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ABSTRACT

The main contribution of this thesis is the development of a technique for

static interprocedural slicing of shared memory parallel programs. While static in-

terprocedural slicing for sequential codes is well understood and used in a variety of

applications, there are no algorithms yet developed for static interprocedural slic-

ing of shared memory parallel programs. To facilitate the static slicing of parallel

programs, a new intermediate program representation, the threaded System De-

pendence Graph (tSDG), is developed to encompass the parallel and worksharing

constructs utilized in OpenMP. The concept of transitive dependence is redefined to

include dependences caused by conflict edges in shared memory parallel programs,

thus enabling interprocedural slicing of the new program representation. An al-

gorithm for interprocedural slicing over the tSDG representation is presented. The

slicing algorithm builds on the algorithms already developed for interprocedural slic-

ing of sequential programs and the algorithms developed for intraprocedural slicing

of parallel programs.
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Chapter 1

INTRODUCTION

Previous research in static program slicing has resulted in successful algo-

rithms and various program representations for slicing most types of sequential

programs. Static slicing of parallel programs, however, poses additional challenges,

and is still an active area of research.

A program slice is defined as the set of instructions in a program which affect

or potentially affect the values computed at a certain point in the program. The

point of interest in the program is called the slicing criterion, and is defined by the

pair 〈p, v〉, where p is a point (instruction) in the program, and v is a subset of

variables referenced at p[Tip95, Wei84]. This research focuses on the use of static

slicing, as opposed to dynamic slicing. A static slice is defined as the set of all

statements that affect or potentially affect the value of variable v used or defined

at p as computed by analyzing the program code[Wei84, HRB97]. Dynamic slicing

utilizes a specific input data set in addition to the program. Therefore, a dynamic

slice shows only the dependences that exist during a single execution of the program

with that input[Tip95]. In contrast, a static slice shows the dependences that exist

for any instance of program execution[Tip95]. To the author’s knowledge, this is

the first research to address static interprocedural slicing for imperative, shared

memory parallel programs, written using the OpenMP standard’s explicitly parallel

constructs.

OpenMP has become the standard for developing efficient, portable paral-

lel programs for shared memory multiprocessors (e.g., SGI’s Origin 3000) [Ope97].
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The OpenMP standard introduces the concepts of a parallel region and worksharing

constructs that have not previously been addressed in research on program analysis,

including slicing. When slicing shared memory parallel programs, the slicer must

take into account the possible interactions between access and storage of shared

variables by different threads that can potentially execute in parallel. To elucidate

these interactions for program slicing, a new program representation is developed,

called the threaded System Dependence Graph (tSDG). The tSDG is a fusion of the

tPDG[Kri98] and the SDG[HRB97] that allows multi-procedure parallel programs

to be analyzed. This thesis presents techniques to construct program slices using

the tSDG. Previous work on static slicing of parallel programs has been done by

Krinke[Kri98] and Cheng[Che97]. However, Krinke’s approach was restricted to slic-

ing with conservative assumptions about the effect of subroutine calls, and Cheng

concentrated on slicing of object-oriented parallel programs. The contribution of

this research is the development of an interprocedural program slicing technique for

OpenMP parallel programs that takes into account the effect of subroutine calls

within parallel constructs, and thus provides more precise slices than Krinke’s ap-

proach.

Static interprocedural program slicing has many useful applications, includ-

ing program debugging, testing, maintenance, integration, automatic parallelization,

and complexity measurement. Few sophisticated tools exist to assist programmers in

either the debugging or optimization of parallel programs. Optimizing compilers for

parallel programs cannot directly utilize optimizations for sequential programs, as

shown by Midkiff and Padua[MP90]. Thus, both the compiler and the programmer

require different or additional tools and methods to develop parallel codes effec-

tively. Static slicing of parallel codes can assist the programmer in understanding

their code and the dependences that exist within it. In addition, the compiler can

utilize slicing techniques to help guarantee program correctness; for example, when

2



the program contains different memory consistency models for different variables.

The following chapter gives an overview of program representations, slicing,

and parallel programming. Subsequent chapters describe the thesis research on the

tSDG, static interprocedural slicing of shared memory parallel programs, and a

prototype implementation of the techniques.
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Chapter 2

BACKGROUND: PROGRAM REPRESENTATION AND

SLICING

This chapter provides a background discussion of concepts in the area of pro-

gram representation. It also includes a discussion of the fundamental concepts and

algorithms necessary for the research undertaken. In particular, the chapter includes

an overview of sequential program slicing, an introduction to the targeted parallel

programming environment, and the motivations for slicing parallel programs.

This chapter describes three representations for sequential programs that are

commonly constructed and used for automatic program analysis as part of compiler

optimization and software development tools: (in ascending complexity) the control

flow graph (CFG), the program dependence graph (PDG)[FOW87], and the sys-

tem dependence graph (SDG)[HRB97]. Each representation incorporates or utilizes

information from previous representations.

To illustrate these representations and later, the algorithms, the C program

in figure 2.1 will be used throughout the chapter as the basis for a running example.

The linearized textual representation of the program in figure 2.1 illustrates one

way of viewing a program. This view, however, is useful only to the programmer,

not the compiler or program analysis tools. A transformation of the program from

source text to a graph structure is usually performed to facilitate analysis and/or

modification of the program by the compiler.
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1: int main(){

2: int a = 10, b = 4, c = -1;

3: for(int i = 0; i < 10;){

4: work(a, &b);

5: i = i + 1;

6: }

7: b = abs(b);

8: if(b > 10){

9: b = 10 + b;

10: } else{

11: work(a, &b);

12: }

13: printf(‘‘%d : %d : %d’’,a,b,c);

14: return 0;

15: }

Figure 2.1: Sequential Program for Running Example

2.1 Definitions and Terminology

2.1.1 Basic Blocks

A basic block is a consecutive sequence of instructions that has a single entry

and a single exit. In other words, execution of the block can only begin with the

first instruction, and it can only leave after execution of the last instruction of the

block. There are no jumps into or out of the middle of the block.

For example, the instructions on lines 4 and 5 of procedure main could be

combined to form a single basic block. However, line 3 could not be part of the

same basic block because the test condition of the while loop has two exits.

Basic blocks in this thesis are considered to contain only a single instruc-

tion. This allows more accurate slices to be calculated, as dependences between

basic blocks become dependences between instructions and not multiple instruc-

tions. Thus, instructions are not included which may have been part of the same

basic block, but which can not affect the slicing criterion.
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2.1.2 Graph Concepts

Graph G: A set of vertices V and the set of edges E connecting the vertices V,
written as G(V,E).

Vertex: A node in a graph (e.g., CFG, PDG, SDG, CCFG, tPDG, or tSDG) which
represents a program construct. A vertex can represent either an instruction,
a basic block, or a control structure (e.g., label, if-then, while, etc.) [Muc97].
This is the basic vertex type in each of the graphical representations; additional
vertex types will be defined throughout the chapter.

Edge: A relation between two (not necessarily distinct) vertices. For all graphical
representations, edges will be directed relationships. For the dependence graph
representations, an edge will represent a dependence between two vertices. A
dependence of vj on vi is written as:

vi
dep−→ vj (2.1)

Path: A path is a sequence of vertices vi, vi+1, ..., vj such that for each consecutive
pair of vertices 〈vk, vk+1〉, there exists a directed edge from vk to vk+1. The
existence of a path from vi to vj is written as:

vi −→∗ vj = (p = 〈vi, vi+1, . . . , vj〉|(∀k(i ≤ k < j))(vk −→ vk+1)) (2.2)

Predecessors / Successors: The predecessor set of a vertex vi (Pred(vi)) is the
set of all vertices vj where vj −→ vi, while the successor set of a vertex vi

(Succ(vi)) is the set of all vertices vj where vi −→ vj [Muc97].

2.1.3 Call Sequence

A call sequence is a sequence of procedures 〈p1, p2, . . . , pn〉 where pi contains

a call site to pi+1.

2.1.4 Call Graph

A call graph of a program with procedures p1, p2, . . . , pn is the graph G =

〈N, S,E, r〉 with vertex set N = {p1, p2, . . . , pn}, the set S of call site labels, the

set E ⊆ N × N × S of labeled edges, and the distinguished entry node r ∈ N

(representing the main program), where for each e = (pi, sk, pj), sk denotes a call

site in pi from which pj is called. If there is only one call from procedure pi to pj,

the call site sk may be omitted and the edge written as pi −→ pj[Muc97].

6



2.2 Control Flow Graph (CFG)

The control flow graph (CFG) is a common representation that models a

program’s possible flow of control[ASU86]. As stated in the definition of a vertex,

a vertex represents a basic block (of one instruction). Unique BEGIN and END

vertices, which do not represent basic blocks, are added to indicate the entry and

exit of the procedure, respectively. The BEGIN node is added as the first node of

the procedure and has as its successor the first real basic block. Each possible exit

from the procedure has as its successor the EXIT node, making it the final node in

the graph[Muc97].

The CFG utilizes control flow edges to describe the program. A control flow

edge, vi
cf−→ vj, reflects the potential for program execution to flow from vertex (or

basic block) vi to vertex vj. After a vertex V is executed at runtime, control will

be transferred (or flow) along one of V’s outgoing control flow edges. If V has more

than one outgoing control flow edge, a test must be performed as the last or only

instruction in the basic block represented by V. Case statements are handled as if

they were mutliple if statements. Thus, V cannot have more than two outgoing

control flow edges, as the tests performed must be of a boolean nature. If a vertex

has two successors, the two edges are considered to be labeled with either T (for

true) or F (for false), as appropriate for the outcome of the test. For any vertex V

in the CFG, it is assumed that a path exists from the BEGIN vertex to V to the

END vertex[FOW87].

Control Flow Path: A control flow path from vertex vi to vertex vj is a path
where the edge from vk to vk+1 must be a control flow edge, written as:

vi
cf−→∗vj = (〈vi, vi+1, . . . , vj〉|∃(vk

cf−→ vk+1)(i ≤ k < j)) (2.3)

An example CFG is shown in figure 2.2 for the code from figure 2.1. All edges

shown are control flow edges. Vertex v3 is a vertex with two control flow successors

because of the test it contains. The example also shows an example of a for (or

7



F

V1: Begin−Main

V2: int a=10
b=4
c=1
i=0

V6: b = abs(b);

V7: if(b > 10){

V11: return 0;

V10: printf("%d:%d:%d", a, b, c);

V12: End

V5: i = i + 1;

V4: work(a, &b);

V3: i<10

V8: b = 10 + b; V9: work(a, &b);

FT

T

Figure 2.2: CFG for Example Program
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loop) iteration structure. When the test evaluates to true, control passes into the

loop at vertex v4, then to vertex v5 and finally loops back to the test vertex v3.

When the test evaluates to false, control exits the loop and the program continues

at vertex v6. A branching construct is illustrated by the if control structure in

vertex v7 where control branches to vertex v8 on a true outcome and to vertex v9 on

a false outcome. Regardless of the outcome, control passes to v10 no matter which

path is taken after the if executes. There are many control flow paths which exist in

the graph, an example of one being the path from vertex v6 to v10 as 〈v6, v7, v8, v10〉.

Now that the concept of a CFG has been explained, several additional relationships

between vertices of a CFG are defined.

