIFICATION AND EXTRACTION
Automatically parallelizing code poses two basic problems:
finding an exploitable region of code through analysis and
transforming the code into a parallel form. Analyses and
trans formations must work together to find and then exploit
a specific family of parallelization. Finding code that cannot
be transformed and transforming code that cannot be found
is unhelpful.

MEMORY DEPENDENCE ANALYSIS
Data dependencies can greatly degrade the performance of par-
allelized code. In multicore architectures, cross-thread depen-
dencies require communication or synchronization to maintain
correctness. Syn chronization and communication are undesir-
able since they are relatively expensive operations and force fast-
er threads to wait on slower threads. By careful scheduling, an
optimizing compiler can minimize the effect of data dependen-
cies. Unfortunately, determining whether or not data dependen-
cies exist between two instructions is nontrivial in general. This
problem gave rise to a proliferation of memory dependence
analyses that approximate the problem by indicating either that
instructions MAY or MAY NOT alias. The quality of memory

PARALLELISM CAN BE THROTTLED,
REMAPPED, OR REORGANIZED TO

TAKE ADVANTAGE OF SPECIFIC
EXECUTION CIRCUMSTANCES
KNOWN ONLY AT RUN TIME.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 26, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [59] NOVEMBER 2009

dependence analysis strongly
influences the performance of
 parallelized code.

Loops iterating over arrays
dominate the run time of many
signal processing applications.
If the loop’s iterations are independent, it can be explicitly paral-
lelized on a multicore architecture or vectorized on a SIMD
architecture. Array dependence analysis conservatively enumer-
ates array dependences between loop iterations. Even when the
iterations are not completely independent, regular patterns of
array dependences can still find exploitable patterns. For
instance, if all the elements in a row of a multidimensional array
are dependent, but all the rows are independent of each other,
then threads can execute each row in parallel. To exploit this
type of opportunity, an optimizing compiler may transform a
row-column loop into a column-row loop. The technique easily
generalizes to higher dimensional arrays and iterating over a
series of parallel diagonals.

Array dependence analysis operates by encoding the con-
straints of the offset, or offsets in the case of multidimensional
arrays, into a linear constraint problem. When the linear con-
straint problem admits no integer solution, there will be no
aliasing between array elements between loop iterations.
Unfortunately, determining that no integer solutions exist for a
linear constraint problem is NP-hard. Therefore, compilers use
heuristics. Pugh’s Omega test [10] implements a complete algo-
rithm with reasonable run time on real programs.

Pointer analysis attempts to determine whether two pointers
can alias. In general, pointer analysis algorithms propagate facts
about pointers throughout a program mostly using data flow
analyses. The specifics of which facts propagate and how they
propagate varies substantially among pointer analyses. For
example, some analyses keep an explicit can-point-to set, others
do not. Some analyses propagate information from a possible
call site to all possible return sites, others match call and return
sites accurately.

Shape analysis techniques use separation logic to determine
the properties of recursive data structures (such as linked lists)
directly from code. A shape analysis, for example, may conclude
that no memory address recursively reachable from a tree’s left
child is recursively reachable from the tree’s right child. Many
of these analysis have been implemented in research compilers
such as OpenImpact.

AUTOMATIC VECTORIZATION
Vector hardware performs the same operation on many inputs
simultaneously. Analyses detect vectorization opportunities
through array dependence analysis. If the dependence distance
(the minimal distance between two dependent iterations) is less
than the size of the hardware-specific vector, then the code can
be vectorized.

The Cray-1 supercomputer, first introduced in 1976, featured
Cray Fortran, the first automatic vectorizing compiler [11]. In
its initial implementation, Cray Fortran could automatically

vectorize Fortran DO loops
without cross-thread dependen-
cies, as determined by array
dependence analysis, and with-
out control-flow statements.

Thirty years later, IBM’s
state-of-the-art XL compiler for the Cell architecture relies on
modern vectorization techniques to exploit the Cell’s synergistic
processing elements [7]. XL’s vectorization is able to target a
much broader collection of loops including loops with induction
(“counting” in a regular way), deduction (computed by commu-
tative operations such as sum, min, max, and product), loop-
scoped, and loop-invariant accesses. Additionally, the XL
compiler will also search individual basic blocks for vectoriza-
tion opportunities. This is useful when a loop has already been
completely unrolled. The XL compiler also implements loop dis-
tribution, allowing it to break a loop into several pieces each of
which can be parallelized according to a different strategy. The
advent of predicated vector operations allows vectorization of
loops with control flow.

