
Fast Condensation of the Program Dependence Graph

Nick P. Johnson Taewook Oh Ayal Zaks† David I. August
Princeton University, Princeton, NJ †Intel Corporation, Haifa, Israel

{npjohnso, twoh, august}@princeton.edu ayal.zaks@intel.com

Abstract
Aggressive compiler optimizations are formulated around the Pro-
gram Dependence Graph (PDG). Many techniques, including loop
fission and parallelization are concerned primarily with dependence
cycles in the PDG. The Directed Acyclic Graph of Strongly Con-
nected Components (DAGSCC) represents these cycles directly. The
naı̈ve method to construct the DAGSCC first computes the full PDG.
This approach limits adoption of aggressive optimizations because
the number of analysis queries grows quadratically with program
size, making DAGSCC construction expensive. Consequently, com-
pilers optimize small scopes with weaker but faster analyses.

We observe that many PDG edges do not affect the DAGSCC and
that ignoring them cannot affect clients of the DAGSCC. Exploiting
this insight, we present an algorithm to omit those analysis queries
to compute the DAGSCC efficiently. Across 366 hot loops from 20
SPEC2006 benchmarks, this method computes the DAGSCC in half
of the time using half as many queries.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords Demand-driven analysis; Dependence analysis; Pro-
gram Dependence Graph; Strongly connected components.

1. Introduction
Users expect compilers to be fast; one study [34] indicates that pro-
grammer productivity drops when compilation takes more than a
few seconds. If the benefit of aggressive optimizations does not
outweigh the cost of long compile times, users will avoid them.
Making matters worse, analysis precision drastically affects opti-
mization quality [3, 8, 28, 29, 36], and precise analyses tend to
be more expensive than their less-precise counterparts [7, 15] and
scale poorly [16, 26]. Despite the performance potential of state-of-
the-art transformations, common compilers optimize small, intra-
procedural scopes, instead favoring short compilation times.

To extend the benefits of precise analysis to the wider commu-
nity, we must first address compiler scalability. We envision a future
where common compilers feature aggressive optimizations such as
automatic parallelization [4, 24, 28–30, 35, 36] by default. The crit-
ical path to this end is the precise analysis of large program scopes.

Many compiler techniques are formulated around the Program
Dependence Graph (PDG) [6]. Many of those techniques (clients

[Copyright notice will appear here once ’preprint’ option is removed.]

of the PDG) focus primarily on dependence cycles, identified as the
Strongly Connected Components (SCCs) of the PDG (Figure 1(b)).

The Directed Acyclic Graph of the SCCs (DAGSCC) or conden-
sation of the PDG is a representation that makes dependence cycles
explicit (Figure 1(c)). The DAGSCC contains enough information to
support a broad class of compiler techniques. For instance, auto-
matic parallelization [4, 24, 28–30, 35, 36] asks: can two operations
execute concurrently without races, or is synchronization needed?
Determine whether their respective components are ordered in the
DAGSCC. Program slicing [17, 37, 39] asks: Which earlier opera-
tions may affect an operation? All operations in the same compo-
nent and operations in components ordered before it in the DAGSCC.
Loop fission [2, 20] asks: Can a loop be split? Ensure that no oper-
ations in the second half belong to the same component as, or any
component ordered before components from the first half.

The DAGSCC holds less information than the PDG and should be
cheaper to compute. Yet, standard practice wastefully builds the full
PDG before condensing it to a DAGSCC. The number of potential
PDG edges grows quadratically with the scope size (in vertices).
Each potential edge adds a quantum of analysis effort (a query)
to determine whether that edge exists. The running times of these
queries sum to make DAGSCC construction prohibitively expensive,
especially since precise analyses are costly [7, 15, 16, 26].

Compiler authors should not sacrifice analysis precision for cost
since imprecision limits optimization [3, 8, 28, 29, 36]. Instead,
they should use the most precise analyses and reduce compilation
time by exploiting the reduced information of the DAGSCC.

This paper presents a technique that computes the DAGSCC more
efficiently than by finding SCCs of the full PDG. Using partial de-
pendence information, the algorithm identifies dependence edges
which cannot affect the clients of the DAGSCC. Next, the algorithm
uses a Demand-Driven Analysis framework [13, 32, 40] to elide
those analysis queries and thus expend effort only on important
analysis queries rather than the whole program. This improvement
is orthogonal to speeding up each query; it reduces DAGSCC con-
struction time yet maintains high analysis quality since no analysis
algorithms change. With these savings, compiler authors may pur-
sue more aggressive and costlier analyses while providing the same
quality of service to compiler end-users. This work contributes:

• a fast client-agnostic DAGSCC algorithm (Section 3.2);
• an extension of that algorithm for PS-DSWP [28] (Section 3.3);
• a proof of correctness (Section 4); and,
• evaluation of the performance benefit (Section 5).

Averaged across 366 hot loops from 20 SPEC2006 bench-
marks, the proposed method computes the DAGSCC with 49.0%
fewer queries, reducing construction time by 53.1% (Section 5.2).
These savings dramatically affect compiler scalability. The pro-
posed method analyzes half of the hot loops (weighted by cover-
age) in 456.6s on average, saving 111.5s over the baseline (Sec-
tion 5.3). These savings broaden the class of transformations that
fit the user’s time constraints without reducing analysis precision.

1 2013/6/10

(a) (b) (d) (f)(c) (e)

Figure 1: (a) Example PDG; (b) Strongly Connected Components; (c) Condensation of the example; (d) Additional edges which redundantly
order components do not change the condensation, thus have no marginal value; (e) Additional edges within a component do not change the
condensation, thus have no marginal value; (f) Additional edges which violate ordering are valuable since they may change condensation.

2. Insight
To construct the DAGSCC of a loop, a naı̈ve compiler considers the
presence or absence of a dependence edge between every pair of
vertices (operations), and condenses that into a DAGSCC. However,
not all dependences in the PDG contribute equally to the structure
of the DAGSCC. Once a PDG is partially computed, some edges
have no marginal value since they do not affect the structure of
the DAGSCC and thus cannot affect the answer to optimization
questions. By eliminating these redundant dependence edges, a
compiler computes the DAGSCC with fewer dependence queries in
less time. Compiler authors may spend these savings on costlier
analyses in pursuit of aggressive optimization.

An ideal algorithm would perform queries only for those edges
found in a transitive reduction of the PDG (to join components),
as well as queries to ensure the absence of back edges (to separate
components). This, however, leads to a problem: the compiler does
not know the PDG a priori, and so it cannot distinguish redundant
edges from important ones. Instead, this paper proposes an approx-
imation of that ideal.

Figure 1(d) demonstrates one class of redundant dependences:
edges that order two vertices whose components are already or-
dered. This is a large class of dependences, which grows quadrati-
cally in the number of components and quadratically in component
size. Across SPEC2006, empirical study indicates that two-thirds
of all loops have 5–968 SCCs and two-thirds of all components
have 8.4–1118.0 vertices.

Another class of redundant dependences are demonstrated by
Figure 1(e): edges within a component other than a minimum
cycle that spans the component. This class grows quadratically in
component size and linearly in the number of components.

