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Abstract
The performance benefits of GPU parallelism can be enormous,
but unlocking this performance potential is challenging. The ap-
plicability and performance of GPU parallelizations is limited by
the complexities of CPU-GPU communication. To address these
communications problems, this paper presents the first fully auto-
matic system for managing and optimizing CPU-GPU communca-
tion. This system, called the CPU-GPU Communication Man-
ager (CGCM), consists of a run-time library and a set of com-
piler transformations that work together to manage and optimize
CPU-GPU communication without depending on the strength of
static compile-time analyses or on programmer-supplied annota-
tions. CGCM eases manual GPU parallelizations and improves the
applicability and performance of automatic GPU parallelizations.
For 24 programs, CGCM-enabled automatic GPU parallelization
yields a whole program geomean speedup of 5.36x over the best
sequential CPU-only execution.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Algorithms, Experimentation, Performance

Keywords GPU, communication, management, optimization

1. Introduction
Currently, even entry-level PCs are equipped with GPUs capable
of hundreds of GFLOPS. Real applications, parallelized to take ad-
vantage of GPUs, regularly achieve speedups between 4x and 100x
[8, 10, 20]. Unfortunately, parallelizing code for GPUs is difficult
due to the typical CPU-GPU memory architecture. The GPU and
CPU have separate memories, and each processing unit may effi-
ciently access only its own memory. When programs running on the
CPU or GPU need data-structures outside their memory, they must
explicitly copy data between the divided CPU and GPU memories.

The process of copying data between these memories for correct
execution is called Managing Communication. Generally, program-
mers manage CPU-GPU communication with memcpy-style func-
tions. Manually managing CPU-GPU communication is tedious
and error-prone. Aliasing pointers, variable sized arrays, jagged ar-
rays, global pointers, and subversive typecasting make it difficult
for programmers to copy the right data between CPU and GPU
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memories. Unfortunately, not all communication management is
efficient; cyclic communication patterns are frequently orders of
magnitude slower than acyclic patterns [15]. Transforming cyclic
communication patterns to acyclic patterns is called Optimizing
Communication. Naı̈vely copying data to GPU memory, spawn-
ing a GPU function, and copying the results back to CPU memory
yields cyclic communication patterns. Copying data to the GPU
in the preheader, spawning many GPU functions, and copying the
result back to CPU memory in the loop exit yields an acyclic com-
munication pattern. Incorrect communication optimization causes
programs to access stale or inconsistent data.

This paper presents CPU-GPU Communication Manager
(CGCM), the first fully automatic system for managing and op-
timizing CPU-GPU communication. Automatically managing and
optimizing communication increases programmer efficiency and
program correctness. It also improves the applicability and perfor-
mance of automatic GPU parallelization.

CGCM manages and optimizes communication using two parts,
a run-time library and a set of compiler passes. To manage com-
munication, CGCM’s run-time library tracks GPU memory alloca-
tions and transfers data between the CPU memory and GPU mem-
ory. The compiler uses the run-time library to manage and opti-
mize CPU-GPU communication without strong analysis. By rely-
ing on the run-time library, the compiler postpones, until run-time,
questions that are difficult or impossible to answer statically. Three
novel compiler passes for communication optimization leverage
the CGCM run-time: map promotion, alloca promotion, and glue
kernels. Map promotion transforms cyclic CPU-GPU communica-
tion patterns into acyclic communication patterns. Alloca promo-
tion and glue kernels improve the applicability of map promotion.

The contributions of CGCM over prior work are:
• The first fully automatic CPU-GPU communication manage-

ment system.
• The first fully automatic CPU-GPU communication optimiza-

tion system.
Figure 1 shows a taxonomy of CPU-GPU communication man-

agement techniques. No prior work fully automates CPU-GPU
communication, but several semi-automatic techniques can manage
communication if programmers supply annotations [12, 24, 26].
Some of these communication management techniques are strongly
coupled with automatic parallelization systems [12, 24]; others are
not [26]. None of the semi-automatic communication systems op-
timize CPU-GPU communications. Some prior automatic paral-
lelization techniques require manual communication [3, 13, 25].
The earliest GPU parallelization systems feature manual paral-
lelization and manual communication [6, 11, 16]. These systems
remain the most popular. CGCM enables fully-automatic commu-
nication management for manual and automatic parallelizations.

Communication management is also a problem for distributed
memory systems. Inspector-executor techniques automatically
manage communication for distributed memory systems [4, 14, 22]
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Figure 1. A taxonomy of related work showing automatic and
manual communication and parallelization as independent axes.

but have not been used for CPU-GPU systems. Inspector-executor
techniques can reduce the number of bytes transferred, but the
overall communication pattern remains cyclic.

We have coupled CGCM with an automatic parallelizing com-
piler to produce a fully automatic GPU parallelization system. To
compare a strong cyclic communication system against CGCM’s
acyclic communication, we adapted inspector-executor to GPUs.
Across 24 programs, CGCM coupled with automatic paralleliza-
tion shows a geomean whole program speedup of 5.36x over se-
quential CPU-only execution versus 0.92x for inspector-executor.

