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ABSTRACT
Future chip multiprocessors are expected to contain multiple on-
die processing cores. Increased memory system contention and
wire delays will result in high inter-core latencies in these pro-
cessors. Thus, parallelizing applications to efficiently execute on
multiple contexts is key to achieving continued performance im-
provements. Recently proposed pipelined multithreading (PMT)
techniques have shown significant promise for both manual and au-
tomatic parallelization. They tolerate increasing inter-thread com-
munication delays by enforcing acyclic dependences amongst com-
municating threads and pipelining communication.

However, lack of efficient communication support for such pro-
grams hinders related language and compiler research. While re-
searchers have proposed dedicated interconnects and storage for
inter-core communication, such mechanisms are not cost-effective,
consume extra power, demand chip redesign effort, and necessitate
complex operating system modifications. Software impelementa-
tions of shared memory queues avoid these problems. But, they
tend to have heavy overhead per communication operation, caus-
ing them to negate parallelization benefits and worse still, to per-
form slower than the original single-threaded codes. In this paper,
we present a simple compiler analysis to coalesce synchronization
and queue pointer updates for select communication operations, to
minimize the intra-thread overhead of software queue implemen-
tations. A preliminary comparison of static schedule heights shows
a considerable performance improvement over existing software
queue implementations.

1. INTRODUCTION
Parallelizing individual tasks into multiple threads is key to per-

formance improvement on chip multiprocessors. High inter-core
communication delays have made the notion of thread extraction
almost synonymous with the search for long-running threads with
minimal communication. While this strategy has had some suc-
cess for scientific applications, it has impaired similar efforts for
general-purpose applications (both manual and automatic). Re-
cently however, language and compiler pipelined multithreading
(PMT) techniques (StreamIt [9, 3], Decoupled Software Pipelin-
ing (DSWP) [5, 4], and others [1, 2]) have shown promise as vi-
able methods to expose thread-level parallelism. They can handle
more codes because they embrace inter-thread dependencies (albeit
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1 int sum = 0;
2 do {
3 sum += ptr->val;
4 } while(ptr=ptr->next);

(a) Pointer chasing loop
1 r4 = 0
2 loop:
3 r2 = r1 + 4
4 r3 = M[r2]
5 r4 = r3 + r4
6 r1 = M[r1]
7 br r1 != 0, loop

(b) Assembly code
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Figure 1: PMT example

acyclic dependencies) by partitioning applications into concurrent,
long-running producer and consumer threads. They place fewer
demands on interconnect latency because they easily tolerate long-
latency inter-thread communication by pipelining acyclic commu-
nication (also known as streaming communication). For example,
consider the loop in Figure 1a and its low-level code in Figure 1b.
A PMT partitioning of this loop is shown in Figure 1c. Notice that
all inter-thread dependencies flow from thread 1 to thread 2. Inter-
thread queues can be used to take advantage of the acyclic flow to
buffer values and provide decoupled pipelined communication.

While PMT techniques show promise, current architectures are
without sufficient architectural and operating system support for
streaming communication. Although researchers have proposed
dedicated microarchitectural structures for inter-core communica-
tion (synchronization array [5], FIFOs [6], scalar operand networks
(SONs) [8]), their adoption in commercial processors has been hin-
dered for several reasons. Dedicated structures, such as the ones
mentioned above, result in sub-optimal use of hardware, since they
are used exclusively for inter-thread operand transfers. Memory
traffic, for instance, cannot be multiplexed on these dedicated in-
terconnects. Besides resulting in sub-optimal use of hardware, such
dedicated structures (interconnect and storage) consume extra power,
demand chip redesign effort, and often necessitate complex operat-
ing system modifications.

Software queues avoid these problems. The default memory con-
sistency and cache coherence implementation of any machine pro-
vide the complete hardware support needed for such communica-
tion. Memory based synchronization and communication obviates
the need for any OS modifications. Thus, shared memory software
queues may seem like an attractive communication alternative.