DOALL AND DOACROSS PARALLELIZATION
DOALL parallelization methods are the threaded multicore
equivalent of vectorization techniques. If a loop has no cross-it-
eration dependencies and its iteration space is statically divisi-
ble, then the loop can execute in several threads in parallel with
each thread covering a disjoint subset of the iteration space.
DOALL parallelization methods are highly efficient since there
is no cross-thread communication while the loop is iterating.
However, the requirement that the iteration space be divisible
prohibits pointer-chasing loops, which are common in general
purpose applications. There have been successful attempts of
DOALL parallelization in the research community such as the
SUIF compiler system.

In DOACROSS parallelization, adjacent iterations execute in
alternating threads. As soon as one thread has completed the
loop’s critical path, execution of the loop’s next iteration begins
on the next core while the current iteration is still being execut-
ed. In contrast to the restrictions imposed on DOALL loops,
DOACROSS loops are universally applicable. However,
DOACROSS loops only offer performance advantages when the
critical path of the loop plus the time necessary to complete the
critical path and to communicate between adjacent iterations is
low relative to the amount of time spent executing code outside
the critical path.

DECOUPLED SOFTWARE PIPELINING
Decoupled software pipelining (DSWP) partitions each loop
iteration into a pipeline such that communication happens
strictly from earlier stages in the pipeline to later stages [12].
Communication between stages is buffered, so unlike
DOACROSS techniques, it is very latency tolerant. Figure 2
contrasts the effects of latency on the performance of DOALL,
DOACROSS, and DSWP loops. Doubling the latency does not
affect DOALL’s performance, since DOALL loops have no

RESEARCHERS ARE NOW FOCUSING
ON PROVIDING RUN-TIME

FLEXIBILITY AND ADAPTATION
FOR MULTICORE SYSTEMS.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 26, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [60] NOVEMBER 2009

cross-thread communication. Although DSWP engages in
cross-thread communication, the communication is not on
the critical path, so increasing latency increases run time by
only a constant factor. For DOACROSS, communication from
a previous iteration must complete before the next iteration
can begin; increasing latency drastically diminishes
DOACROSS’s performance. The requirement that later stages
in the pipeline not communicate with earlier stages, makes
DSWP sensitive to the quality
of memory analysis.

Figure 3 is an example of a
DSWP parallelization. Figure
3(b) shows the dependencies
in the original program
[Figure 3(a)]. Read and print
depend on prior invocations of
themselves, but work is independent from prior iterations.
The loop can be parallelized for four threads, with the first
thread executing the read function and communicating the
results to the second and third threads, which execute the
work function of alternating iterations in parallel. Finally,
the second and third threads communicate to the fourth
thread which executes the print function. By reading from the
second and third threads in alternating iterations, the fourth
thread will maintain the original order of printing.

STATIC MAPPING
For pipelined parallelization, excessively long or unbalanced
stages are undesirable, since the rate of execution is limited to
at most that of the slowest stage. Excessively short stages are

equally undesirable when the cost of communication between
stages dominates the cost of the stages themselves. Therefore,
an ideal static mapping from code to stages produces exactly
enough stages to keep all cores busy, while minimizing com-
munication and the latency of the slowest stage. DSWP operates
on loop nests and attempts to balance the execution time of
each stage using a simple greedy algorithm.

Stream graph modulo scheduling (SGMS) [13] is part of
the StreamRoller compiler,
which is a fully automatic
compilation system that maps
StreamIt application onto Cell
 architecture platforms. SGMS
applies the traditional instruc-
tion-level modulo scheduling
algorithm on a coarse-grain

stream graph to pipeline the filters across multiple cores. The
objective is to maximize concurrent execution of filters while
hiding communication overhead to minimize stalls. This
approach consists of two steps. First, an integrated filter fis-
sion and partitioning step is performed to assign filters to
each processor to ensure maximum work balance. Parallel
data filters are selectively replicated and split to increase the
opportunities for evenly distributed work. The second step is
stage assignment wherein each filter is assigned to a pipeline
stage for execution. Stages are assigned to ensure data depen-
dences are satisfied and interprocessor communication laten-
cy is maximally overlapped with computation. The result is a
fully orchestrated stream program that resembles the right
hand portion of Figure 1(d).

