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Abstract
Separation logic with recursively defined predicates allows for con-
cise yet precise description of the shapes of data structures. How-
ever, most uses of separation logic for program analysis rely on
pre-defined recursive predicates, limiting the class of programs an-
alyzable to those that manipulate only a priori data structures. This
paper describes a general algorithm based oninductive program
synthesisthat automatically infers recursive shape invariants, yield-
ing a shape analysis based on separation logic that can be applied
to any program.

A key strength of separation logic is that it facilitates, via ex-
plicit expression of structural separation, local reasoning about
heap where the effects of altering one part of a data structure are
analyzed in isolation from the rest. The interaction between local
reasoning and the global invariants given by recursive predicates is
a difficult area, especially in the presence of complex internal shar-
ing in the data structures. Existing approaches, using logic rules
specifically designed for the list predicate to unfold and fold linked-
lists, again require a priori knowledge about the shapes of the data
structures and do not easily generalize to more complex data struc-
tures. We introduce a notion of “truncation points” in a recursive
predicate, which gives rise to generic algorithms for unfolding and
folding arbitrary data structures.

Categories and Subject DescriptorsF.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis

General Terms Languages, Theory

Keywords Shape analysis, separation logic, loop invariant infer-
ence, inductive recursion synthesis, artificial intelligence

1. Introduction
Shape analysis aims at an accurate description of the program
heap layout, which can enable aggressive optimizations, program
verification, and program understanding tools. With the prevalent
use of dynamic memory allocation, a heap abstraction must have
some way of describing infinite number of concrete heaps with a
finite representation. Among such techniques aresummary node[1]
which groups elements of potentially unbounded data structures
into a finite number of abstract heap nodes, andk-limiting [2] which
only distinguishes elements of a linked data structure up to depth
k. In both cases, the approximation of memory states leads to
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loss of information about the shapes of recursive data structures.
Inductively defined predicates such as those used in separation
logic [3] allow for concise yet precise description of recursive
data structures. For example, an acyclic linked-list is captured by
list(x)

.
= (x = null ∧ emp) ∨ (x → α ∗ list(α)). Although

expressive, a problem with these predicates is that it is difficult to
infer them from the program. As a result, current uses of separation
logic usually have a handful of pre-defined predicates hardwired
into the logic and are limited to program verification where the
logic engine is supplied with user specifications that a predicate
holds at certain program point. In the case of linked-lists, logic rules
can be designed to recognize certain patterns in the logic formulae
and rewrite them to synthesize the list predicate. Two analyses of
list-processing programs are proposed [4, 5], both containing a rule
that says ifx points toy andy points toz then there is a list segment
betweenx andz. It is difficult to generalize this to arbitrary data
structures. Lee et al. propose a grammar-based shape analysis [6]
that automatically discovers grammars which can be translated to
recursive predicates. However, their grammars can have only one
explicit parameter, limiting the class of data structures describable.

We propose a shape analysis that performsinductive recur-
sion synthesisto automatically infer arbitrary recursive predicates,
effectively reverse-engineering the data types in the program.
This technique leverages an existing method in artificial intelli-
gence calledinductive program synthesis, originally developed for
constructing recursive logic programs from sample input/output
pairs [7, 8]. It allows the analysis to extract a loop invariant from a
constant number of symbolically executed loop iterations. Sound-
ness is guaranteed by verifying that the invariant derives itself over
the loop body. If so, then it allows the analysis to converge over
the loop and proceed, but unlike many widening operations used to
reach fixed points, there is no approximation involved and hence
no loss of precision. Otherwise, the analysis will halt and report
failure. This technique can infer any data type with a tree-like
backbone and some other pointer fields that point in the back-
bone, possibly producing dags and cycles. This gives our analysis
the same descriptive power as the Pointer Assertion Logic [9].
However, in their framework shape invariants are already given by
non-traditional data type declarations and the logic engine relies on
user specifications including procedure pre- and post-conditions,
and loop invariants. our analysis starts with zero knowledge and
infers everything, the data types, the procedure summaries, and the
loop invariants from scratch. Inductive recursion synthesis is also
used to converge over recursive procedures.

Another difficulty in using recursive predicates lies in the fact
that while they express global properties that hold over entire
data structures, most programs perform many local alterations (in-
sertions, deletions, rotations, etc.) to the data structures and re-
establish global properties afterwards. Ideally, the analysis should
be able to zoom in on a small part of a data structure, reason about
it ignoring the rest, and then zoom back out. The spatial conjunc-
tion operator of separation logic is designed to facilitate this kind
of local reasoning via explicit expression of structure separation



and aliasing. However, for data structures with complex internal
sharing, isolating a sub-structure separate from the rest is difficult.
In [4, 5], logic rules tailored to the list predicate can unfold a list
to expose a list element and fold it back. But, again, this does not
easily generalize to other data structures. To enable smooth transi-
tioning between local reasoning and global invariants, we introduce
the notion of “truncation points” in a recursive predicate, which
helps the analysis to cut corners out of a data structure. Generic
algorithms based on truncation points are then designed to unfold
and fold arbitrary recursive data structures.

The shape analysis presented in this paper is interprocedural.
Like the analysis by Gotsman et al. [10], at each procedure entry, it
extracts the region of heap accessed by the procedure, calledlocal
heap, from the rest of the heap and, upon return, re-incorporates
this updated local heap using the Frame rule of separation logic.
Cutpoints [11], the nodes that separate the local heap from the
frame, are preserved so that upon return the callee’s effects can
be properly propagated to the caller. In the presence of recursive
procedures, the number of cutpoints can be infinite. [10] bounds
the number of cutpoints at the cost of potential precision loss. In our
case, inductive recursion synthesis allows cutpoints to be described
inductively in the entry/exit invariants of recursive procedures,
hence there is no need to bound them.

Our goal is to handle real-life C programs like those in the SPEC
benchmarks, whose data structures are complex and cannot be eas-
ily taken apart into independent pieces. We will use as a running ex-
ample the benchmark 181.mcf from SPEC2000, which builds and
manipulates a left-child right-sibling tree with two kinds of back-
ward links – a parent link and a left-sibling link. As shown in Fig-
ure 1, there is a great degree of internal sharing which makes both
inferring its shape and reasoning about its shape challenging. Ad-
ditionally, many applications perform their own memory manage-
ment using arrays. To model this correctly, our analysis tracks alias-
ing that arises from pointer arithmetic. Finally, the algorithm per-
forms a pre-pass including a fast pointer analysis and program slic-
ing to preserve only code that may affect the result of shape analy-
sis. This effectively reduces the overhead of being flow-sensitive on
realistic programs, which is important because flow-sensitivity al-
lows strong updates, key to shape analysis. This also reduces noises
that may confuse the inductive recursion synthesis algorithm.
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Figure 1. A specimen of the tree used in 181.mcf

In summary, the contributions of this work are:

• An algorithm for inferring recursive shape invariants based on
inductive program synthesis.

• A general algorithm for unrolling and rolling back arbitrary
recursive data structures, even those with internal sharing.

• Techniques to handle real-life applications.

Section 2 defines the abstract semantics. Section 3 describes
inductive recursion synthesis, and Section 4 presents the algorithm
for unrolling and rolling recursive predicates. Section 5 describes
the implementation of our analysis. Preliminary test results are
reported in Section 6. Section 7 discusses related work and finally,
Section 8 concludes.

