
SCAF: A Speculation-Aware
Collaborative Dependence Analysis Framework

Sotiris Apostolakis
Princeton University, USA

Ziyang Xu
Princeton University, USA

Zujun Tan
Princeton University, USA

Greg Chan
Princeton University, USA

Simone Campanoni
Northwestern University, USA

David I. August
Princeton University, USA

Abstract

Program analysis determines the potential dataflow and con-

trol flow relationships among instructions so that compiler

optimizations can respect these relationships to transform

code correctly. Since many of these relationships rarely or

never occur, speculative optimizations assert they do not

exist while optimizing the code. To preserve correctness,

speculative optimizations add validation checks to activate

recovery code when these assertions prove untrue. This ap-

proach results in many missed opportunities because pro-

gram analysis and thus other optimizations remain unaware

of the full impact of these dynamically-enforced specula-

tive assertions. To address this problem, this paper presents

SCAF, a Speculation-aware Collaborative dependence Anal-

ysis Framework. SCAF learns of available speculative asser-

tions via profiling, computes their full impact on memory

dependence analysis, and makes this resulting information

available for all code optimizations. SCAF is modular (adding

new analysis modules is easy) and collaborative (modules

cooperate to produce a result more precise than the con-

fluence of all individual results). Relative to the best prior

speculation-aware dependence analysis technique, by com-

puting the full impact of speculation on memory dependence

analysis, SCAF dramatically reduces the need for expensive-

to-validate memory speculation in the hot loops of all 16

evaluated C/C++ SPEC benchmarks.

CCS Concepts · Software and its engineering→ Com-

pilers; Automated static analysis; Dynamic analysis.

Keywords speculation, dependence analysis, collaboration

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’20, June 15ś20, 2020, London, UK

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00

https://doi.org/10.1145/3385412.3386028

ACM Reference Format:

Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Greg Chan, Simone

Campanoni, and David I. August. 2020. SCAF: A Speculation-Aware

Collaborative Dependence Analysis Framework. In Proceedings of

the 41st ACM SIGPLAN International Conference on Programming

Language Design and Implementation (PLDI ’20), June 15ś20, 2020,

London, UK. ACM, New York, NY, USA, 17 pages. https://doi.org/

10.1145/3385412.3386028

1 Introduction

Program analysis allows compiler optimizations to transform

code while respecting data and control flow relationships

between instructions. Increased program analysis precision

can dramatically improve the effectiveness of compiler op-

timizations, including those that perform instruction-level

parallelization (ILP), thread-level parallelization (TLP), and

vectorization. Thus, decades of research have been devoted to

increasing the precision of program analysis. Advancements

include algorithms in points-to analysis [1, 4, 6, 33, 35, 52],

alias analysis [37, 59], shape analysis [19, 20, 50], and loop

dependence analysis [3, 45]. Nevertheless, program analy-

sis is undecidable [31] and remains insufficiently precise in

practice, especially for languages like C/C++ [21].

Speculation allows optimizations to overcome the limi-

tations of program analysis. Speculation typically relies on

profile-based information to identify data and control flow

relationships expected to rarely or never occur during pro-

gram execution. Speculative optimizations optimize for the

common case by assuming that these relationships do not

exist while transforming the code. To preserve correctness,

speculative optimizations add checks to activate recovery

code when these assumptions prove untrue. To be profitable,

speculative optimizations must consider the benefits of opti-

mizing for the common case against the expected frequency

of misspeculation, the cost of misspeculation recovery, and

the validation cost. The validation cost is the cost of checking

for misspeculation, a cost that exists even when there is no

misspeculation. Note that relationships reported by program

analysis but not observed during profiling may actually exist

(analysis is not limiting) or not exist (analysis is imprecise).

In either case, the benefits of speculation remain.

638

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3386028
https://doi.org/10.1145/3385412.3386028
https://doi.org/10.1145/3385412.3386028

PLDI ’20, June 15ś20, 2020, London, UK S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. I. August

The validation and recovery code inserted by speculative

optimizations can be viewed as dynamically-enforced asser-

tions ensuring that certain relationships reported by pro-

gram analysis cannot exist in the protected code. In existing

compiler designs, subsequent program analysis and opti-

mization passes operate on the transformed code, unaware

of the full impact of speculative assertions. This is problem-

atic because the unrecognized value of a single speculative

assertion can be significant. For example, the application of

control speculation to speculatively enforce the elimination

of a control path may make many previously reported mem-

ory dependences impossible. Unaware of the speculative

control flow information, the compiler will needlessly con-

tinue to respect the now nonexistent memory dependences.

This might lead to the compiler unnecessarily preventing

the application of valuable transformations on account of

the phantom memory dependences. Alternatively, it might

lead to the pointless application of additional speculation

to remove the phantom memory dependences. Even worse,

this additional speculation is typically much more expensive

than the already-applied control speculation.

Speculative optimizations themselves represent a break-

through that has helped overcome the crippling limitations

of program analysis, especially for ILP and TLP compil-

ers [25, 61]. Nevertheless, many authors report that spec-

ulative systems often suffer from large overheads [7, 16],

most notably the overheads from the cost of checks and the

overly-aggressively application of speculation. This cost is

particularly acute for memory dependence speculation be-

cause of the large number of memory dependences reported

by analysis that do not manifest during profiling and because

of the high validation cost of memory speculation for each

speculatively removed dependence [7, 16, 55]. As this work

demonstrates, much of this cost is the result of the lack of

speculative assertion awareness in compiler analysis and

optimization.

The goal of this work is to enable lower-cost speculation

with a modular, collaborative, and speculation-aware mem-

ory analysis framework. This speculation-aware collabora-

tive dependence analysis framework, called SCAF, learns of

available speculative assertions, computes their full impact

on memory dependence analysis, and makes this resulting in-

formation available for code optimization. In this way, SCAF

enables the compiler to make the most of speculation by

speculating more judiciously. Like the collaborative analysis

framework (CAF [24]) of prior work, SCAF is modular and

collaborative. The modularity makes the addition of new

analysis modules easy. The collaborative aspects mean that

analysis modules cooperate to produce a result more precise

than the confluence of all individual results. Relative to CAF,

SCAF is made possible (i) by the addition of speculation

modules, a new type of analysis module that uses profil-

ing information to answer queries; (ii) by the introduction

of a new coordinating component called the Orchestrator;

and, (iii) by extensions to CAF’s dependence analysis query

language and its semantics to carry additional information

related to speculation.

This paper:

• introduces SCAF, the first modular, collaborative, and

speculation-aware dependence analysis framework;

• motivates and describes SCAF’s design (ğ2,ğ3);

• demonstrates how SCAF enables existing speculation-

unaware memory analysis modules to reason about

speculation (ğ3);

• describes query language extensions to support com-

munication of control flow, in addition to data flow,

information and to reduce query latency (ğ3.2.2);

• introduces a new compiler component, called the Or-

chestrator, that coordinates interactions among analy-

sismodules and is configurable according to the client’s

preferences (ğ3.3);

• presents a design pattern for speculation modules in a

collaborative environment (ğ4.2.1);

• describes speculation modules implemented in SCAF

(ğ4.2.3, ğ4.2.4); and,

• evaluates SCAF on 16 C/C++ SPEC benchmarks, and

demonstrates its ability to decrease the need for

expensive-to-validate memory speculation by maxi-

mizing the impact of inexpensive speculation (ğ5).

2 Background & Motivation

This section defines what a memory dependence is, discusses

the role of speculation in memory dependence analysis,

and motivates the need for a collaborative, modular, and

speculation-aware dependence analysis framework.

2.1 Memory Dependence

A memory dependence from instruction i1 to instruction

i2 exists iff: (i) the footprint of operation i1 may-alias the

footprint of i2 (alias); (ii) at least one of the two instructions

writes to memory (update); (iii) there is a feasible path of

execution P from i1 to i2 (feasible-path) such that (iv) no

operation in P overwrites the common memory footprint

(no-kill). Footprint refers to the memory locations accessed

(read or written) by an instruction.

2.2 Speculation

A diverse set of speculation techniques have been proposed

to overcome the imprecision of memory analysis [8ś10, 18,

25, 28, 44, 53, 54, 56, 58, 60]. Aggressive use of speculation

is most prominently observed in parallelization schemes [25,

28, 40, 47, 56], where high performance gains can compensate

for overheads introduced by speculation.

To estimate data and control flow relationships among in-

structions, speculative techniques typically rely on profiling

information. Offline runs of the target program with repre-

sentative inputs produce this profiling information. We refer

639

SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework PLDI ’20, June 15ś20, 2020, London, UK

Table 1. Comparison of Proposals for Integration of Speculation into Analysis

Approaches

Supported Forms of Collaboration Memory Analysis

Decoupled from

Speculation

Among

Speculative Techniques

Between Memory Analysis

and Speculative Techniques

Monolithic Integration [2, 12, 14] ✗ ✓ ✗

Composition by Confluence [28, 40, 57, 61] ✗ ✗ ✓

Composition by Collaboration (This Work) ✓ ✓ ✓

to predictions based on profiling information as speculative

assertions.

2.2.1 Express Impact of Speculation

This section describes how prior work expresses the impact

of speculative assertions to other transformations and anal-

yses within the compiler, and then motivates the approach

proposed in this paper.

One might attempt to express the effect of speculative

assertions by transforming the code. For example, Neelakan-

tam et al. [41] propose converting biased branches to as-

sertions to expose speculative control flow information to

subsequent transformations. This approach, though, does

not generalize for all the types of speculative assertions. For

example, the impact of separation speculation [25] and mem-

ory speculation cannot be expressed via a transformation.

Further, applying speculative transformations without fully

evaluating their enabling effect is problematic. Compilers

should only apply speculative transformations that enable

optimizations with performance gains exceeding the specu-

lation overheads. Moreover, the application of a transform

may limit the applicability of some subsequent transforms

(phase order problem).

To avoid these pitfalls, the impact of speculative informa-

tion needs to be visible during an analysis phase prior to

transformation. This requires integrating speculation into

memory analysis. Prior work has explored two different ways

to perform this integration: via composition by confluence

and monolithically.