The only dependences which contribute to finding the conden-
sation graph are the class which join separate components, demon-
strated in Figure 1(f). These grow quadratically in the size of com-
ponents and quadratically in the number of components. Although
this is a large class, any one dependence between a pair of compo-
nents will constrain the entire component. Conversely, the absence
of these dependences also has value, since only after analysis re-
turns negative results can the algorithm confidently report that the
separate components are separate.

By periodically interrupting PDG construction to recompute
strongly connected components, the proposed algorithm eliminates
queries for dependences which are definitely in classes (d) and
(e) while focusing on those dependence queries which seem to
be within class (f). This approach is informed by the following
heuristic: if the compiler can build large components quickly, it can
safely exclude more edges. Further, this technique performs more

computation to actively search for opportunities to elide queries.
This strategy will not be faster in the worst case since the overhead
of recomputing components may overwhelm the benefits for loops
with a very low average component size. However, the common
case is more amenable to this strategy; experiments show that the
proposed method is faster for all but 14 of 366 loops.

3. Efficient DAGSCC Construction Algorithm
In a Program Dependence Graph (PDG), each instruction in the
loop is represented as a vertex. Edges are drawn to represent control
and data dependences. Figure 2(a) shows an example of a PDG.

Control dependences represent cases where one instruction may
prevent another instruction from executing; for instance, an if-
statement controls its then- and else-clauses. Data dependences
represent the flow of data between instructions. We distinguish
register data dependences from memory data dependences. Register
and control dependences are computed quickly in practice.

Memory dependences represent data flow through a mem-
ory location, or additional constraints such as anti- and output-
dependences. Exactly determining memory dependences is unde-
cidable. To mitigate this, standard practice allows analyses to fail:
given a pair of operations which access memory, report no- or
must-depend, or fall-back to may-depend when an answer cannot
be decided. Clients interpret may-depend conservatively.

We use Query(v1.inst, v2.inst, type) to denote a demand-driven
analysis query that determines whether there is a memory depen-
dence from the instruction associated with vertex v1 to the in-
struction associated with vertex v2; type is either Loop-Carried or
Intra-Iteration. Any analysis—no matter its internal structure or
operation—can be packaged to provide this query interface.

In the algorithms below, TarjanSCC refers to Tarjan’s Algo-
rithm for Strongly Connected Components [33]. Tarjan’s algorithm
reports SCC structure as well as a topological sort of those compo-
nents and runs in time linear in the number of vertices and edges.

3.1 Baseline Algorithm
The baseline algorithm (Algorithm 1) builds a full PDG, including
all register, control and memory dependences. To find memory
dependences, it queries every pair of vertices (corresponding to
instructions in the IR) which access memory to determine if there
is a loop-carried or intra-iteration memory dependence. It then
computes the strongly connected components of that PDG.

2 2013/6/10

Algorithm 1: Baseline computeDagScc(V)
let E := computeRegisterDeps(V) ∪ computeControlDeps(V);
foreach vertex vsrc ∈ V which accesses memory do

foreach vertex vdst ∈ V which accesses memory do
if Query(vsrc.inst, vdst.inst, Loop-Carried) then

let E := E ∪ {〈vsrc, vdst, Loop-Carried〉};
end
if Query(vsrc.inst, vdst.inst, Intra-Iteration) then

let E := E ∪ {〈vsrc, vdst, Intra-Iteration〉};
end

end
end
return TarjanSCC(V, E);

3.2 Client-Agnostic Algorithm
We first present a client-agnostic version of the proposed algorithm,
listed in Algorithm 2. This algorithm is written without destructive
updates to simplify the proofs in Section 4, though a real implemen-
tation may save space by overwriting old values. We label points
“X” and “Y” to clarify those proofs.

Similar to the baseline algorithm, the client-agnostic method
starts by computing register and control dependences. This yields
a PDG at Point X which is only partially computed since it
lacks memory dependences. Next, it performs queries only be-
tween the vertices of select components in withTheGrain and
againstTheGrain. These components are selected so that they
will quickly cause components to merge into larger components.
This leads to a savings in the number of memory dependence
queries since dependences between vertices in a common com-
ponent cannot further constrain the DAGSCC.

For simplicity of implementation, we chose to recompute the
SCCs by invoking TarjanSCC multiple times rather than using an
incremental component maintenance algorithm. This reduces the
amount of code to write and allows us to use simpler data structures
internally. The cost of computing SCCs does not have a significant
impact on overall performance.

Algorithm 2: Client-Agnostic computeDagScc(V)
let E := computeRegisterDeps(V) ∪ computeControlDeps(V) ;
let TopSort0 := TarjanSCC(V, E) ;
• (Point X)
let E0 := E ∪ withTheGrain(E, TopSort0) ;
for i = 1 to∞ do
• (Point Y)
let E′ := againstTheGrain(TopSorti−1) ;
if E′ = ∅ then

return TopSorti−1 ;
end
let E′i := Ei−1 ∪ E′ ;
let TopSorti := TarjanSCC(V, E′i) ;
let Ei := E′i ∪ withTheGrain(E′i, TopSorti) ;

end

The routine withTheGrain (Algorithm 3) considers pairs of
components cearly and clate where cearly appears before clate in the
topological sorting of components. We exploit the feature that Tar-
jan’s algorithm provides a topological sorting of the components
with no additional computation. Figure 2(a) shows a topological
sort. withTheGrain only performs queries that flow along topo-
logical order (i.e. from cearly to clate), and only between components
that are not already immediately ordered.1 Such queries neither

1 This test should exclude components that are ordered. We use immediate
ordering as a fast approximation to avoid transitive closure. Consequently,
withTheGrain may conservatively add some edges from class 1(d).

cause separate components to merge, nor invalidate the topologi-
cal sorting of components, as illustrated in Figure 2(b).

Algorithm 3: withTheGrain(E0, TopSort)
let E′ := ∅;
let N := size(TopSort);
for i = N-1 down to 0 do

let clate := TopSort(i);
for j = i-1 down to 0 do

let cearly := TopSort(j);
if ¬hasEdge(cearly, clate, E0) then

let E′ := E′ ∪ findOneEdge(cearly, clate);
end

end
end
return E’ ;

The routine againstTheGrain (Algorithm 4) searches for de-
pendences between pairs of components. Unlike withTheGrain,
againstTheGrain only performs queries which may add edges
that violate topological sort order, i.e. those from a vertex in a com-
ponent clate to a vertex in a topologically-earlier cearly. The rationale
is that such queries quickly form larger components (Figure 2(c)).
Large components have a compounding effect, further reducing the
number of queries performed later. This routine performs enough
queries to test every absence of an edge if none exists, allowing the
algorithm to report that two components are separate.

It may surprise some readers that againstTheGrain has a
break statement in its inner loop. This break stops searching for
edges from a given component after it finds one, allowing the algo-
rithm to recompute SCCs before resuming the search. This break
is not necessary for correctness, however, it benefits performance.
By recomputing SCCs, this formulation of againstTheGrain
merges SCCs early, actively searching for opportunities to skip
more queries. Later invocations of againstTheGrain perform
fewer queries because there are fewer, larger components.

Algorithm 4: againstTheGrain(TopSort)
let E := ∅;
let N := size(TopSort);
for i = N-1 down to 0 do

let clate := TopSort(i);
for j = i-1 down to 0 do

let cearly := TopSort(j);
let E′ := findOneEdge(clate, cearly);
let E := E ∪ E′;
if E′ 6= ∅ then

break;
end

end
end
return E;

The routine findOneEdge (Algorithm 5) performs queries from
a source component to destination component. It stops after it finds
the first edge between them since additional edges would order
those two components redundantly.

