
Parcae: A System for Flexible Parallel Execution

Arun Raman
Intel Research

Santa Clara, CA, USA
arun.a.raman@intel.com

Ayal Zaks
Intel Corporation

Haifa, Israel
ayal.zaks@intel.com

Jae W. Lee
Sungkyunkwan University

Suwon, Korea
jaewlee@skku.edu

David I. August
Princeton University
Princeton, NJ, USA

august@princeton.edu

Abstract
Workload, platform, and available resources constitute a parallel
program’s execution environment. Most parallelization efforts stat-
ically target an anticipated range of environments, but performance
generally degrades outside that range. Existing approaches address
this problem with dynamic tuning but do not optimize a multipro-
grammed system holistically. Further, they either require manual
programming effort or are limited to array-based data-parallel pro-
grams.

This paper presents Parcae, a generally applicable automatic
system for platform-wide dynamic tuning. Parcae includes (i) the
Nona compiler, which creates flexible parallel programs whose
tasks can be efficiently reconfigured during execution; (ii) the Dec-
ima monitor, which measures resource availability and system per-
formance to detect change in the environment; and (iii) the Morta
executor, which cuts short the life of executing tasks, replacing
them with other functionally equivalent tasks better suited to the
current environment. Parallel programs made flexible by Parcae
outperform original parallel implementations in many interesting
scenarios.

Categories and Subject Descriptors D.1.3 [Software]: Concur-
rent Programming—Parallel Programming; D.3.4 [Programming
Languages]: Processors—Compilers, Run-time environments

General Terms Design, Performance

Keywords automatic parallelization, code generation, compiler,
flexible, multicore, parallel, performance portability, run-time,
adaptivity, tuning

1. Introduction
The emergence of general-purpose multicore processors has re-
sulted in a spurt of activity in parallel programming models. Justifi-
ably, the primary focus of these programming models has been par-
allelism extraction. However, parallelism extraction is just one part
of the problem of synthesizing well-performing programs which
execute efficiently in a variety of execution environments. The
other, equally important part is the tuning of the extracted par-
allelism [29, 30]. In the absence of intelligent tuning, a paral-
lel program may perform worse than the original sequential pro-
gram [23, 40].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, 2012, Beijing, China.
Copyright © 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

Parallel program performance depends on several environmen-
tal run-time factors. Synchronization and communication over-
heads are often difficult to predict and may erode the benefits of
parallelism [40]. Parallel resources available to the program may
vary, including number of cores and memory bandwidth [9, 23]. In
addition, application workload can change during execution. Most
parallel programs are produced by programmers or compilers with
a single static parallelism configuration encoded at development or
compile time. Any single program configuration is likely to become
suboptimal with changes in the execution environment [33, 40].

Libraries such as OpenMP and Intel Threading Building Blocks
allow programmers to encode multiple program configurations im-
plicitly, and have an appropriate configuration chosen at run-time
based on the execution environment [33, 40]. These libraries, how-
ever, require programmers to expend considerable efforts (re-) writ-
ing the parallel program. Furthermore, the run-time systems of
these libraries optimize the execution of individual programs, with-
out exploring platform-wide implications and opportunities.

Ideally, compilers should automatically generate flexible par-
allel programs which adapt to changes in their execution environ-
ment. Existing compiler and run-time systems tune parameters such
as the degree of parallelism of data-parallel (DOALL) loops and
block size of loops, either statically or dynamically, to match the
execution environment [3, 5, 14, 17, 41, 44]. These systems are
limited to optimizing array-based programs with communication-
free data-parallelism, where the performance impact of those pa-
rameters can be relatively easily modeled. However, for general-
purpose programs with complex dependency patterns, parallelism
is typically non-uniform and involves explicit synchronization or
communication. This significantly complicates performance mod-
eling, often resulting in a large space of possibly effective paral-
lelism configurations. Existing compiler-based parallelization al-
gorithms for such general-purpose programs select a single config-
uration, typically one deemed most suitable for an unloaded plat-
form [34, 43, 47].

This paper presents Parcae, a compiler and run-time software
system that delivers performance portability for both array-based
programs and general-purpose programs, extending the applicabil-
ity of prior work. The Parcae compiler, Nona, creates flexible par-
allel programs by (i) extracting multiple types of parallelism from a
program region; (ii) creating code to efficiently pause, reconfigure,
and resume its execution; and (iii) inserting profiling hooks for a
run-time system to monitor its performance. The Parcae run-time
system, comprising the Decima monitor and the Morta executor,
maximizes overall system performance by (i) monitoring program
performance and system events, such as launches of new programs,
to detect change in the execution environment, and (ii) determining
the best configurations of all flexible parallel programs executing
concurrently for the new environment.

We evaluate Parcae on two real platforms with 8 and 24 cores.
Flexible parallel execution enabled by Parcae is compared with

conventional parallel execution of programs generated by a com-
piler applying high quality parallelizing transforms: PS-DSWP [34,
43] and DOANY [31, 46], targeting 8 and 24 threads with OS
load balancing. Across seven benchmarks, Parcae reduces execu-
tion time by -1.4% (a small slowdown) to 41.9% with concomitant
estimated processor energy savings of 23.9% to 83.9%. Platform-
wide, Parcae reduces execution time of an entire workload by
12.8% to 53.5% with concomitant estimated processor energy sav-
ings of 22.4% to 76.3%.

In summary, the main contributions of this work are:
1. a compilation framework that is sufficiently powerful to auto-

matically transform both array-based and general-purpose se-
quential programs into flexible parallel programs (Section 3),

2. a lightweight monitoring and execution framework to determine
and enforce platform-wide optimal parallelism configurations
of multiple concurrently executing programs (Section 4), and

3. a prototype implementation and its evaluation on seven bench-
marks demonstrating its effectiveness in delivering robust
portable performance (Section 6).

2. Run-time Variability and Implications
During program execution, the workload processed by the program
may change phase or the parallel resources available to the program
may vary. As an example, consider the problem of determining an
ideal program configuration while the number of cores allocated to
a program by the OS varies. This is a common scenario in platforms
that are shared by multiple programs. Figure 1 shows optimized
performance of the blackscholes option pricing benchmark from
the PARSEC benchmark suite [7]. The compiler parallelized the
outermost loop using a three-stage pipeline parallelization scheme
(sequential-parallel-sequential). The program was executed on two
different platforms, processing three different reference inputs, and
making use of different number of cores. Observe that:

• On both platforms, the parallel version performs worse than
sequential if three cores or fewer are employed.

• On Platform 1, the parallel version scales to 8 cores on Input 1,
plateaus at 6 cores on Input 2, and is only slightly better than
sequential on Input 3.

• On Platform 2, the parallel version scales to 10 cores but de-
grades afterwards on Input 1, plateaus at 4 cores on Input 2
(with 34% speedup), and performs worse than sequential on In-
put 3.

The reason for poor performance on Input 3 is the significantly
greater communication bandwidth requirement, which overwhelms
the benefits of parallelization. From the example, we infer that:

• The optimal configuration depends in general on both platform
and workload characteristics.

• Employing more cores may not result in better performance,
and may even degrade it. Moreover, parallel versions may even
be slower than the sequential version.

• If an optimal configuration uses fewer cores than the total avail-
able, energy can be saved by switching off unused cores.

• The range of scenarios and varying concerns lay undue burden
on programmers to ensure performance portability.

This work presents a system that optimizes and executes programs
in a way that flexibly adapts them to new execution environments.
Based on the above inferences, the proposed system:
1. prepares multiple parallel versions for each parallel region, as

well as a sequential baseline version;
2. optimizes thread-level-parallelism leveraging both data- and

pipeline-parallelism schemes;
3. generates parallel code that can be efficiently tuned and re-

placed online as the parallel region executes;
4. periodically optimizes and tunes multiple simultaneously exe-

cuting programs for the duration of their execution; and

0x

1x

2x

3x

4x

 1 2 3 4 5 6 7 8

S
p

ee
d

u
p

Number of Cores Used

Input 1
Input 2
Input 3

(a) Platform 1: 8-core, 8 GB RAM

0x

1x

2x

3x

4x

 1 2 3 4 8 12 16 20 24

S
p
ee

d
u
p

Number of Cores Used

Input 1
Input 2
Input 3

(b) Platform 2: 24-core, 24 GB RAM

Figure 1. Performance variability running blackscholes option
pricing across 3 workloads and 2 parallel platforms.

5. performs all of the above automatically, easing the burden on
the programmer.