Composition by Confluence: To integrate speculative in-

formation into an analysis phase, some consider the effect

of speculative techniques on memory dependences in a se-

quence, independently of each other and of memory anal-

ysis [28, 40, 57, 61]. We characterize this approach as com-

position by confluence since the result of this composition

is the confluence of all individual techniques’ results. This

design is modular (consists of independently developed com-

ponents), but does not support the synergistic co-existence

of speculation and analysis. Therefore, it fails to fully lever-

age the impact of speculative information, as shown in the

motivating example (ğ2.2.2).

Monolithic Integration: In this approach, memory analy-

sis algorithms are extended with knowledge and interpreta-

tion of profile-based speculative information [2, 12, 14]. This

scheme increases the impact of speculative assertions. Yet,

given the diverse set of existing memory analysis algorithms

and speculative techniques, creating monolithic and complex

implementations of different combinations does not scale

and hinders extensibility and maintainability.

Composition by Collaboration: Motivated by the deficien-

cies of prior work, this paper introduces a new approach of

integrating speculation with memory analysis. The proposed

approach exposes the full impact of speculative assertions by

enabling collaboration of memory analysis and speculative

techniques (composition by collaboration) without sacrific-

ing modularity and prior to any transformation. In fact, this

scheme allows memory analysis to leverage speculative in-

formation despite being developed independently.

Table 1 summarizes the comparison of this work with

existing proposals of the designs described earlier in this

section.

2.2.2 Motivating Example

For the code example in Figure 1, a client wants to determine

whether there is a cross-iteration dependence from instruc-

tion i3 to i2. By inspecting the code, one can observe that

there is a cross-iteration data flow from i3 to i2 when the

branch is taken. However, since this path is highly unlikely

to execute, one could speculatively ignore it and infer that

instruction i1 kills the data flow from i3 to i2.

A compiler using memory analysis cannot disprove the

cross-iteration data flow from i3 to i2 since none of the con-

ditions described in ğ2.1 (alias, update, feasible-path, no-kill)

1 loop L:

2 if (rare)

3 // no writes to a

4 ...

5 else

6 i1: a = ...;

7 i2: b = foo(a);

8 ...

9 i3: a = ...;

Figure 1. Motivating Code Example

640

PLDI ’20, June 15ś20, 2020, London, UK S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. I. August

(a) CAF [21]

Terminator

Memory Analysis

Module

Memory Analysis

Module

Client

(b) SCAF (This Work)

Query

Response

Orchestrator

Client

Memory

Analysis

Module

(Base)

Memory

Analysis

Module

(Factored)

Speculation

Module

(Base)

Speculation

Module

(Factored)

Figure 2. Design of Collaborative Analysis Frameworks

can be statically disproven. Further, control speculation can-

not assert the absence of this dependence in isolation since

neither i2 nor i3 are speculatively dead. Therefore, composi-

tion by confluence is unable to remove this dependence.

To maximize the impact of the control flow assertion

(branch is never taken), interaction among control specula-

tion and memory analysis is necessary in this example.

Themonolithic integration approach would extend the kill-

flow analysis algorithm [24] to interpret edge profiling infor-

mation. This way, kill-flow can leverage the biased branch in

our example, view i1 as executing on every iteration, infer

that the condition no-kill from ğ2.1 is violated and thus can

assert the absence of the cross-iteration data flow from i3 to

i2.

Instead, this work is able to assert the absence of the cross-

iteration data flow from i3 to i2 without any transformation

and in a modular fashion as shown in ğ3.5.

3 SCAF

This work presents SCAF, a modular and collaborative de-

pendence analysis framework that enables collaboration be-

tween memory analysis and speculative techniques (Fig-

ure 2b).

SCAF can be seen as a speculation-aware extension of

CAF [24]. CAF is limited to collaboration among memory

analysis algorithms, which are depicted as memory analy-

sis modules in Figure 2. SCAF introduces speculation into

the analysis framework with the introduction of speculation

modules. Speculation modules express the effect of specu-

lative techniques by interpreting profiling information in

terms of dependence analysis.

3.1 Collaboration

Collaboration among modules in SCAF occurs indirectly

through a new coordinating component, called the Orches-

trator. Modules may formulate premise queries from incom-

ing queries to resolve propositions about which they cannot

reason (inspired by CAF [24]). Modules that create premise

queries are called factored modules, while the rest are called

base modules. Premise queries are sent back to the Orchestra-

tor to allow other modules to resolve them, and effectively

contribute to the resolution of the original queries. That

way, modules are agnostic to who produces an incoming

query or to who assists them, and there is no need for direct

communication among modules. In fact, memory analysis

modules, despite being speculation-unaware, can collaborate

with speculation modules. This decoupled design enables

independent development of modules and easy extension of

the framework.

3.2 Query Language

The query language enables interactions between clients and

analysis modules, and among the analysis modules. It defines

how dependence analysis queries are expressed and serves as

themodules’ interface. Figure 3 defines the syntax of the anal-

ysis queries (ğ3.2.1, ğ3.2.2) and the query responses (ğ3.2.3).

3.2.1 Query Types

As in LLVM’s alias analysis infrastructure (LLVM 5.0 [37])

and CAF [24], SCAF supports two types of analysis queries:

alias andmodref queries. Alias queries determinewhether

two pointers may alias each other, while modref queries de-

termine whether an instruction may read or write a memory

location (defined by a pointer and a location size) or the

memory footprint of another instruction.

3.2.2 New Query Parameters

This paper introduces new query parameters, compared to

CAF and LLVM, essential for collaboration in the presence

of speculative analysis modules, and for query latency re-

duction.

In a traditional memory analysis framework, there is only

one valid control flow graph. However, the introduction

of speculation modules, particularly modules that interpret

branch-related profile information, enables new variants of

the control flow. To allow modules to communicate control-

flow knowledge, we introduce optional control-flow query

parameters in the form of dominator and post-dominator

trees. This way, control-flow sensitive modules of the en-

semble can leverage this speculative information to resolve

queries, unresolvable with the traditional static control flow

information. Even so, modules are agnostic to whether the

control flow information contained in the received query is

speculative or not.

Modules that generate premise alias queries often benefit

from only one specific alias result. However, CAF’s (and

LLVM’s) interface does not differentiate a must-alias query

from a query that is meant to check no-alias. Therefore, this

paper introduces another (optional) parameter that allows

modules to specify exactly the alias result they need from

premise alias queries to resolve the original query. This new

parameter significantly reduces the query latency (ğ5.3) since

modules can bail-out early if they cannot return the required

answer.

641

SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework PLDI ’20, June 15ś20, 2020, London, UK

Query Syntax

Query q ::= qa | qm
Alias Query qa ::= alias(m1, tr,m2, l, cc, dr)

ModRef Query qm ::=modref(i, tr,m, l, cc, dt, pdt)

| modref(i1, tr, i2, l, cc, dt, pdt)

Memory Location m ::= (p, s)

Temporal Relation tr ::= Before | Same | After

Desired Result dr::= NoAlias | MustAlias

Response Syntax

Query Response r ::= (R,S)

Result R ::= Ra | Rm
Alias Result Ra ::= NoAlias | MustAlias | SubAlias | MayAlias

Modref Result Rm ::= NoModRef | Ref | Mod | ModRef

Set of Options S::= ∅ | {O} | S + S | S × S

Assertion Option O::= ∅ | {A} | O + O

Assertion A::= (id, tp, ec, cp)

Other Notations
i : Instruction
p : Pointer
s : Access Size
l : Loop

cc : Calling Context
dt : Dominator Tree
pdt : Post-Dominator Tree
id : Module ID

tp : Transformation Points
ec : Estimated Cost
cp : Conflict Points

Figure 3. Syntax for SCAF’s query and query response. Colored text indicates syntax extensions over the query language

of non-speculative analysis frameworks (CAF [24], LLVM [37]). Before, After, and Same denote the first operation

executes/the values of the first pointer are computed in a strictly-earlier/a strictly-later/the same iteration than/as the second.

Another introduced (optional) parameter provides calling-

context information. This context helps disambiguate be-

tween different dynamic instances of the same static instruc-

tion. This parameter is essential for more fine-grained iden-

tification of memory objects, since several memory objects

may be created by the same static instruction. Speculation

analysis modules that reason about memory objects benefit

from this context.

Moreover, queries in SCAF, same as in CAF [24], contain

additional context information via the loop and temporal rela-

tion parameters. The loop parameter scopes the query to rep-

resent dynamic instances of operations during the loop’s ex-

ecution. The temporal relation restricts the considered paths

and allows distinguishability between intra-iteration (Same)

and cross-iteration (Before, After) dependences.

3.2.3 (Speculative) Query Response

Memory analysis frameworks [24, 37] do not need to provide

any additional information apart from the query result (e.g.,

NoAlias). In SCAF, by contrast, answers might be pred-

icated on speculative assertions that need to be validated

at runtime if the client wishes to preserve the semantics of

the original code. Thus, query responses in SCAF may con-

tain speculative assertions information added by speculation

modules that contributed to the resolution of the query. In

fact, the query response may contain a set of different op-

tions, any of which can be selected by the client (Response

Syntax in Figure 3). Each of these options may contain mul-

tiple speculative assertions that all need to hold true for

the analysis result to be sound. The algorithms presented in

ğ3.3 demonstrate how the Orchestrator populates this set

of options according to client-selected policies. Note that

as opposed to clients, modules within SCAF do not need to

be aware of the utilized speculative assertions for a given

query.

p1 p2

p3 p4

… …

MustAlias: (p1, p3)

NoAlias: (p2, p3), (p3, p4)

PartialAlias:(p1, p2), (p2, p4)

SubAlias: (p1, p4)

Figure 4. Difference between MustAlias, NoAlias,

PartialAlias, and SubAlias. Arrows represent the

pointed memory addresses, and dashed lines denote access

sizes. Only the most precise result is presented. Analysis may

return MayAlias when it cannot infer any other relation.

Each speculative assertion includes (i) a module identifier

that specifies which speculation module produced the asser-

tion; (ii) program points that specify where to apply specu-

lation (different for each module); (iii) an estimated cost for

validation overhead; and (iv) potential conflict points intro-

duced by the application of this assertion. This information is

used by clients to correctly enforce these assertions by apply-

ing the required validation code, avoid conflicting options,

and consider the cost/benefit of responses. Details about how

speculation modules populate this information are presented

in a generic fashion in ğ4.2.1 and on a per-module basis in

ğ4.2.3 and ğ4.2.4.