Dominance: A vertex vi dominates a vertex vj in the CFG iff all control flow
paths from BEGIN to vj pass through vi. Dominance is reflexive (every node
dominates itself), transitive (if vi dom vj and vj dom vk, then vi dom vk),
and antisymmetric (if vi dom vj and vj dom vi, then vi = vj)[Muc97], and is
written:

vi dom vj (2.4)

Post-Dominance: A vertex vj postdominates a vertex vi iff all control flow paths
from vi to END pass through vj[Muc97, Tip95], written:

vj pdom vi (2.5)

Immediate (Post)Dominance: A vertex vi is the immediate (post)dominator of
a vertex vj iff vi (post)dominates vj and no other vertex vc exists such that vi

(post)dominates vc and vc (post)dominates vj [Muc97], written:

vi (p)idom vj ≡ (vi (p)dom vj) ∧ ¬(∃vc)((vc 6= vi)

∧(vc 6= vj) ∧ (vi (p)dom vc) ∧ (vc (p)dom vj)) (2.6)

Strict (Post)Dominance: A vertex vi strictly (post)dominates a vertex vj iff vi

(post)dominates vj and vi 6= vj [Muc97], written:

vi (p)sdom vj ≡ ((vi (p)dom vj) ∧ (vi 6= vj)) (2.7)

Dominance Frontier: A dominance frontier for vertex vi contains all vertices vj

such that vi dominates an immediate predecessor of vj, but vi does not strictly
dominate vj[Muc97], written:

DF (vi) ≡ (vj|(vj ∈ V )(∃vk ∈ Pred(vj))((vi dom vk) ∧ ¬(vi sdom vj)) (2.8)

9



Reverse Dominance Frontier: A reverse dominance frontier for vi contains all
vertices vj such that vi postdominates an immediate successor of vj, but vi

does not strictly postdominate vj[Muc97], written:

RDF (vi) ≡ (vj|(vj ∈ V )(∃vk ∈ Succ(vj))((vi pdom vk) ∧ ¬(vi psdom vj))
(2.9)

Several examples of each of these properties exist in figure 2.2. Vertex v3

dominates vertices v4 and v5 because flow must pass through v3 from the BEGIN

vertex to reach v4 and v5. Vertex v3 also postdominates vertices v4 and v5 because

flow must pass through v3 to reach the END vertex. Vertex v6 not only dominates

vertex v7 but is also an immediate dominator of v7. The dominance frontier for

vertex v8 contains the vertex v10, and the reverse dominance frontier for v8 contains

v7.

There are several methods for calculating dominance and dominance frontiers

based on the structure and features of a language[Tip95, Muc97]. The details of these

algorithms is beyond the scope of this thesis. The concepts of (post)dominance and

(reverse)dominance frontiers are used for the construction of the program depen-

dence graph.

2.3 Program Dependence Graph (PDG)

The program dependence graph (PDG) is another common representation

for programs, originally developed by Ferrante, Ottenstein, and Warren[FOW87].

Though its meaning differs depending on the context [Muc97, LC94, HRB97], each

formulation is a variation on the original PDG formulation developed by Ferrante,

Ottenstein, and Warren[FOW87], intended to make explicit the data and control

dependences for each operation in a program. This thesis utilizes the program

dependence graph representation as defined by Horowitz et. al., and Lividas and

Croll. [HRB97, LC94].

Unlike the CFG which imposes a total execution ordering on the program, the

PDG only forces an execution order on those operations dependent on each other.
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Thus, the PDG shows only the minimally necessary sequencing of the operations in

the program. This property makes the PDG quite useful for automatic paralleliza-

tion, program slicing, and many optimizations that involve code movement.

For each procedure, a PDG is built that describes data and control depen-

dences of the procedure. As in the CFG, a vertex in the PDG represents a basic

block, in addition to BEGIN and END vertices that uniquely indicate entry and

exit into and out of the procedure. Unlike the CFG where edges represent potential

for execution, edges in the PDG represent data and control dependences. The PDG

utilizes the control flow edges of a CFG when determining control dependence edges,

thus a CFG is usually built before the PDG is constructed. Figure 2.3 shows the

PDG for the example code from figure 2.1.

Control Dependence Edge (CD): In a PDG, a directed edge from vi to vj writ-

ten vi
cd−→ vj, that represents the execution dependence of vj on vi. Control

dependence between vi and vj is defined in terms of the dominance relation
between vi and vj and the set of all possible paths P between them.

vj is control dependent on vi iff:

1. There exists a control flow path p ∈ P from vi to vj, whereby vj post-
dominates every vertex in the path p, excluding vi and vj.

2. vi is not postdominated by vertex vj[FOW87].

vi
cd−→ vj ≡ ¬(vj pdom vi) ∧ (∃P = 〈vi, vi+1, . . . , vj〉)

(∀vk, i < k < j ∈ P )((vj pdom vk)) (2.10)

Essentially, vi is the closest preceding vertex to vj whose execution does not

guarantee that vj executes. Thus, there must be at least one other control flow path

from vi to END which does not include vj. This generally occurs from the use of

a control structure with a branch, such as an if or while statement at vi. Thus,

every vertex of the PDG is control dependent upon a control structure (if-then,

while, etc.) or upon the BEGIN node itself[LC94].
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Using the code from figure 2.1 and CFG from figure 2.2, control dependences

can be constructed for the PDG of procedure main(shown in figure 2.3). Vertex v5 is

control dependent upon vertex v3 (the loop test) because there exists a control flow

path from v3 to v5, 〈v3, v4, v5〉, such that v5 postdominates every vertex in the path

except v3 and v5. Thus v5 is control dependent upon v3. Vertex v5 is not control

dependent on vertex v2 because the only path from v2 to v5 includes v3, which, as

just established, v5 does not postdominate. Thus, there is not a control dependence

edge from v2 to v5. Having defined control dependence, it remains to define data

dependence.

There are four types of data dependence which can occur in the PDG: Def-

Use (flow dependence), Def-Def (output dependence), Use-Def (antidependence),

and Use-Use (input dependence)[Muc97]

Flow Dependence Edge (Def-Use) (DU): In a PDG, a data dependence edge
from vi to vj exists under the following conditions:

1. vi is a vertex that defines variable x

2. vj is a vertex that uses x

3. Control can reach vj after vi via an execution path along which there is
no intervening definition of x. That is, there is a path in the CFG for
the program by which the definition of x at vi reaches the use of x at vj.
(Initial definitions (with value “undefined”) of variables are considered to
occur at the beginning of the CFG; final uses of variables are considered
to occur at the end of the CFG.) [HRB97]

It is possible for a vertex to be data dependent upon itself, when the statement
resides in a loop.

vi
du−→ vj ≡ (∃vara)((vara ∈ DEF (vi)) ∧ (vara ∈ USE(vj)) ∧

(∃P = 〈vi, vi+1, . . . , vj〉)(∀vk, i < k < j ∈ P )

¬(vara ∈ DEF (vk))) (2.11)

Output Dependence Edge (Def-Def): An output dependence edge exists from
vertex vi to vertex vj under the following conditions:
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1. vi defines variable x

2. vj defines variable x

3. Control can reach vj after vi via an execution path along which there is
no intervening definition of x. [Muc97]

Antidependence Edge (Use-Def): An antidependence edge exists from vertex
vi to vertex vj under the following conditions:

1. vi is a vertex that uses variable x

2. vj is a vertex that defines x

3. Control can reach vj after vi via an execution path along which there is
no intervening definition of x. [Muc97]

Input Dependence Edge (Use-Use): An input dependence edge exists from ver-
tex vi to vertex vj under the following conditions:

1. vi and vj both use the same variable x.

2. Control can reach vj after vi via an execution path along which there is
no intervening definition of x. [Muc97]

Reaching Definition The definition of a variable vi is a reaching definition for all
uses flow dependent upon vi. [Tip95]

Though there are four kinds of data dependence which can occur between

two vertices, only flow dependence is necessary for the slicing algorithm [Tip95].

Horowitz adds output dependence edges to the PDG representation for the purpose

of making the PDG adequate. That is, if two programs have isomorphic PDGs, they

are strongly equivalent[Tip95]. Although output dependence is utilized in other

program analysis techniques, it is not necessary for slicing and is not considered

henceforth. Also, antidependence and input dependences are not needed because

antidependences can be removed by variable renaming, and input dependences play

no role in either slicing or optimization because neither statement in an input de-

pendence is changing the value of the variable. Thus, our PDG representation only

considers flow data dependences.
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V1: Begin−Main
V2: int a=10, b=4, c=−1;

V4: work(a, &b);

V5: i = i + 1;

V3: for(int i=0; i<10;){

V6: b = abs(b); V7: if(b > 10){

V10: printf("%d:%d:%d", a, b, c);

V11: return 0;
V12: End

V9: work(a, &b);V8: b = c + b;

Control Dependence

Data Dependence

Figure 2.3: PDG for CFG in Figure 2.2

An example of def-use data dependence in the PDG for procedure main (based

on code from figure 2.1 and CFG from figure 2.2) is that of the data dependence

between vertices v6 and v7. Vertex v6 defines the variable b which is then used in

vertex v7. The necessary control flow path from v6 (the def) to v7 (the use) exists

and there is no intervening definition of b. Thus, vertex v7 is data dependent upon

vertex v6.

2.4 Intraprocedural Slicing

Having defined a program representation suitable for individual procedures,

formulation of a basic intraprocedural slicing technique is possible. Given a proce-

dure and its PDG representation G, a slicing criterion 〈p, v〉 of the program is equiv-

alent to slicing its PDG representation on variable v, represented as G/s, starting at

vertex s associated with program point p. For single procedure sequential programs,

the slice of G/s is a simple graph reachability problem. Vertex s must be directly

or transitively control or data dependent on any vertex which affects or potentially

affects the value of v at s. Thus, if s is transitively control or data dependent upon

vi, then vi is in the set of vertices resulting from slicing G/s.

14



Algorithm IntraSlice
Input: Vertex s to start slicing

PDG G = (V, E)
Output: The slice S, a subset of the vertices of the PDG G

worklist ω = {s}
slice S = {s}
repeat

remove the next element x from ω

for all edges (e = (y
cd,du−→ x) ∈ E) do

if y has not been marked already then
mark y as reached
ω = ω ∪ {y}
S = S ∪ {y}

until worklist ω is empty
return S

Figure 2.4: Horowitz, Reps, and Binkley’s Intraprocedural Slicing Algorithm using
the PDG [HRB97]

All vertices that can be reached via a backwards traversal of the PDG over

either control or data dependence edges starting from s are included in the slice for

s. V (G/s) represents the subset of vertices computed to be in the slice of s, shown

in equation 2.12 and computed by the algorithm in figure 2.4.

V (G/s) = {w|w ∈ V (G) ∧ (w
cd,dd−→∗s)}[HRB97] (2.12)

An example of a program slice for a slicing criterion 〈v9, {a, b}〉 for a PDG

is shown in figure 2.5, where vertices that are part of the slice are shown in black.

Slicing begins at vertex v9 and follows edges as shown below. Upon being added to

the worklist a vertex is considered marked as part of the slice.

1. w = {v9}
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V5: i = i + 1;

V10: printf("%d:%d:%d", a, b, c);

V11: return 0;
V12: End

V8: b = c + b;

Control Dependence

Data Dependence

V9: work(a, &b);

V7: if(b > 10){V6: b = abs(b);

V3: for(int i=0; i<10;){

V1: Begin−Main
V2: int a=10, b=4, c=−1;

V4: work(a, &b);

Figure 2.5: Intraprocedural Slicing Example

• v6
du−→ v9, S = {v9, v6}, w = {v6}

• v2
du−→ v9, S = {v9, v6, v2}, w = {v6, v2}

• v7
cd−→ v9, S = {v9, v6, v2, v7}, w = {v6, v2, v7}

2. w = {v6, v2, v7}

• v4
du−→ v6, S = {v9, v6, v2, v7, v4}, w = {v2, v7, v4}

• v1
cd−→ v6, S = {v9, v6, v2, v7, v4, v1}, w = {v2, v7, v4, v1}

3. w = {v2, v7, v4, v1}

• v1
cd−→ v2, S = {v9, v6, v2, v7, v4, v1}, w = {v7, v4, v1}

4. w = {v7, v4, v1}

• v6
du−→ v7, S = {v9, v6, v2, v7, v4, v1}, w = {v4, v1}

• v1
cd−→ v7, S = {v9, v6, v2, v7, v4, v1}, w = {v4, v1}

5. w = {v4, v1}

• v2
du−→ v4, S = {v9, v6, v2, v7, v4, v1}, w = {v1}
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• v4
du−→ v4, S = {v9, v6, v2, v7, v4, v1}, w = {v1}

• v3
cd−→ v4, S = {v9, v6, v2, v7, v4, v1, v3}, w = {v1, v3}

6. w = {v1, v3}

v1 has no incident edges.