2. Abstract States and Abstract Operational
Semantics

Labels l ∈ Label
Globals g ∈ Global
Registers r ∈ Reg
Exprs e ::= null | g | r
Insts s ::= r = e | r = malloc() | free(r) | r = f(~x) |

[r1] = r2 | r1 = [r2] | goto l | if c goto l
Branch Conds c ::= r1 = r2 | r1 6= r2

Vars α ∈ V ar
Recursion vars A ∈ Rec
Heap names h ::= g | α | h.n
Symbolic vals v ::= null | h | h + n
Pure assertions P ::= v1 = v2 | v1 6= v2
Heap assertions H ::= h1.n → h2 | A(h1, ..., hn[; h′

1, ..., h′
m])

Register values Π ::= � | Π, r = v
Heap formulae Σ ::= emp | H | Σ ∗ Σ
Pure formulae Φ ::= P | Φ ∧ Φ
States S ::= Π | Σ | Φ
Predicate defs Θ ::= � | Θ, A

.
= P ∨ Σ

Proc summaries Γ ::= � | Γ, (f, Πentry|Σentry|Φentry, Πexit|Σexit|Φexit)

Table 1. Target Language and Abstract States

The target language of our analysis is an assembly like low-
level intermediate language used by our optimizing C compiler.
The syntax of the language is shown in Table 1. Globals are names
of heap locations allocated for global variables. Our analysis also
handles instructions such asr1 = r2 ∗ n andr1 = r2 + n, which
perform pointer arithmetic. For simplicity of presentation, they are
not included in the discussion here. Detailed treatment of arrays and
pointer arithmetic is based on the low-level pointer analysis by Guo
et al. [12]. The symbolic values computed in this analysis contain
offset information. Indistinguishable array elements are collapsed
into one element.

The rest of this section describes the abstract representation
of states and an abstract operational semantics of the instructions
tailored to the unstructured control flow of machine-level code.

2.1 Abstract States

An abstract stateΠ | Σ | Φ consists of a mappingΠ from
registers to their symbolic values, a separation logic formulaΣ
that is the conjunction of a finite number of atomic heap assertions,
and a pure formulaΦ that records true branch conditions along
the execution paths with which the state is associated and also
records aliasing between pointer arithmetic and heap names. Two
global environments are maintained:Θ for recording the definitions
of recursive predicates andΓ for tabulating procedure summaries.
Table 1 gives the definition of the state.

Unlike the “symbolic heaps” defined in [13], which use pro-
gram variables (the high-level counterpart of registers) to name
heap locations and record alias relationships between program vari-
ables, our analysis takes the “points-to” approach, assigning unique
names to heap locations and recording the target of each register
explicitly. Aside from the benefit that there is no need for “re-
arrangement” rules which set the pre-state in a suitable form by
going through the alias pairs, this facilitates the inductive recursion
synthesis algorithm. As will be explained in Section 3, the access-
path- like heap names encode important patterns of spatial rela-
tionships between heap locations that can be recognized and then
generalized via inductive reasoning. The heap names can be simply
thought of as logic variables with long names.

Recursive predicates are parameterized so that they are expres-
sive enough to describe data structures with internal sharing via
backward links. The first parameter represents the top of the data
structure and the rest represent the targets of backward links. For
example, the left-child right-sibling tree with parent and left-sibling



links from 181.mcf can be written as:

mcf tree(x1, x2, x3)
.
= (x1 = null ∧ emp) ∨

(x1.parent→ x2 ∗ x1.child→ α ∗mcf tree(α, x1, null) ∗
x1.sib prev→ x3 ∗ x2.sib→ β ∗mcf tree(β, x2, x1)).

An instance of such a tree where the rooth has null parent
and sib prev links is described by instantiating the predicate:
mcf tree(h, null, null).

We also introduce a new type of recursive predicates called
truncated recursive predicates, A(h1, ..., hn; h′1, ..., h

′
m) wheren

is the arity ofA. This is designed for handling modifications to
a data structure when the analysis needs to isolate relevant parts
of the data structure so as to reason about the modifications in a
localized fashion. The second set of parameters{h′1, ..., h′m} is of
variable length and is what we call the set oftruncation pointsin
the data structure rooted ath1. This predicate is syntactic sugar for
(∗i=1..m∃βi,1, ..., βi,n−1.A(h′i, βi,1, ..., βi,n−1))−∗A(h1, ..., hn)
(both the iterated spatial conjunction operator and the “magic
wand” operator−∗ are defined in [3]). It identifies a heap that,
when combined withm heaps rooted ath′1, ..., h

′
m on each of

which A holds, yields a heap rooted ath1 on whichA holds. In
other words, this is the data structure reachable fromh1, with all
sub-graphs rooted ath′1, ..., h

′
m cut out from it. Because the pred-

icates are “precise” [14] in that each unambiguously identifies a
piece of heap, whenA(h1, ..., hn) holds on the combined piece of
heap, it must go through all the nodes in it. Hence it is impossible
to have a situation where the truncation points do not truncate the
data structure at all, ensuring the correctness of our definition. The
definition also specifies that the sub-graphs are mutually disjoint,
i.e. no truncation point can be in the sub-graph of another trun-
cation point. This invariant is crucial for unrolling predicates as
it constrains the number of possible outcomes (details are in Sec-
tion 4). In Figure 1, suppose that at some program point, there is a
pointer to an interior nodeh′ of the tree, then the heap is described
asmcf tree(h, null, null; h′) ∗ mcf tree(h′, β1, β2). By the defini-
tion of mcf tree, we know that the dangling pointsβ1 andβ2 of the
heapmcf tree(h′, β1, β2) are backward links and therefore reside
in the other half of the heap.

A linked-list fragment betweenx and y can be described by
list(x; y), which looks similar to the “list segment” predicate
list(x, y)

.
= (x = y ∧ emp) ∨ (x → α ∗ list(α, y)) defined in

[15]. However, this predicate is defined by specifying a path by
which y is reached fromx and is therefore hard to generalize to
more complex data structures, whereas we avoid this complica-
tion entirely by working not from the top of the data structure, but
from the bottom, and hiding the reaching path information with the
“magic wand”. Not only is our approach completely general and
capable of handling messy backward links, it is also more flexible
by allowing a variable number of truncation points. This is impor-
tant because unlike lists, other data structures may have more than
one end. The ability to model this comes in handy, for example,
when cutting and grafting sub-trees.

Let JKΠ,Φ be a function that evaluates each expressione to a
heap name ornull.

JnullKΠ,Φ = null JgKΠ,Φ = g

JrKΠ,Φ =

8><>:
h′ if Π(r) = h + n andΦ records the aliash + n = h′

α if Π(r) = h + n andΦ records no alias ofh + n,
α is a fresh variable

Π(r) otherwise

The partial orderv over the set of abstract states is defined as
follows: Π1 | Σ1 | Φ1 v Π2 | Σ2 | Φ2 if there exists a
mappingf between the heap names in the two states such that(i)
for eachr ∈ Domain(Π1), if JrKΠ1,Φ1 = null, thenJrKΠ2,Φ2 = null;
otherwisef(JrKΠ1,Φ1) = JrKΠ2,Φ2 , and(ii) for each atomicH in

Σ1, f†(H) is in Σ2, f† replaces eachh appearing inH with f(h),
and(iii) for each atomicP in Φ1, f‡(P ) is inΦ2, f‡ replacess each
h in P with f(h). Obviously there could be infinitely increasingly
chains of abstract states. Termination of the analysis is achieved via
inductive recursion synthesis.