Moreover, this paper introduces an additional alias query

result: SubAlias. This result is returned when a mem-

ory location is fully contained within the other memory

location of the alias query. SubAlias is different from

LLVM’s PartialAlias [37], where two memory objects

are known to be overlapping in some way, but one is not

necessarily contained within the other. Figure 4 (inspired by

[38]) illustrates the differences among alias results.

3.3 Orchestrator

The Orchestrator coordinates interactions among modules

and between modules and the client by forwarding queries

642

PLDI ’20, June 15ś20, 2020, London, UK S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. I. August

to the modules and by processing query responses (Algo-

rithm 1). It allows modules to remain simple and decoupled,

and it can be instantiated with different configurations to

accommodate different clients’ requirements.

Algorithm 1: handle(query)

Result: Query Response

(module_list, bailout_policy, join_policy)← getConfig();

final_res← conservativeResponse(query);

for module in module_list do

res← eval(module, query);

final_res← join(join_policy, final_res, res);

if bailout(bailout_policy, final_res) then

return final_res;

end

end

return final_res;

Modules’ implementations only need to respect the query

interface, without considering interactions or conflicts with

other modules. Clients can easily reconfigure the Orchestra-

tor to adjust the received responses without anymodification

to the modules.

The need for configurability is caused by the presence of

speculation modules in SCAF. In traditional memory analy-

sis frameworks [24, 37], the clients are typically indifferent

to which module resolved the query; only the result is of

interest. However, in SCAF, the same analysis outcome may

come with different caveats depending on which modules

participated in the resolution of the query. Each speculation

module has different requirements in terms of validation for

its speculative assertions.

The join_policy determines what the Orchestrator

records for each received response (Algorithm 2). It can ei-

ther collect all the possible ways a query can be resolved to

enable clients to perform global reasoning, or just keep the

locally optimal option. Need for global reasoning sources

from the fact that a single speculative assertion might be

able to resolve with the same cost multiple client’s queries

as opposed to a cheaper assertion that resolves only one

query. The latter is locally better for one particular query,

but the former is globally better. Regarding the conflicting

results case, it represents an analysis bug if the results are

not speculative. If the results are predicated on speculative

assertions, it is possible that for different profiling inputs

different results appear true. The difference in speculation

confidence could determine which one should be preferred.

The bailout_policy determines when to stop the

search. A default base policy makes the Orchestrator imme-

diately return when a definite answer (i.e., the most precise)

is found with no attached assertions (i.e., cost-free). Apart

from this policy, the Orchestrator’s search may stop when all

the options have been explored (exhaustive search), or when

a timeout occurs (clients sensitive to compilation time), or

Algorithm 2: join(join_policy, r1, r2)

Result: Query Response

/* Define assertion-related semantics */

Def O1 + O2 = O1 ∪ O2 ;

Def S1 + S2 = S1 ∪ S2 ;

Def S1 × S2 = {O1 + O2 : O1 ∈ S1, O2 ∈ S2 } ;

/* Define order of precision of results */

Def pr(NoAlias) == pr(MustAlias) >pr(SubAlias)

>pr(MayAlias);

Def pr(NoModRef) >pr(Mod) == pr(Ref) >pr(ModRef);

(R1, S1)← r1;

(R2, S2)← r2;

if pr(R1) >pr(R2) then return r1;

if pr(R1) <pr(R2) then return r2;

/* pr(R1) == pr(R2) */

if R1 == R2 then

switch join_policy do

case ALL return (R1, S1 + S2);

case CHEAPEST return (R1, cheaper(S1, S2));

case Other Policies ...;

endsw

end

/* Special Case: Mod and Ref */

else if (R1 == Mod and R2 == Ref) or (R1 == Ref and R2 == Mod)

then

if conflict(S1, S2) then
return handleConflictingAssertions(r1, r2)

end

else
return (NoModRef, S1 × S2)

end

end

else

return handleConflictingResults(r1, r2);

end

when a definite answer is found regardless of cost, or based

on some other heuristic.

In our implementation, for simplicity and lack of empirical

evidence justifying exposure of all options and exhaustive

search, we opt for a greedy search that terminates when a

definite result is found and presents only one option to the

client.

The Orchestrator could also be configured to query any

subset of the available modules. For example, a client who

wants to avoid speculation can configure the Orchestrator

to query only memory analysis modules. The ordering of

modules is also important as it affects query latency and

the effectiveness of greedy approaches. Typically, modules

with the smaller average cost of speculative assertions are

prioritized. Since memory analysis modules’ answers are

caveat-free (no validation), they are normally queried first.

From among the memory analysis modules, the order could

be determined by the query latency.

643

SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework PLDI ’20, June 15ś20, 2020, London, UK

loop L:
if (rare)

// no writes to a
...

else
i1: a = ...;
i2: b = foo(a);

...
i3: a = ...;

(a) Original Code

loop L:
// rare path ignored

i1: a = ...;
// data flow from i3
// killed by i1

i2: b = foo(a);
...

i3: a = ...;

(b) Speculative View

loop L:
if (rare)

misspec(branch_tag);
...

else
i1: a = ...;
i2: b = foo(a);

...
i3: a = ...;

(c) Control Speculation Applied

Figure 5.Motivating Code Example

Orchestrator (O)

Client (C)

Kill Flow
Module (KF)

Control Spec
Module (CS)

8

2

1 14

63 12

10 13

11

9

4 5

7

Step Flow Action

1 C→O Call handle(q0=modref(i3, Before, i2, L, cc, dt, pdt))

2 O→KF Call eval(KF, q0)

3 KF Generate r0 : (ModRef, ∅) // the flow from i3 to i2 is not killed

4 KF→O Return r0
5 O→CS Call eval(CS, q0)

6 CS
Generate premise query q1:

modref(i3, Before, i2, L, cc, spec_dt, spec_pdt)

7 CS→O Call handle(q1)

8 O→KF Call eval(KF, q1)

9 KF Generate r1 : (NoModRef, ∅) // i1 kills the flow from i3 to i2

10 KF→O Return r1
11 O→CS Return r1

12 CS
Generate control speculation assertion A (branch never taken),

assertion option O={A}, and response r3 : (NoModRef, O)

13 CS→O Return r3
14 O→C Return r3

Figure 6. A step-by-step example of SCAF. The client wants to determine if there is a cross-iteration data flow from i3 to i2 in

the loop in Figure 5a. To that end, it creates a modref query that asks if instruction i3 may read or write the memory footprint

of i2 in a later iteration, assuming some static control flow information (dt, pdt). The kill-flow and control speculation modules

synergistically resolve this query, not addressable in isolation by any of these two modules. In Step 9, the kill-flow module

perceives the code as in the Speculative View in Figure 5b due to the speculative control flow information (spec_dt, spec_pdt).

3.4 SCAF within a Compiler

SCAF suggests: SCAF does not perform any transformation.

Clients can choose to ignore SCAF’s result to avoid paying

the cost of its accompanying speculative assertions. SCAF

merely makes suggestions. Different configurations of the

Orchestrator adjust the content of these suggestions, the final

decision on what transformations to perform is still left to

the client.

SCAF facilitates planning: SCAF avoids the defect of con-

ventional compiler designs where the effect of speculative

transformations is only visible after performing the actual

transformation. Since SCAF reports the result of queries

predicated on speculative assertions, the compiler can per-

form global reasoning and weigh the impact of applying

speculative transforms prior to actually applying them. For

example, a parallelization transformation client could query

SCAF for all the dependences in a hot loop. Then, to select

the set of necessary speculative assertions, this client can

formulate an optimization problem considering the removal

cost of dependences and the parallelization gains. In the case

of multiple clients, a coordinating component could consider

the cost/benefit of multiple optimizations simultaneously

and prevent redundant speculation validation checks. Fi-

nally, rational clients would not apply validation checks for

non-leveraged speculative assertions.

The new compiler technology motivated by SCAF is left

for future work. This technology includes the re-design of

optimizations’ interfaces to enable planning and coordina-

tion among compiler components. Significant advancements

enabled by SCAF are expected for optimizing clients with

high performance returns (high enough to tolerate validation

and recovery overheads), such as automatic parallelization

and vectorization.

3.5 Example

This section illustrates concepts and design decisions de-

scribed in the previous sections with the motivating exam-

ple from section ğ2.2.2. For this example (presented again

in Figure 5a), a client wants to determine whether there is a

cross-iteration dependence from instruction i3 to i2. Such a

client could be a parallelization transformation that needs

644

PLDI ’20, June 15ś20, 2020, London, UK S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. I. August

to remove all the cross-iteration dependences so that each

iteration can execute independently and in parallel.

Edge profiling information allows control speculation to

infer that the branch in this code example is never taken

(rare condition). We propose that memory analysis and other

speculation modules should leverage the full effect of con-

trol speculation without performing code transformations.

In particular, the speculative assertion that the branch is not

taken should be understood by all modules in SCAF as a

fact (view misspeculation as impossible) since recovery code,

inserted by the client, preserves correctness in the case of

misspeculation. The view of the real effect of control specu-

lation is presented in Figure 5b. The speculative view is not

intended to show transformed code (SCAF does not change

the code), but to explain how the code should be understood

by other modules given speculative dominance information.

This view of the code enables the kill-flow analysis algorithm

to prove that i1 kills (overwrites) the cross-iteration data flow

from i3, and thus disprove the dependence in question.

Figure 6 shows how this code example is handled by SCAF

step by step. For simplicity, this example only consists of

two modules - a kill-flow memory analysis module and a

control speculation module. SCAF enables control specu-

lation to express a speculative control flow of the loop to

other modules via a premise query. This premise query is

received by the kill-flow module that can resolve the premise

query as opposed to the initially received query. In the end,

the client receives a NoModRef result predicated on the

speculative assertion A that the branch is never taken. If the

client chooses to leverage the NoModRef result and wants

to preserve soundness, it would need to insert a function call

at the beginning of the taken path to trigger misspeculation,

as shown in Figure 5c. For a parallelization transformation

client, recovery would involve rollback to the last check-

pointed memory state and sequential execution of the orig-

inal code (without speculation applied) up to the iteration

that caused the misspeculation.

