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Abstract
In order to generate high-quality code for modern processors, a
compiler must aggressively schedule instructions, maximizing re-
source utilization for execution efficiency. For a compilerto pro-
duce such code, it must avoid structural hazards by being aware of
the processor’s available resources and of how these resources are
utilized by each instruction. Unfortunately, the most prevalent ap-
proach to constructing such a scheduler, manually discovering and
specifying this information, is both tedious and error-prone.

This paper presents a new approach which, when given a pro-
cessor or processor model, automatically determines this informa-
tion. After establishing that the problem of perfectly determining
a processor’s structural hazards through probing is not solvable,
this paper proposes a heuristic algorithm that discovers most of
this information in practice. This can be used either to alleviate the
problems associated with manual creation or to verify an existing
specification. Scheduling with these automatically derived struc-
tural hazards yields almost all of the performance gain achieved
using perfect hazard information.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and reengineering; D.3.4 [Programming
Languages]: Processors—Retargetable compilers

General Terms Measurement, Experimentation, Verification, Al-
gorithms

Keywords reverse-engineering, instruction scheduling, compil-
ers, automatic retargeting, structural hazard

1. Introduction and Motivation
Instruction scheduling, an important optimization in modern com-
pilers, attempts to minimize the execution time for a set of instruc-
tions by orchestrating the order of their execution. Scheduling is
particularly important for wide-issue machines, where instruction
level parallelism (ILP) is a key source of performance, as itis re-
sponsible for presenting sets of instructions for concurrent execu-
tion. A naı̈ve instruction scheduler that does not respect resource
limitations may present the hardware with data-independent opera-
tions unable to execute concurrently due tostructural hazards, the
over-subscription of limited machine resources. Thus, to be effec-
tive, an instruction scheduler must not only be aware of datadepen-
dences but also of the processor’s resource limitations [19, 25].
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Figure 1. Basic Scheduling Algorithm

Figure 1 shows how a typical scheduler might avoid structural
hazards using ahazard detectorduring scheduling. In each step, the
scheduler proposes adding an instruction to the existing schedule
producing a candidate schedule. The instruction is chosen based
on a heuristic function which weighs several concerns, including
the belief that the data dependences for the instruction will be
satisfied in this cycle in the final schedule. The hazard detector is
queried by the instruction scheduler with the candidate schedule
and determines whether this schedule now contains a structural
hazard. If it does not, the candidate schedule is kept. Otherwise,
the scheduler will respect the structural hazard and look for other
scheduling alternatives to propose.

Hazard detectors traditionally use resources encoded inre-
source maps[8, 10, 15, 17], which describe the resources consumed
by an instruction as it flows through the processor. Using resource
maps, a hazard detector can determine when a structural hazard, or
conflict, will occur. The diversity of instructions in instruction set
architectures (ISA), coupled with numerous asymmetric resources
in modern microarchitectures, yields large and complex resource
maps. Consequently, manually describing the resource mapsof an
ISA can be a tedious and error prone process [26].

To automate resource map generation, techniques based on a
formal processor model have been proposed [16, 34]. These re-
quire that the model be developed in architecture description lan-
guages (ADL) such as TDL, LISA, etc. [23, 36, 37]. Unfortunately,
in practice, ADLs are not useful to compiler writers. The most com-
mon problem for compiler writers is that an ADL specificationmay
not be available for the target processor. There are severalreasons
for this. First, there is no standard ADL. Of those that have been
proposed, none can accurately describe the wide class of architec-
tures used today [27]. Second, while ADL descriptions do exist for
some machines, the languages themselves often include assump-
tions about a set of machines. This means that the final circuit-level
design constraints often deviate from the ADL specificationand
the abilities of the ADL itself, making the ADL inaccurate. Finally,
even if an accurate ADL were to exist for a given machine, it might
be kept as a trade secret. For most processors, these problems mean
that compiler writers must look to other approaches for resource
map generation.

The solution most commonly pursued by compiler writers is to
manually create amachine description file[4, 8, 15] to provide haz-
ard detectors with machine-specific resource maps. These are built
from publicly available information, usually in the form ofinstruc-
tion and processor reference manuals. The accuracy of the resulting



resource maps is dependent upon both the accuracy of the reference
manuals and the thoroughness of the compiler writer who interprets
these manuals. Unfortunately, the manuals are often complex, hard
to read, and contain inaccuracies or contradictions. For example,
the Itanium 2 processor manual [22] and microarchitecture man-
ual [21] make contradictory statements regarding the resolution of
bank conflicts in the L2 data cache. The former states that a 7 cy-
cle latency for the data to be retrieved, while the latter states an 11
cycle latency.

Even when the manuals are correct, the compiler writer may
make a mistake when writing the description. High-level machine
description languages have been proposed [17, 23, 37] to alleviate
this problem by factoring descriptions into simpler parts.However,
creating these descriptions is time-consuming since the writer must
still model the inherently complex interactions present ina microar-
chitecture [9, 16]. For example, the Itanium 2 IMPACT machine
description, written in the high-level IMPACT MDes, takes 2700
lines to describe 309 instructions. Even though resource utilization
in the Itanium 2 can be broken down into categories, the bundling
constraints, unique to this microarchitecture, are 800 lines alone
and took approximately a month to add [20]. Even after many years
of use, this description still contains several errors as shown in Sec-
tion 6.4.

Since ADL or other formal descriptions often do not exist, the
manuals are often incomplete or inaccurate, and construction by
hand is error prone, perhaps structural hazard informationcould be
automatically extracted from the processor itself. The contribution
of this paper is to show that such an approach is viable. This pa-
per describes and demonstrates the previously unexplored approach
of automatically reverse-engineering structural hazardsfrom a real
processor or, in general, any machine model. The technique is com-
patible with any processor design methodology and tool chain, and
it only requires a machine or simulation model that can return the
execution time of a program executed on it. While this paper proves
that automatically reverse-engineeringall structural hazards by ob-
serving only the machine’s behavior is impossible in all cases, it
also demonstrates that a heuristic-based approach can determine
almost allstructural hazards in practice. This automatically deter-
mined structural hazards can be used to alleviate the problems as-
sociated with manual creation or to verify an existing specification.
We show that scheduling with these automatically derived struc-
tural hazards yields almost all of the performance gain achieved
using perfect hazard information. Additionally, our technique sug-
gests hybrid approaches in which manual specification of resource
maps is validated by automatic reverse-engineering and vice versa.