2.2 Abstract Operational Semantics

We give the abstract operational semantics for the target language
in the style ofLc, a compositional logic for control flow [16], with
some modifications. Most noticeably, our logic rules are written
for forward analysis while those in [16] are for backward analysis.
The judgment we use is:Ψ, F ` Ψ′. F is a set of program
fragmentsl(s)l′, with label l identifying the entry of instruction
s and l′ identifying the exit.Ψ andΨ′ are sets of labeled states:
Ψ = {l1 : S1, ..., ln : Sn}, Ψ′ = {l′1 : S′

1, ..., l
′
m : S′

m}.
Labelsl1, ..., ln are where the control flow may enterF and labels
l′1, ..., l

′
m are where it may leaveF . The judgment is read as: if for

i = 1..n, the state at entryli is Si, and the execution ofF does not
get stuck, then forj = 1..m, the state at exitl′j is S′

j .
Table 2 lists the operational rules that transform entry states of a

program fragment to exit states. It includes one rule for each primi-
tive instruction, composition rulesCOMBINE,DISCHARGE
andWEAKEN for combining individual instructions, and the
rule UNFOLD for unrolling a recursive predicate to reveal a
points-to fact. Note, the rules shown in the table perform strong
updates to the abstract state. In the case of aliasing due to array
elements collapsed into a single heap element, the analysis would
have to use an alternate set of rules which perform weak updates.

In the rule MALLOC, α.? →? simply registersα as an
allocated heap node whose content is unknown.

MUTATE invokes an important sub-routinerearrangenames,
shown in Figure 2, to encode access-path info in heap names. The
recursion synthesis algorithm relies on this to identify the basic
structure of a recursion.rearrangenamesassumes that the current
heap satisfiesh1.n → h2 and thatv is to be written toh1.n. The
appropriate name forv is determined based on its form:

• If it is a simple variable, then we assignh1.n as its new name.
If the old content stored in fieldn of h1 has already claimed
this name, then the old content is renamed to a fresh variable.

• If it is a heap name plus an offset, then it points to the middle of
a structure, most likely an array element. As in the first case,
h1.n is assigned as its new name. Additionally, the analysis
records inΦ that the pointer arithmetic aliases withh1.n so
that if later the location is visited via pointer arithmetic instead
of access path, the analysis will recognize it as well.

• Otherwise,v points to a heap location that has already been
linked to a parent, and no special action is necessary.

The intuition behind this is: While a heap location may be reach-
able via multiple access paths (one data structure may contain cross
pointers to another data structure; or, within a single data structure,
a node may be internally shared in the presence of dags and cycles),
the algorithm chooses the access path that reveals the acyclic back-
bone of the recursive data structure to which the location belongs.
Our heuristic is to inherit the access path of first location it is linked
to, taking advantage of the fact that such a link is usually created
when adding a new expansion to a recursive data structure.

The rulePROC CALL is the same as the one given in [10].
It exploits the Frame rule by breaking the heap at a call site into
the “local heap” accessed by the callee and a frame.σ is a map-
ping between the formal parameters and the actuals, and between
the return value and destination register of the call instruction.
PROC CALL is understood as follows: If there exists inΓ a
recorded summary of the callee,(f, Πentry | Σentry | Φentry, Πexit |



rearrange names(h1, n, h2, v)
if v = a then

if h2 = h1.n then
replaceh2 everywhere with a fresh variable

replacev everywhere withh1.n
return h1.n

else
if v = h + n then

if h2 = h1.n then
replaceh2 everywhere with a fresh variable

record alias〈h + n, h1.n〉
return h1.n

return v

Figure 2. Algorithm of rearrangenames

Σexit | Φexit), and the current heapΣ can be separated into disjoint
piecesσ(Σentry) andR, then the heap after the call instruction is a
conjunction ofσ(Σexit) andR; andr is assigned the return value
translated byσ (ret is special register for holding return values).
Since we are not concerned with bounding the number of cutpoints,
they are simply treated as dangling points from the frame.

The rule responsible for termination of the analysis isnormal-
ize. There are two kinds of normalization operations. From a sub-
heap,synthesisinfers a recursive description that is guaranteed to
be more general.fold reduces the size of the state by folding sur-
rounding heap nodes into a recursive predicate.

3. Inferring Recursive Predicates
This section describes the algorithm for automatically inferring re-
cursive predicates. It enables the analysis to arrive at loop invariants
without introducing unnecessary approximation. Loop invariant in-
ference proceeds in the following steps:

1. Symbolically execute the loop body up to a fixed number of
times (2 suffices in the experimentation).

2. If the analysis does not converge over the loop at this point, then
invoke inductive recursion synthesis, which returns a hypothe-
sized loop invariant.

3. Verify the soundness of the loop invariant by assuming that it
holds on loop entry and checking that for each control flow
path in the loop, ifΣ′ is the heap at the end of the path, then
foldΘ(Σ′) = Σinvariant. If the analysis diverges, then halt and
report failure.

4. Otherwise, the loop invariant is valid. By the algorithm of
recursion synthesis, the states associated with the loop entry
in the initial number of iterations must be derivable from the
invariant by unrolling it. Hence they are eliminated using the
WEAKEN rule.

3.1 The Inductive Recursion Synthesis Algorithm

Inductive program synthesis, the problem of automatic synthesis
of recursive programs from input/output samples, studied in AI re-
search, resembles loop invariant inference in the sense that the in-
put/output samples are provided by finite executions of the loop
and the invariant can be seen as a highly abstracted encoding of
the loop. The approach introduced by Summers [7] consists of two
steps. First, the input/output samples are rewritten as finite pro-
gram traces, then a recurrence relation is identified by inspecting
the traces. In our case, the program trace is readily available as
the heap formula after execution of the loop, with crucial informa-
tion encoded in the logic variable names byrearrangenamesin
Section 2. The logic formula is translated into aterm, the form of
inputs on which the recurrence detection algorithm operates, using
the domain knowledge about heap semantics. Such global inspec-

tion of states is only conducted when converging over loops. The
rest of the analysis updates states locally.

3.1.1 Translating Heap Formulae into Terms

The set oftermsis defined in Figure 3. A term can be viewed as a
tree where each symbol is a node.

Terms t ::= x variables
| c constants
| f(t1, .., .tn) functions

Figure 3. Set of Terms

The idea is to map each heap location to a term that describes
the data structure reachable from it, referred to as a “heap” term.
We start by assigning a function symbol to each logic operator,∗
for spatial conjunctions,

n→ for points-to assertions withn being
the field, and the predicate name for predicate instantiations. As
the heap locations are interconnected with each other, naturally
some terms will be sub-trees of other terms. While the heap may
contain dags and cycles, the term tree structure must remain acyclic
(consistent with the fact that the backbones of inductive definitions
are acyclic). To achieve this, each heap location is also associated
with a “name” term. For all appearances of a heap location on
the right hand side of a points-to assertion, only one will result in
the corresponding heap term being linked as a sub-tree of the left
hand side. All others are translated into name terms by the rewrite
function[], cutting the points-to link in a sense.