Figure 2 shows an example of the proposed execution model on
a hypothetical five-core machine. Each parallel region consists of
a set of concurrently executing tasks. (The inscription inside each
box indicates the task and iteration number of a region; e.g., M5
represents the fifth iteration of task M .) At time t0, program P1

is launched with a pipeline parallel configuration (PS-DSWP1)
having three stages corresponding to tasks A, B, and C. A and
C are executed sequentially whereas B is executed in parallel by
3 cores as determined by the run-time system. At time t1, another
program P2 is launched on the same machine. In response, the run-
time system signals P1 to pause at the end of its current iteration
(iteration 5). The core receiving this signal (Core 1) acknowledges
the signal at time t2 and propagates the pause signal to the other
cores. At time t3, P1 reaches a known consistent state, following
which the run-time system determines a new allocation of resources
to programs P1 and P2, say 2 cores to P1 and 3 cores to P2. At
time t4, the run-time system launches DOANY2 execution of both
programs P1 and P2. For P1, taskK and the synchronization block
implement the same functionality as tasks A, B, and C.

3. Compilation for Flexible Parallel Execution
The Nona compiler identifies parallelizable regions in a sequential
program and applies multiple parallelizing transforms to each re-
gion, generating multiple versions of flexible code. The generated
flexible code can be paused during its sequential or parallel exe-
cution, reconfigured, and efficiently resumed by the Morta task ex-
ecutor. Nona also inserts profiling hooks into the generated code for
the Decima monitor to observe program behavior. The parallelizing

1 The PS-DSWP transformation splits a loop body across stages and sched-
ules them for concurrent execution. It enforces dependencies through inter-
stage communication channels.
2 The DOANY transformation schedules loop iterations for parallel execu-
tion while synchronizing shared data accesses by means of critical sections.

Core 1 Core 2 Core 3 Core 4 Core 5

A1

B1

C1

A2

A3

B2

B3

A4

A5 B4

B5

C2

C3

C4

C5

M1 M2

M5
M4

M3

M6

K1

K2

K3

Communication
Operation

Critical
Section

Barrier
Wait

P1
PS-DSWP

P1
DOANY

P2
DOANY

t0

t1

t4

Ti
m

e

t2

Ti
ith iteration of task T

 of program P1

Ti
ith iteration of task T

 of program P2

Parallelism
Reconfiguration

t3

Figure 2. Parcae execution model: (t0) program P1 is launched;
(t1) program P2 is launched; (t2) P1 acknowledges signal to pause;
(t3) P1 reaches a known consistent state; (t4) new resource alloca-
tion is determined and parallel execution of P2 begins while P1

switches to a parallelization that is better for two cores.

transforms which we focus on in this work target loop nests as their
candidate regions. We therefore describe the generation of flexible
code at this level, implemented in the following three steps.

3.1 Parallelism Discovery and PDG Building
In the first step, Nona discovers parallelism by building a Program
Dependence Graph (PDG) of the hottest outermost loop nest [1].
Some data dependency edges in the PDG can be relaxed and their
corresponding nodes allowed to execute in parallel by applying spe-
cial techniques such as privatization and re-association of reduction
operations. Nona automatically identifies min, max, and sum re-
ductions [1]. Other dependency edges might be relaxed, allowing
the corresponding nodes to execute in either order, but not concur-
rently; Nona processes commutativity annotations provided by the
programmer for this purpose [31, 43]. As Figure 3 shows, Nona
propagates these annotations from the source code to the PDG, re-
laxes dependencies between commutative operations, and synthe-
sizes the appropriate synchronization to ensure atomicity.

3.2 Multiple Parallelizations
In the second step, Nona applies multiple parallelizing transforms
to the PDG of a loop nest. In this work, we employ a data-parallel
transform with critical sections (DOANY [31, 46]) and a pipeline
transform (PS-DSWP [34, 43]). The framework can accommodate
additional, new transforms. Each transform extracts a distinct form
of thread-level parallelism encapsulated in code packages called
tasks. The original, sequential version of the loop is also maintained
as a task.

Each task essentially contains the body of a loop, whose itera-
tions must either execute sequentially or may execute in parallel. A

Sequential
Source Code

PDG Builder
Alias Analyses

DOANY

Add Commutativity
Annotations

Report Inhibiting
Dependencies

PDG

PS-DSWP

Flexible Code
Generator

N
on

a
C

om
pi

le
r

Pr
og

ra
m

m
er

R

un
-t

im
e

Parallelizers

Parallel code

Section 3.1
 (Step 1)

Section 3.2
 (Step 2)

Sections 3.3-3.4
(Step 3)

Section 4 Decima
Monitor

Morta
Executor

Figure 3. Parcae Architecture and Parallelization Workflow

task is labeled as either sequential or parallel accordingly. Note that
parallel execution may involve communication or synchronization.
A dynamic instance of a task refers to any single iteration of the
loop contained in the task. Dynamic instances of a sequential task
cannot execute concurrently with each other, whereas dynamic in-
stances of a parallel task can.

DOANY tests the PDG with commutativity relaxations pro-
duced in the first step for absence of loop-carried dependencies
to determine applicability. If there are no loop-carried dependen-
cies, DOANY extracts the loop body into a parallel task, marshals
all loop live-ins into the task via the heap, and inserts appropriate
synchronization operations to ensure atomicity of all commutative
operations. Iterations of the loop thus constructed may be executed
concurrently by multiple threads without violating program seman-
tics.

PS-DSWP is a widely applicable parallelization technique that
partitions the loop into “stages”, with each stage comprised of
groups of instructions that are cyclically dependent on each other.
Each stage essentially corresponds to a loop containing part of the
original loop’s body. These stages are constructed by building the
strongly connected components (SCCs) of the PDG and partition-
ing the induced SCC graph. Inter-stage dependencies are satisfied
via appropriate communication. A stage is sequential or parallel de-
pending on whether the intra-stage dependencies are carried by the
transformed loop’s backedge or not. Iterations of a parallel stage
may be executed concurrently by multiple threads.

The tasks extracted by each parallelizing transform are ini-
tially generated by the Multi-Threaded Code Generation algorithm
(MTCG) [34]. MTCG operates in four steps (see Figure 4(a)). First,
for each task, MTCG generates a new control flow graph (CFG)
containing the relevant basic blocks. Second, MTCG inserts in-
structions corresponding to each basic block in the newly created
CFG for that task. Third, MTCG inserts inter-task communication
instructions (send and recv in case of PS-DSWP) and synchro-
nization instructions (lock and unlock in case of DOANY). Fourth,
MTCG replicates branch instructions into the newly created CFGs
as necessary to match the original CFG.

store live-outs
flush out-channels
return

header
rn= Φn(r1,r0)

tail

exit

send(x,channel1)

init block(s)

r1=…

load live-ins
r0=…

…

…

load live-ins
r0=…;store(r0,M[Φn])
c1=load(M[channel1])

call end
send(x,channels[c1])
call begin

st=get_status()
send(st,channels[])

call begin
rn= load(M[Φn])

store live-outs
flush out-channels
return task_complete

store live-outs
flush out-channels
return task_paused

header

tail

exit

Tinit

r1=…;store(r1,M[Φn])
call end

return task_iterating

T

(a) MTCG (b) Nona

Figure 4. Original and transformed task code produced by MTCG
and Nona, respectively. Dashed blocks/arcs represent arbitrary con-
trol flow within the loop.

3.3 Flexible Code Generation
In the third step, Nona adapts the code generated by MTCG for
flexible execution. Originally, the code generated by MTCG tar-
gets a fixed number of statically bound threads for each task. How-
ever, flexible parallel execution entails dynamic scheduling of task
instances across different threads, execution of parallel tasks by a
varying number of threads, and pausing a set of tasks followed by
resumption of a possibly different set of tasks. Flexible parallel ex-
ecution is hindered by:
1. Dependencies through private storage: A thread’s registers and

stack are private. Consequently, cross-iteration dependencies
(between one task instance and another) carried by registers and
the stack inhibit executing instances across multiple threads.

2. Inter-task communication: MTCG constructs point-to-point
communication channels between threads executing tasks,
and communicates dependencies in round-robin order across
threads. If the number of threads executing each task varies
at run-time, the dependencies across the communicating tasks
may be reordered, violating sequential semantics.

3. Cross-iteration dependencies: These also inhibit the pausing of
executing tasks and relaying of work remaining in the parallel
region to a new set of tasks.

To facilitate flexible execution, Nona applies the following changes:
1. Upon completing each iteration, every task yields to the run-

time system that determines whether the task should pause or
may resume execution on the same thread or a different thread.

2. Registers and stack variables that are live across iterations of
sequential tasks are saved and reloaded on the heap at the end
and beginning of each iteration, respectively.

3. Parallel tasks avoid having local state across iterations, by shar-
ing cross-iteration data in global memory .

4. When pipelined tasks pause, they flush their communication
channels, sending all pending items down the pipeline.

5. Upon resumption, tasks execute an initialization sequence to
reload invariant live-in data, and the run-time system resets the
communication channels.