The rest of the paper is organized as follows. Section 2 dis-
cusses work related to resource maps, hazard detection, andau-
tomatic compiler construction. Section 3 describes the problem of
automatic determination of structural hazards. Practicalobserva-
tions used to reduce the search space are given in Section 4. These
observations are used to produce an algorithm for automaticex-
ploration in Section 5. This algorithm is evaluated for bothstatic
schedule height reduction and runtime performance in Section 6.
Finally, Section 7 concludes.

2. Related Work
Many people have have recognized the promise of automatic com-
piler retargeting, either by directly retargeting the compiler or
through the automated synthesis of a compiler. Collberg describes
how to reverse-engineer an entire compiler by querying an existing
C compiler for the machine being reverse-engineered [6]. Ina re-
lated area, Engler et al. describe a technique for reverse-engineering
the operation encodings for a machine via queries to an existing as-
sembler [12]. Yotov et al. describe how to use microbenchmarks
and an existing C compiler to automatically derive microarchitec-

tural hardware parameters related to memory, such as cache size
and associativity [35]. Dupré et al. describe a method to automat-
ically derive an instruction scheduler for machines given acycle-
accurate VLIW simulator with superscalar-like dynamic reordering
capabilities that can report the status of each instructionduring ex-
ecution [9]. Description languages, such as ADLs, and associated
tools for automating the synthesis of compilers and simulators from
a single description have been proposed [32, 37, 37, 23].

Non-automatic retargeting of compilers has also been studied.
Bradlee et al. created Marion, a system for retargeting instruction
selection, instruction scheduling, and register allocation from a
machine description [3]. Hanono et al. describe similar retargeting
in the embedded processor domain using the AVIV retargetable
code generator [18].

Researchers have also explored the area of representationsfor
efficient hazard scheduling. Resource maps were proposed by
Davidson et al. [7]. Additional representations based on finite state
machine hazard detectors have also been proposed [2, 30]. Work
also exists on factoring and optimizing resource-map-based ma-
chine descriptions to improve compile time [10, 17].

While instruction schedulers can be automatically retargeted,
no technique yet proposed can do so automatically from a black-
box machine. This paper draws inspiration from Baker, who advo-
cates the automatic reverse-engineering approach to retargeting of
instruction schedulers [1].

3. Structural Hazard Discovery Problem
The task of the hazard detector is to determine whether an instruc-
tion schedule contains structural hazards. On an idealizedmachine
or machine model1, structural hazards are revealed when a sched-
ule takes longer to execute than expected. Thus, the target machine
itself can be used as a hazard detector during scheduling [1]. Un-
fortunately, this is impractical as instruction schedulers query the
hazard detector repeatedly during the scheduling of each instruc-
tion. This means that adding even a small amount of overhead to
each query will quickly accumulate, significantly increasing com-
pilation time. Additionally, the overhead of each query is unlikely
to be small, as it includes the time to prepare the code for execution
(e.g. register allocation), to execute it, and to evaluate the result.

Since querying the actual machine during compilation is expen-
sive, the alternative is to query the machinea priori, that is, be-
fore the compiler is created, and to store the results in aconflict
database. Ideally, the conflict database is both sound, all structural
hazards it contains are correct, and complete, it contains all struc-
tural hazards. One methodology for obtaining this is to reverse-
engineer the machine or machine model, as the machine is both
sound and complete with respect to the structural hazards that ex-
ist in it. Unfortunately, as we now prove, an algorithm building a
conflict database solely by reverse-engineering cannot know when
the conflict database is complete. Despite this theoreticalimpossi-
bility, the remainder of this paper shows that reverse-engineering
in practice can identify enough (possibly all, but not knowingly so)
structural hazards to produce high-quality instruction schedules at
compile time.

The theoretical impossibility for perfect structural hazard deter-
mination stems from the unbounded number of possible instruction
schedules with hazards. Since exhaustive exploration of all sched-
ules is impossible, some finite set must be used instead. Unfor-
tunately, as we will prove, all finite subsets can miss some struc-
tural hazards. Conceptually, there may exist some structural hazard
which manifests itself only for schedules larger than any inthe fi-

1 An idealized machine is one free from noise generated by cache effects,
page faults, etc. Section 5.2 discusses how to measure schedules on real
machines.



nite set. Before formally proving this, we will introduce some ter-
minology to aid in discussion.

Definition 1. An instruction schedule, or schedule, is a collection
of (instruction, issue time, issue slot) tuples. Each tupleidentifies an
instruction that is to be executed, the time that it should beissued,
and the issue slot, within that cycle, in which it is issued.

Definition 2. A static scheduleis a schedule that describes the
compiler’s belief about how the instructions will execute.

Definition 3. Anexecution schedulefor a given static schedule and
machine is the schedule of when instructions areactuallyissued on
the given machine, instead of the time that the compiler believed
the instructions would issue.

Definition 4. Theschedule heightof a schedule is
(last instruction issue time− earliest instruction issue time+ 1).

Definition 5. A machineaccepts a static schedule and outputs the
schedule height of the execution schedule.

Definition 6. A resource mapis a set of resource usage tuples
(R, t), where R is the resource used and t is the time the resource
is used, relative to the issue time of the instruction.

Definition 7. An instruction withscheduling alternativeshas a set
of resource maps, each of which describes a potential resource us-
age when it executes. Scheduling alternatives that allow aninstruc-
tion to execute without a structural hazard are chosen before ones
that will cause a structural hazard on an ideal machine.

Using the definitions above, we now formally define theStruc-
tural Hazard Discovery Problem(SHDP). The problem is to create
an algorithmA that can create another algorithm that can perfectly
answer any and every query about structural hazards for a machine
M . That is,A constructs another algorithmAM , a generalization
of the conflict database to an algorithm.AM determines if a given
static schedule contains a structural hazard onM . A can queryM
with a finite, though unbounded number of static schedules. To re-
flect that the machineM can only be querieda priori, AM is not
allowed to queryM . We prove that this is impossible for machines
that can be characterized by resource maps, which implies that it
is impossible in the general case. Resource maps can be used to
describe, among others, modern processors and machines with ir-
regular constraints [31], as are often found in embedded processors.
Theroem 1 proves that SHDP is not solvable for a general classof
machines.