[null] = NULL [g] = g [α] = α [h.n] = n([h]).

The translation process maintains a mappingγ from heap locations
to heap terms.[] is overloaded to translate heap formulae to terms.

[A(h1, ..., hn[; h
′
1, ..., h

′
m])] = γ(h1) =

A([h1], ..., [hn][; [h
′
1]..., [h

′
m]))

[h.n1 → h1 ∗ ... ∗ h.nr → hr] = γ(h) =

∗(
n1→ ([h], get term(h, h1)), ...,

nr→ ([h], get term(h, hr))),

get term(h1, h2) =


γ(h2) if h2 = h1.n
[h2] otherwise

In a depth-first traversal of the abstract heap, every predicate in-
stantiation is translated into the heap term of the first parameter; all
points-to assertions with the same location on the left hand side are
translated together into the heap term of that location. The choice
between a heap term and a name term for the right hand side is
guided by the access paths encoded in the names of the heap loca-
tions. The final result is a forest of top-level term trees and because
of the heuristic adopted inrearrangenames, each of these trees
roughly corresponds to a different data structure in the program.

Figure 4(a) contains a loop from 181.mcf that builds the left-
child right-sibling tree with backward links.nodes is an array of
tree nodes. All new tree nodes are subsequently requested from it.
Figure 4(b) shows the term tree after two iterations of the loop.
Each∗ term represents a distinct node in the data structure, whose
name is given in the parenthesis next to it. For each fieldn in the
node, the corresponding∗ term contains

n→ term whose left sub-
term is the name of the source location and the right sub-term is
either the name of the target location or the∗ term representing
the target location. In the latter case, the expansion of the data
structure is continued from below the∗ term. In the former case, the
data structure reachable from the target location will be expanded
along some other access path reaching that target. The term in
Figure 4(b) completely captures the effect of the loop on heap at
this execution point and presents it in such a way that exposes the
underlying recursive pattern to the recurrence detection algorithm.



{l : Π | Σ | Φ}, {l (r = e) l′} ` {l′ : Π[r = JeKΠ,Φ] | Σ | Φ}
ASSIGN

{l : Π | Σ | Φ}, {l (r = malloc()) l′} ` {l′ : Π[r = α] | Σ ∗ α.? →? | Φ}
, α freshMALLOC

{l : Π, r = h | Σ ∗H(h) | Φ}, {l (free(r)) l′} ` {l′ : Π, r = h | Σ | Φ}
, H(h) ::= h.n → h′ | A(h, ...) FREE

{l : Π, r1 = h1 + n | Σ ∗ h1.n → h2 | Φ}, {l (r2 = [r1]) l′} `
{l′ : Π, r1 = h1 + n [r2 = h2] | Σ ∗ h1.n → h2 | Φ}

LOOKUP

h′
2 = rearrangenames(h1, n, h2, v)

{l : Π, r1 = h1 + n, r2 = v | Σ ∗ h1.n → h2 | Φ}, {l ([r1] = r2) l′} `
{l′ : Π, r1 = h1 + n, r2 = h′

2 | Σ ∗ h1.n → h′
2 | Φ}

MUTATE

{l : S}, {l (goto l1) l′} ` {l1 : S}
JUMP

{l : S}, {l (if c goto l1) l′} ` filter(c)(l1 : S) ∪ filter(¬c)(l′ : S)}
BRANCH

Γ ` (f, Πentry | Σentry | Φentry, Πexit | Σexit | Φexit) Σ |= σ(Σentry) ∗ R

{l : Π | Σ | Φ}, {l (r = f(~x)) l′} ` {l′ : Π[r = σ(Πexit(ret))] | σ(Σexit) ∗ R | Φ}
PROC CALL

unfoldΘ(l : S, h), F ` Ψ′

{l : S}, F ` Ψ′ UNFOLD

Ψ1, F1 ` Ψ′
1 Ψ2, F2 ` Ψ′

2

Ψ1 ∪Ψ2, F1 ∪ F2 ` Ψ′
1 ∪Ψ′

2
COMBINE

Ψ ∪ {l : S}, F ` Ψ′ ∪ {l : S}
Ψ, F ` Ψ′ ∪ {l : S}

DISCHARGE
Ψ, F ` Ψ′

2 Ψ′
2 ⇒ Ψ′

1

Ψ, F ` Ψ′
1

WEAKEN

Ψ1 ⊇ Ψ2

Ψ1 ⇒ Ψ2
superset

Σ′  Σ

Ψ ∪ {l : Π | Σ | Φ} ⇒ Ψ ∪ {l : Π | Σ′ | Φ}
normalize

recursionsynthesis(Σ1) = A(h1, ..., hn[; α1, ..., αm])

Σ ∗ Σ1  Σ ∗ A(h1, ..., hn[; α1, ..., αm])
synthesis

foldΘ(Σ1) = A(h1, ..., hn[; α1, ..., αm])

Σ ∗ Σ1  Σ ∗ A(h1, ..., hn[; α1, ..., αm])
fold

filter(r1 = r2)(l : Π | Σ | Φ) =


{l : Π | Σ | Φ ∧ Jr1KΠ,Φ = Jr2KΠ,Φ} if Φ 0 Jr1KΠ,Φ 6= Jr2KΠ,Φ
� otherwise

filter(r1 6= r2)(l : Π | Σ | Φ) =


{l : Π | Σ | Φ ∧ Jr1KΠ,Φ 6= Jr2KΠ,Φ} if Φ 0 Jr1KΠ,Φ = Jr2KΠ,Φ
� otherwise

Table 2. Abstract Operational Semantics

nodes = malloc(MAX_NODES);

root = nodes;
node = nodes+1;
root->parent = null;

s1: root->child = node;
root->sib = null;
root->sib_prev = null;

for (...) {
node->parent = root;
node->child = null;

s2: node->sib = node+1;
s3: node->sib_prev = node-1;

node++;
}
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(b) Term tree

g(x1, x2, x3) = ∗(
parent→ (x1, x2),

child→ (x1, g),

sib→ (x1, g),
sib prev→ (x1, x3))

g(x1, x2, x3) = ∗(
parent→ (x1, x2),

child→ (x1, g(child(x1), x1, NULL)),

sib→ (x1, g(sib(x1), x2, x1)),

sib prev→ (x1, x3))

(c) Recurrence

Figure 4. A loop in 181.mcf that builds its tree

This cannot be achieved by ordinary separation logic formulae
without the enhancement of access-path-based heap names or the
domain-specific translation into terms.