3.3.1 Changes to Task Control Flow
Consider the control flow graph CFGT of an arbitrary task T ,
as generated by MTCG (Figure 4(a)). CFGT represents a single-
entry-single-exit code region containing a loop with a single
tail→header backedge. There is a single entry edge reaching

Algorithm 1: Control logic for executing task instances
// getTaskInstance() blocks until reconfiguration ends or until next

region begins. It returns NULL when program ends.
while instance← runtime.getTaskInstance() do

retVal← invoke(instance.function, instance.args);
if retVal == task iterating then

taskIterCount[instance.getTaskID()]++;
else

// retVal == task paused or task complete
instance.flushOutChannels();
region← instance.getRegion();
region.waitOnBarrier();
if retVal == task complete then

region.terminate()

header block from outside the loop; there may be multiple exits
from the loop, but all reach a single exit block which cannot be
reached from outside the loop.

Nona modifies CFGT to support migration (see Figure 4(b)).
The backedge is redirected from tail to a new exit block which
returns task iterating (instead of reaching the header). The
original exit block now returns task complete. Section 3.3.4
discusses the third (and last) exit block which is reached from a
new pre-header block and returns task paused.

The control logic to execute task instances is extracted into
a separate loop, shown in Algorithm 1. The Morta executor sets
up every worker thread to execute this loop. Upon receiving
task iterating, the thread increments a counter that tracks the
number of iterations per task. Upon completing or pausing a task,
the thread waits for other tasks of the region to complete or pause
by means of a barrier, before starting to execute a new task.

3.3.2 Saving and Restoring State
Sequential tasks may have cross-iteration dependencies that flow
through registers and variables on the stack, which are local to a
thread. To facilitate lightweight migration to another thread, Nona
inserts code to copy such variables to the heap at the end of each it-
eration and reload them at the beginning of each iteration. Note that
the amount of information that needs to be copied through the heap
is typically much smaller when applied between iterations, than at
arbitrary locations as in general context switches or checkpoints.

Nona uses Static Single Assignment form (SSA) to represent
code. In SSA form, loop-carried register dependencies are captured
by φ nodes in the loop header. Figure 4 shows how flows through
registers are converted into flows through the heap. Note that a
register value need only be stored to the heap at the end of an
iteration, not on every write to the register. This minimizes the
cost of saving register state. A similar treatment addresses stack
variables. The figure also shows how blocks preceding the loop
header are extracted into a separate function (Tinit). This function
includes the loading of loop-invariant live-in values, and will be
executed at every task activation and resumption.

3.3.3 Inter-task Communication
In PS-DSWP parallelizations, dependencies between tasks execut-
ing different stages need to be enforced. MTCG communicates
such dependencies by inserting instructions for send-receive op-
erations over point-to-point communication channels [34].

Communication between two sequential tasks is straightfor-
ward; communication between a sequential task (S) and a parallel
task (P) involves data arbitration and merge. Consider a depen-
dency edge u→ v where u ∈ S and v ∈ P . Let p be the (varying)

number of threads that execute P . The value produced by the thread
executing S flows to each of the threads executing P in a round-
robin fashion: on the ith instance of S, the value is communicated
through the (i mod p)th channel. MTCG uses the induction vari-
able (i), which is incremented once per instance of S, to identify
the channel for a value that flows over the dependency edge. This
holds analogously for dependency edges from a parallel task to a
sequential task.

In MTCG, the number of threads p that execute a parallel task
P is fixed at compile-time. This is not the case for Nona because
the value of p may be changed by Mortaduring execution. Still,
the above communication mechanism suffices provided p and the
communication channels are maintained as run-time parameters,
and that task instances are made relayable.

3.3.4 Relayable Task Instances
As described in Section 3.3.2, parallel tasks are constructed to have
no local cross-iteration dependencies, and sequential tasks have all
their cross-iteration data placed in the global heap between itera-
tions. Thus, every task instance can halt after finishing or before
starting an iteration, leaving the program in a known consistent
state. Once instances halt, the system can be reconfigured safely
and subsequent instances will continue to execute according to the
new set of tasks and their thread allocation.

At the beginning of each iteration, every instance checks for a
pause signal (see get status() in Figure 4(b)), received either di-
rectly from Morta or from another instance. If an instance receives
a pause signal, it propagates the signal and yields to Morta by re-
turning task paused. These signals are initiated and propagated
as follows.

Initiating pause signals: When Morta chooses to reconfigure the
program, it sends a pause signal to designated master tasks. In the
DOANY and sequential versions, the single task is the master task,
and in the case of PS-DSWP, only the task executing the first stage
is designated as master. The master tasks are designed to query
Morta for pause signals at the beginning of each instance, to which
Morta responds with either continue or pause.

Propagating pause signals across pipelined tasks: The master
task of a pipeline-parallel region relays the continue or pause
notification to all other tasks in the region, following the structure
of the pipeline. This is achieved by placing send instructions to
all directly connected tasks in the loop header of the master task
(before any other instruction, see send(st,channels[]) in Fig-
ure 4(b)), and matching receive instructions (via get status())
in the corresponding location of each of the connected tasks. Sub-
sequent send-receive messages are placed analogously down the
stages of the pipeline. This ensures that all parts of an iteration,
scattered across pipeline stages, pause appropriately.

All send-receive operations occur over the same point-to-point
communication channels used for dependency flows. Upon receiv-
ing a pause signal, a task explicitly flushes all outgoing channels,
transmitting all pending items down the pipeline. This mechanism
ensures that all channels are drained properly, relying on the prop-
erty that at the end of a flushed iteration, all relevant incoming data
has been received and processed.

Pausing process: Upon receiving a pause signal, a task ex-
its the parallel region by jumping to an exit block which returns
task paused. Exiting a parallel region on a pause is identical to
exiting the region upon reaching the end of the loop. Indeed, the
block returning task paused contains the same instructions as the
block returning task complete. These instructions include flush-
ing outgoing channels (see Figure 4(b)). After exiting the iteration,
the thread waits on a barrier for other threads executing the parallel
region to exit as well (see Algorithm 1).

To resume execution, Morta launches the set of tasks deter-
mined to be optimal for the new execution environment. Each task
first executes Tinit when launched (the task initialization function,
see Figure 4(b)). Section 5 discusses the overhead of pause and re-
sume as well as the means to alleviate it.

3.4 Hooks for Autonomous Monitoring
An important aspect of Parcae is task execution time monitoring by
Decima. Decima distinguishes between the time a task spends com-
puting and the time it spends waiting for communication, possi-
bly across multiple parallel instances. Morta relies on this informa-
tion to optimize program configurations. To enable such monitor-
ing, Nona inserts begin and end hooks into the code of each task.
These hooks obtain timestamps using the rdtsc instruction on x86
platforms (whose overhead is presented in Section 6.5). Nona in-
serts end immediately before each send and receive instruction, and
begin immediately after each send and receive instruction. Nona
also inserts begin into the entry block of a task and end into the
task executing exit block.

The begin and end hooks help calculate the total compute-time
of an instance by accumulating local time intervals (between con-
secutive {begin, end} pairs). These local compute-times of each
instance then update a global compute-time counter per task, which
feeds Decima (described in Section 4), requiring no inter-thread
synchronization. Note that the total execute-time of an instance can
easily be reported too, as the time elapsed between the first begin
and the last end, from which the communication overhead can be
derived. The latter may be important for affinity and allocation op-
timization purposes; however, these effects were found to be in-
significant on our evaluation platforms and experiments.

4. Online Monitoring and Optimization
The goal of the Morta run-time system is to rapidly find parallelism
configurations that are optimal for the execution environment. This
work focuses on the following optimization objective: minimize
total execution time, and subject to that, minimize energy con-
sumption. Morta achieves this objective by maximizing iteration
throughput (number of iterations processed per second) and saving
idle threads, as explained in this section. The system design allows
additional goals, as desired.

A parallelism configuration consists of: (1) a Parallelization
Scheme (prepared by Nona, see Section 3), which maps each loop
to one of the following: S = {DOANY, PS-DSWP, SEQ}; and
(2) a Degree of Parallelism (DoP)D, the varying number of threads
allocated to every parallel task of DOANY or PS-DSWP schemes.
A configuration also contains an assignment of threads to cores, but
this aspect was not significant on our evaluation platforms.

State 1: Initialize SEQ Baseline

T1!2

T2!3

T3!4

T3!2

T4!2

State 2: Calibrate New Config.

State 3: Optimize DoP

State 4: Monitor Optimality

T2!2

(a) Finite State Machine Structure

T1→2 Measured SEQ baseline,
reconfigure to parallel scheme.