The code sequence to implement either a produce or a consume
communication operation with shared memory software queues in-
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void produce(int value) {
// spin while queue is full
while(occupancy == q_size);
// occupancy < q_size
q[tail].data = value;
occupancy++;
tail = (tail+1)%q_size;

}

int consume() {
// spin while queue is empty
while(occupancy == 0);
// occupancy > 0
value = q[head].data;
occupancy--;
head = (head+1)%q_size;
return value;

}

Figure 2: Occupancy counter based software queues.

volves three fundamental steps - synchronization to ascertain whether
a producing store or a consuming load can execute, the store or load
itself to effect the data transfer and queue pointer update. Of these,
synchronization and queue pointer update instructions are overhead
instructions. Even though PMT codes tolerate inter-core latencies
very well, they are highly sensitive to the intra-thread overhead of
communication. Even highly tuned code sequences have signifi-
cant recurring intra-thread overhead and tend to negate any bene-
fits from PMT parallelization. While synchronization and queue
pointer update are necessary evils, we observe that they can be co-
alesced into one per group of queue accesses instead of one per
individual queue access and hence, the overhead can be effectively
amortized over multiple queue accesses.

In this paper, we present a compiler analysis to automatically
identify queue operations for which synchronization and queue pointer
update can be coalesced. The analysis is implemented in an auto-
matic DSWP[4] compiler. We find that, by amortizing synchro-
nization and queue pointer overhead over multiple queue accesses,
we can improve profile-weighted static schedule height of paral-
lelized program sections by as much as 241% (and 85% on the aver-
age) over existing software queue implementations, across a range
of benchmarks. DSWP implementations can either use a unique
queue to handle each inter-thread dependence or may choose to
merge two or more dependencies into a single queue. Each has
its pros and cons. While the former leads to queue addressability
concerns, the latter constrains the scheduler by requiring the or-
der of queue accesses be strictly the same in all communicating
threads. We shall assume a queue per dependence implementation
in this paper. Further, we shall assume finite-sized queues with
equal number of entries in each queue.

2. SOFTWARE QUEUES
In this section, we shall review software queue implementations

and understand the overhead arising from a naı̈ve use of such imple-
mentations to support communication in DSWP’ed codes. To keep
the discussions streamlined, we shall focus only on single-producer
single-consumer scenarios. However, the mechanisms discussed in
this paper can easily be extended to other communication patterns
as well.

Code for queues based on simple occupancy counters for a single-
producer, single-consumer queue is shown in Figure 2. The queue
is composed of a head index, a tail index, an occupancy counter
and a shared memory array of data items. The tail (head) index
is updated exclusively by the producer (consumer). The occupancy
counter is updated by both. To access the queue, the producer (con-
sumer) spins until the occupancy counter is less than the queue size
(greater than 0) indicating the queue is not full (not empty). Once
past the spin loop, the producer (consumer) can write (read) the
data to (from) the queue and increment (decrement) the occupancy
counter. Once the data item is written (read), the tail (head) index
should be updated to point to the new tail (head) slot. Since only
a single thread will produce data into each queue and only a sin-
gle thread will consume data from each queue, the head and tail

void produce(int value) {
// spin until tail empty
while(q[tail].full);
// q[tail].full == 0
q[tail].data = value;
q[tail].full = 1;
tail = (tail+1)%q_size;

}

int consume() {
// spin until head full
while(!q[head].full);
// q[head].full == 1
value = q[head].data;
q[head].full = 0;
head = (head+1)%q_size;
return value;

}

Figure 3: Condition variable based software queues.

pointers can be stored locally on the consumer and producer cores
respectively. Additionally, no mutexes are required to protect the
queue (although, the appropriate memory fence instructions are re-
quired to enforce the correct ordering of operations). Mutexes are
required to protect accesses to the occupancy counters. Since both
threads read and write the occupancy counter variable, such an ap-
proach will work well only on an SMT core where both threads can
share the L1 cache. When executing on multiple cores, accesses
to the occupancy counter will lead to cache line ping-ponging be-
tween private caches resulting in poor performance.

We can solve the problem of cache line ping-ponging by intro-
ducing fine-grained condition variables. Code for such an imple-
mentation is shown in Figure 3. Here, the queue is composed of
a head index, a tail index, and a shared memory array of condi-
tion variable, data item pairs. The tail (head) index is updated ex-
clusively by the producer (consumer). To access the queue, the
producer (consumer) spins until the condition variable for the tail
(head) queue slot indicates the slot is empty (full). Once the queue
slot becomes available, the producer (consumer) can write (read)
the data to (from) the queue and signal the condition variable that
the slot is now full (empty). Once the data item is written (read), the
tail (head) index should be updated to point to the new tail (head)
slot. Such fine-grained condition variables allow for an efficient
implementation of software queues [7].