3.3 Client-Aware DAGSCC Constructions
The DAGSCC guides clients such as DSWP [29] or loop fis-
sion [2, 20]. Some clients want more information than the DAGSCC
offers. The proposed algorithm may be extended to needs of partic-
ular clients. Despite these additional requirements, one can imple-
ment these extensions while achieving comparable performance
improvements over the baseline. Two dimensions characterize
client-specific extensions of the algorithm: additional requirements
of dependence information and opportunities to abort early.

3 2013/6/10

1

2

3

4

5

6

(a)

w
it
h
 t
h
e
 g

ra
in

 (
A

lg
o
 3

)

1

2

3

4

5

6

(b)
a
g
a
in

s
t th

e
 g

ra
in

 (A
lg

o
 4

)

1

2

3

4

5

6

(c) (d)

1

2

3

4

5

Figure 2: A partially computed PDG. (a) Topological sort (grey lines) imposes a total order on the partially ordered components. (b)
withTheGrain (Algorithm 3) performs queries to discover edges between components with increasing position. Such edges neither cause
SCCs to merge nor invalidate the topological sort. Here, a new edge is discovered from component three to six. (c) againstTheGrain
(Algorithm 4) performs queries to discover edges between components with decreasing position. Here, a new edge is discovered from
component five to three. (d) When againstTheGrain discovers new edges the topological sort is invalidated and components may merge.

Algorithm 5: findOneEdge(csrc, cdst)
foreach vertex vsrc ∈ csrc which accesses memory do

foreach vertex vdst ∈ cdst which accesses memory do
if Query(vsrc.inst, vdst.inst, Loop-Carried) then

return {〈vsrc, vdst, Loop-Carried〉};
end

end
end
foreach vertex vsrc ∈ csrc which accesses memory do

foreach vertex vdst ∈ cdst which accesses memory do
if Query(vsrc.inst, vdst.inst, Intra-Iteration) then

return {〈vsrc, vdst, Intra-Iteration〉};
end

end
end
return ∅;

Parallel Stage Decoupled Software Pipelining (PS-DSWP) is
an illustrative example of such a client. PS-DSWP is an auto-
matic thread-extraction technique with great performance poten-
tial [28, 36]. PS-DSWP partitions the DAGSCC into pipeline stages
such that all communication and synchronization flow forward in
pipeline order (i.e. forbidding cyclic communication among worker
threads). PS-DSWP delivers scalable speedups when a large paral-
lel stage is available; conversely, PS-DSWP does not transform the
code when no significant parallel stage is present.

PS-DSWP requires slightly more dependence information than
is present in the DAGSCC, thus creating a meaningful evaluation
scenario. Beyond the DAGSCC, PS-DSWP classifies each SCC as
either DOALL or Sequential according to the absence or presence
of loop-carried dependences. Parallel stages are assembled from the
DOALL SCCs such that no loop-carried dependence exists among
the operations in the parallel stage. Algorithm 2 does not guarantee
that such queries will be performed. To support PS-DSWP, the
algorithm must perform additional queries to classify each SCC as
DOALL or Sequential. These additional queries are still fewer than
the full PDG and DAGSCC guides the compiler to search for such
queries. Furthermore, DAGSCC construction may abort as soon as
no significant parallel stage is possible.

We extend Algorithm 2 for the needs of PS-DSWP in Algo-
rithm 6. The routine checkReflexiveLC checks for loop-carried
dependences from any operation in a DOALL SCC to itself, stop-
ping after it finds one. checkWithinSccLC checks for loop-carried
dependences from any operation located in a DOALL SCC to any
other operation in the same SCC. The latter contains the former,

but experience suggests that prioritizing reflexive queries tends to
exclude many components from the parallel stage after only a lin-
ear number of queries, whereas querying in checkWithinSccLC is
quadratic. At the end, the algorithm invokes checkWithinSccLC
again since components have grown, potentially including more
loop-carried dependences. These checks are cheaper than full PDG
construction since they only query among DOALL SCCs.

Algorithm 6: PS-DSWP-Aware computeDagScc(V)
let E := computeRegisterDeps(V) ∪ computeControlDeps(V);
let TopSort := TarjanSCC(V, E);
abortIfPsInsubstantial(V,E,TopSort);
let E := E ∪ checkReflexiveLC(V);
abortIfPsInsubstantial(V,E,TopSort);
let E := E ∪ checkWithinSccLC(TopSort) ;
abortIfPsInsubstantial(V,E,TopSort);
let E := E ∪ withTheGrain(E, TopSort);
while true do

let E′ := againstTheGrain(TopSort);
if E′ = ∅ then

break;
end
let E := E ∪ E′;
let TopSort := TarjanSCC(V, E);
abortIfPsInsubstantial(V,E,TopSort);
let E := E ∪ withTheGrain(E, TopSort) ;

end
let E := E ∪ checkBetweenDoallSccs(TopSort) ;
abortIfPsInsubstantial(V,E,TopSort);
let E := E ∪ checkWithinSccLC(TopSort) ;
return TopSort ;

Loop-carried dependences between DOALL SCCs prevent
the simultaneous assignment of those components to the parallel
stage. The routine checkBetweenDoallSccs performs queries to
find such dependences. These checks are cheaper than full PDG
construction, since they only consider pairs of DOALL SCCs.
abortIfPsInsubstantial cancels construction if no substantial
parallel stage is present whenever the upper bound on the parallel
stage may change. For evaluation, we say a stage is “substantial” if
it contains memory accesses or calls.

4. Proof of Correctness
We present a proof that our proposed method (Algorithm 2) pro-
duces a DAGSCC that is equivalent to the one produced by the base-
line method (Algorithm 1), both in terms of partitioning the set of

4 2013/6/10

vertices V into the same SCCs, and in terms of drawing the same
edges between SCCs.

Both algorithms partition the same set of vertices V . Let
CB , CP represent the components returned by the baseline and
proposed algorithms, respectively. Each algorithm computes its
own set of edges EB and EP , respectively, between pairs of ver-
tices in V . Two components in the DAGSCC are connected with an
edge if there exists an edge between members of those components:
for any components c1, c2 ∈ CB , we write c1 →B c2 iff there is
an edge 〈v1, v2〉 ∈ EB such that v1 ∈ c1 and v2 ∈ c2. Similarly,
for any components c1, c2 ∈ CP , we write c1 →P c2 iff there is
an edge 〈v1, v2〉 ∈ EP such that v1 ∈ c1 and v2 ∈ c2.

Let B(v) ∈ CB denote the strongly connected component
which contains vertex v as reported by the baseline algorithm.
Let P (v) ∈ CP denote the strongly connected component which
contains v as reported by the proposed algorithm.

We state our equivalence in Theorems 1 and 2.

Theorem 1 (CB andCP induce the same partition of V). For every
t, u ∈ V , B(t) = B(u) iff P (t) = P (u).

Proof. Follows immediately from Lemmas 3 and 5.

Theorem 2 (〈CB ,→B〉 is isomorphic to 〈CP ,→P 〉). For every
t, u ∈ V , B(t)→B B(u) iff P (t)→P P (u).