In this example, a collaboration between a speculation

module and a memory analysis module results in a depen-

dence removal. In general, collaboration in SCAF can also

occur among speculation modules or be initiated by memory

analysis modules.

Without collaboration, the removed dependence in this

example would require memory speculation. Memory spec-

ulation just asserts the absence of non-observed during pro-

filing dependences without any understanding of why they

are not observed; there is no reasoning. Thus, its validation

requires expensive monitoring of the involved operations

and comparison of their access patterns. Instead, SCAF man-

ages to inexpensively remove the dependence in question

by understanding the reason why this dependence did not

manifest during profiling (i.e., not taken branch).

4 Implementation

SCAF is implemented on the LLVM Compiler Infrastruc-

ture [32] (version 5.0.2). This section describes the memory

analysis (ğ4.1) and speculation (ğ4.2) modules included in

SCAF’s implementation.

4.1 Memory Analysis Modules

SCAF includes the 13 analysis algorithms described in

CAF [24]. Each of these algorithms tries to disprove one

of the conditions described in ğ2.1. In particular, they reason

about shape analysis, reachability, flow killing, scalar evo-

lution of pointers, induction variables, and features of the

LLVM IR and the C standard library.

Several of these algorithms initiate collaboration by creat-

ing premise queries. In CAF, these premise queries can only

be resolved by other memory analysis algorithms. In SCAF,

both memory analysis and speculation modules attempt to

resolve these queries, effectively increasing the impact of

the partially resolved queries. Moreover, memory analysis

modules can also resolve premise queries generated by specu-

lation modules. An example of collaboration among memory

analysis and speculation modules is presented in ğ3.5.

4.2 Speculation Modules

This section describes a design pattern for speculation mod-

ules (ğ4.2.1), enumerates the profilers that guide them (ğ4.2.2),

and finally briefly describes the speculation modules imple-

mented in SCAF (ğ4.2.3, ğ4.2.4). For each speculation module,

this section describes the effect of its speculative assertions

on dependence analysis, the validation code for its asser-

tions, and the possibility of conflicts with other speculation

modules.

4.2.1 Developing Speculation Modules

To overcome the inherent imprecision of memory analy-

sis algorithms, traditional compiler designs involve specula-

tive transformations. Memory speculation can address the

imprecision of memory analysis by asserting the absence

of dependences not manifested during profiling. However,

memory speculation incurs a high validation cost [7, 16, 55].

To lower the validation cost, state-of-the-art compilers also

implement less generic but cheaper-to-validate speculative

transformations compared to memory speculation.

In this paper, such a speculative transformation is decom-

posed into an analysis and a transformation part. This de-

composition exposes the effect of a speculative transforma-

tion prior to its application, enabling careful planning. The

analysis part is a speculation module that interprets profile

information in terms of dependence analysis, produces spec-

ulative assertions, and communicates with the same query

language (ğ3.2) as memory analysis modules. The transfor-

mation part includes validation code generation that ensures

645

SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework PLDI ’20, June 15ś20, 2020, London, UK

the correctness of the produced speculative assertions, recov-

ery code generation in case of misspeculation, and runtime

support. SCAF’s clients apply this transformation part to

safely leverage the module’s speculative assertions without

violating the program’s semantics.

Design of Speculative Assertions: Each speculative asser-

tion includes a module identifier, transformation program

points, an estimated cost, and conflict points. The identifier is

used by clients to identify the corresponding transformation

code. The program points specify where to apply the trans-

formation (e.g., a branch instruction for control speculation).

The cost enables clients to optimize the selection of applied

transformations based on their cost and benefit. Conflict

points specify program operations that need to be modified

and allow clients to detect ahead of time conflicting trans-

formations (i.e., application of one prevents the application

of another).

Estimated Cost Computation: The cost of speculation typ-

ically comes from validation and recovery. In this work, we

only estimate the validation cost. Validating speculative as-

sertions’ adds latency in the common case, not only during

recovery. Further, all speculative assertions, in this work, are

high-confidence (always hold true during profiling), thus

misspeculation is equivalently unlikely for all the assertions.

The existence of less conservative speculation schemes with

varying misspeculation rates would require modeling of this

recovery cost. The total validation cost of a speculative as-

sertion is computed by multiplying a latency estimate of one

invocation of the validation code with the execution count

(measured during profiling) of the guarded operation. For

example, for the case of value prediction on a load operation,

the validation code (check that the predicted value matches

the loaded value) will execute as many times as the load

operation (guarded instruction). The validation cost estimate

for one invocation is the average execution time of the val-

idation code observed during profiling runs across several

benchmarks and inputs.

Directives to Minimize Conflicts: To minimize conflicts

in terms of validation, it is preferable to insert validation

code adjacent to speculated operations rather than replac-

ing original program operations. By following this principle,

most of the produced speculative assertions in our imple-

mentation do not introduce any conflict points. For the rest,

orthogonality, in terms of coverage, prevents conflicts.

Modular Design: Each speculation module and its valida-

tion code is decoupled and can be developed independently

from other modules as long as themodule interface described

in ğ3.2 is respected. Development of these speculation mod-

ules and integration in SCAF is not more complex than the

development of separate speculation transformations as cus-

tomary in existing research compilers. The main new over-

head is additional code to conform to the SCAF’s interface.

This code, though, is of insignificant complexity compared

to the logic for determining the applicability of the transfor-

mation or the code for the application of the transformation.

Design with Collaboration inMind: Our system does bet-

ter than simply adding speculation modules into the ensem-

ble. Speculation modules in SCAF are designed with col-

laboration in mind to maximize their impact. Traditionally,

speculative techniques are self-contained, resolving depen-

dences in isolation. In SCAF, speculation modules can still

directly address dependence queries, but can also generate

premise queries, delegated by the Orchestrator to memory

analysis or other speculation modules. This collaborative

environment enables the decomposition of complex spec-

ulative techniques to multiple simple speculation modules

(e.g., extraction of points-to (ğ4.2.3), read-only (ğ4.2.4), short-

lived (ğ4.2.4) modules from separation speculation [25]), and

participation of speculation modules in resolution of queries

that go beyond their own reasoning (e.g., Figure 6).

4.2.2 Profilers

SCAF’s speculation modules use information generated by

a set of profilers: (i) an edge profiler that identifies biased

branches [32]; (ii) a value-prediction profiler that detects

predictable loads [18]; (iii) a pointer-to-object profiler that

produces a points-to map, allowing detection of underlying

objects for every memory access [25]; and, (iv) an object life-

time profiler that detects short-livedmemory objects, namely

objects that exist only within a single loop iteration [25].

4.2.3 Base Speculation Modules

The following base speculation modules resolve client

queries or premise queries of other modules using profiling

information. Base modules do not generate premise queries.

Pointer-Residue Speculation attempts to disambiguate

different fields within an object and may also recognize dif-

ferent regular strides across an array. Each pointer is charac-

terized according to the observed during profiling values of

its four least-significant bits (residue). This module asserts

the absence of dependences between operations with disjoint

residue sets (with respect to their access size). Validation of

this speculative information is inexpensive, involves bitwise

operations that ensure that dynamic pointer values have ex-

pected residues, and does not conflict with the validation of

other modules’ assertions (original code instructions are left

unmodified). This speculative technique has been proposed

by Johnson [23].

Points-to Speculation identifies underlying objects (al-

location sites) for every pointer using a points-to profiler.

Using this speculative information, it answers alias queries,

and may return SubAlias (explained in ğ3.2.3). Validating

points-to objects information is, in general, expensive and

complicated. Thus, we assign a prohibitively high cost to

646

PLDI ’20, June 15ś20, 2020, London, UK S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. I. August

points-to assertions that effectively prevents clients from us-

ing responses predicated on such assertions. Yet, answers of

the points-to module can be leveraged by other speculation

modules, such as read-only and short-lived modules (ğ4.2.4),

without paying this high cost. In particular, these modules’

validation code separates select memory objects to a separate

heap. Since distinguishing objects within a heap is not nec-

essary for these modules, they only need to insert points-to

heap checks instead of expensive points-to object checks. In

other words, these modules can safely ignore the expensive-

to-validate points-to speculation assertion in the premise

query response, and replace it with their own assertions.

4.2.4 Factored Speculation Modules

Same as factored memory analysis algorithms in CAF [24],

factored speculation modules initiate collaboration by gen-

erating premise queries that may be resolved by other spec-

ulation or memory analysis modules.

Control Speculation identifies speculatively dead1 basic

blocks using edge profiling. It asserts that speculatively dead

instructions cannot source or sink memory dependences.

This speculative assertion enables the resolution of client

queries and premise queries of other modules.

For example, the control speculation module can address

premise queries generated by the reachability algorithms

described in CAF [24] (i.e., Global Malloc, No-Capture Global,

No-Capture Source, Unique Access Paths). These reachabil-

ity algorithms reason about which object addresses can be

stored in particular memory locations. The control specula-

tion module may resolve premise queries related to specu-

latively unreachable stores to these memory locations, and

thus facilitate the resolution of queries related to pointers

loaded from these locations.

Additionally, the control speculation module initiates col-

laboration by generating premise queries that replace static

control flow information of received queries with specu-

lative control flow information (in the form of dominator

and post-dominator trees). The premise query with the opti-

mistic control flow information is more likely to be resolved

by control-flow sensitive analysis modules compared to the

original query. If the speculative control flow is proven to be

useful by leading to the resolution of a query, control specu-

lation module appends the required speculative control-flow

assertions to the query response.

Validation involves the insertion of a function call trigger-

ing recovery at the beginning of the speculatively dead path

of biased branches. This validation does not modify original

code instructions. It thus does not introduce conflicts with

other speculative assertions, as opposed to other schemes

(e.g., [41]) that propose the replacement of biased branches

with assertions. The validation cost of control speculation is

1We focus on high-confidence speculation and thus only never executed

during profiling basic blocks are considered.

practically zero since the biased branch is computed anyway.

The only potential overhead is the cost of recovery in the

unlikely case of misspeculation.