3.1.2 Recurrence Detection

For convergence over loops, the recurrence detection algorithm is
applied to each top-level term (a loop may touch multiple data
structures). The algorithm we build on is by Schmid [8]. The high-
level intuition is that if there is a recurrence relation that explains
a term, then the term can be obtained from the recurrence relation

by unfolding the recursion body up to a finite length. So a term can
be folded into a recursion by finding a segmentation of the term
corresponding to the unfolding points, together with parameter
substitution rules. As pointed out by Summers [7], this can be
viewed as the converse of using fixed points to give the semantics
of a recursive function. The algorithm proceeds in three steps:

1. Search for a valid segmentation of the input term. This can be
quite complex as the recurrence relation can be of arbitrary
form, not just simple linear recursions such as linked-lists. In



Figure 4(b), bold lines cutting across tree edges segment the
term such that the target node of each edge cut is an unfolding
point. Three unfolding points are NULL nodes, which corre-
spond to the base case of the recursion (modifications are made
to Schmid’s algorithm to determine when NULL nodes are not
unfolding points). The unfolding pointh.child.sib.sibis where
the symbolic execution of the loop and hence the expansion of
the term tree stop. An unfolding point like this is a single∗ term
with no children. We refer to them as the “un-expanded” nodes.
The basic algorithm for finding a valid segmentation is given
in Figure 5. Formally, it searches for the setR of recursion
points– places in the recurrence body where it invokes itself.
The unfolding points in the term can be derived by repeated un-
rolling of the recurrence at its recursion points. In Figure 4(b),
the recursion points coincide with the top two unfolding points,
closest to the root of the tree. The other four are results of un-
rolling twice starting at the recursion point on the left. To ensure
that the algorithm returns the minimal recurrence relation that
explains the input term, the search for the next recursion point
proceeds from left to right and from top to bottom, backtracking
whenR does not induce a valid segmentation. Validity of seg-
mentation is checked by first computing a skeletontskel of the
hypothetical recurrence body.tskel is the minimal term tree that
contains all paths int leading to the recursion points, with the
recursion points replaced by a special symbol0. All other paths
are replaced by fresh variables at the highest points.R induces
a valid segmentation if for each unfolding pointu derived from
R, the relationtskel≤ u holds.≤ is defined inductively as
• 0 ≤ t′ if t′ contains NULL or un-expanded nodes,

• x ≤ t′ if t′ does not contain NULL or un-expanded nodes,

• f(t1, ..., tn) ≤ f(t′1, ..., t′n) if ti ≤ t′i for i = 1..n.

find valid segmentation(t)
R = {} // The set of recursion points
x = leftmost child oft
while x 6= null do

if is potential recursionpoint(x, t) then
R += x
if is valid segmentation(R, t) then

x = nextpos right(x)
continue

else
R−= x

x = leftmost child ofx, if any ornextpos right(x)
return the set of unfolding points induced byR

is potential recursion point(x, t)
return x is a NULL node∨ (x has the same symbol ast ∧

x contains NULL or un-expanded nodes in its term tree)

is valid segmentation(R, t)
tskel = the minimal pattern oft reaching all nodes inR
return ∀ unfolding pointu.tskel≤ u

next pos right (x)
if x has no parentthen

return null
if x has a right siblingy then

return y
return nextpos right(parent ofx)

Figure 5. Algorithm to find valid segmentations

2. Compute the body of the recurrence, which is the maximal over-
lapping portion of all segments. This is done byanti-unifying
(u) the segments:
• f(t1, ..., tn) u f ′(t′1, ..., t′m) = ϕ(f(t1, ..., tn), f ′(t′1, ..., t′m)),

• f(t1, ..., tn) u f(t′1, ..., t′n) = f(t1 u t′1, ..., tn u t′n).

ϕ is a one-to-one mapping between pairs of terms and variables
which guarantees that identical sub-term pairs are replaced by
the same variable throughout the whole term.

3. Find parameter substitutions. The sub-terms where the seg-
ments differ are instantiations of the parameters in the recur-

rence. Parameter substitutions are computed by identifying reg-
ularities in these terms. In our case, the parameters are pre-
cisely those terms translated from the names of heap locations.
The access- paths, now encoded in the prefix form, provide the
excellent opportunity for identifying interrelationships between
the parameters. We define the notion ofpositionsin a term tree
t: (i) λ is the position of the root(ii) if the node at positionu,
denoted ast|u, is a function, then itsi-th child has positionu.i.
Within each segments, let βs,xj ,r denote the sub-term that is
the instantiation of parameterxj at recursion pointr. The sub-
stitution term for parameterxj recursion pointr is computed as
sub(xj , r, λ).

sub(xj , r, u) =8>><>>:
xk if is recurrent(xj , xk, r, u)

f(sub(xj , r, u.1), ..., if ∀ segments, βs,xj,r|u = f(...)

sub(xj , r, u.n)) with arity(f) = n,

is recurrent(xj , xk, r, u) =

∀ successive segmentss ands′, βs′,xj,r|u = βs,xk,r|λ.

sub is defined by structural induction on term trees. The leafs
of the substitution term are parameter variables. They are de-
termined through comparison of successive segment pairs in
is recurrentto see if a general pattern emerges. For an internal
positionu in the substitution term, it must hold that the cor-
responding parameter instantiations in all segments share the
same function node atu.

For the term in Figure 4(b), the recurrence body is shown in
Figure 4(c) on the top, and the final recurrence relation with pa-
rameter substitutions is shown at the bottom, which translates to
the predicatemcf tree(x1, x2, x3) defined in Section 2.

3.2 What Recursion Synthesis Can and Cannot Do

The complete algorithm given in [8] handles the case where the
recursion does not start at the root of the term tree, which hap-
pens when a recursive data structure is conjoined with some extra
data. It can handle mutual recursions and nested recursions, which
allows the analysis to support nested data structures, e.g. trees of
linked-lists. It can also handle interdependencies between param-
eter instantiations and incomplete program traces. We believe the
algorithm is powerful enough to decipher most recursive data types.
However, our technique relies on the loop that constructs the data
structure to reveal the data structure’s recursive backbone. It will
fail, for example, if the code reads a table that specifies the data
structure or copies a data structure by keeping a map between point-
ers in the original and those in the duplicate.

4. Local Reasoning under Global Invariants
This section discusses two functions used by the symbolic execu-
tion rules,unfoldΘ(l:S, h) and foldΘ(Σ). They concern reasoning
about local changes to recursive data structures described by global
shape invariants, yielding a general algorithm for unfolding and
folding recursive predicates.

unfoldΘ takes a stateS and a heap locationh located either at
the root of a recursive data structure or at the bottom sitting between
the data structure and a truncation point, unrolls the predicate
describing the data structure so thatS contains explicit points-to
assertions withh on the left hand side. It returns a set of states
because case analysis is needed in the presence of truncation points.

Peeling the data structure from the top is conceptually easy, sim-
ply replace the recursive predicate with its inductive definition, sub-
stituting arguments passed to the predicate for parameters in the
definition. Complication arises when the predicate contains trun-
cation points. We do not know their exact positions relative to the
root. They could be sitting right below the root, in which case they



alias with the newly exposed targets ofh, or they could be farther
way fromh so that they become the truncation points in the sub data
structures belowh. Because spatial conjunction does not allow im-
plicit aliasing, we have to enumerate all possible scenarios of rela-
tive positioning betweenh and the truncation points, constrained by
the invariant that the sub data structures rooted at truncation points
are mutually disjoint. Letn be the number of recursion points (Sec-
tion 3.1.2) in the definition of the recursive predicate andm be the
number of truncation points in the predicate. The total number of
possibilities is exponential inn×m. However,n is a small constant
(1 for linked-lists, 2 for binary trees),m is also small because local
updates only involve a few nodes and once done, the global invari-
ant is restored and these truncation points are eliminated byfoldΘ.
Consider the heap:mcf tree(h, null, null; α) ∗ mcf tree(α, β1, β2).
Unfoldingh yields four heaps:

• h.parent→ null ∗ h.child→ α ∗mcf tree(α, h, null) ∗
h.sib prev→ null ∗ h.sib→ β4 ∗mcf tree(β4, null, h)