Theorem 1. SHDP for machines whose structural hazards can be
characterized by resource maps is unsolvable.

Proof. We will prove the theorem by contradiction. Assume there
is a deterministic algorithmA that, given a machineM (that can
be described using resources), can produce, by queryingM with a
finite number of schedules, an algorithmAM . AM can determine
if an input static schedule contains a structural hazard. Let C be the
set of all static schedules tested byA onM . Leth be the maximum
static schedule height inC. Finally, lett be the maximum time that
a resource is used in any schedule inC.

Construct a new machineM ′ from M , whereM ′ has the same
resources and resource usage patterns asM with the following
additions. LetS represent the maximum number of instructions
in any tested schedule, andh′ = max(h, t) + 1. Let M ′ have
S new resources,R1, R2, . . . , RS . For each instruction,I , in M
with scheduling alternativesa1, . . . , an, let the same instruction in
machineM ′ haveS×n scheduling alternatives,a′

11, a
′

12, . . . , a
′

nS .
For each1 ≤ k ≤ S alternativea′

ik uses resourceRk from time1
to timeh′, relative to the instruction issue time. Figure 2 shows a
resource assignment forn = 1 andS = 3.

R1 R2 R3 R1 R2 R3 R1 R2 R3

...

h’

1
a1

...

h’

1
a2

...

h’

1
a3

Figure 2. Example:n = 1, S = 3

Since the behavior ofM is identical to the behavior ofM ′ for
all schedules whose height is≤ h, AM = AM′ . For any instruction
I , consider the schedule((I, 1, 0), (I, 2, 0), . . . , (I, S, 0), (I, S +
1, 0)), which causes a conflict at timeh′ on M ′, but cannot cause
a conflict inM by construction. Therefore,AM = AM′ will either
accurately characterize machineM or machineM ′, but not both.
This contradicts the assumption thatA solves SHDP.

Corollary 1. The SHDP is unsolvable in general.

Proof. It follows directly from Theorem 1 that SHDP is unsolvable
in general because it is unsolvable for the special case of machines
that can be described using resources.

Since SHDP is unsolvable, it is impossible for an algorithm to
provably determine all structural hazards of every machinea pri-
ori. Thus, it is also impossible for such an algorithm to knowingly
create a complete conflict database. In practice, though, itis pos-
sible to bound the number of instruction schedules necessary to
explore using machine properties such as the number of transis-
tors, the maximum number of cycles a resource is used by a single
instruction, the number of instructions in the ISA, etc.

Unfortunately, as shown in Section 4, even with this informa-
tion, the space of instruction schedules that must be explored to dis-
cover all structural hazards typically remains too large tobe exhaus-
tively explored. However, it is possible to construct a goodapprox-
imate conflict database in practice by identifying certain structural
hazards and inferring the existence of additional structural hazards.
The remainder of the paper describes the observations used to in-
fer additional structural hazards, proposes an algorithm to construct
the conflict database, and shows that it works well in practice.

4. Reducing the Instruction Schedule Space
As we saw in Section 3, building a complete conflict database
would require testing an infinite number of schedules. To allow
reverse-engineering to finish in a finite amount of time, we forgo
building a complete conflict database by searching only a finite
subspace of instruction schedules. The following subsections show
how to select a candidate finite subspace that can be exploredin a
tractable amount of time. Section 4.1 selects an intractably large,
but finite subspace, while the remaining subsections prune this
subspace down to a tractable size, which can be searched in a few
hours.

4.1 Pipelining

If one can assume that there exists a bound on the length of time an
instruction can have an effect on the timing of other instructions,
then only schedules whose height is less than or equal to the
bound need be considered. As an approximation, only instruction
schedules that are within a time bound are chosen for exploration.
Using this, the size of the schedule space isIB, whereI is the
number of instructions in the ISA andB = w × d, whered is the
time bound andw is the issue width of the machine.

A first approximation ofd can limit it to the depth of the
pipeline. However, for modern wide-issue processors,d can be
further approximated to 1. This observation comes about because



same-cycle hazards are usually more prevalent than inter-cycle haz-
ards. Instruction interaction across cycle boundaries usually occurs
because a resource is consumed for several cycles. Since modern
and embedded processors attempt to fully pipeline functional units,
conflicts arising from multi-cycle resource usage are diminishing.
Thus, for many processors, the set of instruction schedulescan be
limited in size to the width of the machine, essentially ignoring
depth. For processors that are not fully pipelined, it is typically pos-
sible to limitd to small integers.

TheNo Depthbar in Figure 3 shows the results of only detecting
structural hazards in the current cycle, equivalent to setting d = 1.
The x-axis shows the results for five machines across a set of
benchmarks, details of which are in Section 6. The y-axis is the
speedup achieved over scheduling without hazard detection. The
Full bar denotes speedup from using resource maps, while the
No Depthbars shows the speedup obtained with hazard detection
limited to instructions in the current cycle. As the graph shows, the
depth of the instruction schedules is only relevant on the SPARC
machine.
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Figure 3. Speedup over scheduling without resource maps for
scheduling with full resource maps, single-cycle resourcemaps,
and single-cycle resource maps without order.

To illustrate how large and time-consuming the schedule space
can be to exhaustively explore, consider the largest and most com-
plex machine described in Section 6.1, the Itanium 2, which has ap-
proximately 300 instructions and can issue 6 instructions per cycle.
Assuming these values were all known beforehand, an exhaustive
exploration must still search3006 = 7.29×1015 instruction sched-
ules. Assuming a testing implementation that can test10 schedules
each second, it would take2, 311, 643 years to explore all these
schedules.

4.2 Ordering

Another reason for the large instruction schedule space is that every
possible order of each combination of instructions is considered in-
dependently. In practice, however, the order of instructions issued
in the same cycle tends not to matter. This occurs because instruc-
tions tend to utilize the same resources or an identically behaving
set of resources when their position within a cycle is changed.