Proof. We construct a correspondence Ψ = B(v) 7→ P (v).
Lemmas 3 and 5 show that Ψ is a bijective function.
Lemmas 4 and 6 show that t→B u iff Ψ(t)→P Ψ(u).

We prove both Theorems using the following lemmas.

Lemma 1 (Forward Preservation of Edges, Simplified). Ignoring
the break in Algorithm 4, if 〈t, u〉 ∈ EB then P (t)→P P (u).

Proof. During an invocation of the proposed method (Algorithm 2),
execution will necessarily reach Point Y.

Components evolve during the execution of the proposed algo-
rithm; to avoid confusion we refer to specific versions of the com-
ponents. LetPi(v) denote the strongly connected component which
contains vertex v at Point Y in the i-th iteration of the loop. In other
words, Pi(v) finds the component that contains v within the vari-
able TopSorti−1. Note that P (v) is the value of Pi(v) during the
final iteration.

We consider three cases based on the relative positions of
Pi(t) and Pi(u) in the topological sort of components reported
by TarjanSCC, observed at Point Y.

Case 1: During any iteration i, Pi(u) appears before Pi(t) in
the topological sort.

During that iteration, the invocation of againstTheGrain (Al-
gorithm 4) necessarily reaches an iteration during which clate =
Pi(t). It visits every earlier component cearly, invoking findOneEdge
on each until an edge is discovered. Ignoring the break statement
in Algorithm 4, we will reach an iteration in which cearly = Pi(u).

againstTheGrain: cearly
findOneEdge←− clate

↓ ↓
TopSorti−1: · · · Pi(u) · · · Pi(t) · · ·

findOneEdge (Algorithm 5) will perform queries between the
elements of Pi(t) and Pi(u) until an edge is found.

During the execution of the baseline algorithm, the call to
Query(t.inst, u.inst, f) returns true given that 〈t, u〉 ∈ EB . Note
that Query depends only on its arguments, so it behaves the same
during the execution of the proposed algorithm.

If findOneEdge reaches the iteration where (vsrc, vdst) =
(t, u), then Query(t.inst, u.inst, f) will again return true, thus

adding the edge 〈t, u〉. The only case it may not reach that itera-
tion is when findOneEdge finds some other edge between those
components. Thus, Pi(t)→P Pi(u).

Case 2: During any iteration i, Pi(t) appears at the same posi-
tion as Pi(u) in the topological sort. That is, Pi(t) = Pi(u).

By reflexivity, Pi(t)→P Pi(u).
Case 3: Pi(u) never appears before or at the same position as

Pi(t) in the topological sort during any iteration.
P1(t) appears before P1(u) in the topological sort of compo-

nents during the first iteration of the loop. The topological sort is
not updated between Point X and Point Y in the first iteration, so
P1(t) appears before P1(u) in the topological ordering before the
invocation of withTheGrain (Point X in Algorithm 2).

withTheGrain: cearly
findOneEdge−→ clate

↓ ↓
TopSorti−1: · · · P1(v1) · · · P1(v2) · · ·

The algorithm withTheGrain necessarily reaches an iteration
during which cearly = P1(t) and clate = P1(u). If there is not
already an immediate ordering relationship P1(t) →P P1(u),
withTheGrain passes those components to findOneEdge. Since
〈t, u〉 ∈ EB , we know that Query(t.inst, u.inst, f) returned true.
Thus, findOneEdge must find an edge (either 〈t, u〉 or an earlier
one) between these components: P1(t)→P P1(u).

In all cases, we have Pi(t)→P Pi(u) for some i.
Observe that the proposed algorithm may add edges to the

graph, but never removes edges from the graph. Adding edges may
cause two separate components to merge into one, but never splits
a component. Thus, for any vertex v and iteration i: Pi−1(v) ⊆
Pi(v). Since P (v) is the value of Pj(v) in the final iteration j, it
follows that P (t)→P P (u).

Lemma 2. Considering the break in Algorithm 4, if 〈t, u〉 ∈ EB

then P (t)→P P (u).

Proof. The only difference between the simplified and proposed
algorithms occurs in Lemma 1, Case 1: during iteration i, Pi(u)
appears before Pi(t) in the topological sort.

The invocation of againstTheGrain (Algorithm 4) necessar-
ily reaches an iteration during which clate = Pi(t). It visits every
earlier component cearly invoking findOneEdge until an edge is dis-
covered.

Suppose there is an intervening component Pi(x) 6= Pi(u)
such that findOneEdge discovers an edge 〈w, x〉 from w ∈ Pi(t)
to x ∈ Pi(x). This edge causes the loop to break before visiting
cearly = Pi(u).

againstTheGrain: cearly
findOneEdge←− clate

↓ ↓
TopSorti−1: · · · Pi(u) · · · Pi(x) · · · Pi(t) · · ·

← break

After the new edge is found, the algorithm recomputes compo-
nents and may change their relative positions. Either Pi+1(u) pre-
cedes Pi+1(t) in the topological sort TopSorti+1, or they merge,
or Pi+1(t) precedes Pi+1(u). In the latter case, the subsequent in-
vocation of withTheGrain immediately detects an edge from a
vertex in Pi+1(t) to a vertex in Pi+1(u). Thus we need only con-
sider the case in which they maintain their relative topological or-
der.

We argue inductively that such an iteration of Algorithm 2 will
be followed by another iteration that falls into Case 1, yet has
one fewer intervening component. Assume that Pi+1(u) precedes

5 2013/6/10

Pi+1(t). Observe that the component Pi+1(x) cannot appear be-
fore Pi+1(t) because of the newly discovered edge 〈w, x〉. Conse-
quently, there is one fewer intervening component that could cause
an later invocations of againstTheGrain to break. As a new edge
〈w, x〉 was found, the loop in Algorithm 2 will perform at least one
more iteration. Thus, in the next iteration againstTheGrain will
be one break closer to Lemma 1. After sufficient iterations, all in-
tervening components have been eliminated and Lemma 1 Case 1
applies.

Lemmas 1 and 2 demonstrate that edges in EB will order
components in CP . We next strengthen this statement to show that
edges between components in CB will order components in CP in
Lemma 4, but first we prove the following.

Lemma 3 (Wholeness of Components, Forward). For any vertices
t, u ∈ V , if B(t) = B(u) then P (t) = P (u).

Proof. Vertices t and u belong to the same strongly connected
component of CB , so there is a path from t to u:

〈t, t1〉 , 〈t1, t2〉 , . . . , 〈tj−1, tj〉 , 〈tj , u〉 ∈ EB

and a path from u to t:

〈u, u1〉 , 〈u1, u2〉 . . . , 〈uk−1, uk〉 , 〈uk, t〉 ∈ EB .

By Lemma 2 this implies that there is a cycle across the cor-
responding components of CP : P (t) →P P (t1) →P . . . →P

P (tj)→P P (u)→P P (u1)→P . . .→P P (uk)→P P (t).
This, in turn, implies that P (t) = P (t1) = . . . = P (tj) =

P (u) = P (u1) = . . . = P (uk).

Lemma 4 (Preservation of Structure, Forward). For any vertices
t, u ∈ V , if B(t)→B B(u) then P (t)→P P (u).

Proof. By definition of→B , there is an edge 〈x, y〉 ∈ EB such that
x ∈ B(t) and y ∈ B(u). By Lemma 2 we know P (x)→P P (y).