[FIG2] Execution schedules of loops using DOALL, DSWP, and DOACROSS. Solid lines represent intra-iteration, and dashed lines
represent loop-carried (critical path) dependences. Initiation rate (IR) is the number of iterations started per cycle. (a) Communication
latency 5 1. (b) Communication latency 5 2.

Core 1 Core 2 Core 1 Core 2Core 1 Core 2

Cross-

Thread Dependences

Wide

Applicability

5

IR = 1 IR = 1 IR = 1 IR = 1 IR = 1

(a) (b)

IR = 0.5

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

DOALL DSWP DOACROSS

Core 1 Core 2 Core 1 Core 2Core 1 Core 2

DOALL DSWP DOACROSS

5

3

3

1

1 2

2

4

4

6

6

1

2 1

3 2

34

5 4

6 5

1

1 2

23

3 4

45

5 6 5

2

3

3

1

1

3

3

5

2

2

4

6

6

4

1

2

3

4

5

6

1

2

3

4

1

1

2

Thread-

Local Recurrences

Fast

Execution

THE MAIN CHALLENGES THAT ARISE
WHEN DESIGNING A RUN-TIME MANAGER

FOR AN EMBEDDED SYSTEM IS THE
MEMORY AND COMPUTATION OVERHEAD

OF THE SYSTEM ITSELF.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 26, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [61] NOVEMBER 2009

MEMORY AND
COMMUNICATIONS OPTIMIZATIONS
While identifying and managing parallel
computation is important for multicore
systems, inefficient use of the memory
system can cause cache stalls to dominate
program execution. For array-dominated
applications, compiler trans formations
can overcome this problem. Loop tiling
or loop blocking is a technique where a
compiler will reorder the iterations of a
loop to achieve better memory locality
and thus better caching behavior. For
instance, if a loop updates in row-column order and an entire
row cannot fit in the cache at once, then the data loaded into
the cache gets evicted before being reused. Instead, loop tiling
will break the iteration space into a series of small enough
squares to fit in the cache. The
cache hit rate and thus perfor-
mance will increase.

RUN-TIME MANAGEMENT
AND OPTIMIZATION
Exposing the parallelism pres-
ent on the underlying hard-
ware can be a double-edged sword. While compilers and
programmers can leverage their knowledge about the under-
lying hardware to perform various optimizations, the result-
ing code may then become tightly tied to the underlying
system, limiting the true “portability” of the program.
Correct execution may be possible on various hardware con-
figurations, but the program is likely optimized for just one
of those configurations. Even when executing on the specific,
targeted configuration, performance can suffer when unex-
pected run-time events (such as cache misses) or resource
contention occur. A lack of flexibility to adapt to unexpected
events can be a significant downfall and
is in fact considered to be a major weak-
ness of statically scheduled VLIW codes.
Therefore, researchers are now focusing
on providing run-time flexibility and
adaptation for multicore systems.

Aside from adapting to specific hard-
ware resources, several run-time events
present additional opportunities for
dynamic adaptation and optimization.
For one, system utilization changes
(from competing tasks) at run time will
mean that the number and type of avail-
able computational resources is in a con-
stant state of flux. Meanwhile, the
behavior of an application itself changes
over time as it moves through various
application phases. Phased behavior has
been widely investigated in the high-

performance computing arena and has been shown to present
numerous opportunities and challenges. Above all, phase
changes should result in periodic re-evaluation of compile-
time decisions.

Finally, both transient and
persistent symptoms may arise
that relate to the temperature
and reliability of the system. For
instance, it is possible to a)
adjust a sequence of instruc-
tions to change the temperature
profile (often at the expense of

performance), b) adjust computation to avoid unreliable hard-
ware, or c) adjust the fidelity of certain applications in response
to depleting battery power.