To take advantage of this, the set of instruction schedules ex-
plored in the reduced space is limited to all unique multi-sets of in-
structions. By exploring only the combinations of instructions us-
ing representative orders, the size of the search space is reduced

from Iw×d to

(

I + w − 1
w

)d

[24], assuming empty slots are

filled with nops. nopsare instructions that utilize a fetch resource,
but consume no back-end resources. When a structural hazardis

found in the reduced space, it can be mapped back to the original
space by taking all permutations of the multi-set.

While the ordering among instructions in the same cycle may
be considered irrelevant, a specific ordering is still chosen for
testing. While a random ordering could be used if ordering is
indeed irrelevant, we have empirically observed that previously
tested orders provide better performance since their behavior is
known. Though ignoring the ordering of instructions is madeeasier
by limiting the instruction schedules to depth 1, the notionof order
independence can be extended to multi-cycle situations.

The No Order bar in Figure 3 shows the results of only de-
tecting structural hazards in the current cycle and ignoring the or-
der of instructions when doing so. While ignoring the order of in-
structions does matter in terms of speedup, the loss is not great,
meaning that effective scheduling can still be performed without
knowledge of order-based structural hazards. Moving to order ig-
norant instruction schedules, the Itanium 2 search space isreduced

to

(

305
6

)1

= 1.06 × 1012 instruction schedules, which can be

searched in33, 742 years (again assuming 10 schedules per sec-
ond).

4.3 Categorization

Another observation that can be used to reduce the space is that
processors’ instructions tend to fall into one of several categories
with respect to their resource usage. These categories may align
with the categories of functionality, such as Load, Store, ALU,
and Branch, but often partitioning solely by functionalityis not
sufficient and, if set incorrectlya priori, can even be detrimental.
Consequently, in the algorithm presented in this paper, categories
are discovered automatically.

We can define a category of instructions as a set of instructions
exhibiting the same behavior in schedules. This allows a canon-
ical instruction to be chosen from each category and be used to
represent all instructions in the category. The set of conflicts deter-
mined for the set of canonical instructions effectively represents the
conflicts of the entire instruction space. By using canonical instruc-
tions, the size of theI term in IB is greatly reduced. In practice,
this number often reducesI from several hundred instructions to
around a dozen or so canonical instructions.

Each instruction category can be viewed as an equivalence class
of instructions. Any pair of schedules,S1 andS2, are equivalentiff
for any triple (i, t, s) ∈ S1 there is a matching tuple(i′, t, s) ∈
S2 such thati and i′ are in the same category. A mechanism
to automatically categorize instructions is presented in Section 5.
The fully reduced search space for the Itanium 2, which contains

approximately 2 dozen categories, now has

(

29
6

)

= 4.7 × 105

instruction schedules, which can be searched in13.2 hours (once
again assuming a rate of 10 schedules per second, pipelining, and
no order). Without the order assumption, there would be246 =
1.9 × 109 instruction schedules that would take6 years to search.

5. Building the Conflict Database
In this section, the observations from Section 4 are used to develop
an algorithm for building the conflict database. The high-level
algorithm for building the conflict database is shown in Figure 4.

The setC represents the set of all categories and all instruc-
tions start out in a single category. A schedule of randomly cho-
sen instructions is created to initialize a random walk. Theran-
dom walk continues until it finds a category suitable for splitting,
returning the category to split,Q, and the schedule template,T ,
with which to split it. The random walk and category splitting are
described in Section 5.1.Split(Q, T ) splits the instructions inQ



1: C = {{All Instructions}}
2: Conflict Database = {}
3: while TRUEdo
4: Q, T = Randomwalk()
5: C = (C \ Q) ∪ Split(Q, T )
6: S = set of schedules formed fromCanonical(C)
7: for s ∈ S do
8: Query the machine with static schedules
9: if s contained a structural hazardthen

10: Update(Conflict Database, {s})

Figure 4. High-level algorithm for building the conflict database

into a set of new categoriesC1, C2, . . . , Cn. After this, a canon-
ical instruction is chosen from each category, enforcing that the
Canonical(Ci) = Canonical(Q) if Canonical(Q) ∈ Ci. The
set of schedules formed by the canonical instructions is exhaus-
tively searched. SinceCanonical(Q) is still a canonical instruc-
tion for some category, the results of all previously testedinstruc-
tion schedules are still valid. Thus, nothing needs to be removed
from the conflict database and the results of this search needonly
be used to add new conflicts to the database. The algorithm then
repeats by starting a new random walk.

The output of this algorithm is a categorization and a conflict
database, which is valid after any exhaustive search on the canon-
ical instructions has finished. Any of the conflict databasesand
categorizations thus produced can be used for hazard detection,
though the algorithm creates a more accurate conflict database as
it is given more time and finds more categories. To use the con-
flict database and categorization during scheduling, the instruction
schedule is converted into a canonical, depth-ignorant, and order-
ignorant version. This version is then used to query the conflict
database and return whether a structural hazard exists. We now de-
scribe the process of automatically classifying instructions into cat-
egories (steps 4 and 5, Section 5.1) and methods for queryingactual
hardware (step 8, Section 5.2).

5.1 Instruction Categorization

Though perfect formation of instruction categories requires knowl-
edge of all structural hazards, in practice, categories canbe approx-
imated by observing differences in schedule execution times. If two
schedules (with no data dependencies) differ in only one instruction
and have differing execution times, then they experience different
structural hazards. Since the schedules differ only by a single in-
struction, the resource utilization, and therefore the category, of the
two instructions must also differ.

Given an initial categorization of instructions, the aboveobser-
vation is used to refine the categories. Any pair of scheduleswith
the properties described above can be used to partition a single cate-
goryC, which occurs as follows. Aschedule template, T , is formed
by taking the common portions of the schedule pair and leaving the
differing portion vacant. Since the pair differs by one instruction,
there is one slot in the resulting template where each memberof the
pair of schedules had a different instruction. The originalcategory
C is discarded, and the instructions inC are placed into new cat-
egories,C1, C2, . . ., based on the execution times observed when
inserting each instruction fromC into the empty slot inT . That is,
all of the instructions inCn have the same execution time when
placed intoT .

An obvious and simple initial categorization is to make all
instructions a single category. If schedule pairs with the appropriate
properties can be found, the refinement process can build a more
accurate categorization. To solve the problem of finding appropriate
schedule pairs, a random walk through the space of instruction
schedules is performed.