Value Prediction identifies predictable loads using profil-

ing information. It resolves data dependences that sink into

or source from these predictable loads. The value prediction

module can also interpret predictable loads as kill operations

to resolve additional queries leveraging the no-kill condition

from ğ2.1. If a predictable load post-dominates the source

of a queried dependence and dominates the destination, the

value prediction module generates premise queries to com-

pare the memory footprint of the predictable load with the

footprint of the dependent instructions. Must-alias result

for either of the two premise queries enables the value pre-

diction module to assert a lack of dependence. Validation

is inexpensive, involves a simple comparison of the loaded

value with the predicted one, and it does not conflict with

other assertions.

Read-only identifies memory objects that are never writ-

ten to within a target loop based on profiling informa-

tion [25]. This module generates premise queries to com-

pare the memory locations of read-only objects with the

memory locations involved in received queries. It asserts

that read-only memory locations cannot be written to and

asserts disjointedness of read-only objects from pointers

to other objects. Johnson et al. [25] have shown that vali-

dation of these assertions is inexpensive via separation of

read-only memory objects to a separate heap and simple

bitwise operations on computed pointers to check points-to

heap assertions. Note that in this work, we separate and

decompose the analysis part of separation speculation [25]

to simple modules that collaboratively infer at least the same

properties as the monolithic design proposed in [25]. Further,

this work avoids points-to heap checks if the premise query

reports MustAlias with zero cost. Since read-only asser-

tions require re-allocation of the involved memory objects to

the read-only heap, they conflict with any other assertions

that require modification of the allocation sites of the same

memory objects.

Short-lived identifies memory objects that only exist

within one iteration of the loop of interest using profiling

information [25, 28, 55]. Similarly to the read-only module,

it generates premise queries to compare the memory loca-

tions involved in the original query with the locations of

short-lived objects. It asserts the absence of cross-iteration

dependences on any access to short-lived objects and asserts

disjointedness of these objects from pointers to other objects.

Similarly to the read-only module’s validation, validation

of the short-lived module’s assertions is inexpensive and

introduces conflicts on the allocation sites of the involved

short-lived objects. Note that the short-lived and the read-

only objects are disjoint sets, and thus no conflict between

647

SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework PLDI ’20, June 15ś20, 2020, London, UK

their assertions is possible. In addition, the short-lived mod-

ule’s assertions additionally require a simple check at the

end of every loop iteration that verifies that the count of

allocated short-lived objects equals the count of freed ones.

4.2.5 Recovery

Clients utilizing SCAF’s query responses with speculative as-

sertions need to insert the corresponding validation code (de-

scribed in ğ4.2.3, ğ4.2.4) to preserve the semantics of the origi-

nal code. At runtime, if the validation checks fail, misspecula-

tion occurs and recovery code should be activated. Therefore,

clients that leverage speculative assertions should support

recovery and separation of speculative and non-speculative

state. There is a rich literature of recovery mechanisms for

systems that speculate memory dependences. These mecha-

nisms, that SCAF’s clients can leverage, are summarized in

two main categories: process-based [13, 25, 27, 29, 46] and

thread-based [22, 40, 54ś56] schemes.

5 Evaluation

Benchmark Selection: We evaluate SCAF against 16

C/C++ benchmarks from the SPEC suites (SPEC CPU

92/95/2000/2006/2017) [51]. We exclude Fortran SPEC bench-

marks due to lack of Fortran front-end support (Flang [17]

not supported in LLVM 5.0). We also exclude other C/C++

SPEC benchmarks due to the limitations of our profilers’

implementation. All profilers (ğ4.2.2) except for the edge

profiler (LLVM version) are implemented in-house, lacking

industrial-level robustness in implementation. Benchmarks

for which at least one profiler failed to produce results were

rejected since only a subset of the speculationmodules would

be applicable. Problems include unanticipated code patterns

that break code instrumentation, runtime errors of instru-

mented executables, and prohibitively large profile data.

Hot Loops: SCAF is evaluated on the hot loops of the evalu-

ated benchmarks. These are the loops that comprise at least

10% of total program execution time and iterate at least 50

times on average per invocation. We evaluate on hot loops

because improvements in memory dependence analysis for

hot loops are expected to be more beneficial to clients com-

pared to other parts of the benchmarks.

Profiling Data: We gather profiling information using the

train inputs from the SPEC benchmark suites.

Client: We evaluate SCAF with a Program Dependence

Graph (PDG) client [15]. For each hot loop, the PDG client

performs an intra-iteration and a cross-iteration dependence

query for each pair of memory operations (each dependence

is valued equally). Quantifying the impact of SCAF at the

optimizing client level is not possible given today’s compiler

technology (see ğ3.4) and is left for future work.

Metric: Same as in prior work [24], we utilize the %NoDep

metric as ameasure of analysis precision. This metric denotes

the percent of dependence queries for which the evaluated

analysis framework reports no flow, anti, or output depen-

dence. The coverage in terms of dependence removal is a

direct measure of SCAF’s impact, as opposed to the perfor-

mance response that is tied to the specifics of the evaluated

optimizing client and thus an indirect measure. While the

performance impact for an optimizing client is not mea-

sured, the selected metric is indicative of such an impact.

Performance is highly correlated with the cost of memory

dependence removal in hot loops for certain types of clients,

such as parallelization techniques [16, 40, 55].

Best Prior Approach: We evaluate the positive effect of col-

laboration among speculation modules and between mem-

ory analysis and speculation modules by comparing SCAF

against the best prior approach that integrates speculation

into dependence analysis: composition by confluence (ğ2.2.1).

This approach resembles prior proposals [28, 40, 57, 61] that

utilize speculative techniques independently, each handling

memory dependences on its own without interactions with

other speculation or memory analysis modules. In composi-

tion by confluence, each dependence query is passed to each

module in isolation, and the confluence of individual results

is returned. To avoid taking credit for contributions of prior

work (CAF [24] supports collaboration among memory anal-

ysis modules), we treat all the memory analysis modules

as one component within which collaboration is permitted.

We refer to this component as CAF. Both composition by

collaboration (SCAF) and by confluence use the same memory

analysis and speculation modules. Same as SCAF, composi-

tion by confluence does not usememory speculation, and only

reports cheap-to-validate assertions (responses that include

points-to speculation assertions are discarded).

Memory Speculation: Memory speculation is the most

commonly used and applicable speculation technique [25,

28, 40, 47, 56]. It asserts the absence of non-observed mem-

ory dependences using a loop-sensitive memory dependence

profiler [8]. Yet, memory speculation is the most expensive

speculation technique. Excessive usage of memory specula-

tion often negates its enabling effect [7, 16, 55]. To validate

that a memory dependence between two operations is not

manifested at runtime, the access pattern of these two mem-

ory operations needs to be monitored at runtime. A shadow

memory is commonly used to keep track of accessed mem-

ory locations for all the speculative accesses [25, 43, 47].

This is expensive for software-only systems where moni-

toring of large read and write sets results in dramatic slow-

downs [25, 46]. Figure 7b shows an assembly code snippet

of a typical memory speculation validation code and com-

pares it with an example of a cheap-to-validate speculation

from SCAF (points-to heap check in Figure 7a). Validation of

the rest of speculation modules in SCAF (ğ4.2) is not more

648

PLDI ’20, June 15ś20, 2020, London, UK S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. I. August

r0 := addr

point_to_heap_check:

r1 = r0 & MASK

br r1 != EXPECTED,misspec

(a) Inexpensive

r0 := addr

r1 := type

mem_spec_check:

r2 = r0 | SHADOW_MASK

r3 = M[r2]

r4 = check_meta(r3, r1)

br r4 == FAIL, misspec

r5 = update_meta(r3, r1)

M[r2] = r5

(b) Expensive

Figure 7. Speculation validation code examples. Validation

of SCAF’s modules involves only a few bitwise/arithemet-

ic/branch instructions, while the memory speculation check

involves many more operations, including memory accesses.

complicated than the simple check in Figure 7a. Note that

if the client is a parallelization transformation and the spec-

ulated dependence is a cross-iteration one, memory specu-

lation validation additionally involves the communication

of memory footprints among parallel workers. In contrast,

SCAF only employs assertions with inexpensive checks that,

even for parallel execution, are performed locally by each

worker. Overall, SCAF aims to reduce the gap between the

dependence coverage of memory speculation and cheap-to-

validate speculation and enable more profitable speculative

optimizations.

5.1 Benefit of Collaboration

Figure 8 compares SCAF, composition by confluence, memory

speculation, and CAF [24] using the %NoDep metric for the

PDG client. Since resolving a memory dependence within a

frequently executed loop has typically a larger impact to that

within a less frequently executed loop, we record %NoDep

at a loop granularity and weight it by the loop’s execution

time. %NoDep for each benchmark is, therefore, a weighted

sum of %NoDep per loop.

SCAF increases, on average, the dependence coverage

by 68.35% (56.27% for geomean) compared to composition

by confluence. Note that SCAF outperforms composition by

confluence for all the evaluated benchmarks; in some cases,

the improvement is too small to observe in the graph. Given

that both SCAF and composition by confluence use the same

inexpensive-to-validate speculative assertions, the coverage

improvement highlights how SCAF maximizes the impact

of these speculative assertions by exposing them to all the

modules in the framework.

By maximizing the impact of inexpensive speculative as-

sertions, SCAF effectively reduces the need for expensive-to-

validatememory speculation for dependence removal. In fact,

Figure 8 shows a dramatic reduction of the memory specula-

tion bar (58.41% geomean). This reduction means that SCAF

removes with cheap-to-validate speculation dependences

for which prior work would require memory speculation.

Moreover, memory speculation asserts the absence of indi-

vidual dependences, while a cheap assertion, such as control

speculation assertion, may resolve (either in isolation or

collaboratively) multiple dependences. In other words, to

achieve the same dependence coverage as prior work, SCAF

uses not only cheaper assertions but also fewer. Therefore,

these results strongly indicate that SCAF decreases valida-

tion costs compared to the best prior approach, despite the

lack of optimizing client results.

Figure 9 compares SCAF with composition by confluence in

terms of the %NoDepmetric of the PDG client for each of the

hot loops within the evaluated SPEC benchmarks. SCAF out-

performs composition by confluence for 37 out of 56 hot loops

from the evaluated SPEC benchmarks. For these loops, col-

laboration enables removal of dependences non-addressable

by any module in isolation. For the rest of the loops, both

schemes have the same precision. Lack of benefit by SCAF

on the latter loops is mostly due to high coverage of non-

observed dependences by composition by confluence, leaving

few (if any) opportunities for increasing the impact of cheap

speculation. These loops are mainly found in 056.ear,

129.compress, 164.gzip, 179.art benchmarks.