This paper provides a detailed description of the design and im-
plementation of CGCM and presents an evaluation of the system.
Section 2 describes background information about the challenges
of CPU-GPU communications and limitations of related work. Sec-
tion 3 describes the run-time support library. Section 4 explains
how the compiler automatically inserts calls to the CGCM library.
The map promotion, alloca promotion, and glue kernel techniques
for optimizing CPU-GPU communication appear in Section 5. Sec-
tion 6 interprets the performance results for 24 programs taken from
the PARSEC [5], StreamIt [23], Rodinia [7], and PolyBench [17]
benchmark suites. This section also compares CGCM to an ideal-
ized inspector-executor system. Section 7 discusses related work,
and Section 8 concludes.

2. Motivation
The divided CPU-GPU memories create communication manage-
ment and optimization difficulties that motivate CGCM. Manag-
ing communication means copying data between CPU and GPU
memories to ensure each processing unit has the data it needs.
Manual communication management is time-consuming and error-
prone, and semi-automatic communication management in prior
work has limited applicability. Optimizing communication means
transforming communication patterns to remove cyclic dependen-
cies. Optimizing communication is vital for program performance,
but increases the difficulty of communication management. Lack
of optimized communication limits the performance of prior semi-
automatic communication management frameworks. CGCM is the
first fully-automatic communication management and optimization
system.

Listing 1: Manual explicit CPU-GPU memory management
char *h h array[M] = {

“What so proudly we hailed at the twilight’s last gleaming,”,
. . .
};

� global void kernel(unsigned i, char **d array);

void foo(unsigned N) {
/* Copy elements from array to the GPU */

� char *h d array[M];
� for(unsigned i = 0; i < M; ++i) {
� size t size = strlen(h h array[i]) + 1;
� cudaMalloc(h d array + i, size);
� cudaMemcpy(h d array[i], h h array[i], size,
� cudaMemcpyHostToDevice);
� }

/* Copy array to the GPU */
� char **d d array;
� cudaMalloc(&d d array, sizeof (h d array));
� cudaMemcpy(d d array, h d array, sizeof (h d array),
� cudaMemcpyHostToDevice);

� for(unsigned i = 0; i < N; ++i)
� kernel<<<30, 128>>>(i, d d array);

/* Free the array */
� cudaFree(d d array);

/* Copy the elements back, and free the GPU copies */
� for(unsigned i = 0; i < M; ++i) {
� size t size = strlen(h h array[i]) + 1;
� cudaMemcpy(h h array[i], h d array[i], size,
� cudaMemcpyDeviceToHost);
� cudaFree(h d array[i]);
� }
}

� Useful work � Communication � Kernel spawn

Listing 2: Automatic implicit CPU-GPU memory management
char *h h array[M] = {

“What so proudly we hailed at the twilight’s last gleaming,”,
. . .
};

� global void kernel(unsigned i, char **d array);

void foo(unsigned N) {
� for(unsigned i = 0; i < N; ++i) {
� kernel<<<30, 128>>>(i, h h array);

}
}

� Useful work � Communication � Kernel spawn

2.1 Communication Management
Communication management presents a major difficulty for man-
ual and automatic GPU parallelizations. Current GPU program-
ming languages, such as CUDA and OpenCL, require manual com-
munication management using primitive memcpy-style functions.
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JCUDA [26] × Yes X X X × × ∞ No

Named Regions
[12] × Yes X X × X × 1 No

Affine [24] × Yes X × × X × 1 With
Annotation

Inspector-Executor
[4, 14, 22] × Yes × × X X × 1 No

CGCM X No X X X X X 2
After

Optimization

Table 1. Comparison between communication systems

Manually copying complex data-types from CPU memory to GPU
memory is tedious and error-prone. Listing 1 shows how a CUDA
programmer might copy an array of strings to and from the GPU,
allocating and freeing memory as necessary. Almost every line of
code in the listing involves communication management and not
useful computation. Furthermore, the programmer must manage
buffers and manipulate pointers. Buffer management and pointer
manipulation are well-known sources of bugs.

Automatic communication management avoids the difficulties
of buffer management and pointer manipulation, improving pro-
gram correctness and programmer efficiency. However, automati-
cally managing communication based on compile-time static anal-
ysis is impossible for general C and C++ programs. In C and C++,
any argument to a GPU function could be cast to a pointer, and
an opaque pointer could point to the middle of data-structures of
arbitrary size. Prior work restricts its applicability to avoid these
difficulties [12, 24, 26].

Table 1 compares the applicability of prior communication
management techniques. Prior GPU techniques [12, 24, 26] re-
quire programmer annotations, do not handle the full generality of
pointer arithmetic and aliasing, create cyclic CPU-GPU commu-
nication patterns by default, and do not optimize communication.
Consequently, prior automatic communication management tech-
niques have limited applicability and frequently yield poor perfor-
mance. To gain acceptance in the GPU programming community,
automatic communication management techniques must overcome
these limitations.

2.2 Communication Optimization
Figure 2 shows execution schedules for three communication pat-
terns: a naı̈ve cyclic pattern, an inspector-executor pattern, and an
acyclic pattern. In the naı̈ve schedule, data transfers to and from
GPU memory create cyclic dependencies, forcing the CPU and
GPU to wait for each other. GPU programmers understand cyclic
dependencies dramatically increase execution time. Nevertheless,
all prior automatic GPU communication systems generate cyclic
communication [12, 24, 26]. Cyclic communication patterns pre-
vent these systems from efficiently parallelizing complex programs
that launch many GPU functions.