The random walk starts with a seed schedule, chosen at ran-
dom from the set of all instructionsI . The walk then randomly
chooses one instruction in the schedule and replaces it witha ran-
dom instruction chosen fromI . Information is gleaned with every
iteration because the new schedule and old schedule differ by ex-
actly one instruction. Additionally, the random walk is very sim-
ple, requiring no complicated heuristics or fore-knowledge, mean-
ing that progress can be made quickly without having any assump-
tions about the underlying hardware. Though a random walk isnot
the only means by which to categorize instructions, as Section 6
will show, the random walk is a highly effective means for forming
categories even when the categorization process ignores order and
schedule depth.
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2) Classification

[i1,i2,i4] => 3 cycles
[i1,i2,i3] => 2 cycles

3) Schedule Template1) Random Walk
Instruction Schedule Space

i4

...
i3

4) Split Instruction Category

[i1,i2,*]

Figure 5. Example of classification

The instruction categorization process is illustrated in Figure 5.
Each step in the walk randomly changes one instruction from the
previous schedule. When two adjacent schedules in the walk are
found with different execution times, a schedule pair has been
found. For example, in Figure 5, the random walk steps from the
schedule[i1, i2, i4] to [i1, i2, i3]. Sincei3 and i4 belong to the
same category and have different execution times, the category is
split. Each instruction from the category is placed into thelast slot
of the schedule, with each unique execution time forming a new
category.

5.2 Querying Actual Hardware

If the machine model queried is actual hardware, detection of re-
source over-subscription may require some engineering effort. A
naı̈ve approach would simply present the hardware with a schedule
and measure the cycle count returned by the processor. If thecy-
cle count is greater than expected, a conflict has occurred. Unfor-
tunately, real processors may not have the measurement accuracy
to perform the test, as most processors do not have cycle-accurate
performance counters. Others, such as the Itanium 2, have perfor-
mance counters which are accurate to a certain tolerance. Ifthe
inaccuracies can be modeled as zero-mean, such as from cache
misses, page faults, etc., or transient noise, then the schedule can be
executed in a loop to negate the noise generated. Existing research
demonstrates strategies to determine execution times of pipelined
processors with non-zero mean noise [11, 29].

When executing instructions in a loop to cancel out noise, care
must be taken to avoid conditions in the processor that are not the
result of structural hazards. Specifically, each iterationof the loop
should effectively clear the pipeline so that there are no effects that
build up in the loop and cause a stall that executing the sequence
only once would not.

In general, such conditions come from instructions that access
memory or instructions that utilize a resource for a long period
of time. Each instruction that accesses memory should utilize the
same address each time around the loop, but should not have the
same or overlapping address as another memory instruction.This
avoids output, anti, and flow dependences through memory and



avoids the variable latency of memory instructions by always hit-
ting in the cache. To avoid stalls that build up from resources used
for several cycles, the loop should be buffered withnopssufficient
to flush the pipeline. Note that the number ofnopsneeded can be
an overestimation, and that the system itself can explore tofind an
approximate number of cycles ofnopsneeded to effectively empty
the pipeline. Additionally, care must be taken to avoid corner cases
that can arise from misalignment of the loop itself to unintended
cache stalls because of the address chosen [5]. Automatic determi-
nation of cache behavior is beyond the scope of this work, buthas
been explored by Yotov et al. [35]. In this paper, all such conflicts
were avoided by ensuring that memory addresses assigned to each
memory reference were independent of such effects.

Additionally, depending on the type of ISA, the algorithm may
be unable to present to the hardware an instruction schedule. In-
stead, it may only be possible to present a sequence of instructions.
If the schedule height of all queries is limited to 1, then allinstruc-
tion schedules correspond directly to instruction sequences. If it is
greater than 1, then data dependences can be used to force instruc-
tions to execute according to a particular schedule. This isnot nec-
essary for the machines explored in this work, and the presentation
of this extension to the technique is beyond the scope of thispaper.

Another issue with hardware queries arises when a machine
fails silently upon structural hazards violation. In such acase, a
compiler can produce invalid, not just inefficient, schedules. To
support this type of machine, the querying framework needs to
be expanded to check results of the computation. Note that the
technique would still be machine independent; the instructions and
their semantics are still a given. This paper does not addresses this
because the machines of interest do not fail silently with structural
hazards; they either stall or throw an exception.

6. Evaluation
Section 5 presented an algorithm that does not build a perfect
conflict database. As a result, there are two potential pitfalls in the
algorithm presented. First, the algorithm could produce a conflict
database that sacrifices too much performance. This inaccuracy can
come about because the machine model queried does not match
the actual hardware or from the approximations made during the
conflict database formation. Second, the algorithm could take too
much time to produce a useful conflict database. This sectionshows
that neither occurs in practice for a variety of machines.

6.1 Exploration Setup

The conflict database was implemented as a simple hash table and
contained only the structural hazards found by the algorithm in Sec-
tion 5. To determine if an instruction schedule contains a structural
hazard, the instruction schedule is converted to a canonical, depth-
ignorant, and order-ignorant version and then used as a query to
the conflict database. This allowed efficient lookup for the sched-
uler while maintaining a reasonable conflict database size.Imple-
mentations based on other data structures are possible, as nothing
in the technique assumes a specific implementation. To determine
the quality of the algorithm, it was evaluated on several machines.

Idealized EPIC machine A 4-issue machine with 2 ALUs, 2 float-
ing point (FP) ALUs, 1 Divide unit (DIV), 2 memory units, and
1 branch unit. There are no ordering or depth constraints in this
processor.

TI TMS320C3x A 2-issue machine with resources for auxiliary
register file access, 1 ALU, 1 multiply unit (MUL), 2 memory
ports, and 1 branch per cycle. All resources modeled for the TI
TMS320C3x have no ordering or depth constraints.

SPARC Viking 8 A 3-issue machine with resources for 1 FP ALU,
1 FP MUL, 1 FP DIV, 1 Shifter, 4 Register File (RF) Read
Ports, and 2 RF Write Ports. There are several instructions in
the Viking 8 (e.g. branches) that utilize resources for 2 or more
cycles. Additionally, branches must be the last instruction in a
set of issuing instructions.