5.2 Contributions of Modules to Collaboration

This section evaluates which modules within SCAF partici-

pate in collaborations across the 16 evaluated benchmarks,

and thus contribute to the improvements in the %NoDep

metric of the PDG client (discussed in ğ5.1). Collaboration

Table 2. Collaboration coverage of modules in SCAF on the

benchmark, loop, and improved query (i.e., query benefited

by collaboration) levels. The percentage of a module denotes

the coverage of beneficial collaboration involving themodule

for the population of a certain level (e.g., the 93.75% coverage

of CAF on the benchmark level means that CAF is used in

collaboration with other modules for 93.75% of benchmarks

for removal of dependences unresolvable with composition

by confluence).

Collaboration Coverage (%)

Analysis Modules Benchmark Loop Improved

Level Level Query Level

Memory Analysis (CAF) 93.75 42.86 40.02

S
p
ec
.M

o
d
u
le
s Read-only 87.50 53.57 71.52

Value Prediction 12.50 3.57 0.11

Pointer-Residue 6.25 1.79 0.00

Control Speculation 75.00 30.36 18.57

Points-to 87.50 53.57 81.32

Short-lived 6.25 1.79 9.80

Among Speculation Modules 87.50 53.57 81.32

Between CAF and Speculation 93.75 42.86 40.02

All 100.00 66.07 100.00

649

SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework PLDI ’20, June 15ś20, 2020, London, UK

052.alvinn

056.ear

129.compress

164.gzip

175.vpr

179.art

181.mcf

183.equake

429.mcf

456.hmmer

462.libquantum

470.lbm

482.sphinx3

519.lbm

525.x264

544.nab

Average

Geomean

0

20

40

60

80

100

D
e
p
e
n
d
e
n
c
e

%

Observed Deps Memory Speculation Confluence SCAF CAF

Figure 8. Dependences coverage by different schemes. CAF denotes dependences disproven by memory analysis (CAF [24]).

Confluence and SCAF show additional dependences removed using inexpensive speculation without and with collaboration,

respectively. Memory speculation asserts the absence of the remaining dependences that do not manifest during profiling.

Observed deps are dependences that manifest during profiling.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
o

lla
b

o
ra

ti
v
e

 (
%

N
o

D
e

p
)

Confluence (%NoDep)

Figure 9. Composition by Collaboration (SCAF) compared

with Composition by Confluence. Each point is a hot loop.

Collaboration performs better on loops above the diagonal.

exhibits when two or more modules achieve higher precision

than the confluence of their individual results.

Table 2 presents each module’s contribution to collabora-

tion. We treat all the memory analysis modules as one single

component (CAF) and focus on the interactions of memory

analysis as a whole with speculation modules.

These results strongly corroborate the hypothesis that col-

laboration between memory analysis and speculation mod-

ules is beneficial. Memory analysis modules collaborate with

at least one speculation module for 15 out of 16 evaluated

benchmarks, for 42.86% of the evaluated hot loops, and for

40.02% of benefited from collaboration queries.

Notice also that the control speculation module partic-

ipates in numerous fruitful collaborations, indicating the

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-06
1e-05

1e-04
1e-03

1e-02
1e-01

1e+00
1e+01

1e+02

C
D

F
 %

Latency (seconds)

CAF
SCAF w/o Desired Result Parameter

SCAF

Figure 10.CDF of query latency for CAF [24], SCAFwithout

Desired Result parameter, and SCAF. The vertical colored

dashed lines represent the geomean of each. The geomeans

of SCAF and CAF are overlapping.

usefulness of providing speculative control flow informa-

tion to other modules. The rest of speculation modules also

profitably collaborate in varying degrees.

Furthermore, these results show that more than two com-

ponents contribute to the resolution of certain queries be-

cause the sum of the percentages of all the analysis modules

for queries benefited by collaboration is bigger than 200%.

5.3 Query Latency

Figure 10 presents the cumulative distribution function (CDF)

of the query latency for CAF [24], SCAF without Desired Re-

sult parameter, and SCAF. All the queries performed by the

PDG client are considered. Time is measured in processor

cycles on a 14-core Intel Xeon CPU E5-2697 v3 processor

running at 2.60GHz (turbo-boost disabled) with 768GB of

available memory. SCAF’s query latency is reduced by 27.50%

650

PLDI ’20, June 15ś20, 2020, London, UK S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. I. August

(geomean) with the introduction of the Desired Result param-

eter. Compared with CAF, SCAF, despite using more analysis

modules (i.e., addition of speculation modules), increases the

geomean query latency by only 1.61%. Finally, 95% of queries

are serviced by SCAF within 2.6ms.

6 Related Work

Johnson [23] proposes a design integrating speculation in a

collaborative analysis framework (CAF [24]); however, there

has been no published work implementing this design. Addi-

tionally, merely adding existing speculative techniques into

an analysis ensemble is not sufficient to enable collaboration.

Speculative techniques need to be re-designed with collabo-

ration in mind. Traditionally, each speculative technique is

self-contained. Instead, speculation modules in SCAF extend

their impact by initiating collaboration and requesting assis-

tance from other modules. SCAF also decomposes complex

and monolithic speculative techniques mentioned in [23] to

simple analysis modules. Moreover, the query language used

in CAF is insufficient to fully leverage speculative informa-

tion, most prominently control flow information. SCAF’s

query language supports the communication of both data

and control flow information among modules. Finally, John-

son’s proposal is tied to a particular client [26], while SCAF

is client-agnostic. SCAF specifies the required speculative

assertions along with each query answer, allowing clients to

decide on how to act upon this information.

Other works [2, 12, 14] also explored integrating specu-

lative information into static analysis, but in a monolithic

fashion. Static analysis algorithms in these prior works are

tightly coupled with specific speculative information. By

contrast, SCAF is a modular and thus easily extensible frame-

work in which a broad set of memory analysis and specu-

lation modules synergistically resolve queries while being

fully decoupled.

In terms of static analysis, prior works [5, 6, 11, 24, 30, 34,

42] explore collaboration among analysis algorithms. How-

ever, these works do not leverage speculation and are thus

restrained by the inherent imprecision of memory analysis.

To overcome the imprecision of memory analysis, hybrid

analysis [49] and sensitivity analysis [48] explore the com-

bination of static and run-time analysis. Static analysis is

used to extract run-time checks, which determine if the paral-

lelized code is safe to execute. However, unlike profile-driven

approaches, run-time analysis offers limited coverage and

small improvement over memory analysis. SCAF instead

uses profiling to exploit commonly executed patterns and

avoid arbitrarily complex run-time checks.

Several speculative automatic parallelization works [28,

57] employ a composition by confluence approach where they

first produce a conservative PDG using memory analysis and

successively refine it using a series of speculative techniques.

This approach does not allow interactions among speculative

techniques and memory analysis algorithms. SCAF allows

parallelization clients to identify more parallelizable regions

due to higher precision achieved via collaboration.

Other works combine profile-driven approaches with

memory analysis for clients beyond the scope of paralleliza-

tion. Lin et al. [36] propose a speculative single static assign-

ment (SSA) form that incorporates memory and control spec-

ulation. However, memory analysis does not leverage spec-

ulative information, and only low-level optimizations are

targeted. Manilov et al. [39] use memory analysis enhanced

with profiling information to recognize iterators of loops.

However, the authors rely on profile-guided data flow infor-

mation that would be expensive to validate. SCAF reduces

validation overheads for clients by utilizing various types of

cheap-to-validate speculation techniques and achieves high

precision by enabling the collaboration of analysis modules.

7 Conclusion

This paper presents the design, implementation, and eval-

uation of SCAF, a modular and collaborative dependence

analysis framework that computes the full impact of specula-

tion on memory dependence analysis. In SCAF, speculation

modules and memory analysis modules with independent

implementations work together to resolve memory depen-

dence queries. SCAF enables judicious use of speculation to

address memory dependences that would otherwise limit

optimizations or lead to expensive-to-validate memory spec-

ulation. Relative to the best prior speculation-aware depen-

dence analysis technique, SCAF dramatically reduces the

need for expensive-to-validate memory speculation in the

hot loops of all 16 evaluated C/C++ SPEC benchmarks. Given

these results, we believe that SCAF is beneficial for memory

analysis sensitive clients, and a necessary step toward robust

automatic parallelization.

Acknowledgments

We thank the Liberty Research Group for their support and

feedback during this work. We also thank Alexandra Jim-

borean and the anonymous reviewers for their insightful

comments and suggestions. This work was supported by

the National Science Foundation (NSF) through Grants CCF-

1814654 and CNS-1763743. All opinions, findings, conclu-

sions, and recommendations expressed in this paper are

those of the authors and do not necessarily reflect the views

of the NSF.

References
[1] Lars Ole Andersen. 1994. Program Analysis and Specialization for the

C Programming Language. Technical Report.

[2] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and

David I. August. 2020. Perspective: A Sensible Approach to Speculative

Automatic Parallelization. In Proceedings of the Twenty-Fifth Interna-

tional Conference on Architectural Support for Programming Languages

651

SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework PLDI ’20, June 15ś20, 2020, London, UK

and Operating Systems (ASPLOS ’20). Association for Computing Ma-

chinery, Lausanne, Switzerland, 351ś367. https://doi.org/10.1145/

3373376.3378458

[3] Utpal Banerjee. 1994. Loop Parallelization. Springer US. https://doi.

org/10.1007/978-1-4757-5676-0

[4] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2013.

Thresher: precise refutations for heap reachability. In Proceedings of

the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’13). Association for Computing Machinery,

Seattle, Washington, USA, 275ś286. https://doi.org/10.1145/2491956.

2462186

[5] Martin Bravenboer and Yannis Smaragdakis. 2009. Exception analysis

and points-to analysis: better together. In Proceedings of the eighteenth

international symposium on Software testing and analysis (ISSTA ’09).