RUN-TIME SUPPORT
As depicted in Figure 4, an application can be regularly
profiled and adjusted at run time. Dynamic adaptation can
be enabled by a variety of means, including compile-time
multiversioning, JIT compilation with continuous optimi-
zation, or dynamic binary translation. Each of these mecha-
nisms allows an application to be tailored to a particular

[FIG3] Example compiler parallelization using decoupled software pipelining to a
traditionally sequential while loop. (a) Example code. (b) Static stage dependences.
(c) Potential task execution.

 while (condition) {

A: line = read ();

B: result = work (line);

C: printf (result);

 }

A B C

Core 3 Core 4Core 1

(a) (b) (c)

Core 2

T
im

e

C.1

C.2

C.3

C.4

A.1

A.2

A.3

A.4

B.1

B.3
B.2

B.4

[FIG4] A run-time adaptation engine continuously profiles and modifies a program as it
runs. Profile information can come from the hardware, the operating system, the
compiler (via statically inserted hints), or the application itself.

C
o
m

p
ile

d
 P

ro
g
ra

m

S
ta

ti
c
 H

in
ts

S
h
a
re

d
 L

ib
s

Execute

Profile

Modify

• Hardware Monitors

• Live Contention

• Machine Spec

• Fuse Parallelism

• Squash

 Speculation

THE DIFFICULTY AND COMPLEXITY
OF PROGRAMMING FOR MULTICORES

INEVITABLY PUSHES PROGRAMMERS TO
RELY MORE HEAVILY ON TOOLS, SUCH AS
COMPILERS AND RUN-TIME OPTIMIZERS.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 26, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [62] NOVEMBER 2009

hardware platform and run-
time environment.

Compile-time multiver-
sioning involves embedding
several versions of a particular
function into a compiled bina-
ry, and using a dynamic trig-
ger to select the appropriate version at run time. The version
that is ultimately executed can remain fixed for the duration
of a program’s execution time, or it can vary, based on some
dynamic factor.

JIT compilation involves postponing the act of machine code
generation until the application executes. A static compiler gen-
erates an intermediate representation that targets a generic,
stack-based architecture. Then, at run time, a machine specific
compiler converts the intermediate code into native machine
code. Adaptive JIT compilers will then regularly revisit the gen-
erated code to determine whether to apply additional optimiza-
tions to the code.

Finally, dynamic binary translation systems are software-
based systems that take previously compiled machine code and
modify it at run time. These systems have the benefit of func-
tioning on legacy code that was written in any language and was
compiled with any compiler.

ONLINE APPLICATION
MONITORING AND PROFILING
The first step in supporting run time adaptation is to provide
and leverage support for application profiling and system moni-
toring. A run-time system can gather information about an exe-
cuting application for a variety of reasons. An obvious reason is
to uncover bottlenecks, which can be reported back to the pro-
grammer. Another reason is to gather information that can be
used to trigger run-time adaptation.

The profile information used to trigger program transforma-
tions is less likely to be aggregated over an entire run but is
instead a means for efficiently detecting critical anomalies. The
information can come in a variety of forms:

Run-time program inputs will often trigger comparisons 1)
with expected values and assumptions that were made at
compile time. Any significant deviation from these expecta-
tions can trigger transformations.

Run-time performance and resource contention, as gath-2)
ered by hardware performance counters, will also adjust the
level of parallelism attempted at run time.

System load and competition from colocated threads, as 3)
measured by the operating system, can be used to trigger a
variety of rescheduling and remapping events.

Temperature and reliability anomalies can trigger code 4)
reoptimization and resource avoidance, and battery informa-
tion can trigger algorithm fidelity adjustments.

DYNAMIC ADAPTATION
Given the appropriate profile trigger, various opportunities exist
for dynamically transforming programs to adapt to changing

conditions. Options include a)
removing excessive parallelism
that the run-time environment
cannot support, either due to
hardware limitations or due to
contention from other process-
es, b) verifying the correctness

of compile-time assumptions and modifying the application
accordingly, c) leveraging run-time information to detect addi-
tional opportunities for parallelism, and d) rescheduling certain
application threads to execute on processor cores with less con-
tention, lower temperatures, higher reliability, and/or more
synergy with colocated threads.