Inspector-executor systems manage communication in clusters
with distributed memory [4, 14, 22]. The inspector-executor ap-
proach breaks loops into an inspector, a scheduler, and an ex-
ecutor. The inspector simulates the loop to determine which ar-
ray offsets the program reads or writes during each iteration. Af-
ter the inspection, a scheduler assigns loop iterations to cluster
nodes and transfers the appropriate data. Executors on each clus-
ter node compute loop iterations in parallel. The inspector-executor
schedule in Figure 2 outperforms the naı̈ve communication sched-
ule because the benefit of communicating only the needed array
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Figure 2. Execution schedules for naı̈ve cyclic, inspector-
executor, and acyclic communication patterns

elements exceeds the cost of the inspection. However, in real pro-
grams the cost of sequential inspection may exceed the benefits
of parallel execution. Generally, inspector-executor is cyclic since
it transfers only the needed bytes for a single iteration at a time.
Acyclic inspector-executor variants require annotations or strong
static analysis [18, 21].

Figure 2 shows the execution schedule for acyclic CPU-GPU
communications. Removing cyclic communication avoids the la-
tency of back-and-forth communication and allows the CPU and
GPU to work in parallel. The performance benefit of acyclic com-
munication is significant.

2.3 Overview
CGCM avoids the limitations of prior work by employing a run-
time support library and an optimizing compiler to automatically
manage and optimize CPU-GPU communication, respectively. The
run-time library determines the size and shape of data-structures
during execution. The compiler uses the run-time library to man-
age memory without strong analysis and then optimizes commu-
nications to produce acyclic patterns. CGCM has two restrictions:
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Figure 3. High-level overview of CGCM

CGCM does not support pointers with three or more degrees of in-
direction, and it does not allow pointers to be stored in GPU func-
tions. Using CGCM, programmers can write the example code in
Listing 1 as Listing 2. Replacing explicit CPU-GPU communica-
tion with CGCM yields dramatically shorter, simpler, clearer code
and prevents several classes of programmer error.

Figure 3 shows a high-level overview of CGCM’s transforma-
tion and run-time system. The run-time library provides mapping
functions which translate CPU pointers to equivalent GPU point-
ers (Section 3). The compiler inserts mapping functions to manage
CPU-GPU communication (Section 4). Map promotion optimizes
CPU-GPU communication by transferring data to the GPU early
and keeping it there as long as possible (Section 5). Two enabling
transformations, glue kernels and allocation promotion, improve
map promotion’s applicability.

3. Run-Time Library
The CGCM run-time library enables automatic CPU-GPU commu-
nication management and optimization for programs with complex
patterns of memory allocation and unreliable typing. To accomplish
this feat, the run-time library correctly and efficiently determines
which bytes to transfer. For correctness, the run-time library copies
data to the GPU at allocation unit granularity. A pointer’s allocation
unit comprises all bytes reachable from a pointer by valid pointer
arithmetic. Using the concept of allocation units, the run-time li-
brary can support the full semantics of pointer arithmetic without
strong static analysis. A one-to-one mapping between allocation

units in CPU memory and allocation units in GPU memory allows
the run-time library to translate pointers.

3.1 Tracking Allocation Units
Unlike inspector-executor systems which manage memory on a
per-byte or per-word granularity, CGCM manages memory at the
granularity of allocation units. CGCM determines which bytes to
transfer by finding allocation information for opaque pointers to
the stack, heap, and globals. In C and C++, an allocation unit is
a contiguous region of memory allocated as a single unit. Blocks
of memory returned from malloc or calloc, local variables, and
global variables are all examples of allocation units. All bytes in an
array of structures are considered part of the same allocation unit,
but two structures defined consecutively are different allocation
units. Transferring entire allocation units between CPU and GPU
memories ensures that valid pointer arithmetic yields the same re-
sults on the CPU and GPU, because the C99 programming stan-
dard [1] stipulates that pointer arithmetic outside the bounds of a
single allocation unit is undefined.

Copying an allocation unit between CPU and GPU memories
requires information about the allocation unit’s base and size. The
run-time library stores the base and size of each allocation unit in
a self-balancing binary tree map indexed by the base address of
each allocation unit. To determine the base and size of a pointer’s
allocation unit, the run-time library finds the greatest key in the
allocation map less than or equal to the pointer. Although allocation
information for global variables is known at compile-time, stack
and heap allocations change dynamically at run-time. The run-time
library uses different techniques to track the allocation information
for global, stack, and heap memory.
• To track global variables, the compiler inserts calls to the run-

time library’s declareGlobal function before main. Declar-
ing addresses at run-time rather than at compile-time or link-
time avoids the problems caused by position independent code
and address space layout randomization.
• To track heap allocations, the run-time library wraps around
malloc, calloc, realloc, and free. These wrappers modify
the allocation map to reflect the dynamic state of the heap at
run-time.
• To track escaping stack variables, the compiler inserts calls

to declareAlloca. The registration expires when the stack
variable leaves scope.

3.2 CPU-GPU Mapping Semantics
Table 2 lists each function in the run-time library and its arguments.
The run-time library contains functions that translate between CPU
and GPU pointers. The three basic functions are map, release,
and unmap. Each of these functions operates on opaque pointers to
CPU memory.
• Mapping a pointer from CPU to GPU memory copies the cor-

responding allocation unit to GPU memory, allocating memory
if necessary. The run-time library employs reference counting
to deallocate GPU memory when necessary. Mapping a pointer
from CPU to GPU memory increases the GPU allocation unit’s
reference count.
• Unmapping a CPU pointer updates the CPU allocation unit

with the corresponding GPU allocation unit. To avoid redun-
dant communication, the run-time library will not copy data if
the CPU allocation unit is already up-to-date. Since only a GPU
function can modify GPU memory, unmap updates each alloca-
tion unit at most once after each GPU function invocation.
• Releasing a CPU pointer decreases the corresponding GPU

allocation unit’s reference count, freeing it if necessary.