T2→3 Feed configuration profile.
T3→2 Reconfigure to next scheme.
T3→4 Reconfigure to optimal DoP.

T4→2
Detected change in workload,
re-calibrate configuration.

T2→2 Detected change in
T3→2 resource allocation,
T4→2 re-calibrate configuration.

(b) Description of Transitions

Figure 5. Run-time Controller

Morta uses the following schema to identify optimal configura-
tions: establish a baseline performance metric; identify an optimal
configuration by repeatedly searching for a better configuration,

pausing execution to change configurations, and measuring the per-
formance of the new configuration relative to the baseline; monitor
optimality of current configuration and trigger a new search if the
dynamic execution environment changes. The finite state machine
shown in Figure 5 implements the above schema.
State 1: Initialize Sequential Baseline. When a program enters a
parallel region, Morta selects the sequential scheme (S′ = SEQ,
D′ = {1}) and monitors its execution to establish a baseline
throughput Tseq. After completing a fixed number of Nseq itera-
tions (set to 10 in the current implementation), Morta reconfigures
the program to execute in an initial parallel scheme S′ = Spar and
default DoP D′ = Dpar, and transitions to State 2. (In our current
implementation, Spar = PS-DSWP and Dpar is determined as de-
scribed later in Section 4.1.) Note thatD′ is a vector, every element
of which represents the DoP of a single task. Also, the initial value
of D′ need not be 1 (explained in Section 4.1).
State 2: Calibrate New Configuration. In State 2, Morta treats
the current parallel configuration with its scheme and DoP (S′, D′)
as being new. It gathers initial timing information for scheme S′

while repeatedly reconfiguring the system to D′ ± 1 and executing
each configuration for a number of iterationsNpar3. This is done to
establish a direction for the search for an optimum DoP in the next
state. After completing the calibration iterations, Morta restores the
original (S′, D′) configuration and moves to State 3.
State 3: Optimize Degree of Parallelism (DoP). Based on the
information collected in State 2, Morta performs a local monotonic
search for an optimal DoP for each task, repeatedly reconfiguring
the system to different values of DoP and executing a number of
Npar iterations to measure its performance. Specifically, it uses a
finite difference gradient ascent control law [15, 39], as described
in detail in Section 4.1. This process converges to an optimal
DoP (D′′) for the given scheme S′, with associated throughput
T ′′. If T ′′ is better than the best throughput T ∗ achieved so far
for the region, Morta updates T ∗ with T ′′ and records S′, D′′.
(T ∗ = Tseq initially.) Morta then selects the next scheme S′ from
S, resets DoP to its default D′ = Dpar, reconfigures the system
accordingly, and returns to State 2. If all schemes in S have been
explored, Morta retrieves the configuration S′, D′′ that achieved
the best throughput T ∗, reconfigures the system accordingly, and
moves to State 4.
State 4: Monitor Configuration Optimality. In this state, the
Decima monitor performs a passive monitoring of the system (i.e.,
no reconfigurations) to detect changes in either the resources allo-
cated to the program or in the workload of the program itself. For
the former, Decima interacts with the platform-wide run-time sys-
tem (described in Section 4.2). For the latter, Decima monitors the
throughput of the parallel region; if the throughput changes by more
than a preset threshold, the workload is deemed to have changed.
If any such change is detected, the configuration is suspected to
have become suboptimal, and control returns to State 2 retaining
the current scheme. If the change corresponds to an increase in re-
sources, the current DoP is retained (hopefully as a good starting
point); otherwise, if resources decreased or the throughput of the
workload itself decreased, the DoP is reset to its initial valueDpar.

Note that all reconfigurations that modify the DoP while keep-
ing the scheme intact (such as those carried out by State 2, State 3,
and potentially upon transitions T3→4 and T4→2) do not require
changing the code distributed among the worker threads. Reconfig-
urations that do modify the parallelization scheme, upon transitions
T1→2 and T3→2, do involve replacing this code.

3 The number of iterations Npar is dynamically set to max(Nseq, 2 · dP),
where dP is the current DoP of the parallel task being optimized.

Algorithm 2: Optimizing multiple DoPs in a region
Input: Calibrated parallel region, thread budget N
Output: Optimized DoP for region (≤ N)
totalDoP← computeTotalDoP(region.parallelTasks())
foreach Pi ∈ region.parallelTasks() do

Pi.opt← false; Pi.sat← false
repeat

optimize a task← false
P ← sortInAscendingThroughput(region.parallelTasks())
for Pi ∈ P while ¬optimize a task do

dPi
← N − totalDoP + dPi

if (¬Pi.opt) ∨ ((dPi
< dPi

) ∧ (¬Pi.sat)) then
dPi
← gradientAscent(Pi, dPi

, dPi
)

Pi.opt← true; Pi.sat← (dPi
< dPi

)

totalDoP← updateTotalDoP(totalDoP, dPi
)

optimize a task← true

until ¬optimize a task
if parThroughput(region) > (0.9*totalDoP)*seqThroughput(region) then

return totalDoP // current parallel scheme profitable, keep it

else if bumpToNextScheme(region) then
return calibrateAndOptimize(region) // try next scheme recursively

else return 1 // no parallel scheme is profitable, revert to sequential

4.1 Optimizing the Degrees of Parallelism
A given parallelization scheme may comprise both sequential
{S1, S2, . . . , Sm} and parallel tasks {P1, P2, . . . , Pn}. The de-
gree of parallelism dSi for every sequential task is inherently 1.
The objective of optimizing DoP (State 3 of Figure 5(a)) is there-
fore to find a degree of parallelism dPi for each parallel task that
maximizes the overall performance of the region. The problem can
be formulated as follows:

Maximize overall throughput: T = f(dP1 , dP2 , . . . , dPn)

subject to: dPi ≥ 1 ∀i,
n∑

i=1

dPi ≤ N

where N denotes the total number of threads available to the pro-
gram minus those used by its sequential tasks (m). Morta optimizes
each dPi separately, in turn, according to the relative throughputs
of the tasks in ascending order (see Algorithm 2). This is done in
order to prioritize slower tasks, which are typically bottlenecks in
pipelined networks of sequential-parallel tasks.

Morta computes the optimal DoP dPi for a parallel task Pi

by using a fast iterative gradient ascent technique [39], based on
the assumption that function f is unimodal with a single (local)
optimum. Section 6.4 discusses the impact of this assumption. On
each iteration of the optimization routine, the current throughput
is compared with the previous throughput4, and this difference
either establishes the gradient of the change to the next DoP or
concludes the search. First, an upper bound dPi on the allowed DoP
is calculated, which is equal to the maximum number of threads
currently available for Pi. Initially, every parallel task is assigned
half of its fair share of threads: N

2n
. Thus, dPi = N −

∑
j 6=i

N
2n

=
(n+1)N

2n
. The search for an optimal dPi ∈ [1, 2, . . . , dPi] starts

at the midpoint of this range: dPi(0) = Dpar = 1
2
dPi . Morta

then sets dPi(1) = dPi(0) ± 1 according to whichever achieves
greater throughput. We call the search increasing or decreasing,
respectively.

4 Throughput is measured directly as the number of iterations executed in
a certain amount of time, rather than computed analytically by relying on
some model of the throughput function f .

Next, the gradient between the current (k + 1) solution and the
previous (k) solution is calculated, starting from k = 0:

δ(k + 1) = T (dPi(k + 1))− T (dPi(k)). (1)

If δ(k + 1) < 0, the optimal solution has been passed and Morta
terminates the search taking dPi(k) to be the solution. Recall that
we seek to maximize the throughput, and subject to that, minimize
the number of threads (thereby saving energy). The case δ(k+1) =
0 is treated similar to case δ(k + 1) < 0 above if the search is
increasing, and similar to case δ(k + 1) > 0 below if the search
is decreasing. If δ(k + 1) > 0, the next solution is calculated
according to the gradient ascent formula:

dPi(k + 2) = dPi(k + 1) + αδ(k + 1) (2)

where α is positive if the search is increasing, and negative if the
search is decreasing. The search continues by incrementing k and
evaluating Equation 1 and Equation 2, repeatedly.

After optimizing dPi , the process repeats by sorting the tasks
according to their throughputs, and selecting the next task Pj to
optimize. The process terminates after all dPi ’s have been opti-
mized, possibly more than once, and cannot be further improved.