7. w = {v3}

• v5
du−→ v3, S = {v9, v6, v2, v7, v4, v1, v3, v5}, w = {v5}

• v1
cd−→ v5, S = {v9, v6, v2, v7, v4, v1, v3, v5}, w = {v5}

8. w = {v5}

• v3
du−→ v5, S = {v9, v6, v2, v7, v4, v1, v3, v5}, w = {}

• v5
du−→ v5, S = {v9, v6, v2, v7, v4, v1, v3, v5}, w = {}

• v3
cd−→ v5, S = {v9, v6, v2, v7, v4, v1, v3, v5}, w = {}

9. Slice = {v9, v6, v2, v7, v4, v1, v3, v5}

2.5 System Dependence Graph (SDG)

The system dependence graph (SDG) is a program representation introduced

by Horowitz, Reps, and Binkley[HRB97] to model dependences between procedures

as well as within procedures. The PDG as defined before is designated as the

procedure dependence graph, and the SDG links the procedure dependence graphs

of the whole program’s procedures based on their calling relationships[HRB97]. In

this way, interprocedural dependences are represented as well as intraprocedural

dependences. The goal of combining these graphs is 3-fold[HRB97].

1. To allow interprocedural slicing in a manner analogous to intraprocedural

slicing (i.e., as a graph reachability problem).
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2. To build each PDG without any (or with minimal knowledge) of other PDGs.

3. To connect each PDG with other PDGs in an efficient and simple manner.

Extending the representation to reflect dependences of control and data from one

procedure to another requires the addition of new variables. Dependences among

these new variables allows the computation of dependences across a call site C.

Consider a call site C in procedure R with actual parameters a1, a2, ..., ak that calls

procedure Q, with formal parameters f1, f2, ..., fk. New vertices are defined to model

the transfer of parameters between procedures R and Q. At the call site C, two new

vertices are created for each parameter a1, a2, ..., ak passed into the procedure: an

actual-in and an actual-out vertex. For procedure Q, two new vertices are created

for each formal parameter f1, f2, ..., fk in the procedure header: a formal-in and a

formal-out vertex.

The SDG models the parameter passing using temporary variables and the

new vertices just described[HRB97]. Actual parameter ai of call site C is passed

to procedure Q via the intermediate variable fi in for the corresponding formal

parameter f. Before the call at C is executed, the assignment fi in← ai is made, and

after the call at C, but before the the first statement of Q is executed, the assignment

fi ← fi in is considered to be executed. A different, but analogous variable fi out

is used when Q transfers the value of fi back to ai in R. When the procedure Q is

finished executing, the assignment is made by the assignment fi out← fi. Finally,

the actual parameter ai receives the new value by the assignment ai ← fi out. If

the argument ai is an expression instead of a variable, or a pass by value parameter,

then no assignment is made back to the actual parameter ai. To illustrate these

new assignments, several new vertices are introduced.

Call Site Vertex (CS): Each call site is represented as its own separate vertex in
the SDG. Call site C in procedure R that calls procedure Q the jth time is
represented by csQ

j in the subgraph for the PDG of R [HRB97].
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Actual-In/Out Vertex (AI/O): These vertices represent parameter transfer from
the calling procedure’s point of view for each actual parameter ai and its corre-
sponding formal parameter fi. They represent the instructions fi in← ai for
parameter transfer to the called procedure, and the instruction ai ← fi out
for parameter transfer from the called procedure, respectively. If the argu-
ment ai is an expression and not a variable, then only an actual-in vertex,
fi in ← ai, is constructed, as it is not possible to assign to an expression,
obviating the need for an actual-out vertex, ai ← fi out. Also, actual-out ver-
tices are not constructed for pass by value parameters, as their values cannot
be changed, and so should not receive a value back from the called procedure.
Each actual-in/out vertex is control dependent upon the call site vertex for
the corresponding call-site [HRB97].

(∀a ∈ (∀k actual ink ∪ ∀m actual outm)(csQ
j

cd−→ a) (2.13)

Formal-In/Out Vertex (FI/O): These vertices represent parameter transfer from
the called procedure’s (i.e., Q’s) perspective. They contain the instructions
fi ← fi in for parameter transfer into the called procedure’s formal param-
eters, and the instruction fi out ← fi for parameter transfer from the called
procedure’s formal parameters back to the caller’s actual parameters. Each
formal-in/out vertex is control dependent upon the BEGIN vertex of the called
procedure Q [HRB97].

(∀f ∈ (∀k(formal ink ∪ formal outk))(BEGINQ cd−→ f) (2.14)

Using this model, data dependences between procedures are limited to de-

pendences from actual-in vertices to formal-in vertices and from formal-out vertices

to actual-out vertices [HRB97]. Figure 2.6 shows the original C program of figure

2.1 with the code for the work procedure included. Figure 2.7 shows the SDG for

this entire program which now includes the vertices just defined. A call site vertex

is shown at both vertex v4 and vertex v9. In the SDG, vertices v13, v14, v16, and v17

are actual-in vertices, while vertices v15 and v18 are actual-out vertices. Procedure

main has no arguments and thus no formal-in or formal-out vertices. Procedure

work, on the other hand, has two arguments, with vertices v6 and v8 as the formal-

in/out vertices for argument u and vertices v7 and v9 as the formal-in/out vertices
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for argument v. To connect the PDGs with the new vertices to form the system

dependence graph, three new kinds of edges are added:

Call Edge (CA): For each call site C, a call edge is created from the call site
vertex at C in R to the BEGIN node of the caller Q. Call edges represent a
control dependence of the execution of procedure Q on the execution of the
procedure call at C in R[HRB97].

(∀j)(csQ
j

ca−→ BEGINQ) (2.15)

Parameter-In/Out Edges (PI/O): For each call site C in R, each actual-in/out
vertex is linked via a parameter-in/out edge to its corresponding formal-in/out
vertex. A parameter-in edge is added from each actual-in vertex of C to the
corresponding formal-in vertex in Q. Similarly, a parameter-out edge is added
from each formal-out vertex of Q to the corresponding actual-out vertex of C in
R, if the actual-out node exists. Parameter edges represent data dependences
between procedures[HRB97].

(∀k)actual ink
pi−→ formal ink

(∀k)formal outk
po−→ actual outk

Examples of these edge types are also shown in figure 2.7. A call edge exists

between vertex v4 of procedure main and vertex v1 of procedure work. A parameter-

in edge exists between v13 of main and v6 of work, while a parameter-out edge exists

between v9 of work and v18 of main.

With these new vertices and edges, several PDGs are combined into an SDG,

which allows a better analysis of procedure calls when slicing, as the data depen-

dences across procedure calls can be determined. Without the SDG, the slicing

algorithm must assume that any pass by reference parameters in a procedure call

are altered in the procedure call. That is, if ai is passed by reference, then, without

the SDG, the slicing algorithm would be forced to make the conservative assumption

that all actual-in vertices affect the computation of ai.
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1: int main(){

2: int a = 10, b = 4, c = -1;

3: for(int i = 0; i < 10;){

4: work(a, &b);

5: i = i + 1;

6: }

7: b = abs(b);

8: if(b > 10){

9: b = 10 + b;

10: } else{

11: work(a, &b);

12: }

13: printf(‘‘%d : %d : %d’’,a,b,c);

14: return 0;

15: }

16:

17: void work(int u, int *v){

18: *v = *v + u;

19: u = 20 - *v;

20: }

Figure 2.6: Example C Program Expanded
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V1: Begin−Main
V2: int a=10, b=4, c=−1;

V3: for(int i=0; i<10;){

V6: b = abs(b); V7: if(b > 10){

V10: printf("%d:%d:%d", a, b, c);

V11: return 0;

V9: work(a, &b);V8: b = c + b;V5: i = i + 1;

V13: u_in=a V14: v_in=&b V15: b=v_out V16: u_in = a V17: v_in =&b V18: b = v_out

V6: u=u_in V9: v_out = *vV8: u_out = uV7: v=v_in

V4: work(a, &b);

V1: Begin−Work

V12: End

V2: *v=*v+u; V3: u=20−*v; V4: End

Control Dependence Data Dependence Param−In/Out & Call

Figure 2.7: Example of an SDG
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2.5.1 Calling Context and Interprocedural Slicing

Once the PDG of the procedures have been linked together at each call site

to form a SDG, slicing can be performed on an interprocedural level. However,

direct use of the intraprocedural slicing algorithm, phrased as a graph-reachability

approach, in figure 2.4, though possible, results in inaccurate slices, due to the

calling context problem[HRB97]. The calling context problem occurs when slice

computation descends into a called procedure P, and ascends out of P to all possible

call sites which call P. This allows possibly infeasible execution paths that enter

P from one procedure, but exit to a different procedure to be computed. Vertices

that are on these infeasible paths may be included in the computed slice, but they

are not possibly reached in any execution. This produces inaccurate slices. Further

discussion and examples of the calling context problem in relation to slicing are

included in section 2.6.

Horowitz, Reps, and Binkley[HRB97] solve the calling context problem and

thus compute more accurate slices by extending the SDG representation with tran-

sitive dependence edges between actual-in and actual-out vertices. Because of the

inclusion of transitive dependence edges, the computation of interprocedural slices

is split into two passes over the SDG, discussed in section 2.6.[HRB97]

Transitive Dependence Edge (TR): Transitive dependences exist between an
actual-in vertex actual ini and actual-out vertex actual outj at a call site C in
procedure R when the incoming value in formal ini may be used in obtaining
the outgoing value in formal outj of procedure Q[Tip95]. Each actual outj
vertex may be transitive dependent upon more than one actual ini vertex.
Transitive dependences respresent a data dependence of the actual parameter
after the call on zero or more actual parameters before the call. Transitive
dependences are calculated between formal variables of Q, but the actual edges
themselves are placed at the call site in R.

Procedure Summary Information: The set of transitive dependences between
formal-in/out variables of a procedure that are reflected back to every call site
that calls the procedure[HRB97, Tip95].
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Transitive Dep.

V1: Begin−Main
V2: int a=10, b=4, c=−1;

V3: for(int i=0; i<10;){

V6: b = abs(b); V7: if(b > 10){

V10: printf("%d:%d:%d", a, b, c);

V11: return 0;

V9: work(a, &b);V8: b = c + b;V5: i = i + 1;

V13: u_in=a V14: v_in=&b V15: b=v_out V16: u_in = a V17: v_in =&b V18: b = v_out

V6: u=u_in V9: v_out = *vV8: u_out = uV7: v=v_in

V4: work(a, &b);

V1: Begin−Work

V12: End

V2: *v=*v+u; V3: u=20−*v; V4: End

Control Dependence Data Dependence Param−In/Out & Call

Figure 2.8: SDG with Transitive Dependences

24



Given the SDG in figure 2.7, the formal-in vertex for argument u affects the

formal-out vertices for both u and v. Exactly how this is deduced is explained in

section 2.5.2. An SDG extended with transitive edges is shown in figure 2.8.

Unfortunately, transitive dependences cannot be computed using the transi-

tive closure of a called procedure because the same calling context problem would

be encountered. If the language does not allow recursion, then the calling context

problem can be avoided by replicating the PDG representation of each procedure at

each call site which calls it, forming a call tree. This would allow the computation

of transitive dependences by determining the procedure summary information for

procedures at the leaves of the tree, projecting that information up one level of the

tree, and repeating the process until the root of the tree has been reached.

To handle languages with recursion, Horowitz, Reps, and Binkley[HRB97]

define a linkage grammar. The linkage grammar models the call structure as well

as the intraprocedural transitive dependences. Interprocedural transitive depen-

dences are computed using the linkage grammar with a standard attribute grammar

construction[HRB97].

An alternative method to determine interprocedural transitive dependences

was developed by Lividas and Croll[LC94]; this method does not require the use of

a linkage grammar. Lividas and Croll build the transitive dependence edges directly

into the SDG while constructing the SDG, instead of after the SDG construction is

complete, as Horowitz, et. al., do.

2.5.2 Lividas and Croll’s Approach to Adding Transitive Dependence

Edges

Lividas and Croll form the SDG incrementally, beginning with formation

of the PDG for the main procedure. Construction branches at call sites to form

the PDG for the called procedure. A procedure Q is considered solved when all

control and data dependences have been computed for the procedure. The procedure
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Q is considered summarized when all transitive dependences, and thus summary

information, have been calculated. Summarizing a procedure Q requires that it first

be solved.