Function prototype Description

map(ptr)
Maps from host to device pointer, allocating and copying memory if
necessary. Increases the allocation unit’s reference count.

unmap(ptr)
Maps to host memory if the allocation unit’s epoch is not current.
Updates the allocation unit’s epoch.

release(ptr)
Decreases the reference count of the allocation unit. If the reference
count is zero, frees resources.

mapArray(ptr)
Maps from host to device pointer, allocating and copying memory if
necessary. Increases the allocation unit’s reference count.

unmapArray(ptr)
Maps to host memory if the allocation unit’s epoch is not current.
Updates the allocation unit’s epoch.

releaseArray(ptr)
Decreases the reference count of the allocation unit. If the reference
count is zero, frees resources.

declareAlloca(size)
Allocates memory on the stack and registers it with the run-time
library.

declareGlobal(name,ptr,size,isReadOnly) Registers a global with the run-time library.

Table 2. CGCM’s run-time library interface

Listing 3: Listing 2 after the compiler inserts run-time functions
(unoptimized CGCM).

char *h h array[M] = {
“What so proudly we hailed at the twilight’s last gleaming,”,
. . .
};

� global void kernel(unsigned i, char **d array);

void foo(unsigned N) {
� for(unsigned i = 0; i < N; ++i) {
� char **d d array = mapArray(h h array);
� kernel<<<30, 128>>>(i, d d array);
� unmapArray(h h array);
� releaseArray(h h array);

}
}

� Useful work � Communication � Kernel spawn

Each of the primary run-time library functions has an array
variant. The array variants of the run-time library functions have
the same semantics as their non-array counterparts but operate on
doubly indirect pointers. The array mapping function translates
each CPU memory pointer in the original array into a GPU memory
pointer in a new array. It then maps the new array to GPU memory.
Using run-time library calls, Listing 2 can be rewritten as Listing 3.

3.3 Implementation
The map, unmap, and release functions provide the basic func-
tionality of the run-time library. The array variations follow the
same patterns as the scalar versions.

Algorithm 1 is the pseudo-code for the map function. Given
a pointer to CPU memory, map returns the corresponding pointer
to GPU memory. The allocaInfoMap contains information about
the pointer’s allocation unit. If the reference count of the allocation
unit is non-zero, then the allocation unit is already on the GPU.

Algorithm 1: Pseudo-code for map
Require: ptr is a CPU pointer
Ensure: Returns an equivalent GPU pointer
info← greatestLTE(allocInfoMap,ptr)
if info.refCount = 0 then

if ¬info.isGlobal then
info.devptr← cuMemAlloc(info.size)

else
info.devptr← cuModuleGetGlobal(info.name)

cuMemcpyHtoD(info.devptr, info.base, info.size)

info.refCount← info.refCount + 1
return info.devptr + (ptr− info.base)

Algorithm 2: Pseudo-code for unmap
Require: ptr is a CPU pointer
Ensure: Update ptr with GPU memory
info← greatestLTE(allocInfoMap,ptr)
if info.epoch 6= globalEpoch ∧ ¬info.isReadOnly then

cuMemcpyDtoH(base, info.devptr, info.size)

info.epoch← globalEpoch

When copying heap or stack allocation units to the GPU, map
dynamically allocates GPU memory, but global variables must be
copied into their associated named regions. The map function calls
cuModuleGetGlobal with the global variable’s name to get the
variable’s address in GPU memory. After increasing the reference
count, the function returns the equivalent pointer to GPU memory.

The map function preserves aliasing relations in GPU memory,
since multiple calls to map for the same allocation unit yield point-
ers to a single corresponding GPU allocation unit. Aliases are com-
mon in C and C++ code and alias analysis is undecidable. By han-
dling pointer aliases in the run-time library, the compiler avoids
static analysis, simplifying implementation and improving applica-
bility.



Algorithm 3: Pseudo-code for release
Require: ptr is a CPU pointer
Ensure: Release GPU resources when no longer used
info← greatestLTE(allocInfoMap, ptr)
info.refCount← info.refCount − 1
if info.refCount = 0 ∧ ¬info.isGlobal then

cuMemFree(info.devptr)

The pseudo-code for the unmap function is presented in Algo-
rithm 2. Given a pointer to CPU memory, unmap updates CPU
memory with the latest state of GPU memory. If the run-time li-
brary has not updated the allocation unit since the last GPU func-
tion call and the allocation unit is not in read only memory, unmap
copies the GPU’s version of the allocation unit to CPU memory. To
determine if the CPU allocation unit is up-to-date, unmap maintains
an epoch count which increases every time the program launches a
GPU function. It is sufficient to update CPU memory from the GPU
just once per epoch, since only GPU functions alter GPU memory.

Algorithm 3 is the pseudo-code for the release function.
Given a pointer to CPU memory, release decrements the GPU
allocation’s reference count and frees the allocation if the reference
count reaches zero. The release function does not free global
variables when their reference count reaches zero. Just as in CPU
codes, it is not legal to free a global variable.