Once the search terminates at an optimal DoP, Morta measures
the overall throughput of the region T = f(dP1 , . . . , dPn) and
compares it with the baseline sequential throughput Tseq measured
in State 1. The parallel configuration is deemed profitable only
if its efficiency is significantly better than that of the sequential
configuration. Otherwise, Morta repeats the optimization process
considering an alternative parallel scheme exposed by Nona, if any
(corresponding to transition T3→2 in Figure 5). When all available
schemes have been considered, Morta chooses the most efficient
scheme (possibly even SEQ) for execution, and enters State 4.
To accelerate the optimization process, Morta caches previously
optimized configurations and reuses them, if feasible, as initial
configurations upon future entry into a parallel region.

4.2 Platform-wide Control
The description of the Morta run-time system in Section 4.1 ap-
plies to a single program executing a parallel region. However, the
same control system used to optimize the parallel execution of one
program easily extends and generalizes to multiple programs run-
ning concurrently, thereby achieving platform-wide execution op-
timization. Indeed, each executing program p can be considered
as a collection of parallel and sequential tasks, executed in parallel
and independent of other co-scheduled programs, as if all programs
belong to one parallel region with multiple parallel tasks. At this
outer level, Morta must decide how to partition the total number of
threadsN available in the system across the different co-scheduled
programs: N =

∑
pNp, such that a specified optimization goal is

met. Given its budget of threads Np, a program is optimized and
monitored by its dedicated controller. Algorithm 3 summarizes the
platform-wide control logic to minimize the overall execution time
of a batch of co-scheduled programs.

The platform-wide Morta run-time system is implemented as a
daemon, launched upon system boot. When a flexible parallel pro-
gram p is launched, its controller registers itself with the daemon
and acquires its fair share of resources Np; initially Np = N/P
where P is the number of flexible parallel programs. Each con-
troller proceeds to initialize, optimize, and monitor its program,
as explained (through States 1,2,3 and 4), and reports its optimal
amount of resources N ′p ≤ Np to the daemon (upon transition
T3→4).

On receiving optimization results N ′p from the controllers, the
daemon distributes slack resources N −

∑
pN
′
p if any, among

controllers with N ′p = Np. Finally, the daemon monitors changes

Algorithm 3: Platform-wide Optimization
Input: platform-wide thread budgetN
Output: Optimized DoP for platform (≤ N)
slack←N
activePrograms← platform.programs
while slack > 0 do

foreach P ∈ activePrograms do
NPslack

← slack/activePrograms.size
slack← slack - NPslack

NP ← NPnew +NPslack
// NPnew ← 0 initially

NPnew ← P.optimizeDoP(P.region, NP)
if NPnew < NP then

slack← slack + (NP −NPnew)
activePrograms.extract(P)

in system resources (launch and termination of programs) and re-
partitions resources across executing programs when they occur.

5. Reducing Run-time Overheads
The Morta run-time system’s overheads include:
1. Task Migratability: consisting of (i) Task Activation, yielding

to and returning from the task activation loop; and (ii) Data
Management, loading and saving cross-iteration dependency
data; both occurring per iteration.

2. Pause-Resume: on receiving a pause signal, all threads synchro-
nize by means of a barrier; threads which reach the barrier early
waste cycles waiting for the slower threads to catch up (shown
as Barrier Wait in Figure 2). Tasks must be re-started on threads
on resumption.

3. Parallelism Reconfiguration: time spent executing core opti-
mization routine to determine new parallelism configurations
(shown as Parallelism Reconfiguration in Figure 2).

4. Status Query: querying Morta whether the program should
pause, after each iteration.

5. Monitoring: recording timestamps for execution time statistics.
On our evaluation platforms, the last two were barely noticeable.
The remaining overheads (measured and reported in Section 6.5)
can be significantly reduced in the common case:
1. Task Migratability: Rather than returning to the task activa-

tion loop every iteration as in Figure 4, an optimized (yet non-
migratable) version may retain the original loop backedge. This
makes it possible to hoist the load out of the loop header into the
preheader, and to push the corresponding store into the pause
exit block (see Figure 4). Note that this only constrains the mi-
gration of sequential tasks in between parallelism reconfigura-
tions since sequential tasks have dependencies flowing across
task instances.

2. Parallelism Reconfiguration: The thread executing the master
task is the first to receive the pause signal, directly from Morta.
This thread can immediately start executing the optimization
routine to determine the next parallelism configuration, rather
than waiting for other threads. This overlaps the time spent
executing the optimization routine with the gap between the last
and first threads to reach the barrier.

3. Pause-Resume: During gradient ascent, which performs most
reconfigurations, the degree of parallelism (DoP) of a parallel
task is increased or decreased. Recall that a parallel task is ex-
plicitly constructed such that it either does not have any loop-
carried dependencies or updates global memory with appropri-
ate synchronization. Consequently, additional threads may start
executing the parallel task without violating program consis-
tency, eliminating the need for a full barrier wait. In the pres-

ence of communication with other tasks, however, actions ap-
propriate to the communication policy must be taken. As de-
scribed in Section 3, a sequential task sends (receives) depen-
dencies in round-robin order to (from) each of the threads exe-
cuting the parallel task. The sequential task must process all to-
kens up to the iteration at which the parallel region was paused,
before changing the width of the communication channel be-
tween itself and the parallel task whose DoP is being optimized.
The optimized Morta run-time system can ensure this by lever-
aging the iteration counts of each task.

6. Evaluation
Table 2 describes the two real platforms used to evaluate Parcae.
The Nona compiler is built on LLVM [19] revision 129859. Nona
generates optimized assembly which is then assembled and linked
by GCC version 4.4.1. Parcae is compared with an LLVM compiler
also built on revision 129859, applying fixed high-quality paral-
lelization schemes (PS-DSWP [34, 43] and DOANY [31, 46]) tar-
geting an unloaded parallel platform, and using a standard thread-
pool with load balancing by the Linux scheduler [31, 43]. The
Morta run-time system is implemented on top of the same thread-
pool, facilitating fair comparison.

As a second point of comparison, the optimal program config-
uration is determined for each workload by enumerating all possi-
ble static parallelism configurations of the program and picking the
best performing one. The performance of Parcae is then compared
against that of the optimal configuration. The execution time of the
sequential program produced by the same set of optimizations ex-
cluding the parallelization transformations serves as the baseline
for speedup computation of all parallel runs. All execution times
used to compute speedups in Table 1 are averages over N runs,
where N ≥ 3 is the minimum number of runs required for a stan-
dard deviation of less than 5% of the geomean execution time.

Processors will have interfaces to turn cores on or off at fine
time granularities [8]. To evaluate energy savings that Parcae could
deliver by leveraging such capabilities, we measured the power
consumption characteristic of each platform by executing a power-
virus that maintains 100% CPU utilization of each core to mea-
sure power draw when a number of cores are busy, and by leaving
the system unused to measure power draw when those cores are
idle. The processor’s dynamic power range is then the difference
between active and idle power. Active processor power consump-
tion as a fraction of whole platform power consumption is 18.0%
for Platform 1 and 26.7% for Platform 2. Processor energy is then
computed as the integral of the piece-wise product of time spent ac-
tively using a number of cores and the average power draw of those
many active cores. Recent work uses a similar methodology [8].

Table 1 describes the benchmarks selected to evaluate Parcae.
These include benchmarks parallelized by the baseline state-of-the-
art compiler [31, 43], allowing direct comparison. The last three
columns of the table provide a summary of the execution time and
energy improvements delivered by Parcae. These improvements are
discussed in detail below. In the interest of space, we present case
studies using one application for three interesting scenarios, each
highlighting a different aspect of Parcae.

6.1 Parcae Adapts Execution to Workload Change
blackscholes calculates the prices for a portfolio of European
options using the Black-Scholes partial differential equation [7].
To study workload variation, the source code is modified to en-
able pricing of two different portfolios. Nona is able to apply the
PS-DSWP parallelization scheme, in addition to SEQ. Figure 6(b)
shows Morta and Decima in action. Morta starts in State 1 to ini-
tialize the sequential baseline. It then enters State 2 to set the ini-
tial configuration and determine the direction for gradient ascent.

Feature Platform 1 Platform 2
Brand Name Intel Xeon® E5310 Intel Xeon® X7460
Processor Intel Core®, 64-bit Intel Core®, 64-bit
Clock Speed 1.60 GHz 2.66 GHz
Total # Cores 8 24
Total L2 Cache 16 MB 36 MB
Total L3 Cache - 64 MB
Total RAM 8 GB 24 GB
OS Linux 2.6.32 Linux 2.6.31

Table 2. Hardware Platforms Used for Evaluation

In State 3, it performs gradient ascent until peak throughput is
achieved, at which point (t = 5.0s) it enters State 4 to monitor
the execution of this configuration. During the optimization phase,
the re-configuration interval constantly varies according to the op-
timization logic; this results in compute throughput measurements
that are accurate relative to each other, but are less accurate with re-
spect to the baseline throughput. Hence, once the peak is reached,
the system stabilizes for additional iterations to obtain a more accu-
rate throughput measurement. Decima’s workload change detection
logic kicks in after this throughput measurement. At t = 56.6s,
Decima detects workload change via drop in throughput, and sig-
nals Morta to re-optimize in response. In State 3, Morta reduces
DoP by performing decreasing gradient ascent, finally to reach
State 4 at t = 79.9s; Decima monitors the remaining execution.
Parcae achieves performance within 1.4% of optimal (due to over-
heads) while consuming 45.4% less energy.