For non-recursive programs, Lividas and Croll starts with a call sequence

graph initialized to the main procedure. A call sequence graph is a call sequence

where each item in the list is the partial solution to a procedure. When a call site

to procedure Q is encountered in the procedure being solved, construction of Q’s

PDG begins only if a PDG has not already been constructed for Q (Q has not been

solved). Assuming the PDG has not already been constructed, there are two cases

to consider. First, if Q is terminal (i.e., contains no calls to other procedures), then

the summary information is computed and reflected back to the call site. Because Q

contains no calls, the calling context problem can not be encountered and transitive

dependences can be computed for Q’s summary information. Second, if Q is not

terminal (i.e. contains calls to other procedures), construction on the PDG for

Q begins, but must stop at call sites encountered. As before, when a call site

is encountered, a partial solution to the PDG is saved, and construction of the

called procedure’s PDG begins, assuming the called procedure has not already been

summarized. This recursive process is guaranteed to stop, since the only ways it

could continue indefinitely are if there exists a set of mutually recursive procedures

(creating a loop in the call sequence) or if there were infinitely many call sites.

Since, the program is not recursive, no loops exist in the call sequence for the

program, and since the program is of finite size, there must be a finite number of

call sites. Thus, this method guarantees the SDG is built with the proper transitive

dependence edges, but only in a non-recursive environment. As a byproduct of using

this method, the SDG is built in one pass through the program.

To obtain the transitive dependence edges, Lividas and Croll redefine the way

a transitive dependence edge is determined. Also, Lividas and Croll add other edges
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to fully describe the properties of the called procedure to the caller, as the programs

Lividas and Croll consider include the possibility of return values for procedures,

which Horowitz, Reps, and Binkley do not.

Transitive Dependence Edge (TR): A transitive dependence edge exists from
an actual-in vertex actual ini to an actual-out vertex actual outj if the formal-
in vertex formal ini is intraslice-path reachable from the formal-out vertex
formal outj[LC94]. A vertex vi is intraslice path reachable from a vertex vj if
vi ∈ V (G/vj) where G is the procedure’s PDG.

actual ini
tr−→ actual outj ≡ (formal ini ∈ (G/formal outj)) (2.16)

Return Link Edges (RL): For each return site in the called procedure Q, a return-
link edge is created from the return vertex in Q to each call site that calls Q.

(∀p ∈ P )(∀csQ ∈ p)(∀rs ∈ RS(Q))(rs
rl−→ csQ) (2.17)

Where P is the set of procedures and RS(Q) returns all return vertices for the
procedure Q.

Affect-Return Edges (AR): If the call site C expects a return value, then the
vertex representing the return value of C in the calling procedure is affect-
return dependent on each actual-in vertex actual ini which corresponds to
the actual parameter that influences the returned value and is incident to the
procedures’ call site vertex[LC94]. Affect-return dependence is essentially a
data dependence much like transitive dependence, except that the return value
is never passed into the procedure, so transitive dependence is not appropriate
for this situation.

(∃vreturn)(actual ini
ar−→ vreturn) ≡ (∃rs ∈ RS(Q))(formal ini ∈ (G/rs))

(2.18)

Return Control Edges (RC): A return control edge indicates the dependence
between the return statement of a procedure Q and other statements follow-
ing the return statement in Q which will not be executed when the program
exits on a return statement. That is, execution of the return statement R pre-
cludes execution of all statements return control dependent on R. This edge is
necessary only when using a syntax-directed method for determining control
dependences[LC94]. This edge is not utilized given our definition of control
dependence defined in equation 2.10, as it is not syntax-directed.
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Procedure Summary Information The union of the three sets of dependence
edges for a procedure: transitive dependences, affect-return dependences, and
return-link dependences[LC94].

The addition of affect-return and return-link edges to Lividas and Croll’s

procedure summary information is necessary to consider the effects of procedure

calls on return values. Horowitz, et. al., do not allow return statements to return

variables, which is the reason their summary information contains only transitive

dependence edges[HRB97].

An SDG constructed using Lividas and Croll’s method looks exactly the same

as one constructed by Horowitz, et. al., except that it contains affect-return and

return-link edges. An altered version of the example code is shown in figure 2.9,

with its SDG shown in figure 2.10.

The SDG shown in figure 2.10 illustrates transitive dependence edges which

are deduced using Lividas intra-slice path reachable criterion. As an example, in

procedure work, since the formal-in vertex for argument u (v6) is intra-slice path

reachable from the formal-out vertex for argument v (v9), a transitive dependence

exists between the corresponding actual-in and actual-out vertices at each call site.

For the call site at vertex v4 in procedure main, this means that there is a transitive

dependence edge from vertex v13 to vertex v15. On the other hand, even though the

formal-in vertex for argument u (v6) in procedure work is intra-slice path reachable

from the formal-out vertex for argument u (v8), a transitive edge is not placed at

the call site vertex v4 in procedure main. This occurs because parameter u is passed

by value, so an actual-out vertex for it was not created at this call site. Since there

is no actual-out vertex, a transitive dependence edge can not exist.

Examples of affect-return and return-link edges are also shown in figure 2.10.

An affect-return edge exists from vertex v4 in procedure main where the variable

c expects a return value and is affected by the actual-in vertex corresponding to

parameter u (v13). Much like the transitive dependence, an affect-return edge exists
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1: int main(){

2: int a = 10, b = 4, c = -1;

3: for(int i = 0; i < 10;){

4: c = work(a, &b);

5: i = i + 1;

6: }

7: b = abs(b);

8: if(b > 10){

9: b = 10 + b;

10: } else{

11: c = work(a, &b);

12: }

13: printf(‘‘%d : %d : %d’’,a,b,c);

14: return 0;

15: }

16:

17: int work(int u, int *v){

18: *v = *v + u;

19: return (20 - *v);

20: }

Figure 2.9: Example C Code Expanded with Return Values
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Return−Link

V1: Begin−Main
V2: int a=10, b=4, c=−1;

V3: for(int i=0; i<10;){

V6: b = abs(b); V7: if(b > 10){

V10: printf("%d:%d:%d", a, b, c);

V11: return 0;

V8: b = c + b;V5: i = i + 1;

V13: u_in=a V14: v_in=&b V15: b=v_out V16: u_in = a V17: v_in =&b V18: b = v_out

V6: u=u_in V9: v_out = *vV8: u_out = uV7: v=v_in
V1: Begin−Work

V12: End

V2: *v=*v+u;

V4: c=work(a, &b);

V9: c=work(a, &b);

V4: End
V3: return (20−*v);

Control Dependence Data Dependence Param−In/Out & Call

Transitive Dep. Affect−Return

Figure 2.10: Example of an SDG with Lividas and Croll’s Extensions
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between the call-site and the actual-in vertex when the corresponding formal-in

vertex (v6) in procedure work is intra-slice path reachable from the return vertex

(v3) (also in procedure work). A return-link edge is illustrated by the edge from the

return site in procedure work (v3) to a call-site in procedure main (v4) that calls

procedure work.

To handle programs with recursion, Lividas and Croll introduced the extended

call sequence graph (ECSG) which detects recursive procedures (actually, sets of pro-

cedures). The ECSG is a dynamic multilist based on the call sequence graph (CSG)

previously defined. The backbone of the ECSG is a CSG itself. Associated with

each node N in the backbone is a list of procedures referred to as the iterate list

rooted at N. Once a recursive procedure set is detected, the set’s members are cap-

tured in their own iterate list. Summary information for the entire set is computed

iteratively until all procedures in the set have been fully summarized[LC94].

2.5.3 Refinement of Actual-Out Vertices

It is possible to further refine the accuracy of slicing by removing actual-out

vertices that should not exist. This was partly shown when actual-out vertices were

not built when expressions were passed into procedures. In C, actual-out vertices can

also be ignored when the parameter is not passed by reference. Since all variables

in C not passed by reference are passed by value, actual variables which are not

passed by reference are guaranteed not to have their values changed by the called

procedure. Since the actual variable cannot be changed, no actual-out vertex needs

to be created to reflect the possibility of a new definition for the variable. Finally,

even if the parameter is passed by reference, but it is not modified in the called

procedure, the actual out node also should not be created for the same reason as a

passed by value variable.

Horowitz, Reps, and Binkley[HRB97] use the results of interprocedural data-

flow analysis when constructing the procedure dependence graphs to determine
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which actual-out vertices that can be safely eliminated. The appropriate inter-

procedural summary information consists of the following sets, which are computed

for each procedure P[HRB97]:

GMOD(P): The set of variables that might be modified by P itself or by a proce-
dure (transitively) called from P.

GREF(P): The set of variables that might be referenced by P itself or by a pro-
cedure (transitively) called from P.

The sets GMOD and GREF are used to determine which parameter ver-

tices to include in PDGs as follows: for each procedure P, the parameter ver-

tices subordinate to P’s BEGIN vertex include one formal-in vertex for each vari-

able in GMOD(P ) ∪ GREF (P ) and one formal-out vertex for each variable in

GMOD(P). Similarly, for each site at which P is called, the parameter vertices

subordinate to the call site vertex include one actual-in vertex for each variable in

GMOD(P )∪GREF (P ) and one actual-out vertex for each variable in GMOD(P).

(It is necessary to include an actual-in and formal-in vertex for a variable x that

is in GMOD(P) and is not in GREF(P) because there may be an execution path

through P on which x is not modified. In this case, a slice of P with respect to the

final value of x must include the initial value of x ; thus, there must be a formal-in

vertex for x in P and a corresponding actual-in vertex at the call to P.)[HRB97]

Lividas and Croll[LC94] present a different method which does not require the

calculation of GMOD and GREF sets. Determination of which actual-out vertices

to construct can be done with information already contained in the PDG of the

called procedure. Since the PDG of each procedure is built as the SDG is built, the

proper actual-out vertices can be determined during SDG construction. Lividas and

Croll consider four cases:

Case 1: Never Modified The variable is passed to the procedure and is never
modified (i.e., there is no execution path where the variable is defined).
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Case 2: Always Modified The variable is passed to the procedure and is always
modified (i.e., there is no execution path where the variable is not defined).

Case 3: Sometimes Modified The variable is passed to the procedure and is
sometimes modified (i.e., there are some paths where the variable is defined
and others where it is not).

Case 4: Unknown The initial condition before the variable has been classified.
This case does not exist after the variable has been classified. [LC94]

The second and third cases can be combined for the purposes of slicing,

the differentiation being of use to other related applications, such as calculation of

reaching definitions[LC94].

2.6 Interprocedural Slicing

As in intraprocedural slicing, interprocedural slicing is performed starting

at a vertex s in the SDG representation G (in this thesis, an SDG constructed by

Lividas and Croll’s method). Interprocedural slicing is still fundamentally a graph

reachability algorithm but with respect to the SDG. The challenges for interproce-

dural slicing occur when descending into a called procedure. The context of the call

(i.e., the calling procedure) must be maintained. This requires keeping track of the

call-order of the procedures during slicing to maintain proper context for ascending

back from called procedures. By introducing transitive edges into the SDG repre-

sentation, the calling context problem is avoided, as the slicing algorithm can step

across a call without descending into it[HRB97].

To illustrate the calling context problem, consider figure 2.10. If slicing began

at vertex v6 in procedure main, it would reach vertex v4, and also descend into

procedure work. From procedure work, it would ascend (via call edges) back to

vertex v4, which is correct, but also back to vertex v9, which is incorrect. By

including vertex v9, in the slice the accuracy of the slice greatly decreases. This

decrease in accuracy is the reason for the addition of transitive dependence edges,

which allow the calling context problem to be avoided.
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To find the slice G/s, two passes are made through the SDG. Since the

SDG is based on Lividas and Croll’s modifications, the algorithm presented here

is Lividas and Croll’s version of Horowitz, et. al.’s original interprocedural slicing

algorithm[LC94, HRB97]. The first pass of the slicing algorithm finds the set of

vertices reachable directly or transitively only by the following edges: control de-

pendence (cd) , def-use dependence (du), parameter-in (pi), transitive dependence

(tr), affect-return (ar), and call (ca). Using only these edges, the first pass can only

ascend into a procedure; it cannot descend into any called procedure. It is during

this pass that the transitive dependence edges described earlier allow the slicer to

sidestep the calling context problem. The second pass finds the set of vertices transi-

tively reachable using the edges: control dependence (cd), def-use dependence (du),

parameter-out (po), transitive dependence (tr), affect-return (ar), and return-link

(rl). This pass can only descend into called procedures. The final slice is the union

of these two sets.