• h.parent→ null ∗ h.child→ β3 ∗mcf tree(β3, h, null) ∗
h.sib prev→ null ∗ h.sib→ α ∗mcf tree(α, null, h)

• h.parent→ null ∗ h.child→ β3 ∗mcf tree(β3, h, null; α) ∗
h.sib prev→ null ∗ h.sib→ β4 ∗mcf tree(β4, null, h)

• h.parent→ null ∗ h.child→ β3 ∗mcf tree(β3, h, null) ∗
h.sib prev→ null ∗ h.sib→ β4 ∗mcf tree(β4, null, h; α)

Unrolling a recursive predicate from the bottom up makesh
a new truncation point, causing some old truncation points to be
removed to maintain mutual-disjointness of truncation points. Let
T be the set of the original truncation points that point toh. Again,
we do not know the exact access path fromh to a t ∈ T , so case
splitting is required as well. In this case the link fromt to h also
limits the possible places wheret may alias with a node under
h, according to the definition of the recursive predicate. Consider
again the heapmcf tree(h, null, null; α) ∗ mcf tree(α, β1, β2). To
unroll β2, because the linkα → β2 is asib prev link, by definition
of mcf tree, α must be the target of thesib link originating from
β2. Hence after unrollingβ2, we havemcf tree(h, null, null; β2) ∗
β2.parent→ β1∗β2.child→ β3∗mcf tree(β3, β2, null)∗β2.sib→
α ∗β2.sib prev→ β4 ∗mcf tree(α, β1, β2). If we were to consider
α as the target of thechild link of β2, thenα would be described
asmcf tree(α, β2, null), which is inconsistent with its description
before the unrolling. Similar inconsistency also arises if we do
not considerα as any target ofβ2. Our algorithm checks each
combination to rule out inconsistencies. In the case of unrolling
β1, there are two possibilities, eitherα is thechild of β1 or it is a
truncation point in thechild sub-tree ofβ1.

Figure 6 contains the algorithm that determines all possible
spatial relationships between an unfolded nodeh, associated with
a recursive predicateA, and a set of truncation pointsT . Each
possibility is represented by a functionπ that maps everyt in
T to eitherr or r, wherer is one of the recursion points in the
definition of A. r means thet is located at the recursion point
andr means thatt is further belowr. The algorithm assumes that
neighboring recursive elements in the data structure are one pointer
traversal away. This assumption can be removed by generalizing
the algorithm. Details are omitted due to space constraint.

The case analysis performed inunfoldΘ closely mimics the way
a programmer may reason informally about local updates – “If it
is the case thatx points y, then ...”, but it does so exhaustively
to ensure correctness. In comparison, folding a heap formula is
straightforward because we do not need to worry about accidentally
creating implicit aliasing, hence no case analysis is needed. It
cleans up unused truncation points left behind byunfoldΘ in an
attempt to incorporate cut-out pieces of the original data structure
back into it, thereby restoring the global invariant.foldΘ takes a

valid possibilities= {}
for all π do

if ∀r, ∃t.π(t) = r ⇒ @t′.t′ 6= t ∧ π(t) = r or r then
ok = true
for all t ∈ T do

if ∃ backward linkt.n → h then
let xj be the parameter inA’s definition s.t.x1.n → xj

let r be the recursion point s.t.π(t) = r or r
if π(t) = r then

if the recursive call atr substitutesx1 for xj then
continue

else
if the recursive call atr substitutesx1 for somexk ∧
∃r′.the recursive call atr′ substitutesxk for xj then
continue

ok = false
break

if ok then
valid possibilities+= π

Figure 6. Algorithm for case analysis inunfoldΘ

heap, looks for locations not pointed to by any live register, and
tries to merge it into a neighboring data structure. LikeunfoldΘ,
it also works from two directions, starting either with locations
sitting directly atop a recursive data structure and working its way
upwards, or with truncation points and working its way downwards.
It achieves similar effect of the rewrite rules for list in [4, 5],
p → k ∗ list(k, q)  list(p, q) and list(p, k) ∗ k → q  
list(p, q). However, we handle arbitrary predicates by crawling the
abstract heap such that each time, instead of a single heap cell, a
whole chunk of heap fitting the definition of the recursive predicate
(including backward links) are absorbed.

To illustrate unfolding and folding, we will again turn to
181.mcf. Figure 7 contains a code fragment which cuts a sub-tree
from under its parent and connects it to a new parent. At entryl0 ,
q andt are two truncation points in themcf treewhose root isR.
The parent link of t points top. The code fragment removes the
sub-tree rooted att from underp, moving the right sibling oft,
if any, towards the left to be the newchild of p. t is added as the
child of q, shifting the oldchild of q, if any, toward the right. The
heap formulae associated with each program label are listed in Ta-
ble 3. For each label, parts of the heap formulae that are different
from the previous label are underlined. The unfold and fold actions
taken at each step are also listed. FormulaΣ1,2 corresponds to the
case where the branch atl1 is not taken. We omit subsequent for-
mulae derived from it. They are similar to those listed here. The
same is done forΣ3,2. The registers that are live at the end of this
code fragment aret andq. In the last step, we fold all other nodes
back into the tree. The final heapΣ6,2, wheret.sibpoints tonull, is
subsumed byΣ6,1 (based on the definition ofv in Section 2.1).

l0:
if (t->sib)

t->sib->sib_prev = t->sib_prev;
l1:

if (t->sib_prev)
t->sib_prev->sib = t->sib;

else
p->child = t->sib;

l2:
t->parent = q;
t->sib = q->child;

l3:
if (t->sib)

t->sib->sib_prev = t;
l4:

q->child = t;
t->sib_prev = 0;

l5:

Figure 7. Local modification to a tree in 181.mcf



Σ0:

l0
mcf tree(r, null, null; q, t) ∗mcf tree(q, β1, β2)∗
t.parent→ p ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ α1 ∗ t.sib→ α3 ∗mcf tree(α3, p, t)

Σ1,1: Unfold α3 Σ1,2:

l1

mcf tree(r, null, null; q, t) ∗mcf tree(q, β1, β2)∗
t.parent→ p ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ α1 ∗ t.sib→ α3∗
α3.parent→ p ∗ α3.child→ α4 ∗mcf tree(α4, α3, null)∗
α3.sib prev→ α1 ∗ α3.sib→ α5 ∗mcf tree(α5, p, α3)

mcf tree(r, null, null; q, t) ∗mcf tree(q, β1, β2)∗
t.parent→ p ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ α1 ∗ t.sib→ null

Σ2,1: Unfold α1 Σ2,2: Unfold p

l2

mcf tree(r, null, null; q, α1) ∗mcf tree(q, β1, β2)∗
α1.parent→ p ∗ α1.child→ α7 ∗mcf tree(α7, α1, null)∗
α1.sib prev→ α6 ∗ α1.sib→ α3∗
t.parent→ p ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ α1 ∗ t.sib→ α3∗
α3.parent→ p ∗ α3.child→ α4 ∗mcf tree(α4, α3, null)∗
α3.sib prev→ α1 ∗ α3.sib→ α5 ∗mcf tree(α5, p, α3)

mcf tree(r, null, null; q, p) ∗mcf tree(q, β1, β2)∗
p.parent→ α8 ∗ p.child→ α3∗
p.sib prev→ α9 ∗ p.sib→ α10 ∗mcf tree(α10, α8, p)∗
t.parent→ p ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ null ∗ t.sib→ α3∗
α3.parent→ p ∗ α3.child→ α4 ∗mcf tree(α4, α3, null)∗
α3.sib prev→ null ∗ α3.sib→ α5 ∗mcf tree(α5, p, α3)