4. Communication Management
CPU-GPU communication is a common source of errors for man-
ual parallelization and limits the applicability of automatic par-
allelization. A CGCM compiler pass uses the run-time library to
automatically manage CPU-GPU communications. For each GPU
function spawn, the compiler determines which values to transfer
to the GPU using a liveness analysis. When copying values to the
GPU, the compiler must differentiate between integers and floating
point values, pointers, and indirect pointers. The C and C++ type
systems are fundamentally unreliable, so the compiler uses simple
type-inference instead.

The communication management compiler pass starts with se-
quential CPU codes calling parallel GPU codes without any CPU-
GPU communication. All global variables share a single common
namespace with no distinction between GPU and CPU memory
spaces. For each GPU function, the compiler creates a list of live-in
values. A value is live-in if it is passed to the GPU function directly
or is a global variable used by the GPU.

The C and C++ type systems are insufficient to determine which
live-in values are pointers or to determine the indirection level of
a pointer. The compiler ignores these types and instead infers type
based on usage within the GPU function, ignoring usage in CPU
code. If a value “flows” to the address operand of a load or store,
potentially through additions, casts, sign extensions, or other opera-
tions, the compiler labels the value a pointer. Similarly, if the result
of a load operation “flows” to another memory operation, the com-
piler labels the pointer operand of the load a double pointer. Since
types flow through pointer arithmetic, the inference algorithm is
field insensitive. Determining a value’s type based on use allows
the compiler to circumvent the problems of the C and C++ type
systems. The compiler correctly determined unambiguous types for
all of the live-in values to GPU functions in the 24 programs mea-
sured.

For each live-in pointer to each GPU function, the compiler
transfers data to the GPU by inserting calls to map or mapArray.
After the GPU function call, the compiler inserts a call for each
live-out pointer to unmap or unmapArray to transfer data back to

Algorithm 4: Pseudo-code for map promotion

forall region ∈ Functions ∪ Loops do
forall candidate ∈ findCandidates(region) do

if ¬pointsToChanges(candidate, region) then
if ¬modOrRef(candidate, region) then

copy(above(region), candidate.map)
copy(below(region), candidate.unmap)
copy(below(region), candidate.release)
deleteAll(candidate.unmap)

Listing 4: Listing 3 after map promotion
char *h h array[M] = {

“What so proudly we hailed at the twilight’s last gleaming,”,
. . .
};

� global void kernel(unsigned i, char **d array);

void foo(unsigned N) {
� mapArray(h h array);
� for(unsigned i = 0; i < N; ++i) {
� char **d d array = mapArray(h h array);
� kernel<<<30, 128>>>(i, d d array);
� releaseArray(h h array);

}
� unmapArray(h h array);
� releaseArray(h h array);
}

� Useful work � Communication � Kernel spawn

the CPU. Finally, for each live-in pointer, the compiler inserts a call
to release or releaseArray to release GPU resources.

5. Optimizing CPU-GPU Communication
Optimizing CPU-GPU communication has a profound impact on
program performance. The overall optimization goal is to avoid
cyclic communication. Cyclic communication causes the CPU to
wait for the GPU to transfer memory and the GPU to wait for the
CPU to send more work. The map promotion compiler pass manip-
ulates calls to the run-time library to remove cyclic communication
patterns. After map promotion, programs transfer memory to the
GPU, then spawn many GPU functions. For most of the program,
Communication flows one way, from CPU to GPU. The results of
GPU computations return to CPU memory only when absolutely
necessary. The alloca promotion and glue kernels compiler passes
improve the applicability of map promotion.

5.1 Map Promotion
The overall goal of map promotion is to hoist run-time library calls
out of loop bodies and up the call graph. Algorithm 4 shows the
pseudo-code for the map promotion algorithm.

First, the compiler scans the region for promotion candidates.
A region is either a function or a loop body. Each promotion
candidate captures all calls to the CGCM run-time library featuring
the same pointer. Map promotion attempts to prove that these
pointers point to the same allocation unit throughout the region,
and that the allocation unit is not referenced or modified in the
region. If successful, map promotion hoists the mapping operations



out of the target region. The specific implementation varies slightly
depending on whether the region is a loop or a function.

For a loop, map promotion copies map calls before the loop,
moves unmap after the loop, and copies release calls after the
loop. Map promotion copies the map calls rather than moving them
since these calls provide CPU to GPU pointer translation. Copying
release calls preserves the balance of map and release operations.
Inserting map calls before the loop may require copying some code
from the loop body before the loop.

For a function, the compiler finds all the function’s parents in the
call graph and inserts the necessary calls before and after the call
instructions in the parent functions. Some code from the original
function may be copied to its parent in order to calculate the pointer
earlier.

The compiler iterates to convergence on the map promotion op-
timization. In this way, map operations can gradually climb up the
call graph. Recursive functions are not eligible for map promotion
in the present implementation.

CGCM optimizes Listing 3 to Listing 4. Promoting the initial
mapArray call above the loop causes the run-time library to trans-
fer h h array’s allocation units to the GPU exactly once. The sub-
sequent calls to mapArray inside the loop do not cause additional
communication since the GPU version of the allocation units is al-
ready active. Moving the unmapArray call below the loop allows
the run-time to avoid copying allocation units back to CPU memory
each iteration. The optimized code avoids all GPU to CPU commu-
nication inside the loop. Spawning GPU functions from the CPU is
the only remaining communication inside the loop. The final result
is an acyclic communication pattern with information only flowing
from CPU to GPU during the loop.