For the second pass, it is necessary to keep track of a list of call sites found in

the first pass. When slicing during the second pass, the algorithm should also slice

on those call sites, so as to include all procedures called by procedures which directly

or transitively call the procedure containing s. The algorithm for interprocedural

slicing of a SDG is shown in figure 2.11 and utilizes the intraprocedural algorithm

presented earlier, modified to consider a different subset of edges for each pass.

Applying the slicing algorithm defined in figure 2.11 to vertex v6 in procedure

main to the SDG in figure 2.10 produces the slice shown in the figure 2.12, where

the vertices in the slice are shown in black, after the first pass. As the figure shows,

the first pass does not descend into procedure work; it uses the transitive edges to

step across the procedure call. Figure 2.13 shows the slice produced by the slicing

algorithm after the vertices marked by the first and second pass have been combined.

The final slice includes vertices from procedure work as the second pass was able to
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Algorithm InterSlice
Input: Vertex s to start slicing

SDG G = (V, E)
Output: The slice S, as subset of vertices of the SDG

S1 = IntraSlice(s, SDG G′ = (V, E ′ = (∀(cd, du, pi, tr, ar, ca) ∈ E))
S2 = IntraSlice(s, SDG G′ = (V, E ′ = (∀(cd, du, po, tr, ar, rl) ∈ E))
S = S1 ∪ S2

return S

Figure 2.11: Interprocedural Slicing Algorithm

V1: Begin−Main

V7: if(b > 10){

V10: printf("%d:%d:%d", a, b, c);

V11: return 0;

V8: b = c + b;

V16: u_in = a V17: v_in =&b V18: b = v_out

V6: u=u_in V9: v_out = *vV8: u_out = uV7: v=v_in
V1: Begin−Work

V12: End

V2: *v=*v+u;

V9: c=work(a, &b);

V4: End
V3: return (20−*v);

Control Dependence Data Dependence Param−In/Out & Call

Transitive Dep. Affect−Return Return−Link

V6: b = abs(b);

V15: b=v_outV14: v_in=&bV13: u_in=a

V4: c=work(a, &b);

V3: for(int i=0; i<10;){

V2: int a=10, b=4, c=−1;

V5: i = i + 1;

Figure 2.12: Interprocedural Slicing Example - Pass 1
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V9: v_out = *v

V7: if(b > 10){

V10: printf("%d:%d:%d", a, b, c);

V11: return 0;

V8: b = c + b;

V16: u_in = a V17: v_in =&b V18: b = v_out

V8: u_out = u

V12: End

V9: c=work(a, &b);

V4: End

Control Dependence Data Dependence Param−In/Out & Call

Transitive Dep. Affect−Return Return−Link

V6: b = abs(b);

V15: b=v_outV14: v_in=&bV13: u_in=a

V4: c=work(a, &b);

V3: for(int i=0; i<10;){

V2: int a=10, b=4, c=−1;

V5: i = i + 1;

V1: Begin−Main

V1: Begin−Work

V3: return (20−*v);V2: *v=*v+u;

V6: u=u_in V7: v=v_in

Figure 2.13: Interprocedural Slicing Example - Pass 1 and 2
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descend into procedure work through the parameter-out and return-link edges.

2.7 Parallel Programming Environment

There exist numerous libraries and languages for parallel programming. How-

ever, two standards have emerged: MPI for the message passing paradigm[SOHL+98]

and OpenMP for the shared memory paradigm [Ope97]. This thesis concentrates

on the slicing of parallel programs written in the shared memory paradigm due

to its preference by programmers and the increasing availability of shared memory

multiprocessors, both on large machines and desktop machines. Thus, for practical

application of the work, the research has focused on the OpenMP standard. The

OpenMP API for Fortran and C/C++ were released in October 1997 and October

1998, respectively[Ope97]. Since then, OpenMP has gained popularity as a standard

for developing portable shared memory parallel programs. With the improvements

in centralized shared memory technologies and the emergence of distributed shared

memory architectures, several physical and logical shared memory configurations

are now available. OpenMP builds on these improvements by allowing scalable and

portable implementation of parallel programs. The grammar which this research

supports is the C language with OpenMP explicitly parallel language constructs.

Fortran is also supported through the use of a Fortran to C conversion utility (sf2c).

OpenMP features that represent those most commonly used by programmers

for loop-level and SPMD style parallel coding were considered. Loop-level paral-

lelism is the parallelization of looping constructs, usually for loops, across multiple

threads. In the same vein as loop-level parallelism, SPMD (Single Procedure Mul-

tiple Data) works in parallel on different data across different threads, though each

thread executes the same code. A mapping of several OpenMP constructs from

general parallel constructs is shown in table 2.1.

An explicitly parallel program starts as a single thread of computation, with

new threads created when execution of a parallel region begins. There are several
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Parallel Control Constructs
Parallel Region PARALLEL
Iterative Region FOR
Non-Iterative Region SECTIONS
Single Process Region SINGLE, MASTER

Data Constructs
Scope PRIVATE, SHARED
Global Object THREADPRIVATE
Reduction Construct REDUCTION

Synchronization
Barrier BARRIER
Synchronize FLUSH
Critical Section CRITICAL

Table 2.1: OpenMP Constructs

types of parallelism allowed under OpenMP, though, in each, the sequential thread

is the master of the parallel threads that it creates.

Task parallelism is achieved through use of the parallel directive, and allows

multiple threads to execute the same block of code in parallel (i.e., SPMD style).

At the end of the block of code, a barrier synchronization is implied, and only

the master sequential thread continues execution. Task parallelism can be achieved

through use of worksharing constructs: the for, sections, and single directives. In a

worksharing construct, no new threads are launched, and there is no implied barrier

on entry. Loop-level parallelism is accomplished by utilizing the for directive inside

a parallel region. Iterations of the loop are split across the threads created by

the parallel directive in a programmer-controlled manner. The sections directive

establishes that the specified sections of code are to be divided among the threads

and executed once by the assigned thread. Multiple for and sections directives can

be embedded within a parallel region. Shortcuts to create parallel for and sections

are given as parallel for and parallel sections directives. The single and master

directives imply that the associated region shall be executed by only a single thread

or the master thread. Other threads in the team wait at the end of the region
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until execution completes, except when a nowait clause is part of the directive. The

master directive has an implied nowait clause; and thus has no barrier on entry or

exit[Ope97].

Besides these control constructs, OpenMP provides data constructs for vari-

able scoping. Directives such as threadprivate, private, or shared are used to control

the value of a variable that a thread sees. A variable declared threadprivate makes

the common blocks among threads local to each thread. The private construct

makes the associated variables private to each member of the thread team. Lastly,

shared makes the variable shared among all members in the team, thus only one

value of the variable exists[Ope97].

Synchronization constructs such as point-to-point, global and atomic syn-

chronization are also provided by OpenMP. Global synchronization is provided by

the barrier directive, which forces all threads in a team to wait until all threads

have reached the barrier before continuing execution. The critical directive limits

execution of the code to one thread at a time. The flush directive requires that each

thread has a consistent view of those variables shared between threads. A flush

directive is implied in the barrier directive, at entry to and exit from a critical,

and on exit from a parallel, for, section, and end single, unless a nowait clause is

specified[Ope97].

Figure 2.14 illustrates an OpenMP program that utilizes several OpenMP

constructs. A parallel region begins on line 4 after declaring several variables. Line

5 utilizes the master directive to print a line about how many threads were created.

Since the master directive is utilized, only the master thread will execute the printf

on line 6. Then, a sections directive is started with two sections on line 9. In the

first section, b gets a new value on line 11, but since b was declared private, only

the thread executing the first section block sees the new value. Then, inside the

first section, a new parallel region begins on line 13. When entering the new parallel
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1: void main(){

2: int a=10, b=2;

3: float c[1000];

4: #pragma omp parallel shared(a,c) private (b)

5: #pragma omp master nowait

6: {printf(‘‘The master thread has created %d threads\n’’,

7: (omp_get_num_threads()-1));}

8:

9: #pragma omp sections

10: #pragma omp section // first section

11: b = a * 1000;

12:

13: #pragma omp parallel

14: #pragma omp single nowait

15: {printf(‘‘Thread #%d got here first\n’’,

16: omp_get_thread_num());}

17:

18: printf(‘‘1:The value of b is %d’’, b);

19:

20: #pragma omp section // second section

21: #pragma omp parallel

22: #pragma omp for schedule(static)

23: for(int i=0; i<1000;++i){

24: #pragma omp atomic

25: c[i] = (c[i] + i) / (b * a);

26: }

27:

28: printf(‘‘2:The value of b is %d’’, b);

29: }

Figure 2.14: OpenMP Example Program
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region, a new thread team is created. If nested parallelism is turned on, then several

new threads are created, otherwise only the current thread is included in the thread

team. Inside this parallel region, a single directive is executed only by the first

thread to reach it. Thus, line 15 is executed only once. Finally, the value of b for

the first section is printed out at line 18. In the second section of the sections

directive, a new parallel region begins that includes a parallel for directive. The

parallel for directive parallelizes the for loop on line 23 using the specified schedule

clause. In this case, the schedule is static which means that chunks of the for loop

are statically assigned to each thread in a round-robin fashion. Lastly, after the

parallel for region is finished, the value of b is printed at line 28. The value of b will

be different than it was in the first section, because it is not the same copy of b.

Utilizing these constructs, many efficient and portable parallel programs can

be written for use on shared memory architectures. The language allows pass-

by-value and pass-by-reference parameters, pointer operations restricted to pass-by-

reference parameters and return statements, and procedures that may return values.

In this thesis, extensions for these constructs are left as future work: unstructured

control flow(goto, break, continue, etc.), recursion, and aliasing.

2.8 Motivations for Slicing Parallel Programs

Parallel programs are more complex than sequential programs. This is due to

the fact that parallel programs may have different execution paths when running the

same program multiple times with the same data. The non-deterministic nature of

parallel program execution makes it harder to debug programs, as an erroneous input

may not always produce an error. To combat this increased complexity, program

slicing can assist with automatic analysis of a program to highlight an erroneous line

and all parts of the program that could affect that line. This allows the programmer

to direct their attention only to those parts of the program which can possibly cause

an error, reducing the debugging time and effort. Also, slicing of parallel programs
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can allow the analysis of parallel programs to determine various properties of shared

variables. This can be useful when determining such properties as the memory

consistency model to use for the variable.

The next chapter identifies the challenges and presents a solution to providing

the capability of interprocedural program slicing for OpenMP parallel programs,

based on the prior work of interprocedural slicing of sequential programs described

in this chapter.
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Chapter 3

INTERPROCEDURAL STATIC SLICING OF SHARED

MEMORY PARALLEL PROGRAMS

3.1 Modeling the Control Flow

There are several models of parallelism which can be used to represent parallel

programs. The underlying model and environment utilized in this thesis comes from

Lee and Novillo [Lee99, NUS98]. An explicitly parallel program starts as a single

thread of execution, with new threads logically created when execution encounters

a parallel section. For program analysis, threads need only be identified; issues

stemming from creation, placement, and scheduling are not considered. This thesis

assumes the following environmental characteristics [NUS98]:

1. Parallelism Parallel sections are defined using the cobegin/coend construct.

2. Memory Model Threads run in a shared address space with interleaving

semantics (i.e., updates to shared memory made by one thread are immediately

visible to other threads). Programs share memory via shared variables. Arrays

and aliasing issues are not considered.

3. Synchronization Both event-based and mutual exclusion synchronization are

supported. Mutual exclusion is used to serialize references to shared variables

in the program. We will assume, without loss of generality, that program-

mers use standard lock and unlock instructions to serialize across shared vari-

ables. Event synchronization is supported using set and wait instructions.
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All the support for event-based synchronization is derived from algorithms in

[LMP98].

3.1.1 Concurrent Control Flow Graph (CCFG)

Having described the model of parallelism being assumed, a graphical repre-

sentation for programs can be developed. The concurrent control flow graph (CCFG)

for explicitly parallel programs, developed by Novillo[Nov00], is such a model, and

is based on the control flow graph (CFG) developed for sequential programs. A

CCFG is defined to be a directed graph G(V,E, BEGIN, END) where the set of

edges E represents sequential or parallel control flow, conflicts, and synchronization,

and the vertices in V are defined essentially as they were in the CFG with a slight

modification. Instead of a vertex representing a basic block, it now represents a

concurrent basic block. BEGIN and END vertices serve exactly the same purpose

as they did in the CFG.