6.2 Parcae Optimizes Across Multiple Parallelization
Schemes

geti is a data mining program that computes a list of frequent
itemsets using a vertical database. The set semantics of the out-
put operations enables order relaxation via commutativity, which
is expressed using 11 annotations in 889 lines of source code [31].
The resulting dependence graph is then amenable to PS-DSWP and
DOANY parallelization schemes (in addition to SEQ). Figure 6(c)
shows the execution trace. As with blackscholes, Morta starts
in State 1 to initialize the sequential baseline. In State 2, it cali-
brates an initial configuration of the PS-DSWP scheme, and starts
an increasing gradient ascent in State 3. Morta determines an op-
timal configuration for the PS-DSWP scheme (at t = 14.0s), and
compares throughput with that of the SEQ scheme. As the compar-
ison is below the preset threshold, Morta returns to State 2 in or-
der to evaluate the next parallel scheme: DOANY. Optimizing the
DoP for DOANY then takes place in State 3 (from t = 16.8s until
t = 26.0s). The optimal DOANY configuration is found to be of
adequate throughput, so Morta moves to State 4 and Decima mon-
itors the remaining execution. Parcae improves performance over
the baseline by 12.6%, and achieves performance within 18.6% of
optimal. Parcae reduces energy consumption by 23.9%.

6.3 Parcae Adapts Execution to Resource Availability
Change

Figures 6(d) and 6(e) illustrate Morta’s platform-wide control ca-
pability, with the former highlighting control of programs with ho-
mogeneous characteristics while the latter heterogeneous. In both
cases, the controller primarily aims to minimize the overall execu-
tion time of the batch of programs. Simultaneously, by virtue of fair
allocation of slack resources to all active programs on each round
of optimization in Algorithm 3, the platform-wide controller also
seeks to avoid adversely impacting any one program.

Homogeneous characteristics: Eight copies of blackscholes
processing the same input are launched in succession on Platform 2
having 24 cores. For brevity, the execution of only one copy P0 is
shown (labeled Program P0). The figure also shows platform-wide

Program Origin Main Parallel Total number of Parcae Improvement relative to

Loop Coverage Invocations Iterations Baseline [31, 43] Optimal
Exec. Time Energy Exec. Time

blackscholes Seq. version from PARSEC [7] worker 92.94% 1 1000 -1.39% 45.35% -1.39%
geti MineBench [26] FindSomeETIs 99.99% 24 12242 12.55% 23.90% -18.56%

kmeans STAMP [25] work 99.30% 501 131334144 41.94% 83.89% -62.98%
ks LLVM Test Suite [21] FindMaxGpAndSwap 99.97% 7750 488250 3.78% 35.11% -0.83%

md5sum Open Source [4] main 99.99% 1 384 34.41% 58.51% -3.55%
potrace Open Source [38] main 100.00% 1 200 9.95% 42.67% -2.97%

url NetBench [24] main 100.00% 1 40000 -0.18% 36.22% -2.40%

Table 1. Sequential programs transformed, their origin, transformed loop, fraction of total execution time spent in parallelized loop, number
of invocations and iterations of the parallelized loop, and improvements in execution time and energy delivered by Parcae. The improvements
are on a single input on Platform 2, and are relative to baseline parallel and optimal parallel versions of these programs. Optimal versions are
determined via offline exhaustive search. Positive numbers indicate improvement.

 INIT State 1: Initialize
 CAL State 2: Calibrate
 OPT State 3: Optimize
 MON State 4: Monitor

 (S) Sequential Scheme
 (S,Px,S) PS-DSWP Scheme with DoP = x
 (Px) DOANY Scheme with DoP = x

Running Throughput
Running Energy

Program Degree of Parallelism
System Degree of Parallelism

(a) Legend

0.0x

2.0x

4.0x

6.0x

8.0x

10.0x

0.0

0

3.1

0

3.4

4

3.8

14

4.2

24

4.6

34

5.0

46

56.6

1050

60.3

1060

64.0

1070

67.7

1080

71.4

1090

75.2

1100

79.9

1110

402.4

2000

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(x
/S

E
Q

)

Time (in seconds)
Iteration Number

E
n
er

g
y
 (

in
 k

J)

D
eg

re
e

o
f

P
a
ra

ll
el

is
m

0.0

3.8
 5

7.5
 10

11.3
 15

15.1
 20

18.9
 25

(S)

INIT

(S)

CAL

(S,P3,S)

3

4

5

OPT

(S,Px,S)

6

MON

(S,P6,S)

CAL

(S,P6,S)

6 5 4 3 2

OPT

(S,Px,S)

1

(S,P2,S)

MON

(b) blackscholes: Controller re-optimizes when workload changes

0.0x

7.6x

15.2x

22.8x

30.3x

37.9x

0.0

0

0.0

0

3.9

4

7.4

14

10.1

24

12.1

34

14.0

46

15.1

58

16.8

68

19.4

78

22.1

90

24.4

104

26.0

120

78.2

1224

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(x
/S

E
Q

)

Time (in seconds)
Iteration Number

E
n
er

g
y
 (

in
 k

J)

D
eg

re
e

o
f

P
a
ra

ll
el

is
m

0.0

1.2
 5

2.4
 10

3.6
 15

4.7
 20

5.9
 25

(S)

INIT

(S)

CAL

(S,P3,S)

3

4

5

6

OPT

(S,Px,S)

6

CAL

(P4)

4

5

6

7

OPT

(Px)

8

(P8)

MON

(c) geti: Controller determines optimal execution scheme from many

 0

 5

 10

 15

 20

 25

0.0 2.3 3.6 5.4 10.0 45.5 47.7 49.4 51.5 54.955.9 57.5

0.0

5.0

10.0

15.0

20.0

25.0

D
eg

re
e

o
f

P
a
ra

ll
el

is
m

E
n
er

g
y

 (
in

 k
J)

Time (in seconds)

(Np) = (1,1,1,4,4,4,4,5)

INIT OPT MON OPT MON OPT

System DoP
Program P0 DoP

Energy

(d) Controller optimizes eight homogeneous programs simultaneously

 0

 5

 10

 15

 20

 25

0.00.4 1.5 2.6 4.9 5.9 10.4 56.0 56.5 152.2

0.0

5.0

10.0

15.0

20.0

25.0

30.0

D
eg

re
e

o
f

P
a
ra

ll
el

is
m

E
n
er

g
y

 (
in

 k
J)

Time (in seconds)

(Np) = (7,9)

INIT OPT MON OPT MON OPT MON

System DoP
Program P0 DoP
Program P1 DoP

Energy

(e) Controller optimizes two heterogeneous programs simultaneously

Figure 6. Parcae run-time control. Solid vertical lines indicate state transition times. All throughput values are normalized to the throughput
measured in the INIT state. In (b) and (c), the state transitions shown at the top of each figure are those of an individual program’s controller,
whereas in (d) and (e), they are the transitions of the platform-wide Morta daemon.

dynamic thread utilization as determined by the platform-wide dae-
mon (labeled System). P0 begins execution on an unloaded ma-
chine, so following the initialization of State 1, State 2 calibrates
the parallel task of the PS-DSWP scheme starting from a DoP of
dP0 = 1

2
dP0 = 11. (There are two additional sequential tasks

resulting in a whole program DoP of 13.) P0’s controller then tran-
sitions to State 3 and performs an increasing gradient ascent. By
t = 3.6s, all eight program copies have launched, and the dae-
mon reallocates threads across them: each copy is assigned a DoP
of 3. In response, P0’s controller transitions to State 2 and mea-
sures the parallel performance of configuration (S,P1,S), which
is now the only feasible parallel configuration. It then computes the
configuration’s efficiency and compares the efficiency with that of
sequential execution, determining at time t = 5.4s that sequential
execution is preferred, and returning 2 threads back to the daemon.
Spare threads are redistributed by the daemon among the copies re-
peatedly. By t = 10.0s, the platform-wide optimization algorithm
converges (at {Np} = {1, 1, 1, 4, 4, 4, 4, 5}), all copies enter their
stable configurations, and the controllers enter State 4 (the monitor-
ing state). At t = 45.5s, the fastest copy terminates, yielding its (5)
threads back to the daemon, which in turn initiates another round
of optimization. The figure shows how, barring the short optimiza-
tion phases, Parcae enables full use of all threads on the platform.
Compared to OS scheduling of the eight copies of the baseline 24-
thread parallel version, Parcae reduces total execution time of the
workload by 12.8%, and energy consumption by 29.1%.