5.2 Alloca Promotion
Map promotion cannot hoist a local variable above its parent func-
tion. Alloca promotion hoists local allocation up the call graph to
improve map promotions applicability. Alloca promotion preallo-
cates local variables in their parents’ stack frames, allowing the
map operations to climb higher in the call graph. The alloca promo-
tion pass uses similar logic to map promotion, potentially copying
code from child to parent to calculate the size of the local variable
earlier. Like map promotion, alloca promotion iterates to conver-
gence.

5.3 Glue Kernels
Sometimes small CPU code regions between two GPU functions
prevent map promotion. The performance of this code is inconse-
quential, but transforming it into a single-threaded GPU function
obviates the need to copy the allocation units between GPU and
CPU memories and allows the map operations to rise higher in the
call graph. The glue kernel optimization detects small regions of
code that prevent map promotion using alias analysis and lowers
this code to the GPU.

Interrelationships between communication optimization passes
imply a specific compilation schedule. Since alloca promotion and
glue kernels improve the applicability of map promotion, the com-
piler schedules these passes before map promotion. The glue ker-
nel pass can force some virtual registers into memory, creating new
opportunities for alloca promotion. Therefore, the glue kernel op-
timization runs before alloca promotion, and map promotion runs
last.

6. Evaluation
CGCM is applicable to all 101 DOALL loops found by a simple
automatic DOALL parallelizer across a selection of 24 programs
drawn from the PolyBench [17], Rodinia [7], StreamIt [23], and

PARSEC [5] benchmark suites. The named region technique [12]
and inspector-executor [4, 14, 22] were only applicable to 80. With-
out communication optimizations, many programs show limited
speedup or even dramatic slowdown with automatic communica-
tion management. By optimizing communication, CGCM enables
a whole program geomean speedup of 5.36x over best sequential
CPU-only execution.

6.1 Experimental Platform
The performance baseline is an Intel Core 2 Quad clocked at 2.40
GHz with 4MB of L2 cache. The Core 2 Quad is also the host
CPU for the GPU. All GPU parallelizations were executed on an
NVIDIA GeForce GTX 480 video card, a CUDA 2.0 device with
1,536 MB of global memory and clocked at 1.40 GHz. The GTX
480 has 15 streaming multiprocessors with 32 CUDA cores each,
for a total of 480 cores. The CUDA driver version is 3.2 release
candidate 2.

The parallel GPU version is always compared with the original
single threaded C or C++ implementation running on the CPU,
even when multithreaded CPU implementations are available. All
figures show whole program speedups, not kernel or loop speedups.
All program codes are compiled without any alterations.

The sequential baseline compilations are performed by the
clang compiler version 2.9 (trunk 118020) at optimization level
three. The clang compiler produced SSE vectorized code for the
sequential CPU-only compilation. The clang compiler at optimiza-
tion level three does not use automatic parallelization techniques
beyond simple vectorization.

The nvcc compiler release 3.2, V0.2.1221 compiled all CUDA
C and C++ programs using optimization level three.

CGCM uses the same performance flags to manage and opti-
mize communication for all programs. The optimizer runs the same
passes with the same parameters in the same order for every pro-
gram. A simple DOALL GPU parallelization system coupled with
CGCM and an open source PTX backend [19] performed all auto-
matic parallelizations.

6.2 Benchmark Suites
PolyBench [2, 9] is a suite composed of programs designed to
evaluate implementations of the polyhedral model of DOALL par-
allelism in automatic parallelizing compilers. Prior work on au-
tomatic GPU parallelization reports impressive performance on
kernel-type micro-benchmarks without communication optimiza-
tion. The jacobi-2d-imper, gemm, and seidel programs have
been popular targets for evaluating automatic GPU parallelization
systems [3, 12]. The simple DOALL parallelizer found opportuni-
ties in all of the PolyBench programs, and CGCM managed com-
munication for all GPU functions. Figure 4 shows performance re-
sults for the entire PolyBench suite.

The Rodinia suite consists of 12 programs with CPU and GPU
implementations. The CPU implementations contain OpenMP
pragmas, but CGCM and the DOALL parallelizer ignore them.
The simple DOALL parallelizer found opportunities in six of the
12 Rodinia programs and from one selected program from the
PARSEC and StreamIt benchmark suites. CGCM managed com-
munications for all functions generated by the DOALL parallelizer.
The StreamIt benchmark suite features pairs of applications writ-
ten in C and the StreamIt parallel programming language. PARSEC
consists of OpenMP parallelized programs for shared memory sys-
tems. The eight applications from Rodinia, StreamIt, and PARSEC
are larger and more realistic than the PolyBench programs.

6.3 Results
Figure 4 shows whole program speedup over sequential CPU-
only execution for inspector-executor, unoptimized CGCM, opti-
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Figure 4. Whole program speedup of inspector-executor, unoptimized CGCM, optimized CGCM, and manual parallelizations over sequen-
tial CPU-only execution.