Concurrent Basic Block A concurrent basic block has the same properties as a
basic block with the following additional restrictions[Lee99]:

1. At most one wait statement at the beginning of the block.

2. At most one set statement at the end of the block.

3. Synchronization operations lock, unlock, and barrier are placed in
their own block.

4. Parallel control constructs cobegin, coend, parloop, and parend are
placed in their own block.

Parallel Flow Edge A parallel flow edge is the parallel equivalent of the control
flow edge. When control moves from one thread to multiple parallel threads via
a COBEGIN, or from multiple parallel threads back to one thread via a CO-
END, a parallel flow edge indicates the transition from the COBEGIN to the
beginning of each thread or from the end of each thread to the COEND[Kri98].

Conflict Edge A conflict edge is an edge between two vertices representing blocks
that can be executed concurrently and reference the same shared variable.
There are two types of conflict edges: def-def (bidirectional), and def-use (one-
directional). A def-use conflict edge is analogous to a parallel data dependence
edge, where at least one of the references must be a write operation.
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Synchronization Edge A synchronization edge is an edge that represents an or-
dering constraint between a set and wait on the same variable in different
threads. Also, synchronization edges can be used to represent mutual exclu-
sion constraints between related lock and unlock operations.

Synchronization edges and def-def conflicts across concurrent threads are in-

cluded in the CCFG, but are not used in slicing. However, they are used in other

applications, including concurrent static single assignment with mutual exclusion

(CSSAME) construction [NUS98].

The CCFG model represents parallel programs as specified by the particu-

lar program constructs it allows, which are limited to parallel constructs cobegin,

coend, parloop, and parend and synchronization constructs set, wait, barrier,

lock, and unlock. This set of program constructs does not correspond to a specific

standard. Part of this thesis work has been the modification and extension of the

CCFG to represent OpenMP programs.

3.1.2 Extending the CCFG for OpenMP

In order to limit the modifications to the CCFG representation, a mapping

from OpenMP programs to the constructs already represented by the CCFG is pro-

vided whenever possible. The combined parallel worksharing constructs parallel

sections and parallel for have direct one-to-one correspondence with the se-

mantics of the cobegin/coend and parloop/parend constructs, respectively. The

OpenMP worksharing constructs for, sections, single can all be embedded within

a parallel region. The parallel region construct is represented as a cobegin/coend

with two or more threads, where each thread gets a copy of the statement block asso-

ciated with the parallel region as shown in figure 3.1a. The possibility of more than

two threads occurs when a sections construct with more than two section bodies is

embedded within a parallel construct. There must be one thread for each unique

section as shown in figure 3.1a. For the cases where no sections are embedded in
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the parallel region, the body of the original parallel region is replicated as shown in

figure 3.1b. In the case of a for, the parallel loop is represented by replicating the

original body of the loop and considering it to be like a cobegin/coend structure with

two or more threads as shown in figure 3.1c. The for and parallel representations

have the drawback of potentially increasing memory requirements, but it is easier

to analyze and support than self-referencing conflict edges. Each statement in the

copy of the for or parallel body corresponds to a dual optimization to be applied;

it must be applied to both copies. If this is not possible, the optimization is not

performed. The single and master constructs are represented as cobegin/coend

constructs with one thread. With the available synchronization constructs in the

CCFG, the semantics of OpenMP’s barrier, flush, and critical synchronization

constructs can be simulated easily.

Figure 3.3 represents a CCFG for the OpenMP code from figure 3.2. The

OpenMP parallel sections directive is utilized to create two separate threads

of execution. Conflicts occur between the use of variable v at v5 and v6 with the

definition of v in v9 in another thread. Also, the use of v at v9 conflicts with the

definitions of v at v5 and v6.

3.2 Intraprocedural Slicing of OpenMP Programs

To provide a slicing algorithm for parallel programs, a new representation,

the tPDG, was introduced by Krinke [Kri98] (see section 3.2.1). A tPDG is built

for each procedure p. For each procedure p, the set of threads is represented by the

set Λ = 〈λ0, λ1, ..., λn〉. The procedure θ(r) returns the innermost enclosing thread

containing the vertex r. Θ(r) is a procedure which returns the set of threads which

cannot execute in parallel with the execution of vertex r. For convenience λ0 is

considered to be the main program thread [Kri98]. To assist with the description of

the tPDG, a few terms must be defined.
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begin

cobegin/sections

stmts stmts stmts

coend

end

#pragma omp sections
{

#pragma omp section
{ stmts; }

#pragma omp section
{ stmts; }

#pragma omp section
{ stmts; }

}

Original

cobegin/sections

coend

end

begin

stmts stmts

Copy

#pragma omp parallel
{
{ stmts; }
}

Original

body

for−loop

body

cobegin/sections

coend

end

begin

Copy

for−loop #pragma omp parallel
{
#pragma omp for
{ for-loop
{ for-loop body;}}
}

Figure 3.1: OpenMP (a)Sections (b)Parallel (c)For Modeled as Cobegin/Coend
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1: void work(int u, in *v, int w, int x){

2: #pragma omp parallel sections shared(v)

3: #pragma omp section

4: if(u>0){

5: *v = u + *v;

6: }

7: else{

8: *v = *v + x;

9: }

10: #pragma omp section

11: w = *v + w;

12: *v = 5 + w;

13: #pragma omp end parallel

14: }

Figure 3.2: Example OpenMP Code Segment

V13: End

V1: Begin−Work

V2: Cobegin

V3: Begin

V7: End

V4: if(u > 0){

V6: *v = *v + xV5: *v = u + *v;

T F

V8: Begin

V12: Coend

V11: End

Control Flow
Parallel Flow
Conflict Edge

V10: *v = 5+w;

V9: w = *v+w;

Figure 3.3: CCFG for OpenMP Code in Figure 3.2
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Witness: A sequence of vertices vi through vk in a single thread is a witness to a

possible sequence of execution iff vj
cf−→ ∗vj+1 for all i ≤ j < k. A sequence

of vertices is a witness if all vertices of the sequence are part of the path
through the CFG in the same order as in the sequence[Kri98]. Every path is
by definition a witness of itself.

Threaded Witness: A threaded witness is an extension of the concept of a wit-
ness that incorporates the possible interleaving of vertices by different execu-
tion patterns of the threads. A threaded witness is a sequence γ of vertices
〈v1, v2, . . . , vk〉 in the CCFG such that

(∀t ∈ T )(γ|t =< m1, m2, . . . ,mj >=⇒ (∀j−1
i=1 : mi

cf,pf−→∗mi+1) (3.1)

where γ|t is the subsequence of γ in which all vertices vi with θ(vi) 6= t have
been removed. Essentially this states that a sequence of vertices is a threaded
witness iff for every thread, the sequence of vertices belonging to each thread is
itself a witness and thus a possible execution pattern. Every ordinary witness
in the CCFG is a threaded witness. This definition assures that a sequence of
vertices, which are part of different threads, is a witness in each of the different
threads, making it a feasible execution pattern[Kri98].

Interference Dependence Edge (ID): Though Krinke’s interference edges are
equivalent to the conflict edges associated with the CCFG, a definition of
interference dependence is still given. A vertex vj is interference dependent
on a vertex vi iff the vertices do not execute inside the same thread, they can
be executed concurrently, and vi contains a definition of a variable that vj

references. Dependences between threads which cannot execute in parallel are
ordinary data dependences[Kri98]. Formally,

1. (θ(vi) 6= θ(vj)) ∧ (θ(vj) /∈ Θ(vi))

2. (∃var)((var ∈ DEF (vi)) ∧ (var ∈ REF (vj)))

An example of a threaded witness can be seen by the vertex set TW =

〈v2, v5, v8, v10, v13〉 in figure 3.3. Since there are three threads in the procedure, TW

must be examined with respect to each thread. First, in the sequential thread λ0,

the subset of TW is 〈v2, v13〉. There exists a control/parallel flow path from v2 to

v13, satisfying the conditions. Second, in thread λ1, the subset of vertices is 〈v5〉.

Since there is only one node, the condition on the thread is trivially satisfied. Lastly,

the thread λ2 contains the subset of vertices 〈v8, v10〉. Once again, there exists a
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control/parallel flow path from vertex v8 to vertex v10, thus the set TW is a threaded

witness. If the vertex v6 were added to make TW equal to 〈v2, v5, v6, v8, v10, v13〉,

then TW would not be a threaded witness. This would occur because when exam-

ining thread λ1, there would be no control flow path from v5 to v6. Thus, TW could

not be witness to a possible execution of the procedure.

3.2.1 Threaded Program Dependence Graph (tPDG)

The threaded program dependence graph (tPDG) was introduced by Krinke

[Kri98] as the basis for his static slicing of intraprocedural threaded programs. To

construct the tPDG, Krinke introduced the concept of a threaded CFG (tCFG). The

tCFG is similar to the CCFG defined in section 3.1, but contains a few differences.

The tCFG uses costart/coexit instead of cobegin/coend to represent statements

in parallel sections. Also, the tCFG does not describe how to handle for loops,

parallel regions or synchronization. The tPDG representation constructs control

and data dependence edges based on the control/parallel flow and conflict edges in

the tCFG using standard algorithms. The interference edges utilized by Krinke are

identical to the conflict edges defined in the CCFG representation. Thus, the CCFG

representation is utilized in place of Krinke’s tCFG representation in this thesis.

Krinke’s algorithms for building the tPDG and slicing the tPDG representation are

applied to the CCFG.

Dependences introduced by interference between threads using shared vari-

ables cannot be handled the same as data dependences between local variables in

a single thread (i.e., sequential data dependences) because sequential data depen-

dences are transitive (due to the sequential nature of paths), while interference

dependence is not transitive (due to the interleaving of parallel paths). These edges

allow the slicing algorithm to ensure that paths containing interference edges during

slicing are always threaded witnesses in the CCFG. An example of why interference
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F

V1: Begin−Work

V2: Cobegin

V3: Begin

V4: if(u > 0){

V5: *v = u + *v;

V6: *v = *v + x

V7: End
V8: Begin

V9: w = *v+w; V10: *v = 5+w;

V11: End

V12: Coend

Control Flow
Parallel Flow

Data Dep.
Interference Dep.

Control Dep.

V13: End

T

Figure 3.4: tPDG for OpenMP Code in Figure 3.2

dependences are not transitive is shown in the slicing example in section 3.2.2. Tech-

niques to calculate interference and synchronization edges are beyond the scope of

this thesis, but there exist standard algorithms to calculate them[Kri98].

The tPDG for the OpenMP code given in figure 3.2 and based on the CCFG

in figure 3.3, is shown in figure 3.4. In addition, control flow edges are maintained

between vertices in the tPDG, unlike in the PDG representation of a sequential

program.

3.2.2 Algorithm for Intraprocedural Slicing over a tPDG

The tPDG representation is suitable for slicing a single procedure of a parallel

program. The slicing algorithm, however, cannot be a simple graph reachability

algorithm, as was slicing of sequential programs. The standard slicing algorithm

does not apply to slicing the tPDG due to the existence of interference edges, which

are not transitive. The slice of a tPDG graph (G/s) at a vertex s still consists of

the vertices on which s directly or indirectly depends. However, when a vertex q is
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being tested as part of the slice, s must be more than just transitively dependent

upon q via data, control, or interference dependences. The path P from q to s must

be a threaded witness. Otherwise, it is possible for vertices which should not be

part of the slice to be included in the slice.

G/s = (q|(∃P = 〈v1, v2, . . . , vk〉)((q = v1
cd,du,id−→ · · · cd,du,id−→ vk = s)

∧ThreadedWitness(P ))) (3.2)

According to Krinke, using equation 3.2 directly as an algorithm to slice

threaded programs is too costly, because the threaded witnesses require a great deal

of calculation[Kri98]. Krinke devised another algorithm to calculate intraprocedural

slices for threaded programs. Krinke’s algorithm uses n-tuples T = (τ1, τ2, . . . , τn),

where n is the number of threads in the procedure, to represent the state of all

threads in the procedure (referred to as the thread state). Each entry in the n-tuple

represents an execution state (i.e., current vertex) of a thread in the procedure.

At any given time, the value of a thread λj’s state is either ⊥, which signifies any

execution state, or a specific vertex vi in the tPDG, which signifies that execution

of thread λj has not reached vi but may still do so.