Interestingly, the benefit in execution time using Parcae in-
creases as the number of concurrently executing programs in-
creases. With sixteen copies, execution time and energy improve by
18.3% and 52.7%, respectively. With twenty four copies, improve-
ments reach 22.4% and 22.4%, respectively. The co-operative re-
lease and acquisition of resources by Parcae reduces contention
among concurrently executing programs. Scheduling and memory
contention significantly overwhelm the benefits of parallel exe-
cution when copies of the baseline parallelized programs execute
each with 24 threads.

Heterogeneous characteristics: One copy each of kmeans (la-
beled Program P0) and blackscholes (labeled Program P1) are
launched in succession on Platform 2 having 24 cores. kmeans
is a DOANY parallel loop with a single parallel task whereas
blackscholes is a PS-DSWP parallel loop with two sequential
tasks and one parallel task. Additionally, the two programs differ
in parallelization scalability, average time per iteration, and total
execution time. The platform-wide daemon initiates a round of op-
timization at t = 0.4s when both programs have launched, and
assigns each program its fair share DoP of 12. It then optimizes
each program in turn starting with P0. In response, P0’s optimizer
performs gradient ascent to determine optimal use of the assigned
threads. At t = 2.6s, P0 determines that (P7) is the optimal par-
allelism configuration and returns 5 threads back to the daemon.
In the meantime, P1’s controller performs gradient ascent to deter-
mine that the optimal parallelism configuration is (S,P4,S) and
returns 6 threads back to the daemon at t = 4.9s. The daemon
then initiates another round of optimization at t = 5.9s by as-
signing the slack threads to P1 via a DoP assignment of 17. P1’s
controller performs gradient ascent again to settle at (S,P7,S).
By t = 10.4s, the platform-wide optimization algorithm has con-
verged (at {Np} = {7, 9}), and the individual controllers of both
programs are in the monitoring state. At t = 56.0s, program P1

finishes and yields its threads back to the daemon, which in turn
initiates another round of optimization by allocating those threads
to P0. P0’s controller performs gradient ascent and determines that
(P13) is the ideal parallelism configuration and enters the moni-
toring state. It stays in that state until P0 finishes at t = 152.2s.

Operation Overhead
Platform 1 Platform 2 Unit

Task Migratability
- Task Activation 11 7 nanoseconds per task instance
- Data Management 3 2 nanoseconds per dependency

per task instance
Status Query 8 5 nanoseconds per query
Monitoring 44 15 nanoseconds per timestamp
Pause-Resume 33 4 milliseconds per pause-resume
Parallelism 35 2 milliseconds per
Reconfiguration reconfiguration

Table 3. Recurring run-time overheads

Compared to OS scheduling of the baseline 24-thread parallel
versions of the two benchmarks, Parcae reduces total execution
time of the workload by 53.5%, and energy consumption by 76.3%
by virtue of reducing the total execution time and using fewer
cores. Parcae improves the execution time of each benchmark as
well: kmeans improves by 53.5% and blackscholes by 36.7%.
Recall that on a platform with no contention from other programs,
the Parcae version of blackscholes took longer to execute than
the baseline version (Table 1). Parcae’s benefits manifest when the
same program is executed on the same platform but with contention
from other programs.

6.4 Optimality: A Closer Look
While Parcae delivers significant performance improvements, its
achievements are still short of optimal execution determined via
offline exhaustive search (see Table 1) for two main reasons. For
blackscholes, geti, md5sum, and potrace, Parcae identifies
the optimal configuration, but converges to that solution after first
spending multiple iterations in SEQ and other sub-optimal schemes.
In addition to the above overhead, for kmeans, ks, and url, the as-
sumption about unimodal performance characteristic with increas-
ing DoP (discussed in Section 4.1) does not hold; Parcae identifies
a local optimum, which is worse than the global optimum. The Par-
cae gradient ascent algorithm can be enhanced to escape from local
optima. We leave this to future work.

6.5 Morta and Decima Overheads
The execution time improvements reported in Table 1 account for
all overheads of the system. Table 3 shows each overhead inde-
pendently. The first three overheads are recurring (incurred on
each instance of each task). To quantify them, we executed mi-
crobenchmarks designed to exercise each overhead independently.
All aspects of the run-time control system are implemented in
shared memory, thus making the run-time operations extremely
lightweight. In the common case, task instances are executed on
the same core, resulting in low-latency access to cross-iteration
dependency data. Timestamp acquisitions are not serializing in-
structions; their latencies may be masked naturally via hardware
exploiting instruction-level parallelism. By comparison to the ge-
omean time per iteration across all benchmarks (1552.30 microsec-
onds), the recurring overheads incurred on each iteration (or task
instance) are orders of magnitude lower. “Pause-Resume” and “Par-
allelism Reconfiguration” overheads are application-specific and
DoP-specific. The overheads shown in these two categories are for
blackscholes with maximum DoP.

7. Related Work
Auto-parallelization: Most work on auto-parallelization at compile-
time (e.g., [34, 43, 47]) or run-time (e.g., [18, 30, 35, 37]) is pri-
marily concerned with parallelism discovery and extraction. Par-
cae addresses the complementary problem of parallelism tuning

and optimization. Parcae tunes parallelism dynamically, and is
designed to work with multiple automatic parallelization passes.
Flexible Parallel Execution: Adaptive Thread Management
throttles the number of threads allocated to DOALL loops during
execution, as their measured speedup exceeds or falls short of an
expected speedup [13, 14]. Dynamic feedback has been used to de-
termine the best synchronization policy from among those exposed
by the compiler [12]. The ADAPT optimizer applies loop opti-
mizations at run-time to create new variants of code [44]. Parcae
employs multiple parallelization schemes prepared at compile-time
to support efficient optimization at run-time, and optimizes multi-
ple programs co-scheduled on a system. A key novelty over prior
work is the mechanism for efficient pausing of one set of commu-
nicating tasks, followed by the resumption of the parallel region’s
execution by a different set of communicating tasks.
Auto-tuning: Auto-tuning is used to optimize parameters that im-
pact performance. The optimal number of threads in an applica-
tion’s thread-pool can be determined across multiple application
runs [16, 45]. For linear algebra codes, optimal loop tiling factors
can be determined at compile-time for each platform [3, 5, 32].
However, not all important architectural variables can be handled
by such parameterized adaptation; some choices require changing
the underlying source code. This type of adaptation involves gen-
erating distinct implementations for the same operation [3]. The
PetaBricks [2] and Elastin [27] frameworks leverage alternative
code implementations exposed by programmers. Parcae automati-
cally generates multiple versions for each parallel region from stan-
dard source code, and selects and tunes them at run-time based on
performance feedback.
Parallelization Libraries: Numerous interfaces and enabling run-
time systems have been proposed to adapt parallel program exe-
cution to run-time variability [10, 11, 22, 33, 40]. These systems
burden the programmer with the task of extracting parallelism and
with the task of expressing parallelism such that it can be opti-
mized. Parcae minimizes the burden on the programmer as far as
parallelism extraction is concerned, and fully automates the task
of rewriting the parallel program for flexible execution. The run-
time systems in those works either require the programmer to spec-
ify the degree of parallelism thus limiting performance portability
(e.g. Cilk++ [20]), or are not adaptive (e.g. the TBB Auto Parti-
tioner [36]), or handle only counted DOALL parallel loops (e.g. the
Lazy Splitting scheduler [42]), or only optimize a single program
in isolation; Parcae optimizes multiple programs running concur-
rently, handles counted and uncounted loops with different forms
of parallelism, adapts parallelism configurations to changes in the
environment, and delivers portable performance.
Operating Systems: Future operating systems for multicores will
need tighter integration between parallel application run-time sys-
tems and operating system schedulers [6, 9, 28]. Parcae demon-
strates the benefits of such an integration. Parcae’s monitoring and
resource management services could be integrated with operating
systems for manycore processors such as Barrelfish [6].

8. Conclusion
This paper presented Parcae, a system that automatically gener-
ates flexible parallel programs and that monitors and optimizes
the execution of multiple flexible programs running on a shared
parallel platform. Compared to conventional parallel execution of
seven benchmarks, Parcae reduced execution time by -1.4% (a
small slowdown) to 41.9% with concomitant estimated processor
energy savings of 23.9% to 83.9%. While Parcae was evaluated in
the context of two parallelizing transforms, it can be extended to
support additional, new ones. Parcae can improve the performance

of flexible parallel programs even when co-scheduled with con-
ventional, inflexible programs. With promising advances in auto-
parallelization and increasing diversity in execution environments,
a holistic, automatic, dynamic, and generally applicable parallelism
tuning system will only become more relevant.