Program Suite Limiting
Factor

Performance Study Applicability Study Manual
Prior
Work

GPU Communication Total
Kernels CGCM Inspector-

Executor
Named
RegionsUnOpti. Opti. UnOpti. Opti.

adi PolyBench GPU 0.02% 100.00% 99.98% 0.00% 7 7 7 7

atax PolyBench Comm. 0.28% 0.28% 98.20 98.44% 3 3 3 3

bicg PolyBench Comm. 4.36% 4.46% 72.38% 74.15% 2 2 2 2

correlation PolyBench GPU 87.49% 87.39% 10.17% 10.12% 5 5 5 5

covariance PolyBench GPU 77.12% 77.28% 18.61% 18.43% 4 4 4 4

doitgen PolyBench GPU 87.48% 87.52% 11.29% 11.20% 3 3 3 3

gemm PolyBench GPU 73.49% 73.76% 19.69% 19.49% 4 4 4 4

gemver PolyBench Comm. 4.06% 4.10% 88.21% 89.36% 5 5 5 5

gesummv PolyBench Comm. 6.17% 6.29% 86.17% 86.74% 2 2 2 2

gramschmidt PolyBench Comm. 1.82% 8.37% 98.18% 90.91% 3 3 3 3

jacobi-2d-imper PolyBench GPU 7.20% 95.97% 92.82% 3.32% 3 3 3 3

seidel PolyBench Other 0.01% 0.01% 0.59% 0.59% 1 1 1 1

lu PolyBench GPU 0.41% 88.05% 99.59% 7.02% 3 3 2 2

ludcmp PolyBench GPU 1.23% 87.38% 98.10% 4.13% 5 5 3 3

2mm PolyBench GPU 75.53% 77.25% 17.96% 18.25% 7 7 7 7

3mm PolyBench GPU 78.75% 79.29% 17.86% 17.85% 10 10 10 10

cfd Rodinia GPU 4.65% 77.96% 85.90% 0.16% 9 9 3 3 [7]

hotspot Rodinia GPU 2.78% 71.57% 92.60% 0.89% 2 2 1 1 [7]

kmeans Rodinia Other 0.65% 0.00% 10.84% 0.05% 2 2 2 2 [7]

lud Rodinia GPU 3.77% 63.57% 91.56% 0.39% 6 6 1 1 [7]

nw Rodinia Other 0.00% 2.44% 100.00% 24.19% 4 4 2 2 [7]

srad Rodinia Other 0.00% 27.08% 100.00% 6.20% 6 6 1 1 [7]

fm StreamIt Other 0.00% 0.00% 0.00% 0.00% 4 4 4 4

blackscholes PARSEC Other 1.74% 3.23% 45.84% 0.96% 1 1 0 0

Table 3. Summary of program characteristics including: program suite, limiting factor for performance, the contributions of GPU and
communication time to total execution time as a percentage, the number of applicable kernels for the CGCM, Inspector-Executor, and
Named Region management techniques, and a citation for prior manual parallelizations.

mized CGCM, and a manual parallelization if one exists. The fig-
ure’s y-axis starts at 0.25x, although some programs have lower
speedups. Table 3 shows additional details for each program. The
geomean whole program speedups over sequential CPU only exe-
cution across all 24 applications are 0.92x for inspector-executor,

0.71x for unoptimized CGCM, and 5.36x for optimized CGCM.
Taking the greater of 1.0x or the performance of each application
yields geomeans of 1.53x for inspector-executor, 2.81x for unopti-
mized CGCM, and 7.18x for optimized CGCM.



Before optimization, most programs show substantial slow-
down. The srad program has a slowdown of 4,437x and nw has
a slowdown of 1,126x. By contrast, ludcmp’s slowdown is only
4.54x. After optimization, most programs show performance im-
provements and none have worse performance. However, several
fail to surpass the CPU-only sequential versions. For comparison,
we simulate an idealized inspector-executor system. The inspector-
executor system has an oracle for scheduling and transfers exactly
one byte between CPU and GPU for each accessed allocation unit.
A compiler creates the inspector from the original loop [4]. To mea-
sure performance ignoring applicability constraints, the inspector-
executor simulation ignores its applicability guard. CGCM outper-
forms this idealized inspector-executor system. The disadvantages
of sequential inspection and frequent synchronization were not
overcome by transferring dramatically fewer bytes.

Figure 4 shows performance results for automatic paralleliza-
tion coupled with automatic communication management. Across
all 24 applications, communication optimizations never reduce per-
formance. This is a surprising result since the glue kernel optimiza-
tion has the potential to lower performance, and CGCM’s imple-
mentation lacks a performance guard. Communication optimiza-
tion improves the performance for five of the sixteen PolyBench
programs and six of the eight other programs. For many PolyBench
programs, the outermost loop executes on the GPU, so there are no
loops left on the CPU for map promotion to target. Therefore, op-
timization only improve performance for six of the 16 PolyBench
programs.

Table 3 shows the number of GPU kernels created by the
DOALL parallelizer. For each DOALL candidate, CGCM auto-
matically managed communication correctly without programmer
intervention. Unlike CGCM, the parallelizer requires static alias
analysis. In practice, CGCM is more applicable than the simple
DOALL transformation pass.

The table also shows the applicability of named regions [12] and
inspector-executor management systems [4, 14, 22]. Affine com-
munication management [24] has the same applicability as named
regions, but a different implementation. The named region and
inspector-executor techniques require that each of the live-ins is
a distinct named allocation unit. The named regions technique also
requires induction-variable based array indexes. The named region
and inspector-executor systems are applicable to 66 of 67 kernels in
the PolyBench applications. However, they are applicable to only
14 of 34 kernels from the more complex non-PolyBench applica-
tions. Although inspector-executor and named region based tech-
niques have different applicability guards, they both fail to transfer
memory for the same set of kernels.