Since components are a partition of all vertices, x ∈ B(t)
implies B(t) = B(x). Similarly, B(u) = B(y).

By Lemma 3, P (t) = P (x) and P (u) = P (y).
Thus, P (t)→P P (u).

Lemma 5 (Wholeness of Components, Reverse). For any two
vertices t, u ∈ V , if P (t) = P (u) then B(t) = B(u).

Proof. Vertices t and u belong to the same strongly connected
component of CP , so there is a path from t to u:

〈t, t1〉 , 〈t1, t2〉 , . . . , 〈tj−1, tj〉 , 〈tj , u〉 ∈ EP

and a path from u to t:

〈u, u1〉 , 〈u1, u2〉 . . . , 〈uk−1, uk〉 , 〈uk, t〉 ∈ EP .

Since the baseline performs all queries, EP ⊆ EB , and the
same a cycle connects the corresponding components of CB :
B(t) →P B(t1) →P . . . →P B(tj) →P B(u) →P B(u1) →P

. . .→P B(uk)→P B(t).
This, in turn, implies that B(t) = B(t1) = . . . = B(tj) =

B(u) = B(u1) = . . . = B(uk).

Lemma 6 (Preservation of Structure, Reverse). For any vertices
t, u ∈ V , if P (t)→P P (u) then B(t)→B B(u).

Proof. By definition of→P , there is an edge e = 〈x, y〉 ∈ EP such
that x ∈ P (t) and y ∈ P (u). Since components are a partition
of vertices, P (x) = P (t) and P (y) = P (u). By Lemma 5, it
follows that B(x) = B(t) and B(y) = B(u). Since EP ⊆ EB ,
e ∈ EB and therefore B(x) →B B(y). By substitution we obtain
that B(t)→B B(u) as desired.

5. Empirical Validation
To evaluate this technique, we implement the baseline (Sec-
tion 3.1), client-agnostic (Section 3.2), and PS-DSWP-aware (Sec-
tion 3.3) algorithms in the LLVM infrastructure [21] revision
164307. Each algorithm is augmented with a 30 minute timeout.

Each algorithm uses the same data structures to represent the
program dependence graph and strongly connected components.
The PDG data structure is a sorted adjacency-list representation,
which performs well since PDGs tend to be sparse graphs. The data
structure is capable of representing partial knowledge of memory
dependences: between any pair of vertices, a memory dependence
is present, absent, or unknown. Thus, none of the algorithms will
ever perform the same query more than once. The cost of manipu-
lating the data structure had negligible effect on most experiments.

We evaluated these techniques on 20 SPEC 2006 benchmarks [31].
The experiments exclude eight FORTRAN benchmarks because
the front-end supports only C and C++. Each benchmark was com-
piled under two optimization regimens. The less-optimized regi-
men uses clang -O1. The more-optimized regimen is designed
to create larger scopes that are harder to analyze. Specifically, we
apply internalization,2 devirtualization of indirect calls, and -O3.

We profile each benchmark to identify 366 hot loops. Hot loops
are those loops whose running time consumes at least 5% of appli-
cation running time, and which perform at least five iterations per
invocation, on average. The hot loops found among the benchmarks
are summarized in Table 1. It is not always possible to correlate hot
loops between the less- and more-optimized regimens; optimiza-
tion may break a hot loop into several, or reduce the execution time
of a loop below the threshold.

Experiments run on an eight core 1.6GHz Xeon E5310. The ma-
chine has 8GB RAM and runs 64-bit Linux 2.6.32. All benchmarks
are compiled to 64-bit, little-endian code. In this section, we use in-
struction to refer to an LLVM virtual instruction. All measurements
experienced negligible variance.

5.1 Evaluation Analysis Framework
The overall performance benefit of the proposed algorithms de-
pends greatly upon the performance characteristics of the underly-
ing analysis framework. Many algorithms implement dependence
analysis [9, 10, 13, 18, 22, 23, 32, 38, 40], yet these algorithms
are not easily compared. Each occupies a distinct niche in the
precision-efficiency trade-off [14].

We fix a single dependence analysis framework across all ex-
periments. This framework combines separate analyses under a
common, demand-driven interface. The interface accepts queries
about the intra-/inter-iteration dependence relationship between
two memory operations with respect to a loop of interest. As each
query enters the analysis framework, it passes through each analy-
sis in turn to find the most optimistic answer; thus, the combination
features the strengths of each member.

The evaluation analysis includes nineteen separate analyses de-
veloped internally at Princeton. These analyses are designed to sup-
port automatic thread-extraction in general purpose codes such as
SPEC INT [31]. Thus, our analyses emphasize precision in codes
with linked-data structures and are sensitive to loops. The suite of
analyses includes control- and data-flow sensitive analyses, calling-
context sensitive analyses, induction-variable analyses, analyses
specializing in external functions from the C and C++ standard li-
braries, a rudimentary shape analysis, and analyses which reason
about call sites. These analyses are either purely demand-driven or

2 Internalization asserts that the input program is the whole program, i.e.
that no external libraries reference any of the program’s exported symbols.
It is similar to marking all global symbols with C’s static keyword.

6 2013/6/10

Less-Optimized Regimen More-Optimized Regimen
Hot Coverage Size Hot Coverage Size

Benchmark Loops Hottest Coldest Largest Smallest Loops Hottest Coldest Largest Smallest
400.perlbench 4 25.6% 5.5% 163 (#1) 9 (#4) 3 25.8% 11.1% 266 (#2) 66 (#3)
401.bzip2 9 73.5% 8.5% 597 (#7) 7 (#9) 9 71.5% 5.6% 2236 (#9) 7 (#8)
403.gcc 16 79.2% 5.0% 5800 (#1) 7 (#12) 11 79.8% 5.4% 11326 (#1) 40 (#2)
429.mcf 7 99.9% 6.3% 81 (#4) 26 (#1) 8 99.7% 8.6% 1352 (#1) 47 (#8)
433.milc 9 52.5% 7.5% 159 (#1) 12 (#9) 15 32.5% 5.4% 298 (#1) 19 (#7)
435.gromacs 5 99.9% 18.6% 671 (#1) 23 (#5) 8 99.4% 6.2% 10191 (#1) 72 (#7)
444.namd 16 99.9% 5.2% 1266 (#10) 9 (#2) 21 100.0% 6.1% 1271 (#14) 66 (#10)
445.gobmk 20 100.0% 5.0% 3868 (#7) 12 (#11) 20 99.9% 5.3% 3099 (#7) 39 (#13)
447.dealII 20 100.0% 5.5% 140 (#17) 10 (#10) 16 100.0% 5.6% 788 (#4) 6 (#6)
450.soplex 6 50.7% 6.4% 118 (#5) 15 (#6) 9 69.4% 5.5% 1034 (#4) 15 (#7)
453.povray 6 99.9% 28.8% 90 (#5) 23 (#6) 7 99.9% 5.6% 258 (#1) 13 (#7)
456.hmmer 6 100.0% 6.4% 277 (#2) 11 (#4) 6 100.0% 7.2% 240 (#1) 13 (#5)
458.sjeng 7 100.0% 9.5% 779 (#4) 147 (#1) 9 99.9% 5.4% 3359 (#7) 13 (#8)
462.libquantum 15 74.2% 4.9% 49 (#4) 5 (#6) 12 94.6% 5.7% 97 (#1) 9 (#11)
464.h264ref 8 100.0% 6.7% 680 (#8) 159 (#3) 8 100.0% 11.1% 1483 (#8) 128 (#3)
470.lbm 2 99.8% 99.1% 475 (#2) 23 (#1) 2 99.6% 99.0% 1175 (#1) 475 (#2)
471.omnetpp 2 100.0% 13.2% 23 (#1) 23 (#1) 2 100.0% 19.0% 37 (#2) 22 (#1)
473.astar 9 65.4% 5.8% 61 (#3) 9 (#9) 12 56.6% 6.7% 238 (#1) 17 (#6)
482.sphinx3 10 95.0% 6.6% 429 (#2) 12 (#10) 8 94.5% 5.0% 2170 (#2) 12 (#1)
483.xalancbmk 2 98.0% 7.2% 28 (#2) 12 (#1) 1 97.6% 97.6% 36 (#1) 36 (#1)