Acknowledgments
We thank the members of the Liberty Research Group for their sup-
port and feedback. We thank Carole-Jean Wu and Lennart Beringer
for feedback on an early draft of this paper. We thank the anony-
mous reviewers for their insightful comments. This material is
based on work supported by National Science Foundation Grant
1047879. Jae W. Lee was partly supported by the Korean IT R&D
program of MKE/KEIT KI001810041244. This work was carried
out while Arun Raman was a graduate student at Princeton Univer-
sity, and while Ayal Zaks was visiting Princeton University, sup-
ported by the HiPEAC network of excellence, and on leave from
IBM Haifa Research Lab.

References
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-

tures: A Dependence-based Approach. Morgan Kaufmann Publishers
Inc., 2002.

[2] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe. PetaBricks: A language and compiler for algo-
rithmic choice. In Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2009.

[3] C. W. Antoine, A. Petitet, and J. J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Parallel Computing,
27:2001, 2000.

[4] Apple Open Source. md5sum: Message Digest 5 computation.
http://www.opensource.apple.com/darwinsource.

[5] M. M. Baskaran, N. Vydyanathan, U. K. R. Bondhugula, J. Ramanu-
jam, A. Rountev, and P. Sadayappan. Compiler-assisted dynamic
scheduling for effective parallelization of loop nests on multicore
processors. In Proceedings of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), pages
219–228, 2009.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: A new
OS architecture for scalable multicore systems. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP), pages 29–44, 2009.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2008.

[8] O. Bilgir, M. Martonosi, and Q. Wu. Exploring the potential of CMP
core count management on data center energy savings. In Proceedings
of the 3rd Workshop on Energy Efficient Design (WEED), 2011.

[9] S. L. Bird and B. J. Smith. PACORA: Performance aware convex op-
timization for resource allocation. In Proceedings of the 3rd USENIX
Workshop on Hot Topics in Parallelism (HotPar: Posters), 2011.

[10] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, C. D. Antonopoulos,
and M. Curtis-Maury. Runtime scheduling of dynamic parallelism
on accelerator-based multi-core systems. Parallel Computing, 33(10-
11):700–719, 2007.

[11] Y. Ding, M. Kandemir, P. Raghavan, and M. J. Irwin. Adapting ap-
plication execution in CMPs using helper threads. Journal of Parallel
and Distributed Computing, 69(9):790 – 806, 2009.

[12] P. Diniz and M. Rinard. Dynamic feedback: An effective technique
for adaptive computing. In Proceedings of the 18th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 1997.

[13] G. Edjlali, G. Agrawal, A. Sussman, J. Humphries, and J. Saltz. Com-
piler and runtime support for programming in adaptive parallel envi-
ronments. In Scientific Programming, pages 215–227, 1995.

[14] M. W. Hall and M. Martonosi. Adaptive parallelism in compiler-
parallelized code. In Proceedings of the 2nd SUIF Compiler Work-
shop, 1997.

[15] J. L. Hellerstein, V. Morrison, and E. Eilebrecht. Applying control
theory in the real world: Experience with building a controller for the
.NET thread pool. Performance Evaluation Review, 37:38–42, 2010.

[16] T. Karcher and V. Pankratius. Run-time automatic performance tuning
for multicore applications. In Proceedings of the International Euro-
Par Conference on Parallel Processing (Euro-Par), pages 3–14, 2011.

[17] A. Kejariwal, A. Nicolau, A. V. Veidenbaum, U. Banerjee, and C. D.
Polychronopoulos. Efficient scheduling of nested parallel loops on
multi-core systems. In Proceedings of the 2009 International Confer-
ence on Parallel Processing (ICPP), pages 74–83, 2009.

[18] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew. Optimistic parallelism requires abstractions. In Proceed-
ings of the 28th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 211–222, 2007.

[19] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the Annual In-
ternational Symposium on Code Generation and Optimization (CGO),
pages 75–86, 2004.

[20] C. E. Leiserson. The Cilk++ concurrency platform. In Proceedings
of the 46th ACM/IEEE Design Automation Conference (DAC), pages
522–527, 2009.

[21] LLVM Test Suite Guide. http://llvm.org/docs/TestingGuide.html.
[22] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism on het-

erogeneous multiprocessors with adaptive mapping. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 45–55, 2009.

[23] J. Mars, N. Vachharajani, M. L. Soffa, and R. Hundt. Contention aware
execution: Online contention detection and response. In Proceedings
of the Annual International Symposium on Code Generation and Op-
timization (CGO), Toronto, Canada, 2010.

[24] G. Memik, W. H. Mangione-Smith, and W. Hu. NetBench: A bench-
marking suite for network processors. In Proceedings of the 2001
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2001.

[25] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford Transactional Applications for Multi-Processing. In Proceedings
of the IEEE International Symposium on Workload Characterization
(IISWC), 2008.

[26] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and
A. Choudhary. Minebench: A benchmark suite for data mining work-
loads. 2006.

[27] I. Neamtiu. Elastic executions from inelastic programs. In Proceed-
ings of the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2011.

[28] H. Pan, B. Hindman, and K. Asanović. Composing parallel software
efficiently with Lithe. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 376–387, 2010.

[29] D. A. Penry. Multicore diversity: A software developer’s nightmare.
ACM SIGOPS Operating Systems Review, 43:100–101, 2009.

[30] C. D. Polychronopoulos. The hierarchical task graph and its use in
auto-scheduling. In Proceedings of the 5th International Conference
on Supercomputing (ICS), pages 252–263, 1991.

[31] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August. Com-
mutative set: A language extension for implicit parallel programming.
In Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2011.

[32] M. Püschel, F. Franchetti, and Y. Voronenko. Encyclopedia of Parallel
Computing, chapter Spiral. Springer, 2011.

[33] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August. Parallelism
orchestration using DoPE: the degree of parallelism executive. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2011.

[34] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August.
Parallel-stage decoupled software pipelining. In Proceedings of the
Annual International Symposium on Code Generation and Optimiza-
tion (CGO), 2008.

[35] L. Rauchwerger, N. M. Amato, and D. A. Padua. A scalable method
for run-time loop parallelization. International Journal of Parallel
Programming (IJPP), 26:537–576, 1995.

[36] A. Robison, M. Voss, and A. Kukanov. Optimization via reflection
on work stealing in TBB. In Proceedings of the 22nd International
Parallel and Distributed Processing Symposium (IPDPS), pages 1–8,
2008.

[37] J. Saltz, R. Mirchandaney, and R. Crowley. Run-time parallelization
and scheduling of loops. IEEE Transactions on Computers, 40, 1991.

[38] P. Selinger. potrace: Transforming bitmaps into vector graphics.
http://potrace.sourceforge.net.

[39] J. C. Spall. Introduction to Stochastic Search and Optimization.
Wiley-Interscience, 2003.

[40] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt. Feedback-
directed pipeline parallelism. In Proceedings of the 19th Interna-
tional Conference on Parallel Architecture and Compilation Tech-
niques (PACT), pages 147–156, 2010.

[41] A. Tiwari and J. K. Hollingsworth. Online adaptive code generation
and tuning. In Proceedings of the 25th International Parallel and
Distributed Processing Symposium (IPDPS), 2011.

[42] A. Tzannes, G. C. Caragea, R. Barua, and U. Vishkin. Lazy binary-
splitting: A run-time adaptive work-stealing scheduler. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 179–190, 2010.

[43] H. Vandierendonck, S. Rul, and K. De Bosschere. The Paralax infras-
tructure: Automatic parallelization with a helping hand. In Proceed-
ings of the 19th International Conference on Parallel Architecture and
Compilation Techniques (PACT), pages 389–400, 2010.

[44] M. J. Voss and R. Eigenmann. ADAPT: Automated de-coupled adap-
tive program transformation. In Proceedings of the 1999 International
Conference on Parallel Processing (ICPP), pages 163–170, 1999.

[45] Z. Wang and M. F. O’Boyle. Mapping parallelism to multi-cores:
A machine learning based approach. In Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 75–84, 2009.

[46] M. Wolfe. DOANY: Not just another parallel loop. In Proceedings
of the 4th International Workshop on Languages and Compilers for
Parallel Computing (LCPC), 1992.

[47] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering hid-
den loop level parallelism in sequential applications. In Proceedings
of the 14th International Symposium on High-Performance Computer
Architecture (HPCA), 2008.