Variants of the above approaches often use multiple queue buffers
or coarser-grained signaling to minimize cache line ping-ponging
or amount of storage used for synchronization or both. Regardless,
the main drawback of software queues is that the code sequences
to produce and consume a single datum are quite lengthy. The C
code shown in Figures 2 and 3 will likely expand into many instruc-
tions. For simplicity, we shall assume that access to each and every
queue slot has to be explicitly synchronized. A naı̈ve use of any of
the above software queue implementations to handle communica-
tion in DSWP by reproducing the entire code sequence (compris-
ing synchronization, data transfer and queue pointer update instruc-
tions) for every single communication operation to each queue will
naturally lead to performance inefficiencies. However, in code re-
gions with two or more accesses to “parallel” queues, the overhead
arising from synchronization and queue pointer update instructions
can be amortized across these multiple accesses. Coalescing syn-
chronization leads to an increase in critical section size, which may
be unacceptable in most conventional scenarios. However, since
DSWP pipelines communication and synchronization, increasing
the critical section size will at worst manifest itself as an increase
in pipeline fill cost. The next section expands upon this intuition
and presents an analysis to automatically identify parallel queue
accesses for which synchronizations and queue pointer updates can
be coalesced.

3. ANALYSIS
In this section, we shall start with an intuitive algorithm to de-

termine which queue accesses to coalesce synchronization for and
refine the algorithm progressively to take into account various cor-
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rectness constraints. We shall use the notation ACQUIRE n and
RELEASE n to denote acquire and release of a condition variable
n. The term synchronization number (‘syncno’ for short) will be
used to abstractly refer to a condition variable. The analysis op-
erates on a machine-independent intermediate representation (IR).
While the exact code sequence for an ACQUIRE n or RELEASE
n operation may vary slightly depending on whether it synchro-
nizes a produce or a consume operation, for the discussion below,
it suffices to know that ACQUIRE n is a spinlock loop which will
prevent the enclosing thread from making forward progress un-
til the spinlock succeeds. Since coalescing synchronization is in-
herently more complex than coalescing queue pointer updates, the
analysis is driven from a synchronization standpoint. Section 4 will
explain how queue pointer update coalescing can be piggybacked
on synchronization coalescing during code-generation.

We define synchronization equivalence group (SEG) as a group
of queues for which synchronization can be coalesced. To start
with, let us consider only innermost loops in 2-thread DSWP. For
pipelined communication between two innermost loops, we intu-
itively see that by acquiring and releasing synchronization at the
beginning and end of the loop body respectively, we can correctly
synchronize all communication operations in the loop body. How-
ever, when we consider a two-deep loop nest that has been DSWP’ed
such that there are communication operations in both the outer and
inner loops, our simple strategy will no longer work. All synchro-
nization cannot be coalesced at the outer loop boundaries as that
will leave communication operations in the inner loop without any
synchronization. In Figure 4, notice that there is no ACQUIRE n
or RELEASE n operation for queue accesses in the inner loop.
This can cause produce operations to run over the allotted buffer
space or consume operations to prematurely read stale data. Thus,
upon coalescing, ACQUIRE and RELEASE operations for a queue
access can move to a less restrictive control flow condition (like
outside an “if” statement), but cannot be hoisted out of their orig-
inal loops. This condition ensures that every dynamic queue ac-
cess operation is guarded by at least one ACQUIRE n and one
RELEASE n operation.

But this condition is not sufficient. For example, in Figure 5, syn-
chronization is acquired and released at the beginning and end of
each loop nest level. Even though this satisfies the condition stated
above, it fails to provide correct synchronization because, assum-
ing a queue to contain 32 entries, the producer thread’s ACQUIRE
1will spinlock trying to produce beyond 32 queue items. However,
the consumer thread will spinlock in ACQUIRE 0 in its outer loop,
since the producer’s outer loop will never get a chance to execute
its synchronization release, RELEASE 0. Since the consumer is
spinlocking in ACQUIRE 0, it will never reach its inner loop, thus
leading to a deadlock.

Figure 6 highlights another potential pitfall if ACQUIRE and
RELEASE operations for a syncno are not control-equivalent. In
this example, if the loop were to proceed down the “If” path, the
RELEASE operation for syncno 0 would never execute. This in
turn would cause the consumer thread to spin loop in its ACQUIRE
operation and prevent it from making any progress.