Σ3,1: Unfold q Σ3,2: Unfold q

l3

mcf tree(r, null, null; q, α1)∗
q.parent→ β1 ∗ q.child→ β3 ∗mcf tree(β3, q, null)∗
q.sib prev→ β2 ∗ q.sib→ β4 ∗mcf tree(β4, β1, q)∗
α1.parent→ p ∗ α1.child→ α7 ∗mcf tree(α7, α1, null)∗
α1.sib prev→ α6 ∗ α1.sib→ α3∗
t.parent→ q ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ α1 ∗ t.sib→ β3∗
α3.parent→ p ∗ α3.child→ α4 ∗mcf tree(α4, α3, null)∗
α3.sib prev→ α1 ∗ α3.sib→ α5 ∗mcf tree(α5, p, α3)

mcf tree(r, null, null; q, p)∗
q.parent→ β1 ∗ q.child→ β3 ∗mcf tree(β3, q, null)∗
q.sib prev→ β2 ∗ q.sib→ β4 ∗mcf tree(β4, β1, q)∗
p.parent→ α8 ∗ p.child→ α3∗
p.sib prev→ α9 ∗ p.sib→ α10 ∗mcf tree(α10, α8, p)∗
t.parent→ q ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ null ∗ t.sib→ β3∗
α3.parent→ p ∗ α3.child→ α4 ∗mcf tree(α4, α3, null)∗
α3.sib prev→ null ∗ α3.sib→ α5 ∗mcf tree(α5, p, α3)

Σ4,1: Unfold β3 Σ4,2:

l4

mcf tree(r, null, null; q, α1)∗
q.parent→ β1 ∗ q.child→ β3∗
q.sib prev→ β2 ∗ q.sib→ β4 ∗mcf tree(β4, β1, q)∗
β3.parent→ q ∗ β3.child→ β5 ∗mcf tree(β5, β3, null)∗
β3.sib prev→ t ∗ β3.sib→ β6 ∗mcf tree(β6, q, β3)∗
α1.parent→ p ∗ α1.child→ α7 ∗mcf tree(α7, α1, null)∗
α1.sib prev→ α6 ∗ α1.sib→ α3∗
t.parent→ q ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ α1 ∗ t.sib→ β3∗
α3.parent→ p ∗ α3.child→ α4 ∗mcf tree(α4, α3, null)∗
α3.sib prev→ α1 ∗ α3.sib→ α5 ∗mcf tree(α5, p, α3)

mcf tree(r, null, null; q, α1)∗
q.parent→ β1 ∗ q.child→ null∗
q.sib prev→ β2 ∗ q.sib→ β4 ∗mcf tree(β4, β1, q)∗
α1.parent→ p ∗ α1.child→ α7 ∗mcf tree(α7, α1, null)∗
α1.sib prev→ α6 ∗ α1.sib→ α3∗
t.parent→ q ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ α1 ∗ t.sib→ null∗
α3.parent→ p ∗ α3.child→ α4 ∗mcf tree(α4, α3, null)∗
α3.sib prev→ α1 ∗ α3.sib→ α5 ∗mcf tree(α5, p, α3)

Σ5,1: Σ5,2:

l5

mcf tree(r, null, null; q, α1)∗
q.parent→ β1 ∗ q.child→ t∗
q.sib prev→ β2 ∗ q.sib→ β4 ∗mcf tree(β4, β1, q)∗
β3.parent→ q ∗ β3.child→ β5 ∗mcf tree(β5, β3, null)∗
β3.sib prev→ t ∗ β3.sib→ β6 ∗mcf tree(β6, q, β3)∗
α1.parent→ p ∗ α1.child→ α7 ∗mcf tree(α7, α1, null)∗
α1.sib prev→ α6 ∗ α1.sib→ α3∗
t.parent→ q ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ null ∗ t.sib→ β3∗
α3.parent→ p ∗ α3.child→ α4 ∗mcf tree(α4, α3, null)∗
α3.sib prev→ α1 ∗ α3.sib→ α5 ∗mcf tree(α5, p, α3)

mcf tree(r, null, null; q, α1)∗
q.parent→ β1 ∗ q.child→ t∗
q.sib prev→ β2 ∗ q.sib→ β4 ∗mcf tree(β4, β1, q)∗
α1.parent→ p ∗ α1.child→ α7 ∗mcf tree(α7, α1, null)∗
α1.sib prev→ α6 ∗ α1.sib→ α3∗
t.parent→ q ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ null ∗ t.sib→ null∗
α3.parent→ p ∗ α3.child→ α4 ∗mcf tree(α4, α3, null)∗
α3.sib prev→ α1 ∗ α3.sib→ α5 ∗mcf tree(α5, p, α3)

Σ6,1: Foldα1, α3, β3 Σ6,2: Foldα1, α3

fold

mcf tree(r, null, null; q)∗
q.parent→ β1 ∗ q.child→ t∗
q.sib prev→ β2 ∗ q.sib→ β4 ∗mcf tree(β4, β1, q)∗
t.parent→ q ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ null ∗ t.sib→ β3 ∗mcf tree(β3, q, t)

mcf tree(r, null, null; q)∗
q.parent→ β1 ∗ q.child→ t∗
q.sib prev→ β2 ∗ q.sib→ β4 ∗mcf tree(β4, β1, q)∗
t.parent→ q ∗ t.child→ α2 ∗mcf tree(α2, t, null)∗
t.sib prev→ null ∗ t.sib→ null

Table 3. Intermediate states of a tree update in 181.mcf



5. The Analysis
This section puts various pieces of the analysis together.

5.1 Code Pruning

Our interprocedural shape analysis includes a pre-pass in which
a simple pointer analysis is performed to identify recursive data
structures present in the program, and code that has no effect on
the shape properties of these data structures is pruned away.

Because this shape analysis targets low-level code with no
type information, a pointer analysis similar to Steensgaard’s analy-
sis [17] is used to roughly infer the high-level type of each pointer.
This eliminates the need for shape analysis to track non-pointer
data fields. These fields do not exhibit interesting recursive patterns
and may confuse recursion synthesis. An inferred pointer type rep-
resents a set of runtime locations, e.g. the “next” field in all nodes
of a linked-list. Our pointer analysis determines an inferred type
for each load/store instruction, which over-approximates the set of
locations the instruction accesses. Recursive types are identified as
those associated with load instructions involved in traversing recur-
sive data structures. These loads share the property that the destina-
tion register is used to compute the load address, a recurrence that
is easily detected by computing strongly-connected components of
the reaching-definition graph.

Code pruning is achieved by the following program slicing algo-
rithm: It starts with an empty set of instructions and a set of tracked
types initialized to the set of recursive types identified above. For
each store to a tracked type, all instructions (including branches
and possibly crossing procedure boundaries) that contribute to the
computation of either the store address or the value to be stored
are added. New pointer types that need to be tracked will be iden-
tified in the process, causing more instructions to be added. When
the algorithm terminates, only instructions that may affect updates
to recursive pointer fields are preserved. This step is essential for
managing large benchmarks.