Table 1: Hot loops from SPEC2006. “Coverage” is the percent of running time spent in the loop. “Size” is the number of LLVM IR instructions
contained in the loop. “Largest” and “smallest” also contain the loop id, where #1 is the hottest loop, and #n is the coldest.

are largely demand-driven, i.e., a significant portion of analysis ef-
fort is performed in response to a query, not ahead of time.

Analysis services most queries quickly: half of all queries take
less than 287.6µs (460K cycles); two thirds take less than 601.3µs
(962K cycles); 90% take less than 1.0ms (2M cycles). Differences
in query running time are due to differences in query complexity:
for instance, analyzing a call site is generally more expensive than
analyzing a load instruction. Across multiple runs, the running
time of any one query exhibits negligible variance, suggesting that
noise has minimal impact on timing results.

5.2 Performance Improvement
The most direct impact of the proposed algorithm is a reduction in
DAGSCC construction latency.

Figure 4(a) shows the time required to construct a DAGSCC
for both the client-agnostic and PS-DSWP-aware algorithms. Each
point represents a loop from the less- or more-optimized regimen,
normalized to the running time of the baseline algorithm (smaller
is better). The client-agnostic method is faster for all but 14 of 366
loops.

Performance improvements are due primarily to a reduction
in the number of dependence analysis queries. Empirical results
concur with the claim that the client-agnostic algorithm normalized
running time is linear in the normalized number of queries. The
Pearson’s Correlation between the normalized construction time
and normalized number of queries is 0.63.

Figures 4(b)–(d) show factors which contribute to the reduc-
tion in queries. The fraction of queries performed by the client-
agnostic method is related to both the average size of SCCs as
well as the number of SCCs, yet is only mildly affected by the
size of the region. This is because the algorithm elides queries for
a class of redundant edges that grows with both average SCC size
and number of SCCs (illustrated in Figure 1(d)–(e)). Empirical re-
sults concur with the claim that the client-agnostic method elides
a greater fraction of queries in loops with fewer or larger compo-

 0

 50

 100

 150

 200

 250

 300

 350

 0.001 0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

H
o

t
L

o
o

p
s
 A

n
a

ly
z
e

d
 B

e
fo

re
 T

im
e

 L
im

it

Time Limit (seconds, logscale)

109

176

258

76

135

212

Baseline
Client-agnostic

PS-DSWP Client-aware

Figure 3: Largest sequence of hot loops analyzed before timeout.

nents. The Spearman’s Rank3 between the average SCC size and
normalized number of queries is -0.52. The Spearman’s Rank be-
tween the number of SCCs and the normalized number of queries
is 0.24.

One extreme outlier experiences more than 2× slowdown: the
fourth-hottest loop from 458.sjeng, located in function std eval.
In that loop, the proposed methods decrease the number of queries
and the time spent on analysis queries. The cost of computing SCCs
several times is less than the savings from fewer queries. However,
the overhead of manipulating the sparse graph data structure is
exceptionally high for this loop, canceling the savings. Further en-
gineering work could reduce this overhead.

3 Spearman’s Rank is a measure of statistical dependence [19]. We use
Spearman’s Rank to support the claim of a monotone relationship, which is
strictly weaker than a linear relationship indicated by Pearson’s Correlation.

7 2013/6/10

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
A

G
-S

C
C

 C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
n

o
rm

a
liz

e
d

 t
o

 t
h

e
 b

a
s
e

lin
e

 m
e

th
o

d
)

Number of Queries (normalized to the baseline method)

Client-agnostic
PS-DSWP Client-aware

Linear Regression, slope=1.024

(a) Improvement in Time vs Improvement in Queries

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f

Q
u

e
ri
e

s
 (

n
o

rm
a

liz
e

d
 t

o
 t

h
e

 b
a

s
e

lin
e

 m
e

th
o

d
)

Immediate Region Size

Client-Agnostic
PS-DSWP Client-Aware

(b) Improvement in Queries vs Size of Region

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

N
u

m
b

e
r

o
f

Q
u

e
ri
e

s
 (

n
o

rm
a

liz
e

d
 t

o
 t

h
e

 b
a

s
e

lin
e

 m
e

th
o

d
)

Number of SCCs (log scale)

Client-Agnostic
PS-DSWP Client-Aware

(c) Improvement in Queries vs Number of SCCs (log scale)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

N
u

m
b

e
r

o
f

Q
u

e
ri
e

s
 (

n
o

rm
a

liz
e

d
 t

o
 t

h
e

 b
a

s
e

lin
e

 m
e

th
o

d
)

Average SCC Size (log scale)

Client-Agnostic
PS-DSWP Client-Aware

(d) Improvement in Queries vs Average SCC Size (log scale)

Figure 4: Improvement in running time and in number of queries, normalized to the baseline method.

5.3 Effect on Compiler Scalability
Analysis of whole benchmarks matters more than analysis of single
loops. Compilers consider hot loops to plan an optimization strat-
egy. We consider the question: what is the largest sequence of loops
which can be analyzed? both in terms of the total number of loops,
and in terms of the sum of execution coverage.

Figure 3 considers the largest sequences of loops that can be
analyzed before varying limits on analysis time (log scale). To sim-
ulate a very large application, this experiment allows the compiler
to select any of the loops from the entire benchmark suite. The
client-agnostic method analyzes more loops than the baseline under
the same time constraints. The PS-DSWP client-aware extensions
cause a slight performance degradation from client-agnostic yet are
still more efficient than the baseline.

Not all loops are equally valuable. Amdahl’s law encourages
compilers to ration their time budget towards hot loops. Figure 5
explores how many hot loops (weighted by coverage) each method
analyzes by a certain time. The compiler considers each loop from
hottest to least-hot. On average, the client-agnostic method ana-
lyzes 50% of the hot loops 111.5s before the baseline, and the
client-aware method achieves that 106.1s before the baseline. The
proposed methods allow an optimizing compiler to analyze the
code which most contributes to running time in shorter use cycles.

6. Related Work
Harrold et al. [12] present an algorithm to efficiently compute con-
trol dependences for a PDG. This technique does not address mem-
ory dependence analysis. In our setup, control analysis is cheap;
memory analysis dominates construction time. There is theoretical
evidence that precise analysis must be expensive [16, 26].