Table 3 shows the GPU execution and communication time as
a percent of total execution time. The contributions of CPU exe-
cution and IO are not shown. This data indicates the performance
limiting factor for each program: either GPU execution, commu-
nication, or some other factor (CPU or IO). GPU execution time
dominates total execution time for 13 programs, ten from Poly-
bench and three from other applications. The simpler PolyBench
programs are much more likely to be GPU performance bound than
the other more complex programs. GPU-bound programs would
benefit from more efficient parallelizations, perhaps using the poly-
hedral model. Communication limits the performance of five pro-
grams, all from PolyBench. The only application where inspector-
executor outperforms CGCM, gramschmidt, falls in this category.
Finally, six programs, one from PolyBench and five from else-
where, are neither communication nor GPU performance bound.
Improving the performance of these applications would require par-
allelizing more loops. Two of the applications that are neither GPU
nor communication-bound, srad and blackscholes, outperform

sequential CPU-only execution. These applications have reached
the limit of Amdahl’s Law for the current parallelization.

The manual Rodinia parallelizations involved complex algorith-
mic improvements. For example, in hotspot the authors replace
the original grid-based simulation with a simulation based on the
pyramid method. Surprisingly, the simple automatic parallelization
coupled with CGCM is competitive with expert programmers using
algorithmic transformations. Table 3 explains why. Programmers
tend to optimize a program’s hottest loops, but ignore the second
and third tier loops which become important once the hottest loops
scale to thousands of threads. Automatic GPU parallelizations sub-
stitutes quantity for quality, profiting from Amdahl’s Law.

7. Related Work
Although there has been prior work on automatic paralleliza-
tion and semi-automatic communication management for GPUs,
these implementations have not addressed the problems of fully-
automatic communication management and optimization.

CUDA-lite [25] translates low-performance, naı̈ve CUDA func-
tions into high performance code by coalescing and exploiting GPU
shared memory. However, the programmer must insert transfers to
the GPU manually.

“C-to-CUDA for Affine Programs” [3] and “A mapping path
for GPGPU” [13] automatically transform programs similar to the
PolyBench programs into high performance CUDA C using the
polyhedral model. Like CUDA-lite, they require the programmer
to manage memory.

“OpenMP to GPGPU” [12] proposes an automatic compiler
for the source-to-source translation of OpenMP applications into
CUDA C. Most programs do not have OpenMP annotations. Fur-
thermore, these annotations are time consuming to add and not
performance portable. Their system automatically transfers named
regions between CPU and GPU using two passes. The first pass
copies all named annotated regions to the GPU for each GPU func-
tion, and the second cleanup pass removes all the copies that are
not live-in. The two passes acting together produce a communica-
tion pattern equivalent to unoptimized CGCM communication.

JCUDA [26] uses the Java type system to automatically trans-
fer GPU function arguments between CPU and GPU memories.
JCUDA requires an annotation indicating whether each parameter
is live-in, live-out, or both. Java implements multidimensional ar-
rays as arrays of references. JCUDA uses type information to flatten
these arrays to Fortran-style multidimensional arrays but does not
support recursive data-types.

The PGI Fortran and C compiler [24] features a mode for semi-
automatic parallelization for GPUs. Users target loops manually
with a special keyword. The PGI compiler can automatically trans-
fer named regions declared with C99’s restrict keyword to the
GPU and back by determining the range of affine array indices.
The restrict keyword marks a pointer as not aliasing with other
pointers. By contrast, CGCM is tolerant of aliasing and does not
require programmer annotations. The PGI compiler cannot paral-
lelize loops containing general pointer arithmetic, while CGCM
preserves the semantics of pointer arithmetic. Unlike CGCM, the
PGI compiler does not automatically optimize communication
across GPU function invocations. However, programmers can use
an optional annotation to promote communication out of loops.
Incorrectly using this annotation will cause the program to access
stale or inconsistent data.

Inspector-executor systems [18, 21] create specialized inspec-
tors to identify precise dependence information among loop iter-
ations. Some inspector-executor systems achieve acyclic commu-
nication when dynamic dependence information is reusable. This
condition is rare in practice. Salz et al. assume a program annota-
tion to prevent unsound reuse [21]. Rauchwerger et al. dynamically



check relevant program state to determine if dependence informa-
tion is reusable [18]. The dynamic check requires expensive se-
quential computation for each outermost loop iteration. If the check
fails, the technique defaults to cyclic communication.

8. Conclusion
CGCM is the first fully automatic system for managing and opti-
mizing CPU-GPU communication. CPU-GPU communication is a
crucial problem for manual and automatic parallelizations. Manu-
ally transferring complex data-types between CPU and GPU mem-
ories is tedious and error-prone. Cyclic communication constrains
the performance of automatic GPU parallelizations. By managing
and optimizing CPU-GPU communication, CGCM eases manual
GPU parallelizations and improves the performance and applica-
bility of automatic GPU parallelizations.

CGCM has two parts, a run-time library and an optimizing com-
piler. The run-time library’s semantics allow the compiler to man-
age and optimize CPU-GPU communication without programmer
annotations or heroic static analysis. The compiler breaks cyclic
communication patterns by transferring data to the GPU early in
the program and retrieving it only when necessary. CGCM out-
performs inspector-executor systems on 24 programs and enables
a whole program geomean speedup of 5.36x over best sequential
CPU-only execution.
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