To summarize, the necessary and sufficient conditions for correct
synchronization coalescing are:

1. For each syncno n, dynamically, there be a many-to-one or
one-to-one mapping of synchronization operations (ACQUIREs
and RELEASEs) to queue accesses, for each queue in its
SEG(n)1.

1Note, to take into account coarse-grained signaling implementa-
tions, the condition can be modified slightly to ensure a many-to-

2. There be no circular inter-thread dependence among overlap-
ping critical sections in any thread.

3. For each syncno, dynamically, there be a one-to-one corre-
spondence between ACQUIREs and RELEASEs.

To satisfy all the above conditions, we shall define a single-entry
single-exit acyclic region with control equivalent entry and exit
points called a loop region. ACQUIRE and RELEASE operations
for all queue accesses in this region can be coalesced at the region
entry and exit points. The acyclic clause satisfies conditions 1 and
2 and the control equivalence clause satisfies condition 3.

The first step of the analysis is to form loop regions. Initial loop
region entries are defined as points in a loop’s static CFG where
control flow is transferred into the loop, including from inner loops
and fall-through from loopback branches. Similarly, initial loop
region exits are points in a loop’s static CFG where control flow is
transferred out of the loop, including to inner loops. The source of
a loop backedge is a special loop region exit and likewise a loop
header is a special loop region entry.

The algorithm starts by marking initial loop region entries and
exits as defined above as entry and exit nodes respectively in the
given CFG. Then, for every node in the CFG it computes its latest
post-dominator and earliest dominator, taking into account the new
entry and exit nodes. All latest post-dominators are marked as exit
nodes and all earliest dominators are marked as entry nodes. Source
nodes of in-edges into earliest dominators are marked as exit nodes
and destination nodes of out-edges from latest post-dominators are
marked as entry nodes. The algorithm iterates till no new entry and
exits nodes are marked on the CFG. This procedure gives us max-
imal loop regions. The set of queues accessed in each loop region
forms an SEG. The analysis also remembers the directionality
(i.e. produce or consume) of each SEG. If both produce and con-
sume queue accesses occur in a particular loop region, the analysis
groups them into two different SEGs.

Now, all queue operations in a given loop region can theoreti-
cally have their ACQUIRE and RELEASE operations coalesced at
the region’s entry and exit nodes respectively. However, due to the
inter-thread nature of synchronization, it is important to make sure
corresponding queue accesses in other threads all fall into the same
loop region in those threads. The second step of the analysis com-
pares SEGs across all communicating threads and ensures that for
each queue, the SEG it is a member of is exactly the same across
all threads accessing that queue. If this is not the case, the cor-
responding SEGs are split until the condition is true. Once this
is done, each globally unique SEG is assigned a globally unique
syncno.

For example, let us consider a three-way partitioning of a loop
(with no inner loops) wherein thread 1 produces into queues 1, 2,
3 and 4, thread 2 consumes from queues 3 and 4 and produces to
queues 5 and 6 and thread 3 consumes from queues 1, 2, 5 and 6.
The first step of the analysis creates SEG [1,2,3,4] for thread 1,
SEGs [3,4] and [5,6] for thread 2 and SEG [1,2,5,6] for thread
3. The second step of the analysis will split the SEGs such that
thread 1 has [1,2] and [3,4], thread 2 has [3,4] and [5,6] and thread
3 has [1,2] and [5,6]. Now, there are three globally unique SEGs
- [1,2], [3,4] and [5,6] and they are assigned syncnos 0, 1 and 2
respectively.

The first step of the analysis is a local analysis. The second step
has to make a pass over all threads to determine the correct map-
ping from each syncno to its SEG and is a global analysis. For

one or one-to-one mapping with every kth queue access, where k
is the signaling granularity.
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Producer Thread Consumer Thread

Outer: ACQUIRE  0
produce [4] = r5

Inner: Inner:

consume r5 = [4]
Outer: ACQUIRE 0

produce [7] = r6
r6 = r6 + 1
br r6 < 100, Inner
r5 = r5 + 1
produce [9] = r5

RELEASE 0
br r5 < 100, Outer

consume r6 = [7]
r6 = r6 + 1
br r6 < 100, Inner
r5 = r5 + 1
consume r5 = [9]

RELEASE 0
br r5 < 100, Outer

Figure 4: Coalescing at the outer loop.