Scalability of memory analysis is an area of ongoing research.
Approaches can be classified along levels of abstraction: low-level
approaches improve the efficiency of the analysis, without consid-
ering the client; mid-level approaches assume some properties of
the client to improve efficiency; high-level approaches modify the
client so it more judiciously employs analysis or restructure the
code so analysis will perform better.

Low-Level Many analyses are implemented as Maximum Fixed
Points (MFP) of a set of data-flow equations. Several works op-
timize how programs are reduced to data-flow equations. John-
son et al. observe that formulating these equations with respect to
the control flow graph is wasteful, proposing instead to formulate
them along the Data-Flow Graph thereby reducing the number of
identity relationships [18]. Similarly, Duesterwald et al. attempt
to optimize the set of equations by identifying congruent equa-
tions through idempotency and common sub-expression elimina-
tion prior to computing the MFP [5]. Both techniques eliminate

8 2013/6/10

Benchmark Less-Optimized Regimen T50% More-Optimized Regimen T50%

483.xalancbmk
6.1ms
1.8ms
1.3ms

41.1ms
2.8ms
2.9ms

471.omnetpp
120.7ms
10.5ms
10.8ms

3.8s
20.9ms
21.9ms

473.astar
306.3ms
139.3ms
195.5ms

3.4s
1.5s
1.6s

447.dealII
3.3s
166.3ms
168.2ms

4.0s
284.5ms
299.2ms

470.lbm
364.1ms
174.6ms
188.5ms

64.8s
29.8s
29.5s

450.soplex
493.4ms
223.4ms
228.2ms

214.5s
94.1s
95.2s

401.bzip2
778.0ms
333.4ms
346.7ms

33.9s
5.0s
5.3s

429.mcf
1.4s
665.6ms
678.5ms

204.7s
62.1s
62.1s

462.libquantum
799.2ms
764.2ms
60.0ms

1.7s
857.9ms
138.7ms

444.namd
43.1s
1.3s
67.8ms

142.3s
47.1s
49.3s

433.milc
15.6s
9.1s
9.5s

62.8s
33.8s
35.7s

456.hmmer
19.4s
14.0s
14.0s

11.9s
3.6s
3.8s

482.sphinx3
51.9s
26.8s
30.9s

428.3s
177.4s
175.8s

453.povray
582.8s
323.7s
459.1s

(30 min)
(30 min)
(30 min)

458.sjeng
1007.6s
383.8s
385.4s

(30 min)
1113.2s
1103.7s

445.gobmk
(30 min)
693.9s
773.3s

18.1s
2.3s
2.3s

435.gromacs
(30 min)
837.1s
839.0s

(30 min)
(30 min)
(30 min)

400.perlbench
(30 min)
(30 min)
(30 min)

(30 min)
(30 min)
(30 min)

403.gcc
(30 min)
(30 min)
(30 min)

(30 min)
(30 min)
(30 min)

464.h264ref

1ms 10ms 100ms 1 s 10 s 100 s 1ks

(30 min)
(30 min)
(30 min)

1ms 10ms 100ms 1 s 10 s 100 s 1ks

(30 min)
(30 min)
(30 min)

Baseline Client-agnostic PS-DSWP Client-aware

Figure 5: The client-agnostic, client-aware and baseline methods analyzing each benchmark. The horizontal axis measures time (seconds)
from 1ms to 30 minutes on a log scale. The vertical axis is the fraction of loops analyzed before a that time, weighted by loop coverage.
The compiler analyzes loops from hottest to coldest. T50% shows the times when the Baseline, Client-agnostic, and PS-DSWP Client-aware
methods reach 50% or (30 min) if they time out first. The client-agnostic method reaches 50% on average 111.5s earlier than baseline.

9 2013/6/10

unnecessary relationships among program points, reducing MFP
convergence time.

Calling-context sensitivity is a challenge for scalability: proce-
dures exhibit drastically different memory access behavior depend-
ing on actual parameters and global state. One response has been
the use of “procedure summaries,” i.e. functions which compute a
points-to set for a procedure as a function of its parameters and
globally accessible state [9, 22]. In such solutions, there are still
exponentially many calling contexts, yet summaries allow large
numbers of contexts to be evaluated quickly. A complementary ap-
proach employs Datalog solvers which scale to the huge number
of calling contexts using Binary Decision Diagrams [38]. This ap-
proach is restricted to analyses expressible in Datalog.

Mid-Level Demand-driven analyses employ an orthogonal ap-
proach [13, 32, 40]. Under the observation that many clients need
only a fraction of all analysis queries, a demand-driven approach
shifts effort from preprocessing into each query. This scales better
as it only expends effort on queries which affect the client.

However, these approaches do not inform compiler authors of
how to (re-)structure analysis clients as to perform the minimum
number of analysis queries. The algorithms proposed in this paper
have a synergistic relationship with demand-driven analyses since
the proposed algorithms actively attempts to perform only select
queries while still supporting advanced clients.

The Pruning-Refinement method [23] considers a spectrum of
Datalog dependence analyses ranging from cheap-yet-imprecise to
expensive-yet-precise. It first applies cheaper analyses to queries
and, if successful, returns that answer to the client. Otherwise, it
runs the slower, more precise analyses, using a byproduct of cheap
analyses to prune extraneous inputs and reduce running times. This
method has dramatic benefits on memory usage, but its running
time improvements are less pronounced. This method is only ap-
plicable to analyses which can be formulated in Datalog.

High-Level The structure of input code, in particular the divi-
sion into procedures, has an effect on analysis and optimization.
Program restructuring techniques can improve analyzability. Pro-
cedure inlining and partial inlining not only reduce the overhead
of a procedure call, but also improve memory analysis by disam-
biguating the relationship of call sites and callees [1, 25]. Region
formation chooses scopes independently of procedure boundaries
to make interprocedural analysis and optimization scale [11].

Ohata et al. [27] propose merging program statements before
building a PDG to reduce memory consumption and analysis time.
They modify analysis to treat groups of statements as one, leading
to faster convergence, similar to Duesterwald et al. [5]. However,
this approach is imprecise and falsely reports that some statements
belong to a slice because they are merged with a statement truly in
the slice. This technique can only merge non-call statements which
are adjacent in the program source code and control equivalent, and
requires tight integration with analysis. Our technique calls for no
modifications to analysis.

Client-driven approaches [10] use cheap analyses first and
retroactively apply precise analyses when imprecision limits the
client. This approach requires analysis to track imprecision due to
polluting assignments, and clients to request greater precision in
important cases. This approach improves performance only when
those important cases are less common than polluting assignments.
In terms of the DAGSCC, an augmented client must identify those
conservative edges whose removal would split a component into
several. In contrast, our method always uses the most precise anal-
ysis available and only queries edges that may merge components.

When used to improve analysis quality, the high-level ap-
proaches share a common failing: they conflate the separate con-
cerns of analysis and transformation and break abstractions that are
useful for the development of compilers.

7. Conclusion
The DAGSCC provides strong insight into dependence structure over
a large program scope and is sufficient to drive a large class of
compiler optimizations. This paper demonstrates that the DAGSCC
can be computed much more efficiently than the naı̈ve method of
computing the strongly connected components of the full PDG.
The savings from this technique allow a compiler to analyze larger
scopes while still providing short turnaround times to the com-
piler’s user. This makes aggressive optimization of large scopes
palatable to a wider audience, and contributes to the universal de-
ployment of aggressive whole-program optimization.