Association for Computing Machinery, Chicago, IL, USA, 1ś12. https:

//doi.org/10.1145/1572272.1572274

[6] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declar-

ative specification of sophisticated points-to analyses. In Proceed-

ings of the 24th ACM SIGPLAN conference on Object oriented pro-

gramming systems languages and applications (OOPSLA ’09). Asso-

ciation for Computing Machinery, Orlando, Florida, USA, 243ś262.

https://doi.org/10.1145/1640089.1640108

[7] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng

Wu, Stefanie Chiras, and Siddhartha Chatterjee. 2008. Software Trans-

actional Memory: Why Is It Only a Research Toy? Queue 6, 5 (Sept.

2008), 46ś58. https://doi.org/10.1145/1454456.1454466

[8] Tong Chen, Jin Lin, Xiaoru Dai, Wei-Chung Hsu, and Pen-Chung

Yew. 2004. Data Dependence Profiling for Speculative Optimizations.

In Compiler Construction (Lecture Notes in Computer Science), Evelyn

Duesterwald (Ed.). Springer, Berlin, Heidelberg, 57ś72. https://doi.

org/10.1007/978-3-540-24723-4_5

[9] William Y. Chen, Scott A. Mahlke, andWen-meiW. Hwu. 1992. Tolerat-

ing First Level Memory Access Latency in High-Performance Systems.

In Proceedings of the 1992 International Conference on Parallel Process-

ing. 37ś43.

[10] M. Cintra and J. Torrellas. 2002. Eliminating squashes through learning

cross-thread violations in speculative parallelization for multiproces-

sors. In Proceedings Eighth International Symposium on High Perfor-

mance Computer Architecture. 43ś54. https://doi.org/10.1109/HPCA.

2002.995697 ISSN: 1530-0897.

[11] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. 2011. The

Reduced Product of Abstract Domains and the Combination of Deci-

sion Procedures. In Foundations of Software Science and Computational

Structures (Lecture Notes in Computer Science), Martin Hofmann (Ed.).

Springer, Berlin, Heidelberg, 456ś472. https://doi.org/10.1007/978-3-

642-19805-2_31

[12] David Devecsery, Peter M. Chen, Jason Flinn, and Satish

Narayanasamy. 2018. Optimistic Hybrid Analysis: Accelerat-

ing Dynamic Analysis through Predicated Static Analysis. In

Proceedings of the Twenty-Third International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS ’18). Association for Computing Machinery, Williamsburg,

VA, USA, 348ś362. https://doi.org/10.1145/3173162.3177153

[13] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and

Chengliang Zhang. 2007. Software behavior oriented paralleliza-

tion. In Proceedings of the 28th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI ’07). Associa-

tion for Computing Machinery, San Diego, California, USA, 223ś234.

https://doi.org/10.1145/1250734.1250760

[14] Manel Fernández and Roger Espasa. 2002. Speculative Alias Analysis

for Executable Code. In Proceedings of the 2002 International Confer-

ence on Parallel Architectures and Compilation Techniques (PACT ’02).

IEEE Computer Society, Washington, DC, USA, 222ś231.

[15] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The

program dependence graph and its use in optimization. ACM Transac-

tions on Programming Languages and Systems 9, 3 (July 1987), 319ś349.

https://doi.org/10.1145/24039.24041

[16] Jordan Fix, Nayana P. Nagendra, Sotiris Apostolakis, Hansen Zhang,

Sophie Qiu, and David I. August. 2018. Hardware Multithreaded Trans-

actions. In Proceedings of the Twenty-Third International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS ’18). Association for Computing Machinery, Williams-

burg, VA, USA, 15ś29. https://doi.org/10.1145/3173162.3173172

[17] Flang Project. 2019. Flang: a Fortran Compiler Targeting LLVM. https:

//github.com/flang-compiler/flang.

[18] Freddy Gabbay and Avi Mendelson. 1997. Can program profiling sup-

port value prediction?. In Proceedings of the 30th annual ACM/IEEE

international symposium on Microarchitecture (MICRO 30). IEEE Com-

puter Society, Research Triangle Park, North Carolina, USA, 270ś280.

[19] Rakesh Ghiya and Laurie J. Hendren. 1996. Is it a tree, a DAG, or

a cyclic graph? A shape analysis for heap-directed pointers in C. In

Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Prin-

ciples of programming languages (POPL ’96). Association for Com-

puting Machinery, St. Petersburg Beach, Florida, USA, 1ś15. https:

//doi.org/10.1145/237721.237724

[20] Bolei Guo, Neil Vachharajani, and David I. August. 2007. Shape analysis

with inductive recursion synthesis. In Proceedings of the 28th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion (PLDI ’07). Association for Computing Machinery, San Diego,

California, USA, 256ś265. https://doi.org/10.1145/1250734.1250764

[21] Michael Hind. 2001. Pointer analysis: haven’t we solved this problem

yet?. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering (PASTE ’01). As-

sociation for Computing Machinery, Snowbird, Utah, USA, 54ś61.

https://doi.org/10.1145/379605.379665

[22] Jialu Huang, Prakash Prabhu, Thomas B. Jablin, Soumyadeep Ghosh,

Sotiris Apostolakis, Jae W. Lee, and David I. August. 2016. Specula-

tively Exploiting Cross-Invocation Parallelism. In Proceedings of the

2016 International Conference on Parallel Architectures and Compila-

tion (PACT ’16). Association for Computing Machinery, Haifa, Israel,

207ś221. https://doi.org/10.1145/2967938.2967959

[23] Nick P Johnson. 2015. Static Dependence Analysis in an Infrastructure

for Automatic Parallelization. PhD Thesis. Department of Computer

Science, Princeton University, Princeton, NJ, United States.

[24] Nick P. Johnson, Jordan Fix, Stephen R. Beard, Taewook Oh, Thomas B.

Jablin, and David I. August. 2017. A collaborative dependence analy-

sis framework. In Proceedings of the 2017 International Symposium on

Code Generation and Optimization (CGO ’17). IEEE Press, Austin, USA,

148ś159. https://doi.org/10.1109/CGO.2017.7863736

[25] Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I.

August. 2012. Speculative separation for privatization and reduc-

tions. In Proceedings of the 33rd ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI ’12). Associ-

ation for Computing Machinery, Beijing, China, 359ś370. https:

//doi.org/10.1145/2254064.2254107

[26] Nick P. Johnson, Taewook Oh, Ayal Zaks, and David I. August. 2013.

Fast condensation of the program dependence graph. In Proceedings of

the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’13). Association for Computing Machinery,

Seattle, Washington, USA, 39ś50. https://doi.org/10.1145/2491956.

2491960

[27] Kirk Kelsey, Tongxin Bai, ChenDing, and Chengliang Zhang. 2009. Fast

Track: A Software System for Speculative Program Optimization. In

Proceedings of the 7th annual IEEE/ACM International Symposium on

Code Generation and Optimization (CGO ’09). IEEE Computer Society,

USA, 157ś168. https://doi.org/10.1109/CGO.2009.18

652

https://doi.org/10.1145/3373376.3378458
https://doi.org/10.1145/3373376.3378458
https://doi.org/10.1007/978-1-4757-5676-0
https://doi.org/10.1007/978-1-4757-5676-0
https://doi.org/10.1145/2491956.2462186
https://doi.org/10.1145/2491956.2462186
https://doi.org/10.1145/1572272.1572274
https://doi.org/10.1145/1572272.1572274
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1454456.1454466
https://doi.org/10.1007/978-3-540-24723-4_5
https://doi.org/10.1007/978-3-540-24723-4_5
https://doi.org/10.1109/HPCA.2002.995697
https://doi.org/10.1109/HPCA.2002.995697
https://doi.org/10.1007/978-3-642-19805-2_31
https://doi.org/10.1007/978-3-642-19805-2_31
https://doi.org/10.1145/3173162.3177153
https://doi.org/10.1145/1250734.1250760
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/3173162.3173172
https://github.com/flang-compiler/flang
https://github.com/flang-compiler/flang
https://doi.org/10.1145/237721.237724
https://doi.org/10.1145/237721.237724
https://doi.org/10.1145/1250734.1250764
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/2967938.2967959
https://doi.org/10.1109/CGO.2017.7863736
https://doi.org/10.1145/2254064.2254107
https://doi.org/10.1145/2254064.2254107
https://doi.org/10.1145/2491956.2491960
https://doi.org/10.1145/2491956.2491960
https://doi.org/10.1109/CGO.2009.18

PLDI ’20, June 15ś20, 2020, London, UK S. Apostolakis, Z. Xu, Z. Tan, G. Chan, S. Campanoni, and D. I. August

[28] Hanjun Kim, Nick P. Johnson, Jae W. Lee, Scott A. Mahlke, and David I.

August. 2012. Automatic speculative DOALL for clusters. In Proceed-

ings of the Tenth International Symposium on Code Generation and Op-

timization (CGO ’12). Association for Computing Machinery, San Jose,

California, 94ś103. https://doi.org/10.1145/2259016.2259029

[29] Hanjun Kim, Arun Raman, Feng Liu, Jae W. Lee, and David I. August.

2010. Scalable Speculative Parallelization on Commodity Clusters. In

Proceedings of the 2010 43rd Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO ’43). IEEE Computer Society, USA,

3ś14. https://doi.org/10.1109/MICRO.2010.19

[30] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Mar-

tin, Dzintars Avots, Michael Carbin, and Christopher Unkel. 2005.

Context-sensitive program analysis as database queries. In Proceed-

ings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems (PODS ’05). Association for Comput-

ing Machinery, Baltimore, Maryland, 1ś12. https://doi.org/10.1145/

1065167.1065169

[31] William Landi. 1992. Undecidability of static analysis. ACM Letters on

Programming Languages and Systems 1, 4 (Dec. 1992), 323ś337. https:

//doi.org/10.1145/161494.161501

[32] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Proceedings

of the international symposium on Code generation and optimization:

feedback-directed and runtime optimization (CGO ’04). IEEE Computer

Society, Palo Alto, California, 75.

[33] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making

context-sensitive points-to analysis with heap cloning practical for

the real world. In Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’07). Associ-

ation for Computing Machinery, San Diego, California, USA, 278ś289.

https://doi.org/10.1145/1250734.1250766

[34] Ondrej Lhotak. 2006. Program analysis using binary decision diagrams.

phd. McGill University, CAN. ISBN-13: 9780494251959.