Itanium (Merced) The Itanium is the first implementation of the
Intel Itanium Processor family and is a six-issue machine. It
has 2 integer units, 2 FP units, 2 memory units, and 3 branch
units. There are no instructions that utilize a resource formore
than one cycle; however, certain instructions have ordering con-
straints. Additionally, the execution units are not symmetric
with respect to the instructions they can execute (e.g. certain in-
structions can only execute on one functional unit even though
there are two units in the class).

Itanium 2 (McKinley) The Itanium 2 is the second implementa-
tion of the Intel Itanium Processor Family (IPF) and is a six-
issue machine. It has 2 integer units, 2 FP units, 4 memory
units, and 3 branch units. There are no instructions that utilize a
resource for more than one cycle; however, certain instructions
have ordering constraints. Additionally, the integer and mem-
ory unit sets are not symmetric with respect to the instructions
they can execute.

To evaluate the effectiveness of a conflict database for hazard
detection, several detectors were implemented for comparison.

No Hazard The base hazard detector for comparison is a hazard
detector that never detects a hazard.

Full Hazard A hazard detector that uses existing complete re-
source maps to determine if a structural hazard exists.

No Depth A modified Full Hazard detector that uses resource
maps with structural hazard detection limited to the current
cycle, which ensures that the only structural hazards foundare
intra-cycle structural hazards.

No Order This detector is the same as theNo Depthdetector ex-
cept that the instructions are arranged in an arbitrary order in
the current cycle before hazard detection is performed. Theor-
der chosen is a sorted order based on a random numbering of
the instructions, which ensures an arbitrary but consistent or-
dering. This detector effectively ensures that the only structural
hazards that occur are ones that occur regardless of order inthe
current cycle.

Conflict DatabaseA hazard detector based on an automatically
generated conflict database for a randomly selected set of
canonical instructions. To determine if an instruction sched-
ule contains a structural hazard, the instruction scheduleis
converted to a canonical, depth-ignorant, and order-ignorant
version and then used as a query to the conflict database. The
conflict database is then queried with the canonical schedule.

The No HazardandFull Hazard detectors represent the lower
and upper bounds, respectively, of the performance of theConflict
Databasehazard detector on an optimal scheduler. The hazard de-
tectors were developed in the OpenIMPACT compiler [28]. They
were evaluated by scheduling the SPEC CINT2000 benchmark
suite, compiled with standard optimizations using the OpenIM-
PACT compiler. The OpenIMPACT compiler uses a list-scheduling
algorithm with a heuristic that gives higher priority to instruction
that lead to exits. Profiles were gathered on train inputs andrun-
time performance was measured on reference inputs.
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Figure 6. Static Schedule Height - EPIC-4

6.2 Reverse-Engineering Using a Compiler

To determine the effectiveness of the technique described in Sec-
tion 5, we first run the technique on a compiler that models the
resource usage during scheduling.

The conflict database is formed by querying the schedule man-
ager (SM) in the OpenIMPACT compiler. SM has a complete re-
source map for each of the machines and can be queried with a
static schedule. An in-order version of SM that schedules without
reordering instructions, but that respects all structuralhazards in the
hardware, was developed to get the true static schedule height. Each
benchmark was scheduled using each hazard detector and thena to-
tal static schedule height was calculated by multiplying the profile
weight by the in-order schedule height.

Figures 6-8 show the speedup of each hazard detection mecha-
nism over theNo Hazarddetector for three of the machines. The
Full Hazard detector provides a theoretical upper bound on the
speedup that can be obtained by any of the detectors as this de-
tector is aware ofall conflicts. This bound is theoretical due to the
heuristic nature of the list scheduler which may produce a better
schedule with different or less accurate information. TheNo Depth
and No Order hazard detectors provide theoretical upper bounds
on the speedup that the categorization and exploration algorithm
can obtain, as discussed in Section 4. The conflict database formed
from the compiler is theCM-Conflictbar.

Figure 6 shows the results for the generalized EPIC proces-
sor, which represents a broad class of processors (such as the
FR500 [33] and the Lx/ST200 [14]) that are relatively wide and
that have sufficient structural hazards to warrant scheduling with
hazard detection. Since the machine has no depth or orderingcon-
straints, the technique finds all categories and achieves performance
equivalent to using full resource maps. While full resourcemaps for
this machine are relatively simple, the purpose of this machine is to
show that the technique can perform well in general. The other ma-
chines show how the technique performs in the presence of more
complex structural hazards.

Figure 7 shows the results for the TI TMS320C3x. The graph
shows that the conflict database hazard detector performs the same
as theNo Order, No Depth, and Full hazard detectors, meaning
that the categorization algorithm found all categories andthat the
conflict database represented all conflicts. This is not surprising
given that the resources for the TI TMS320C3x have no ordering
or depth constraints.
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Figure 7. Static Schedule Height - TI TMS320C3x
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Figure 8. Static Schedule Height - SPARC Viking 8
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Figure 9. Static Schedule Height - Itanium
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Figure 10. Static Schedule Height - Itanium 2

Figure 8 shows the results for the SPARC Viking 8 processor.
Since the SPARC contains instructions with depth and order con-
straints, particularly branches, there is a performance loss when ig-
noring order and depth. As the figure shows, the Conflict Database
hazard detector is able to obtain 94% of the potential speedup, and
performs as well as theNo Orderhazard detector. This implies that
most of the relevant categories and thus conflicts were foundduring
the conflict database formation.

As Figures 9 and 10 show, theCM-Conflict conflict database
realizes 89% and 81% of the potential performance improvement
for the Itanium and Itanium 2, respectively. The graphs alsoshow
that the conflict database is as good as resource maps for hazard
detection provided instruction order is ignored. Further analysis of
the produced schedules indicate that theDeposit andExtract
instructions (which must be the first integer instruction issued in a
given cycle) account for the majority of the slowdown due to the
No Orderheuristic. This suggests that one could explore method-
ologies for determining if an instruction is an order-dependent in-
struction to recover this lost performance.

Note that the hazard detectors that use theCM-Conflictconflict
database (which ignores hazards due to instruction order) slightly
outperform theNo Order detector on several benchmarks for the
SPARC machine and 253.perlbmk for the Itanium 2 machine. This
occurs because the order of the instructions used to detect hazards is
different from the scheduled order. Specifically, the order-ignorant
resource maps encode a conflict for a sequence of instructions if
even oneordering of that sequence conflicts. This occurs even if the
actual instruction order in the final schedule has no conflict. The
generated hazard detectors, however, fail to detect that a conflict
exists at all, generating a better schedule.