In summary, exploiting parallelism requires a multi-
pronged approach. A static compiler can perform the task of
aggressively maximizing the potential for parallelization
assuming unbounded resources and no system load. It will be
the task of the run-time system to then adapt the parallelism
to the available hardware resources as they change over time,
and also to exploit further parallelization opportunities based
on dynamic behavior.

CONSIDERATIONS FOR SIGNAL PROCESSING
While run-time adaptation is important for managing par-
allelism in the high-performance computing domain, adap-
tation is critical for signal processing applications for two
reasons: a) the highly dynamic nature of the applications
and operating environments and b) the heterogeneity of
the devices. Each of these traits presents challenges to the
DSP software developer (who must write device-specific
code for each and every platform) and to the compiler
(which must attempt to predict and optimize for a variety
of dynamic events).

The main challenges that arise when designing a run-time
manager for an embedded system is the memory and computa-
tion overhead of the system itself. JIT compilers, multiversioned
code, and dynamic binary instrumentation systems all consume
memory and require additional computational resources. This
overhead must be offset by the adaptation, or alternatively, the
benefits to the programmer must be significant enough for the
overheads to be tolerable. Researchers have already made great
strides toward reducing the footprint and overhead of adapta-
tion engines. Meanwhile, the benefits to the DSP software devel-
oper for masking the heterogeneity of the underlying system are
long overdue.

FUTURE TRENDS
As multicore becomes the de facto platform in computing, sig-
nal processing algorithm and software developers face new and
difficult challenges. First and foremost, parallelism rather than
sequential measures of work (e.g., instruction count) become
the critical factor for performance. Coarse-grain parallelism
must be exploited to extract meaningful performance gains by
spreading out work across cores. We expect data, loop, and
pipeline parallelism to dominate the landscape, since they are

AS MULTICORE BECOMES THE DE
FACTO PLATFORM IN COMPUTING,

SIGNAL PROCESSING ALGORITHM AND
SOFTWARE DEVELOPERS FACE NEW

AND DIFFICULT CHALLENGES.

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 26, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [63] NOVEMBER 2009

easiest to identify in media and signal processing applications.
However, with this challenge comes the opportunity of har-
nessing enormous single-chip computing capabilities.
Platforms such as the NVIDIA GeForce GTX 295 provide peak
performances of over 1.7 teraflops at a modest cost, while plat-
forms such as ARM Ardbeg provide tens of giga-operations/s in
less than 300 mW.

The second challenge is that the complexity of signal pro-
cessing algorithms is expected to continue growing.
Complexity ranging from more signal formats and process-
ing standards to more complex encoding methods and usage
scenarios will force developers to produce more sophisticat-
ed software implementations. More complex code will
require traditional assembly and low-level C implementa-
tions to utilize better software engineering methodologies
and libraries provided by object oriented programming (e.g.,
C11 and Java). As a result, signal processing applications
will start to resemble general-purpose programs as opposed
to traditional scientific applications. Further, applications
will have less statically predictable behavior, requiring run-
time systems to continually adapt to the changing perfor-
mance demands of the application. Harnessing and
managing this complexity without the aid of software devel-
opment tools will quickly become a skill that only few pro-
grammers possess. Thus, the signal processing community
must embrace compilers and other software development
tools to manage this complexity and develop effective appli-
cations for multicore systems.

AUTHORS
Mojtaba Mehrara (mehrara@umich.edu) received the B.S.
degree in electrical engineering from Sharif University of
Technology, Iran, in 2005 and the M.S. degree in computer sci-
ence and engineering from the University of Michigan in 2007.
He is a Ph.D. candidate in the Department of Electrical
Engineering and Computer Science at the University of
Michigan, Ann Arbor. His research interests include compiler
and architecture techniques for improving the performance and
programmability of parallel systems.

Thomas Jablin (tjablin@cs.princeton.edu) received the B.A.
degree from Amherst College in 2006 and the M.A. degree in
2009 from Princeton University. He is a P.hD. candidate in the
Department of Computer Science at Princeton University. His
research interests include compiler-driven automatic paral-
lelization and dynamic compilation. He is a student member of
the ACM.

Dan Upton (upton@virginia.edu) received a B.S. degree in
computer science from the University of Richmond in 2005. He
received his master’s degree in com puter science in 2008 and is
currently pursuing a Ph.D. at the University of Virginia. His
research interests include thermally aware computing and effi-
cient full-system profiling and analysis.