[35] Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the benefits of

context-sensitive points-to analysis using a BDD-based implementa-

tion. ACM Transactions on Software Engineering and Methodology 18,

1 (Oct. 2008), 3:1ś3:53. https://doi.org/10.1145/1391984.1391987

[36] Jin Lin, Tong Chen,Wei-ChungHsu, Pen-Chung Yew, Roy Dz-Ching Ju,

Tin-Fook Ngai, and Sun Chan. 2003. A compiler framework for specu-

lative analysis and optimizations. In Proceedings of the ACM SIGPLAN

2003 conference on Programming language design and implementation

(PLDI ’03). Association for Computing Machinery, San Diego, Califor-

nia, USA, 289ś299. https://doi.org/10.1145/781131.781164

[37] LLVM Project. 2019. LLVM Alias Analysis Infrastructure. http://llvm.

org/docs/AliasAnalysis.html.

[38] Maroua Maalej and Laure Gonnord. 2015. Do we still need new Alias

Analyses? report. Université Lyon Claude Bernard / Laboratoire

d’Informatique du ParallÃľlisme. https://hal.inria.fr/hal-01228581

[39] Stanislav Manilov, Christos Vasiladiotis, and Björn Franke. 2018. Gen-
eralized profile-guided iterator recognition. In Proceedings of the 27th

International Conference on Compiler Construction (CC 2018). Associ-
ation for Computing Machinery, Vienna, Austria, 185ś195. https:

//doi.org/10.1145/3178372.3179511

[40] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. 2009. Par-
allelizing sequential applications on commodity hardware using a low-
cost software transactional memory. In Proceedings of the 30th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’09). Association for Computing Machinery, Dublin,
Ireland, 166ś176. https://doi.org/10.1145/1542476.1542495

[41] Naveen Neelakantam, Ravi Rajwar, Suresh Srinivas, Uma Srinivasan,
and Craig Zilles. 2007. Hardware atomicity for reliable software spec-
ulation. In Proceedings of the 34th annual international symposium on

Computer architecture (ISCA ’07). Association for Computing Machin-
ery, San Diego, California, USA, 174ś185. https://doi.org/10.1145/

1250662.1250684

[42] Greg Nelson and Derek C. Oppen. 1979. Simplification by Cooperating
Decision Procedures. ACM Transactions on Programming Languages

and Systems 1, 2 (Oct. 1979), 245ś257. https://doi.org/10.1145/357073.

357079

[43] Taewook Oh, Stephen R. Beard, Nick P. Johnson, Sergiy Popovych, and
David I. August. 2017. A Generalized Framework for Automatic Script-
ing Language Parallelization. In 2017 26th International Conference

on Parallel Architectures and Compilation Techniques (PACT). 356ś369.
https://doi.org/10.1109/PACT.2017.28

[44] Manohar K. Prabhu and Kunle Olukotun. 2003. Using thread-level
speculation to simplify manual parallelization. In Proceedings of the

ninth ACM SIGPLAN symposium on Principles and practice of parallel

programming (PPoPP ’03). Association for Computing Machinery, San
Diego, California, USA, 1ś12. https://doi.org/10.1145/781498.781500

[45] William Pugh. 1991. The Omega test: a fast and practical integer
programming algorithm for dependence analysis. In Proceedings of the

1991 ACM/IEEE conference on Supercomputing (Supercomputing ’91).
Association for Computing Machinery, Albuquerque, New Mexico,
USA, 4ś13. https://doi.org/10.1145/125826.125848

[46] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin,
and David I. August. 2010. Speculative parallelization using soft-
ware multi-threaded transactions. In Proceedings of the fifteenth In-

ternational Conference on Architectural support for programming lan-

guages and operating systems (ASPLOS XV). Association for Com-
puting Machinery, Pittsburgh, Pennsylvania, USA, 65ś76. https:

//doi.org/10.1145/1736020.1736030

[47] Lawrence Rauchwerger and David Padua. 1995. The LRPD test: specu-
lative run-time parallelization of loops with privatization and reduc-
tion parallelization. ACM SIGPLAN Notices 30, 6 (June 1995), 218ś232.
https://doi.org/10.1145/223428.207148

[48] Silvius Rus, Maikel Pennings, and Lawrence Rauchwerger. 2007. Sen-
sitivity analysis for automatic parallelization on multi-cores. In Pro-

ceedings of the 21st annual international conference on Supercomputing

(ICS ’07). Association for Computing Machinery, Seattle, Washington,
263ś273. https://doi.org/10.1145/1274971.1275008

[49] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. 2003. Hybrid
Analysis: Static & Dynamic Memory Reference Analysis. International
Journal of Parallel Programming 31, 4 (Aug. 2003), 251ś283. https:

//doi.org/10.1023/A:1024597010150

[50] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. 1996. Solv-
ing shape-analysis problems in languages with destructive updat-
ing. In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium

on Principles of programming languages (POPL ’96). Association for
Computing Machinery, St. Petersburg Beach, Florida, USA, 16ś31.
https://doi.org/10.1145/237721.237725

[51] spec [n.d.]. Standard Performance Evaluation Corporation. http:

//www.spec.org.
[52] Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In

Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages (POPL ’96). Association for Comput-
ing Machinery, St. Petersburg Beach, Florida, USA, 32ś41. https:

//doi.org/10.1145/237721.237727

[53] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C. Mowry. 2002. Improv-
ing value communication for thread-level speculation. In Proceedings

Eighth International Symposium on High Performance Computer Ar-

chitecture. 65ś75. https://doi.org/10.1109/HPCA.2002.995699 ISSN:
1530-0897.

[54] Chen Tian, Min Feng, and Rajiv Gupta. 2010. Speculative paralleliza-
tion using state separation and multiple value prediction. In Pro-

ceedings of the 2010 international symposium on Memory management

(ISMM ’10). Association for Computing Machinery, Toronto, Ontario,
Canada, 63ś72. https://doi.org/10.1145/1806651.1806663

653

https://doi.org/10.1145/2259016.2259029
https://doi.org/10.1109/MICRO.2010.19
https://doi.org/10.1145/1065167.1065169
https://doi.org/10.1145/1065167.1065169
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/1250734.1250766
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/781131.781164
http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/docs/AliasAnalysis.html
https://hal.inria.fr/hal-01228581
https://doi.org/10.1145/3178372.3179511
https://doi.org/10.1145/3178372.3179511
https://doi.org/10.1145/1542476.1542495
https://doi.org/10.1145/1250662.1250684
https://doi.org/10.1145/1250662.1250684
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/357073.357079
https://doi.org/10.1109/PACT.2017.28
https://doi.org/10.1145/781498.781500
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/1736020.1736030
https://doi.org/10.1145/1736020.1736030
https://doi.org/10.1145/223428.207148
https://doi.org/10.1145/1274971.1275008
https://doi.org/10.1023/A:1024597010150
https://doi.org/10.1023/A:1024597010150
https://doi.org/10.1145/237721.237725
http://www.spec.org
http://www.spec.org
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/237721.237727
https://doi.org/10.1109/HPCA.2002.995699
https://doi.org/10.1145/1806651.1806663

SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework PLDI ’20, June 15ś20, 2020, London, UK

[55] Chen Tian, Min Feng, and Rajiv Gupta. 2010. Supporting speculative
parallelization in the presence of dynamic data structures. In Proceed-

ings of the 31st ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’10). Association for Computing Ma-
chinery, Toronto, Ontario, Canada, 62ś73. https://doi.org/10.1145/

1806596.1806604

[56] Chen Tian, Min Feng, Vijay Nagarajan, and Rajiv Gupta. 2008. Copy or
Discard execution model for speculative parallelization on multicores.
In Proceedings of the 41st annual IEEE/ACM International Symposium

on Microarchitecture (MICRO 41). IEEE Computer Society, USA, 330ś
341. https://doi.org/10.1109/MICRO.2008.4771802

[57] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges,
Guilherme Ottoni, and David I. August. 2007. Speculative Decou-
pled Software Pipelining. In 16th International Conference on Parallel

Architecture and Compilation Techniques (PACT 2007). 49ś59. https:

//doi.org/10.1109/PACT.2007.4336199 ISSN: 1089-795X.
[58] Steven Wallace, Brad Calder, and Dean M. Tullsen. 1998. Threaded

multiple path execution. In ISCA ’98: Proceedings of the 25th annual

international symposium on Computer architecture. IEEE Computer So-
ciety, Washington, DC, USA, 238ś249.

[59] John Whaley and Monica S. Lam. 2004. Cloning-based context-
sensitive pointer alias analysis using binary decision diagrams. In
Proceedings of the ACM SIGPLAN 2004 conference on Programming lan-

guage design and implementation (PLDI ’04). Association for Comput-
ing Machinery, Washington DC, USA, 131ś144. https://doi.org/10.

1145/996841.996859

[60] Qiang Wu, Artem Pyatakov, Alexey Spiridonov, Easwaran Raman,
DouglasW. Clark, and David I. August. 2004. ExposingMemory Access
Regularities Using Object-Relative Memory Profiling. In Proceedings

of the international symposium on Code generation and optimization:

feedback-directed and runtime optimization (CGO ’04). IEEE Computer
Society, Palo Alto, California, 315.

[61] Hongtao Zhong, Mojtaba Mehrara, Steve Lieberman, and Scott Mahlke.
2008. Uncovering hidden loop level parallelism in sequential applica-
tions. In 2008 IEEE 14th International Symposium on High Performance

Computer Architecture. 290ś301. https://doi.org/10.1109/HPCA.2008.

4658647 ISSN: 2378-203X.

654

https://doi.org/10.1145/1806596.1806604
https://doi.org/10.1145/1806596.1806604
https://doi.org/10.1109/MICRO.2008.4771802
https://doi.org/10.1109/PACT.2007.4336199
https://doi.org/10.1109/PACT.2007.4336199
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/996841.996859
https://doi.org/10.1109/HPCA.2008.4658647
https://doi.org/10.1109/HPCA.2008.4658647

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Memory Dependence
	2.2 Speculation

	3 SCAF
	3.1 Collaboration
	3.2 Query Language
	3.3 Orchestrator
	3.4 SCAF within a Compiler
	3.5 Example

	4 Implementation
	4.1 Memory Analysis Modules
	4.2 Speculation Modules

	5 Evaluation
	5.1 Benefit of Collaboration
	5.2 Contributions of Modules to Collaboration
	5.3 Query Latency

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