We now examine the time required to derive the instruction
categories and exhaustively search the reduced space. To form the
CM-Conflictconflict database, the algorithm presented in Section 5
was run on a 2.8GHz Pentium 4 with 1 Gb of memory and averaged
approximately 15,000 instruction schedule tests per hour or 4 tests
per second. The implementation of the random walk used in this
evaluation is itself subject to the no-order and no-depth constraints.
Because of this, it may not find all the categories that actually
exist. Additionally, due to the heuristic nature of the listscheduling
algorithm used in IMPACT, more accurate structural hazardsmay
cause a less optimal schedule to be chosen.

Figure 11 shows the speedup of each conflict database formed
after each exhaustive search for 4 of the machines. The EPIC-4
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Figure 11. Schedule Height Speedup over time forCM-Conflictas
a percentage attained byFull. Lines end when search is terminated.

conflict database converged to the resource map speedup in under
10 minutes and is not shown. For the remaining machines, the top
of the graph represents the speedup of theFull hazard detector
as shown by theGeo.Meanbar in Figures 7-10. As Figure 11
shows, the algorithm quickly achieves a large portion of thetotal
conflict database speedup within 10 minutes. After 2 hours, it has
effectively determined all conflicts that it is likely to findthat are
relevant to schedule performance. After halting the algorithm, it has
achieved, 100%, 82%, 89%, and 81% of theFull hazard detector
performance for the TI, SPARC, Itanium, and Itanium 2 machines
respectively.

6.3 Reverse-Engineering Using the Hardware

The previous section dealt with reverse-engineering the structural
hazards from a compiler. A more realistic scenario might involve
directly querying the hardware to generate the conflict database.
This section explores the ability to query to machines and shows
that the generated conflict database performs as good as the conflict
database generated from a compiler.

6.3.1 Hardware Conflict Database Schedule Height

Itanium Itanium 2
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Figure 12. Schedule Height Speedup over time forHW-Conflictas
a percentage attained byFull. Lines end when search is terminated.

The hardware queried conflict database was formed for both the
Itanium and Itanium 2. Queries to the hardware were performed
by placing the instruction schedule to be tested inside a counted
loop that was executed 100,000 times. This number was arrived at
by hand testing a small set of schedules until the one-time costs of
the loop, as discussed in Section 5.2, were removed when dividing
by the iteration count. The loop was also buffered with 6 cycles



of nops to ensure the pipeline was empty and to avoid structural
hazard across loop iterations. Execution times were obtained using
the performance counters of the IPF architecture and thepfmon
tool [13]. The Itanium machine used was a HP i2000 workstation
with a 733Mhz Itanium and 1Gb of memory, while the Itanium 2
machine used was a HP workstation zx2000 with a 900Mhz Intel
Itanium 2 processor and 2Gb of memory. Both systems run Redhat
Advanced Workstation 2.1. The system averaged 12,000 instruction
schedule tests per hour or 3 tests per second.

TheHW-Conflictbar in Figures 9 and 10 represents the speedup
of the hardware queried conflict database over theNo Hazardhaz-
ard detector and shows that it realized 89% and 81% of the poten-
tial performance improvement for the Itanium and Itanium 2 ma-
chines, respectively. Essentially, theHW-Conflictconflict database
achieves equivalent speedup to theCM-Conflictconflict database
generated from the compiler. This shows that hardware can beused
to build an effective conflict database.

Figure 12 shows static schedule height speedup over time for
the HW-Conflictconflict database after each exhaustive search on
the Itanium and Itanium 2 machines. Once again, the top of the
graph represents the final speedup of theFull hazard detector. As
with the CM-Conflicthazard detector, the algorithm still achieves
a large portion of the total conflict database speedup within10
minutes. Within 3 hours, it has effectively determined all conflicts
that are relevant to schedule performance, given the no-order, no-
depth assumptions. When the algorithm is halted, theHW-Conflict
hazard detector has achieved 89% and 81% of theFull hazard
detector performance for the Itanium and Itanium 2 respectively.

6.3.2 Hardware Conflict Database Runtime Performance

Since the machines being used are real hardware, it is also possible
to generate runtime numbers for the hazard detectors. Figures 13
and 14 show that the execution time speedups for Itanium and Ita-
nium 2 processor, respectively. As the graphs show, static schedule
height improvement does not translate directly into runtime perfor-
mance improvement. Overall, full resource maps lead to a 2.70%
and a 3.22% gain in runtime performance on the Itanium and Ita-
nium 2 processor, respectively. For the Itanium, theHW-Conflict
conflict database realizes 88% of the possible performance gain,
while theCM-Conflictconflict database achieves 84% of the possi-
ble performance gain. For the Itanium 2, theHW-Conflictconflict
database achieves realizes 84% of the possible performancegain,
while theCM-Conflictconflict database realizes 82% of the possi-
ble performance gain.

Since schedule height does not directly translate into runtime
performance, the overall effect of hazard detection is reduced on
real hardware. This is due to differences in input sets whichaffect
the accuracy of the scheduling heuristic, variable latencyinstruc-
tions, the heuristic nature of the scheduling algorithm, and different
register pressure from different schedules.

Figure 15 shows the runtime speedup over time for theHW-
Conflict conflict database after each exhaustive search on the Ita-
nium and Itanium 2 machines. For each machine, the top of the
graph represents the final speedup of theFull hazard detector as
shown by theGeo.Meanbar in Figures 13 and 14. As Figure 15
shows, the algorithm quickly achieves a large portion of theto-
tal conflict database speedup within 10 minutes. However, due to
the variability of the dynamic runtime, the speedup over time is
harder to discern. As the lines in the Figures show, theHW-Conflict
actually achieves better performance earlier in the process, due to
varying dynamic effects. Even so, within 3 hours, it has effectively
determined all conflicts that are relevant to schedule performance.
When the algorithm is halted, theHW-Conflicthazard detector has
achieved 88% and 84% of runtime gain of theFull hazard detector
performance for the Itanium and Itanium 2 respectively.
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Figure 13. Runtime Speedup - Itanium
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Figure 14. Runtime Speedup - Itanium 2
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Figure 15. Runtime Speedup over time forHW-Conflictas a per-
centage attained byFull. Line ends when search was terminated.