The purpose of the n-tuple is to keep track of the vertex vi in a thread λj

which was exited when the slicing algorithm followed an interference edge into a

different thread, λk. Should the slicing algorithm later follow an interference edge

out of another thread λm back into λj at vertex vj, and the execution state of λj

has not been set to ⊥, the slicing algorithm is able to check that vi is reachable (via

transitive control/parallel flow) from vj. In much the same manner that transitive

dependence edges eliminate infeasible paths of execution through call sites, use of

n-tuples eliminates infeasible execution paths over inteference edges. The slicing

algorithm ensures that, if the slice contains vertex vi and vertex vj is reached as

above, that a feasible path of execution from vj to vi exists in thread λj. In other

words, this ensures that paths over interference edges are always threaded witnesses
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in the tCFG, and is the reason control and parallel flow edges are kept in the

tPDG[Kri98].

The algorithm shown in figure 3.5 uses a worklist of pairs 〈v, T 〉 containing

a vertex v and an n-tuple T to represent the thread state when v was added to the

slice. Each incoming edge to the current vertex v is examined and handled differently

based on the type of the edge. If the edge is a control or data dependence from vertex

vi to vj (vi
cd,du−→ vj), both in thread λk, then the thread state τk is simply updated

from vj to vi. If the two vertices vi and vj are from different threads λk and λm,

respectively, then the thread state of τm is changed to ⊥, and the thread state of τk

is updated to vi. Though the dependence is between different threads, the fact that

the edge is a control or data dependence means that the two threads can not execute

in parallel. Thus, one thread must be able to execute before the other, which allows

this case to be treated as a sequential one. If the edge is an interference dependence

from vertex vi to vj (vi
id−→ vj), in threads λm and λn respectively, more calculation

is done. If thread λm has a thread state of ⊥, then the value of τm is updated to vi

and the value of τn is updated to ⊥. However, if the value of τm is a vertex vk, then

the slicing algorithm checks to see if vi can possibly be in an execution path with

vk. That is, the algorithm checks if there is a threaded witness including vi and vk,

except that the algorithm checks for a control/parallel flow path from vi to vk, as

this costs less than calculating all threaded witnesses[Kri98]. If no control/parallel

flow path exists, then the slicing algorithm does not follow the interference edge.

If the program is sequential, it has only one thread, and there can be no edges

which cross a thread boundary and thus no interference edges. The algorithm then

degenerates into the reachability algorithm of sequential programs.

An example of slicing of a tPDG is shown in figure 3.6. Slicing begins at

vertex v5 with thread state [⊥, v5,⊥]. Instead of showing the current status of the

slice and worklist after each edge is followed, the pair 〈v, T 〉 (vertex v, thread state

53



Algorithm Parallel IntraSlice
Input: Vertex s to start slicing

tPDG G = (V, E)
Output: The slice S, a subset of vertices of the tPDG

C = (s, (τ0, . . . , τ|Θ|))|τi =

{
s ifθ(s) = θi

⊥ otherwise

worklist ω = {C}
slice S = {s}
repeat

remove the next element c = (x, T ) from ω

for all edges e = y
cd,dd−→ x do

T ′ = [y/θ(y)]T
if θ(y) 6= θ(x) then
Dependence between threads which cannot execute in parallel
reset all threads which do not execute parallel to θ(y)
for all τ ∈ Θ(y) do
T ′ = [⊥/τ ]T ′

c′ = (y, T ′)
if c’ has not been calculated already then

mark c’ as calculated
ω = ω ∪ {c′}
S = S ∪ {y}

for all edges e = y
id−→ x do

τ = T [θ(y)]

if τ = ⊥ or y
cf,pf−→

∗
τ 6= y then

Interference edge which can be validly followed
Update thread θ(y) and do not change θ(x)
c′ = (y, [y/θ(y)]T )
if c’ has not been calculated already then

mark c’ as calculated
ω = ω ∪ {c′}
S = S ∪ {y}

until worklist ω is empty
return S
}

Figure 3.5: Krinke’s Threaded Intraprocedural Slicing Algorithm[Kri98]
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V10: *v = 5+w;
V6: *v = *v + x

V7: End V11: End

V12: Coend

Control Flow
Parallel Flow

Data Dep.
Interference Dep.

Control Dep.

V13: End

V9: w = *v+w;

T F

V1: Begin−Work

V2: Cobegin

V3: Begin

V4: if(u > 0){

V5: *v = u + *v;
V8: Begin

Figure 3.6: Threaded Intraprocedural Slicing Example

T ) which is created by the algorithm after processing the edge is shown. If a pair

〈v, T 〉 is not created, then the reason for this is given instead.

1. [v5, [⊥, v5,⊥]]

• v4
cd−→ v5 . [v4, [⊥, v4,⊥]]

• v10
id−→ v5 . [v10, [⊥, v5, v10]]

2. [v4, [⊥, v4,⊥]]

• v3
cd−→ v4 . [v3, [⊥, v3,⊥]]

3. [v10, [⊥, v5, v10]]

• v9
du−→ v10 . [v9, [⊥, v5, v9]]

4. [v3, [⊥, v3,⊥]]

• v2
cd−→ v3 . [v2, [v2,⊥,⊥]]

5. [v9, [⊥, v5, v9]]
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• v5
id−→ v9 . Not Taken: τ(θ(v5)) = v5

• v6
id−→ v9 . Not Taken: No control/parallel flow path from v6 to v5

• v8
cd−→ v9 . [v8, [⊥, v5, v8]]

6. [v2, [v2,⊥,⊥]]

• v1
cd−→ v2 . [v1, [v1,⊥,⊥]]

7. [v8, [⊥, v5, v8]]

• v2
cd−→ v8 . Already Calculated

8. [v1, [v1,⊥,⊥]]

• No Incident Edges

9. Slice = 〈v5, v4, v10, v3, v9, v2, v8, v1〉

Steps 1 and 5 in the example above illustrate the issue surrounding interfer-

ence dependence and its lack of transitivity. In step 1 the slicing algorithm followed

an interference edge out of thread λ1 at vertex v5 into thread λ2 at vertex v10. In

step 5 of the slicing algorithm, an interference edge is followed from vertex v9 in

thread λ2 back to vertex v6 in thread λ1. However, the thread state of thread λ1

when following this edge back into thread λ1 is v5, so the slicing algorithm must

make sure that there exists a control/parallel flow path from v6 to v5, which does

not exist. Thus, the edge back to vertex v6 is not followed, given the thread state

at that point. If interference dependence had been assumed to be transitive, then

v6 would have been incorrectly added to the slice. Vertex v6 cannot possibly affect

the value of vertex v5 because they are mutually exclusive when executing. That is,

if one executes, the other does not.
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3.3 Slicing over Call Sites

3.3.1 Threaded System Dependence Graph

The threaded system dependence graph (tSDG) is a new representation in-

troduced as part of this work on interprocedural slicing of parallel programs. Much

like the SDG is an intermediate graph representation for modular programs, the

tSDG is an intermediate graph representation for threaded modular programs. A

threaded program dependence graph is built for the main procedure, and a threaded

procedure dependence graph is built for each auxiliary procedure. Each call-site is

then linked as it would be in an SDG for a sequential program. Summary informa-

tion is generated for each procedure. However, transitive dependence edges between

formal-in and formal-out vertices are now computed using Krinke’s intraprocedu-

ral slicing algorithm[Kri98]. By using Krinke’s intraprocedural slicing algorithm as

the basis for determining transitive dependences, the effects of shared varaibles can

be determined and utilized when building the procedure’s summary information.

The summary information is used to side-step the calling context problem as de-

scribed earlier for sequential programs. Summary information consists of the union

of the edge sets of transitive dependences, affect-return dependences, and return-

link dependences. Naming conflicts will not occur because a static single assignment

treatment of all variables is assumed in this work[SHW93].

Transitive Dependence Edge (TR): A transitive dependence edge in a tSDG
is much like that of an SDG transitive dependence for sequential programs,
except that the transitive dependence now utilizes an intraslice-path reachable
definition based on Krinke’s algorithm which includes the effects of interference
dependences from shared variables.

The construction of the tSDG follows the techniques of Lividas and Croll

[LC94] in that the tSDG is formed in one pass using summary information reflected

back to call sites. It is assumed that a CCFG graph is built for each procedure be-

fore tSDG construction is performed on the program. Furthermore, the definition of
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transitive dependence is modified to use Krinke’s intraprocedural slicing algorithm.

Since Krinke’s algorithm also utilizes interference dependences, in addition to con-

trol and data dependence, in determining transitive dependences between formal-in

and formal-out vertices, the effects of shared variables inside the procedure can

be accurately represented by transitive dependences in the procedure’s summary

information. By including interference edges in the definition of intraslice-paths,

the summary information collected for each procedure captures the shared memory

parallel dependences in a tSDG. To compute transitive dependence edges, Krinke’s

[Kri98] static intraprocedural slicing algorithm, presented in figure 3.5, is utilized.

The key difference between a tSDG and an SDG representation is that the

definition of intra-slice path reachable includes the effects of interference edges. The

dependences between the shared variable w are reflected to the call site via the

transitive dependence edges. If the transitive dependence edges did not take the

effects of the interference dependence of shared variables, the tSDG construction

would not have placed a transitive dependence edge from the actual-in vertex for

parameter u (v11) to the actual-out vertex for parameter w (v15), as is correct.

3.3.2 Algorithm for Interprocedural Slicing over a tSDG

Once the tSDG has been constructed for the program, interprocedural slicing

can be performed on the program. Using the techniques developed by Horowitz, et.

al., and Lividas and Croll as a basis for slicing of threaded programs, the slicing is

done in two passes. This can be done because of the presence of transitive depen-

dence edges, which now include the effects of interference dependence, at call sites.

As in sequential slicing, the use of summary information allows the interprocedu-

ral slicer to move across a procedure call without decending into it. This prevents

descending into a procedure and returning by way of some unrealizable execution

path (i.e., side steps the calling context problem). The actual slicing algorithm itself
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Algoritm Construct tSDG
Input: CCFG for each procedure in the program P.
Output: threaded System Dependence Graph for P.
1: Initialize call sequence graph (CSG), a linked list of call sites, to main
2: Begin partial solution of main CCFG by initiating computations of

control/parallel flow, control, data, and interference dependences
3: Upon finding a call to a new procedure, calculation of the dependences of the

calling procedure is suspended (partial solution preserved); called procedure
is pushed onto top of CSG

4: if called procedure is already solved, reflect summary information
of called procedure back onto callee site, pop top of CSG, resume calculation
of dependencies in calling procedure

5: else call site vertex and entry vertex of called procedure created
6: for each passed by reference actual parameter, an actual-in node

is created and an actual-out node is created, also corresponding formal-in
and formal-out vertices are built

7: Introduce a call edge from the call site vertex to the corresponding
procedure entry vertex

8: for each actual-in node at a call site, introduce a parameter-in
edge from the actual-in to its corresponding actual-out node

9: for each formal-out node, introduce a parameter-out edge from
each formal-out node to its corresponding actual-out node

10: New dependence calculation is initiated at called procedure,
including computation of control, data, and interference dependences in
the called procedure. If formal-out is never modified it is marked as such.
and the corresponding actual-out node at call site is deleted.

11: Compute transitive dependence edges (edges from actual-in vertices to
actual-out vertices) by determining the formal-in vertices that are
intraslice-path reachable from each formal-out vertex using Krinke’s
static interprocedural slicing algorithm[Kri98].

12: Compute affect-return edge (edges from actual-in vertices to the return
at the call site) by determining the formal-in vertices that are
intraslice-path reachable from each formal-out vertex using Krinke’s
static interprocedural slicing algorithm[Kri98].

13: Add all return vertices to a return vertex list for use in return-link
dependences.

14: Reflect summary information (transitive, affect-return, and
return-link dependences) of called procedure back onto callee site;
pop top of CSG.