David August (august@princeton.edu) is an associate profes-
sor in the Department of Computer Science at Princeton
University, where he directs the Liberty Research Group. He

earned his Ph.D. degree in electrical engineering from the
University of Illinois at Urbana-Champaign, where he worked as
a member of the IMPACT research compiler group. His work
has been recognized by numerous best paper awards including
two IEEE Micro “Top Picks.”

Kim Hazelwood (hazelwood@virginia.edu) is an assistant
professor at the University of Virginia. Her research focuses on
virtualization and run-time adaptation. She received her Ph.D.
degree in computer science from Harvard University in 2004,
followed by a postdoc at Intel, where she helped to develop the
Pin dynamic instrumentation system. She has received the
FEST Young Investigator Award, an NSF CAREER award, a
Woodrow Wilson Career Enhancement Fellowship, and the Borg
Early Career Award.

Scott Mahlke (mahlke@umich.edu) is an associate professor
in the Electrical Engineering and Computer Science Department
at the University of Michigan, where he leads the Compilers
Creating Custom Processors Group. He received the Ph.D.
degree in electrical engineering from the University of Illinois at
Urbana-Champaign in 1997. He was named the Morris Wellman
Assistant Professor in 2004 and won the 2007 Most Influential
Paper Award from the International Symposium on Computer
Architecture.

REFERENCES
[1] J. H. Ahn, M. Erez, and W. J. Dall, “Tradeoff between data-, instruction-,
and thread-level parallelism in stream processors,” in Proc. ICS’07, 2007, pp.
126–137.

[2] J. A. Fisher, P. Farabosch, and C. Young, Embedded Computing: A VLIW
Approach to Architecture, Compiler and Tools. San Mateo, CA: Morgan
Kaufmann, 2004.

[3] J. Nickolls and I. Buck, “NVIDIA CUDA software and GPU parallel computing
architecture,” in Proc. Microprocessor Forum, Oct. 2007, pp. 103–104.

[4] T. D. R. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon,
“Biomedical image analysis on a cooperative cluster of GPUs and multicores,” in
Proc. 2008 Int. Conf. Supercomputing, pp. 15–25.

[5] A. Ruiz, M. Ujaldon, L. Cooper, and K. Huang, “Non-rigid registration for large
sets of microscopic images on graphics processors,” J. Signal Process. Syst., vol.
55, no. 1–3, pp. 229–250, Apr. 2008.

[6] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins, A.
Lake, R. Cavin, R. Espasa, E. Grochowski, T. Juan, M. Abrash, J. Sugerman, and
P.Hanrahan, “Larrabee: A many-core x86 architecture for visual computing,” ACM
Trans. Graph., vol. 29, no. 1, pp. 10–21, Jan./Feb. 2009.

[7] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu, T. Chen, P. H. Oden, D.
A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, and M.
Gschwind, “Optimizing compiler for the CELL processor,” in Proc. 14th Int.
Conf. Parallel Architectures and Compilation Techniques, Sept. 2005, pp.
161–172.

[8] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke, “Uncovering hidden
loop level parallelism in sequential applications,” in Proc. 14th Int. Symp. High-
Performance Computer Architecture, Feb. 2008, pp. 290–301.

[9] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A language for
streaming applications,” in Proc. 2002 Int. Conf. Compiler Construction, 2002,
pp. 179–196.

[10] W. Pugh, “The Omega test: A fast and practical integer programming algo-
rithm for dependence analysis,” in Proc. 1991 ACM/IEEE Conf. Supercomputing,
1991, pp. 4–13.

[11] R. M. Russell, “The CRAY-1 computer system,” Commun. ACM, vol. 21, no. 1,
pp. 63–72, 1978.

[12] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread extrac-
tion with decoupled software pipelining,” in Proc. 38th IEEE/ACM Int. Symp.
Microarchitecture, Nov. 2005, pp. 105–116.

[13] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream programs
on multicore platforms,” in Proc. SIGPLAN ’08 Conf. Programming Language
Design and Implementation, June 2008, pp. 114–124. [SP]

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 26, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