5.2 Interprocedural Analysis

As in [10] and [18], at each procedure entry, the analysis splits
the state into a local heap and a frame, and sends the local heap,
consisting of heap regions reachable from the actual parameters and
the globals used in the procedure and all its callees, as the pre-state
of the procedure (although any other splitting is sound). Cutpoints
are preserved by telling the algorithmfoldθ not to fold them away.
Our implementation adapts the tabulation algorithm in [18] which
records procedure summaries for re-use under equivalent calling
contexts. It is modified to perform inductive recursion synthesis,
shown in Figure 8. In the interprocedural control flow graph, each
call site is represented by a call node and a return node. Each
procedure has an entry node and an exit node. The algorithm keeps
a worklist of triples〈n, Sentry, S〉, each saying that stateS holds
right before noden given thatSentry holds on entry of the procedure
containingn. If n is a call node, the local heap of the callee is first
extracted fromS and the triple is registered as a calling context
associated with the callee and this local heap. If no summary of the
callee exists for this local heap, then it is pushed onto the worklist
together with the callee’s entry node. Upon popping the callee’s
exit node off the worklist, the updated local heap is propagated to
all calling contexts registered with the callee to be re-combined
into the frames. All other nodes are handled bytransform(n →
n′, S), which updates stateS according to the semantics ofn.
For memory efficiency, we do not keep around intermediate states,
state duplication only occurs at split points of control flow and for
recording procedure summaries and loop invariants.

5.2.1 Handling Recursive Procedures

Just like loops, recursive procedures are handled by symbolic ex-
ecution along sample execution paths, then followed by inductive
recursion synthesis. The control flow graph of a recursive proce-
dure contains two kinds of loop back edges, one for recursive calls
and one for recursive returns. Recursion synthesis is applied for
both to infer the entry and exit invariants respectively. The choice
of sample execution paths does not affect soundness as the inferred
procedure entry/exit invariants are verified to see that they can de-
rive themselves. We choose those paths that are good representative
of the runtime behavior of the recursive procedures and are hence
likely to yield valid invariants. On entry of a strongly-connected-
component (SCC) in the call graph (representing mutually recur-
sive procedures), the analysis follows an execution path that enters
each procedure in the SCC at least twice. At each branch instruc-
tion reaching recursive calls, the analysis only propagates states
to one branch target. The selection is performed by the subrou-
tine transformin Figure 8, which returns NULL for the non-taken
branch. If all procedures in the SCC have been visited at least twice,
the target that does not lead to recursive calls is taken to ensure ter-
mination; otherwise, the other target is taken. If both targets lead
to recursive calls, we favor the one leading to procedures that have
not been visited twice yet. When checking the invariants of each
procedure, all execution paths are taken into account.

worklist = {〈entrymain, S0, S0〉}
while worklist is not emptydo

remove〈n, Sentry, S〉 from worklist
if n is a call nodethen

Slocal = extract(S, callee)
contexts(〈callee, Slocal〉) += 〈n, Sentry, S〉
if summary(〈callee, Slocal〉) 6= � then

for all Sexit ∈ summary(〈callee, Slocal〉) do
worklist += 〈nreturn, Sentry, combine(Sexit, S)〉

else
worklist += 〈entrycallee, Slocal, Slocal〉
if calleeis recursivethen

latestentry statecallee = Slocal

else ifn is an exit nodethen
if calleeis recursivethen

latestexit statecallee = S
if caller is not in the callgraph SCC ofcallee then

for all procedurep in callee’s SCCdo
recursionsynthesis(latestentry statecallee)
recursionsynthesis(latestexit statecallee)

for all procedurep in callee’s SCCdo
if !invariantsvalid(p) then

halt
summary(〈callee, Sentry〉) += S
for all 〈ncall, Se, Sc〉 ∈ contexts(〈callee, Sentry〉) do

worklist += 〈nreturn, Se, combine(S, Sc)〉
else

for all control flow edgen → n′ do
S′ = transform(n → n′, S)
if n → n′ is a back edge of loopl then

if analysis converges orl has not iterated twicethen
worklist += 〈n′, Sentry, S′〉

else
recursionsynthesis(S′)
if !invariantsvalid(l) then

halt
else

worklist += 〈n′, Sentry, S′〉

Figure 8. The Interprocedural Algorithm

6. Experiment Results
This analysis has been implemented in our C compiler. Prelimi-
nary experiment results are reported in Table 4. Time was taken
on a 3GHz P4 with 512KB cache and 2GB memory. In addition
to 181.mcf which uses iterative algorithm to build and to traverse



its data structure, we tested on four Olden benchmarks which use
recursive procedures. The 2nd column lists the recursive data struc-
tures used in the benchmarks. Our analysis is able to infer and
maintain precise shape predicates that describe these data struc-
tures. For the most part, the shape analysis phase (last column)
takes less time than the pre-pass (4th and 5th columns), demon-
strating the effectiveness of code pruning.

Benchmark Data Type # Insts Analysis Time (s)
Pointer Slicing Shape

181.mcf mcf tree 2158 0.59 0.22 0.55
treeadd binary tree 162 0.09 0.02 0.05
bisort binary tree 423 0.16 0.05 0.38
perimeter quaternary tree 624 0.20 0.06 0.10

w/ parent links
power lists 1054 0.37 0.07 0.06

Table 4. Experiment results

7. Related Work
Recently there have been many interesting works in applying sep-
aration logic to program analysis, not just verification. Berdine et
al. describe a form of symbolic execution that, for certain types
of preconditions, generates post-conditions by updating the pre-
conditions in-place [13]. It does not by itself yield a suitable ab-
stract domain due to lack of guarantee for convergence. Two anal-
yses of list- processing programs [4, 5] use rewrite rules tailored
to the list predicate to reduce logic formulae and thereby arrive at
fixed points. Both analyses are intraprocedural. An interprocedural
analysis is given in [10], limited to pre-defined predicates as well.
[19] studies pointer arithmetic in an abstract domain where each
list node is a multiword.

Most similar to our work, Lee et al.’s grammar-based analy-
sis [6] can also discover recursive predicates automatically. But
since their grammar only allows one explicit argument, it cannot
handle data structures with multiple backward links such as the
mcf tree and it cannot handle multiple pointers to the interior of
a data structure. We support arbitrary number of parameters and
can handle dags in some cases while they cannot.

In [20], inductive learning is also used to find instrumentation
predicates. Their technique, based on successive refinement given
positive and negative examples, is different from recursion synthe-
sis. Although in principle their predicates can describe complex
data structures, the inference of such recursive predicates is not
evaluated in their experimentation.

8. Conclusion and Future Work
This paper presented an interprocedural shape analysis based on
separation logic. With two powerful techniques, inductive recursion
synthesis and generic recursion unrolling/rolling based on trunca-
tion points, the analysis is able to take separation logic based pro-
gram analysis beyond simplistic data structures. For future work,
we would like more results on the conditions under which the re-
cursion synthesis algorithm would fail. Though we do not expect
it to fail often in practice, when it does, a more elegant recovery
scheme than halting is desirable. Potential solutions include a spe-
cial predicate that says all pointers to a particular data structure may
alias and prompting the user for further information.
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