Acknowledgments
We thank the entire Liberty Research Group for their support and
feedback during this work. We also thank the anonymous reviewers
for their insightful comments. Additionally, we thank CJ Bell, Sid
Sen, Sushant Sachdeva, and Chris Monsanto for commenting on
early drafts. This material is based on work supported by National
Science Foundation Grants 0964328 and 1047879. All opinions,
findings, conclusions, and recommendations expressed throughout
this work are those of the authors and do not necessarily reflect the
views of the aforementioned funding agencies.

References
[1] R. Allen and S. Johnson. Compiling C for vectorization, paralleliza-

tion, and inline expansion. In Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation
(PLDI), pages 241–249, June 1988.

[2] U. Banerjee. Loop Transformations for Restructuring Compilers: The
Foundations. Kluwer Academic Publishers, Norwell, MA, 1993.

[3] T. Chen, J. Lin, W. Hsu, and P. Yew. An empirical study on the gran-
ularity of pointer analysis in C programs. Languages and Compilers
for Parallel Computing (LCPC), pages 157–171, 2005.

[4] R. Cytron. DOACROSS: Beyond vectorization for multiprocessors.
In Proceedings of the 1986 International Conference on Parallel Pro-
cessing (ICPP), pages 836–884, 1986.

[5] E. Duesterwald, R. Gupta, and M. L. Soffa. Reducing the cost of data
flow analysis by congruence partitioning. In In International Con-
ference on Compiler Construction, pages 357–373. Springer-Verlag,
1994.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Pro-
gramming Languages and Systems, 9:319–349, July 1987.

[7] J. S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus
monomorphic flow-insensitive points-to analysis for C. In Proceed-
ings of the 7th International Symposium on Static Analysis (SAS),
pages 175–198, London, UK, UK, 2000. Springer-Verlag.

[8] R. Ghiya, D. Lavery, and D. Sehr. On the importance of points-to anal-
ysis and other memory disambiguation methods for C programs. In
Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation (PLDI), pages 47–58. ACM
Press, 2001.

[9] B. Guo, M. J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and
D. I. August. Practical and accurate low-level pointer analysis. In
Proceedings of the 3rd International Symposium on Code Generation
and Optimization (CGO), March 2005.

[10] S. Z. Guyer and C. Lin. Client-driven pointer analysis. In In Inter-
national Static Analysis Symposium, pages 214–236. Springer-Verlag,
2003.

[11] R. E. Hank, W. W. Hwu, and B. R. Rau. Region-based compilation: An
introduction and motivation. In Proceedings of the 28th Annual Inter-
national Symposium on Microarchitecture, pages 158–168, December
1995.

[12] M. J. Harrold, B. Malloy, and G. Rothermel. Efficient construction
of Program Dependence Graphs. In Proceedings of the 1993 ACM

10 2013/6/10

SIGSOFT international symposium on Software testing and analysis
(ISSTA), pages 160–170, New York, NY, 1993.

[13] N. Heintze and O. Tardieu. Demand-driven pointer analysis. In
Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation (PLDI), pages 24–34, New York,
NY, 2001.

[14] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In
2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE), 2001.

[15] M. Hind and A. Pioli. Evaluating the effectiveness of pointer alias
analyses. In Science of Computer Programming, pages 31–55, 1999.

[16] S. Horwitz. Precise flow-insensitive may-alias analysis is NP-hard.
ACM Transactions on Programming Languages and Systems, 19(1),
January 1997.

[17] S. Horwitz and T. Reps. The use of program dependence graphs in
software engineering. In In proceedings of the Fourtheenth Interna-
tional Conference on Software Engineering (CSE), pages 392–411,
1992.

[18] R. Johnson and K. Pingali. Dependence-based program analysis. In
In Proceedings of the SIGPLAN ’93 Conference on Programming
Language Design and Implementation (PLDI), pages 78–89, 1993.

[19] M. G. Kendall. Rank Correlation Methods. Charles Griffin and
Company, Limited, London, 1948.

[20] K. Kennedy and J. R. Allen. Optimizing compilers for modern archi-
tectures: a dependence-based approach. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2002.

[21] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the Annual In-
ternational Symposium on Code Generation and Optimization (CGO),
pages 75–86, 2004.

[22] C. Lattner, A. Lenharth, and V. Adve. Making Context-Sensitive
Points-to Analysis with Heap Cloning Practical For The Real World.
In Proceedings of the 2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), San Diego, Cali-
fornia, June 2007.

[23] P. Liang and M. Naik. Scaling abstraction refinement via pruning. In
Proceedings of the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

[24] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrel-
las. POSH: a TLS compiler that exploits program structure. In PPoPP
’06: Proceedings of the 11th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 158–167, 2006.

[25] R. Muth and S. Debray. Partial inlining. Technical report, Department
of Computer Science, University of Arizona, 1997.

[26] R. Muth and S. Debray. On the complexity of flow-sensitive dataflow
analyses. In In Proc. ACM Symp. on Principles of Programming
Languages, pages 67–80. ACM Press, 2000.

[27] F. Ohata, A. Nishimatsu, and K. Inoue. Analyzing dependence locality
for efficient construction of program dependence graph. Information
and Software Technology, 42(13):935 – 946, 2000.

[28] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August.
Parallel-stage decoupled software pipelining. In Proceedings of the
Annual International Symposium on Code Generation and Optimiza-
tion (CGO), 2008.

[29] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. De-
coupled software pipelining with the synchronization array. In Pro-
ceedings of the 13th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pages 177–188, September
2004.

[30] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-
time parallelization of loops with privatization and reduction par-
allelization. IEEE Transactions on Parallel Distributed Systems,
10:160–180, February 1999.

[31] Standard Performance Evaluation Corporation.
http://www.spec.org.

[32] M. Sridharan, D. Gopan, L. Shan, and R. Bodı́k. Demand-driven
points-to analysis for java. In Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications (OOPSLA), pages 59–76, New York, NY,
2005.

[33] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

[34] A. J. Thadhani. Factors affecting programmer productivity during
application development. IBM Systems Journal, 23(1):19 –35, 1984.

[35] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard ex-
ecution model for speculative parallelization on multicores. In Pro-
ceedings of the 41st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 330–341, Washington, DC, 2008.
IEEE Computer Society.

[36] H. Vandierendonck, S. Rul, and K. De Bosschere. The Paralax infras-
tructure: Automatic parallelization with a helping hand. In Proceed-
ings of the 19th International Conference on Parallel Architecture and
Compilation Techniques (PACT), pages 389–400, 2010.

[37] M. Weiser. Program slicing. In Proceedings of the 5th international
conference on Software engineering, (ICSE), pages 439–449, Piscat-
away, NJ, 1981.

[38] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In Proceedings of the
ACM SIGPLAN 2004 conference on Programming language design
and implementation, (PLDI), pages 131–144, New York, NY, 2004.

[39] The Wisconsin Program-Slicing Tool, Version 1.1, 2000.
http://research.cs.wisc.edu/wpis/slicing tool/.

[40] X. Zheng and R. Rugina. Demand-driven alias analysis for C. In
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pages 197–208,
New York, NY, 2008.

11 2013/6/10