Outer: ACQUIRE  0
produce [4] = r5 consume r5 = [4]

Outer: ACQUIRE 0

consume r6 = [7]
ACQUIRE 1Inner:

r5 = r5 + 1
produce [9] = r5

r6 = r6 + 1

br r6 < 100, Inner
RELEASE 1

RELEASE 0
br r5 < 100, Outer

produce [7] = r6
Inner: ACQUIRE  1

r5 = r5 + 1
consume r5 = [9]

r6 = r6 + 1

br r6 < 100, Inner
RELEASE 1

br r5 < 100, Outer
RELEASE 0

Producer Thread Consumer Thread

Figure 5: Coalescing at loop entry and exits.

each procedure, the analysis outputs the syncnos used in the pro-
cedure, the direction of synchronization (i.e. produce or consume),
the ACQUIRE and RELEASE points for each syncno and its SEG.

4. CODE GENERATION
The code generation phase first creates memory locations for all

syncnos handed out. Then, for each procedure, for each syncno
used in that procedure, it uses analysis information to insert ACQUIREs
and RELEASEs for that syncno at the specified points. It uses direc-
tion information for each syncno to determine the exact condition
variable values (or occupancy counter operations) to use while gen-
erating the ACQUIREs and RELEASEs. Either concurrently or as a
later pass, produce and consume instructions can be converted
into store and load instructions to memory locations.

In our implementation, we used condition variable based syn-
chronization. The data layout of these per-entry condition variables
were similar to queue data layouts (i.e. each condition variable also
took up 8 bytes and had 64 entries corresponding to each queue
entry). This layout enabled the code generator to coalesce queue
pointer updates for all SEGs, by doing queue pointer updates only
for the condition variable queue corresponding to each syncno, and
using that offset as the offset for operand queue accesses as well.

5. EVALUATION
The analysis and the code generation was implemented in the

Producer Thread Consumer Thread

Loop: ACQUIRE  0 Loop: ACQUIRE 0
br r4 == r5, If
produce [4] = r5

RELEASE  0
br Loop

If: br r5 > 0, Loop

consume r5 = [4]
br r4 == r5, If

RELEASE  0
br Loop

If: br r5 > 0, Loop

Figure 6: Control inequivalent ACQUIRE and RELEASE.

1 = prodcons, 2 = coalesced synchronization, 3 = coalesced synchronization and queue pointer update
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Figure 7: Schedule height speedup in the producer (above) and
consumer (below).

Velocity compiler [10] framework. As a preliminary measure of
the effectiveness of the propose optimization, we measured the
speedup in profile-weighted schedule heights of 2-thread DSWP
codes (Figure 7) relative to naı̈vely implemented software queues.
The codes used three different types of communication support -
produce and consume instructions (‘prodcons’ bar) (used in [4,
5]), software queues with synchronization coalescing (‘coalesced
synchronization’ bar) and software queues with joint synchroniza-
tion and queue pointer update coalescing (‘coalesced synchroniza-
tion and queue pointer update’ bar). Our benchmark suite consisted
of the Unix utility wc, and benchmarks drawn from SPEC 2000,
MediaBench and Olden suites. We optimized one key loop in each
of the benchmarks. While schedule heights are not a true reflection
of the performance of a piece of code (since run-time effects like
cache behavior and branch prediction behavior often tend to mask
performance improvements predicted by pure schedule height mea-
surements), such comparisons definitely enable us set rough expec-
tations for the code performance. Overall, as seen from the geo-
metric mean bars, synchronization coalescing alone can provide a
speedup of 1.75x and joint synchronization and queue pointer up-
date coalescing can provide a 1.8x speedup.

6. CONCLUSION
Though DSWP has emerged as a promising technique for general-

purpose program parallelization, its reliance on special hardware
support may impact its widespread commercial use. However, sim-
ple optimizations such as the one proposed may facilitate the use of
software queues to support inter-thread communication in DSWP.
As future work, we plan to study the dynamic behavior of codes
with coalesced synchronization and queue pointer updates on both
in-order and out-of-order multi-core processors to understand the
performance bottlenecks with software queue implementations bet-
ter. The insights gained from such a study will ultimately enable us
to design efficient communication support without relying on ded-
icated hardware and will hopefully facilitate popular use of DSWP
on current and future multi-core processors.
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