6.4 Verifying Man-Made Machine Descriptions

As discussed in the introduction, man-made machine descriptions
are tedious to create, which often leads to errors in the description.
The Itanium 2 machine description was created in August 2000
and has been used for the IMPACT group’s research into the Ita-
nium architecture since that time. Given this, errors in themachine
description are likely to have been found and corrected. However,
the reverse-engineering described here was able to find errors in the
resource maps for three instructions,shr, shl, andshr.u.



As a simple test of the validity of IMPACT’s resource maps,
we compared the number of times each instruction could issue
with itself on both the manually-derived resource maps (SM)and
the automatically reverse-engineered conflict database. This means
that for a given instructionA, the schedulesAA, AAA, and so on
were tested. This allowed us to determine if any instructionhad an
inappropriate number of resources assigned to it in either case.

This process uncovered that the immediate version of theshl,
shl r1 = r2, imm6, for the Itanium and Itanium 2 were not prop-
erly modeled in the SM resource maps of the IMPACT compiler.
Specifically, the immediate version of theshl is a pseudo-op of
dep.z, which can only execute as the first integer type instructionin
a cycle. Thus, only one immediateshl can execute per cycle. How-
ever, the register version ofshl, shl r1 = r2, r3, is not a pseudo-op
and can issue on either integer unit, allowing up to two to execute
per cycle. The IMPACT compiler’s resource maps incorrectlyindi-
cate that the immediate version ofshl uses the same resources as
the register version. This error does not exist because resource us-
age is assigned by opcode, as IMPACT’s register maps distinguish
between different operand formats for each opcode. Instead, it is
likely that the person creating the machine description didnot read
the Itanium 2 Instruction Reference Manual in conjunction with the
Itanium 2 Processor Reference Manual. The instruction reference
indicates thatshl with an immediate is a pseudo-op ofdep.z, but
the processor reference says thatshl ar = ar, ar can issue twice
in a cycle.ar is not explained and it is easy to mistake the resource
usage for both versions ofshl. Theshr andshr.u instructions have
similar resource usage patterns and also suffer from this error.

7. Conclusion
This paper demonstrates that it is impossible to provably iden-
tify all the structural hazards in a machine ahead of time. Italso
presents a heuristic approach that reverse-engineers the structural
hazards of the machine being explored using three observations
that make reverse-engineer possible and tractable by selecting a fi-
nite subspace of the instruction schedule space to explore.Finally,
it presents an algorithm to automatically determine instruction clas-
sifications that monotonically improves as categories are split.

We experimentally demonstrate that short exploration times can
detect most structural hazards needed for scheduling. In fact, static
schedules, constructed from exploring both the compiler and hard-
ware for several machines, achieve 81-100% of the performance of
scheduling with perfect structural hazard information. Ontwo real
IA-64 machines, these schedules achieve 82-88% of the runtime
performance gain of perfect structural hazard information.

We plan to explore the effect of providing information to theal-
gorithm, both for verification purposes and to assist in exploration.
We are also interested in modifying the algorithm detect when an
instruction is order-dependent or depth-dependent and to incorpo-
rate this into the conflict database. Finally, we would like to explore
the practicality of our algorithm on machines with complex micro-
architectural structures, such as a trace cache.
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[23] K ÄSTNER, D. TDL: A hardware description language for retargetable
postpass optimizations and analyses. InProceedings of the
Second International Conference on Generative Programming and
Component Engineering(2003), pp. 18–36.

[24] KNUTH, D. E.The art of computer programming, volume 2 (3rd ed.):
seminumerical algorithms. Addison-Wesley Longman Publishing
Co., Inc., 1997.

[25] LAM , M. S. Software pipelining: An effective scheduling technique
for VLIW machines. InProceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(June 1988), pp. 318–328.

[26] M ILNER, C. W.,AND DAVIDSON, J. W. Quick piping: a fast, high-
level model for describing processor pipelines. InLCTES/SCOPES
’02: Proceedings of the Joint Conference on Languages, Compilers
and Tools for Embedded Systems(2002), pp. 175–184.

[27] M ISHRA, P., DUTT, N., AND NICOLAU , A. Functional abstraction
driven design space exploration of heterogeneous programmable
architectures. InProceedings of the International Symposium on
System Synthesis(October 2001), pp. 256–261.

[28] OPENIMPACT. Web site: http://gelato.uiuc.edu.

[29] PARENT, J. Detecting instruction scheduling constraints, May 2003.
Senior Thesis, Department of Computer Science, Hamilton College.

[30] PROEBSTING, T. A., AND FRASER, C. W. Detecting pipeline
structural hazards quickly. InProceedings of the ACM Symposium on
Principles of Programming Languages(January 1994), pp. 280–286.

[31] RAJAGOPALAN, S., VACHHARAJANI , M., AND MALIK , S. Han-
dling irregular ILP within conventional VLIW schedulers using
artificial resource constraints. InProceedings of the International
Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES)(November 2000), pp. 157–164.

[32] RAMSEY, N., AND DAVIDSON, J. Machine descriptions to build
tools for embedded systems. InProceedings of the ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for Embedded
Systems, Lecture Notes in Computer Science(June 1998), vol. 1474,
pp. 172–188.

[33] SUGA, A., AND MATSUNAMI , K. Introducing the FR500 embedded
microprocessor.IEEE Micro 20(July 2000), 21–27.

[34] WAHLEN , O., HOHENAUER, M., LEUPERS, R., AND MEYR, H.
Instruction scheduler generation for retargetable compilation. Design
& Test of Computers, IEEE 20, 1 (January 2003), 34–41.

[35] YOTOV, K., PINGALI , K., AND STODGHILL , P. X-ray: A tool for
automatic measurement of hardware parameters. InProceedings
of the 2nd International Conference on Quantitative Evaluation of
SysTems(2005).

[36] ZIMMERMAN , G. The MIMOLA design system: A computer aided
processor design method. InProceedings of the 16th Annual Design
Automation Conference(1979), pp. 53–58.
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