15:endif
16: resume calculation of dependences in calling procedure (current top of CSG),

until CSG becomes empty

Figure 3.7: Algorithm for Construction of tSDG
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1: int main(

2: int a, b, c, d;

3: a = 10;

4: b = 6;

5: c = 12;

6: d = 23;

7: work(a, b, &c, d);

8: b = c / 2;

9: printf(‘‘%d : %d : %d’’,a,b,c);

10: return 0;

11: }

12:

13: void work(int u, in v, int *w, int x){

14: #pragma omp parallel sections shared(w)

15: #pragma omp section

16: if(u>0){

17: v = u + v;

18: }

19: else{

20: v = v * v;

21: }

22: #pragma omp section

23: *w = v + *w;

24: x = x + *w;

25: #pragma omp end parallel

26: }

Figure 3.8: Remodeled Example OpenMP Program
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V20: w_out=*w

V2: Cobegin

V1: Begin−Work

V13: End

V6: work(a, b, &c, d) V7: b= c/2

V9: return 0

V10: End

V4: if(u>0)

V10: x=x+*w

V8: Begin
V12: Coend

V11: End

V3: Begin

V5: v=u+v

V6: v=v*v

V12: v_in=bV11: u_in=a V13: w_in=&c V15: c=w_outV14: x_in=d

V9: *w=v+*w

Data Dep.
Transitive Dep.
Param−In/Out & Call

Interference Dep.Control Dep.

V14: u=u_in

V17: x=x_in

V15: v=v_in V19: v_out=v

V21: x_out=x

V1: Begin−MainV2: a=10

V3: b=6

V4: c=12
V5: d=23 V8: printf(a, b, c, d)

V16: w=w_in

V7: End

V18: u_out=u

Figure 3.9: Example of an tSDG
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utilizes the algoritm provided by Krinke[Kri98], modified to deal with interprocedu-

ral edges. When the slicing algorithm encounters an interprocedural edge, it simply

restarts the intraprocedural slicer at the proper vertex in the newly encountered

procedure. The slicing problem is still essentially a graph reachability problem; the

slicing algorithm needs to utilize different size n-tuples for each procedure.

The first pass marks vertices that reach the slicing criterion vertex s in pro-

cedure P, and are thus in the procedure P itself or a procedure that calls P di-

rectly or transitively. Starting at the vertex s, the slicer ascends on a certain set

of edge types: control dependence (cd), data dependence (du), interference depen-

dence (id), parameter-in (pi), transitive dependence (tr), affect-return (ar), and call

(ca). During the first pass, the slicer never descends into a called procedure; it only

ascends. Through the transitive dependence edges that connect actual-out vertices

with actual-in vertices, the slicer is able to determine the effects of a procedure call

without descending into it.

The second pass is executed in the same manner as the first pass, but instead

of ascending into procedures, it descends into called procedures. Thus, the second

pass marks all vertices which reach vertex s from procedures directly or transitvely

called by P, or called directly or transitvely by a procedure which directly or tran-

sitvely calls P. As in the sequential algorithm, the first pass must keep track of all

call sites encountered as the slicing algorithm ascended, so that it can descend into

the procedure at each call site. During the second pass, the following edge types

are considered: control dependence (cd), data dependence (du), interference depen-

dence (id), parameter-out (po), transitive dependence (tr), affect-return (ar), and

return-link (rl). The second pass is complementary to the first in that it descends

into call sites that the first pass skipped. As a last step, the set of vertices from each

pass are merged together to get the final set of vertices formed by the slice. Slicing

can also be performed in the presence of unknown procedures, such as system calls,
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assuming transitive dependences are known for the procedures.

Using the tSDG example shown in figure 3.9, the first pass of the interpro-

cedural slicing algorithm on the example program from figure 3.8 is shown in figure

3.10. Starting at vertex v7 in procedure main, the interprocedural algorithm deter-

mines all vertices which are can affect vertex v7 directly or indirectly. Because the

tSDG construction includes the effects of interference edges due to shared variables,

the transitive dependence edges accurately reflect the dependences the slicing algo-

rithm uses to determine which vertices are part of the slice. The vertices added in

the second pass are shown in figure 3.11. In the second pass, the slicing algorithm

descends into procedure work, and starts a new instance of the intraprocedural

slicing algorithm on the vertex descended into (in this case v20 in procedure work).

As the example illustrates, the formal-out vertex for parameter w is intra-slice

path reachable from all formal-in vertices. If interference edges had not been in-

cluded in the definition of intra-slice path reachable, then only the formal-in vertices

for parameters v and w would have been found. Thus, the inclusion of interference

edges for shared variables allows the correct deduction of summary information for

procedure work.
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V20: w_out=*w

V2: Cobegin

V1: Begin−Work

V13: End

V6: work(a, b, &c, d) V7: b= c/2

V9: return 0

V10: End

V4: if(u>0)

V10: x=x+*w

V8: Begin
V12: Coend

V11: End

V3: Begin

V5: v=u+v

V6: v=v*v

V12: v_in=bV11: u_in=a V13: w_in=&c V15: c=w_outV14: x_in=d

V9: *w=v+*w

Data Dep.
Transitive Dep.
Param−In/Out & Call

Interference Dep.Control Dep.

V14: u=u_in

V17: x=x_in

V15: v=v_in V19: v_out=v

V21: x_out=x

V1: Begin−MainV2: a=10

V3: b=6

V4: c=12
V5: d=23 V8: printf(a, b, c, d)

V16: w=w_in

V7: End

V18: u_out=u

Figure 3.10: Slice of tSDG from Figure 3.9 - Pass 1
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V20: w_out=*w

V2: Cobegin

V1: Begin−Work

V13: End

V6: work(a, b, &c, d) V7: b= c/2

V9: return 0

V10: End

V4: if(u>0)

V10: x=x+*w

V8: Begin
V12: Coend

V11: End

V3: Begin

V5: v=u+v

V6: v=v*v

V12: v_in=bV11: u_in=a V13: w_in=&c V15: c=w_outV14: x_in=d

V9: *w=v+*w

Data Dep.
Transitive Dep.
Param−In/Out & Call

Interference Dep.Control Dep.

V14: u=u_in

V17: x=x_in

V15: v=v_in V19: v_out=v

V21: x_out=x

V1: Begin−MainV2: a=10

V3: b=6

V4: c=12
V5: d=23 V8: printf(a, b, c, d)

V16: w=w_in

V7: End

V18: u_out=u

Figure 3.11: Slice of tSDG from Figure 3.9 - Pass 1 and 2
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Chapter 4

IMPLEMENTATION AND EVALUATION

The algorithm presented in the previous chapter for construction of a tSDG

was implemented using the SUIF/Odyssey compiler infrastructure. The version of

SUIF used was 1.0, which was developed at Stanford University [Gro94]. In addi-

tion, the Concurrent Static Single Assignment with Mutual Exclusion (CSSAME)

library from the Odyssey framework was utilized. Odyssey was developed by Lee

and Novillo [Lee99, Nov00] for the purposes of developing new optimization tech-

niques to take advantage of parallelization and synchronization structures in parallel

programs. Lee and Novillo were also interested in adapting traditional optimization

techniques to work on explicitly parallel programs. Odyssey builds on SUIF, but

bypasses the automatic parallelization that SUIF normally performs. Odyssey uti-

lizes SUIF as a front end to parse the C code, and as a back end to generate a MIPS

executable. The overall Odyssey framework is shown in figure 4.1.

The algorithm that builds the tSDG starts with a .od1 file. This file is

produced after SUIF has run its initial parsing algorithms, and Odyssey has com-

pleted its identification of the parallel structures. Odyssey currently recognizes only

cobegin/coend and parloop parallel structures. As part of this thesis, a new pass

for tSDG construction was developed and integrated between the FindPar and Op-

timization phases. The output of the tSDG construction phase is a .dot file, which

can be shown as a viewable graph via the dot program.

The slicing algorithm operates on the tSDG constructed from the .od1 file.

It takes as input a tSDG and currently outputs a .dot file which highlights those
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macro expansions for OpenMP

Odyssey Odyssey

Concurrent Control Flow Graph (CCFG)
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Interprocedural Analysis − shared variables

referenced and mutex bodies defined by 

called procedures are propagated to 

call sites

Optimizations

front−end scanner, parser

back−end/runtime library

SUIF

Source Code

Figure 4.1: Overview of Odyssey Research Compiler

vertices that are part of the slice. The implementation of the slicing algorithm is

not yet complete, but once it has been completed, an evaluation of its efficiency

and effectiveness is planned. The implementation will be tested for its accuracy in

slicing and the speed with which it slices a program. Also, the slicing algorithm will

be used to measure various properties of a program such as usage and interaction

of private and shared variables.
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Figure 4.2: Odyssey and SUIF Passes
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Chapter 5

RELATED WORK

A great deal of research has already been brought to bear on the topic of slic-

ing. Static sequential slicing was first introduced by Weiser[Wei84]. His techniques

for slicing Fortran and Simple-D programs were based on Control Flow Graph rep-

resentations of program, and did not take into account the calling context of called

subroutines. When the Program Dependence Graph representation was developed

by Ferrante, Ottenstein, and Warren[FOW87], it was first used for slicing by Ot-

tenstein and Ottenstein[OO84]. Their research determined that slicing based on

the PDG representation was a simple graph reachability problem which could be

computed in linear time.

The System Dependence Graph representation was introduced by Horowitz,

et. al.[HRB97], as an extension of the PDG representation for representing whole

programs. The SDG is a system of linked PDG graphs, and allows interprocedu-

ral slices to be computed. To solve the calling context problem, Horowitz, et. al.

utilizes an attribute grammar and GMOD & GREF sets. Lividas and Croll [LC94]

give an alternate algorithm for computation of interprocedural slices. Their tech-

niques build the SDG from the bottom-up by descending into called procedures to

process them first. When a called procedure is terminal or has already been solved,

the summary information, including transitive dependences, is copied back to each

procedure that calls it. Other techniques have been developed to handle programs

with recursion[HDC88], and/or to increase precision and safety[SHR91]. A survey
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of slicing techniques, both static and dynamic, for imperative programs has been

written by Tip[Tip95].

The PDG has been extended by various authors to suit their specialized

purposes[Che97, DGS92, Kri98, Sar98]. Of these extensions, the research by Cheng

[Che97] and Krinke[Kri98] are usable schemas for static slicing of concurrent pro-

grams.

Cheng constructs a representation called the Process Dependence Net (PDN)

which is later extended to a System Dependence Net (SDN)[Che97]. A PDN repre-

sents either the main procedure, a free standing procedure, or a method in a class of

the program. Additional edges are added to represent direct dependences between

a call and the called procedure/method and transitive interprocedural dependences.

The SDN is constructed to represent object-oriented features in addition to address-

ing concurrency issues that arise in concurrent object-oriented programs. Once an

SDN has been created for a program, slices of the program can be computed using

a simple vertex reachability algorithm[ZCU96].

Krinke introduced the concept of a threaded Program Dependence Graph,

which is the basis for his intraprocedural slicing algorithm. Krinke’s approach takes

into account that dependence between parallel executed statements is not transitive

and therefore produces more accurate slices than would be generated by ignoring

this fact. Krinke’s techniques were used as a basis for developing the techniques for

interprocedural slicing of OpenMP programs.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

This thesis developed the tSDG representation to facilitate the static in-

traprocedural slicing of OpenMP shared memory parallel programs. OpenMP con-

structs for worksharing and parallel execution are represented in the CCFG, which

forms the basis for the tSDG. Transitive dependencies were refined in the tSDG

representation to include the effects of interference dependencies that can occur in

shared memory parallel programs. The inclusion of interference edges in our defini-

tion of intra-slice paths for computing transitive dependencies (i.e., part of the sum-

mary information) at a call-site allowed us to capture the shared memory parallelism

dependences in the tSDG. An algorithm for constructing the tSDG was presented.

The graph can be sliced interprocedurally by combining interprocedural slicing for

sequential programs[LC94] and intraprocedural slicing for parallel programs[Kri98].

The major contribution of this research is the development of an interproce-

dural slicing technique for shared memory parallel programs, which had not previ-

ously existed. OpenMP was targeted because it is the standard for shared memory

parallel programs. A slicing algorithm for parallel programs allows the development

of tools to shorten debugging time for programmers and to perform automatic pro-

gram analysis for software maintenance, optimization, and program understanding.

Future work based on this research will expand the range of programs that

the tSDG can represent. New program structures to be dealt with include recursion,

pointer aliasing, and unstructered control flow. To facilitate tSDG construction on
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programs with recursion, Lividas and Croll’s[LC94] extended call sequence graph

will be used. Also, the slicing algorithm will be used in the analysis of hybrid

memory consistency models for explicitly parallel programs.
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