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Abstract

In order to generate high-quality code for modern processar
compiler must aggressively schedule instructions, maimire-
source utilization for execution efficiency. For a compiterpro-
duce such code, it must avoid structural hazards by beingaafa
the processor’s available resources and of how these ressiare
utilized by each instruction. Unfortunately, the most pient ap-
proach to constructing such a scheduler, manually disdogeand
specifying this information, is both tedious and error4peo

This paper presents a new approach which, when given a pro-
cessor or processor model, automatically determines tticgina-
tion. After establishing that the problem of perfectly deti@ing
a processor’s structural hazards through probing is notvable,
this paper proposes a heuristic algorithm that discoverstus
this information in practice. This can be used either todlée the
problems associated with manual creation or to verify arstxg
specification. Scheduling with these automatically detis&ruc-
tural hazards yields almost all of the performance gain agkd
using perfect hazard information.

Categories and Subject Descriptors  D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restrutgy

reverse engineering, and reengineering; D.3Rroframming

Languagef Processors—Retargetable compilers

General Terms Measurement, Experimentation, Verification, Al-
gorithms

Keywords reverse-engineering, instruction scheduling, compil-
ers, automatic retargeting, structural hazard

1. Introduction and Motivation

Instruction scheduling, an important optimization in modeom-
pilers, attempts to minimize the execution time for a senefruc-
tions by orchestrating the order of their execution. Scliadus
particularly important for wide-issue machines, wheretrinstion
level parallelism (ILP) is a key source of performance, ds ie-
sponsible for presenting sets of instructions for conaurexecu-
tion. A naive instruction scheduler that does not respesource
limitations may present the hardware with data-independpera-
tions unable to execute concurrently duestauctural hazardsthe
over-subscription of limited machine resources. Thus,d@fiec-
tive, an instruction scheduler must not only be aware of dafsen-
dences but also of the processor’s resource limitations73p
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Figure 1. Basic Scheduling Algorithm

Figure 1 shows how a typical scheduler might avoid stru¢tura
hazards using bazard detectoduring scheduling. In each step, the
scheduler proposes adding an instruction to the existihgcude
producing a candidate schedule. The instruction is chossed
on a heuristic function which weighs several concerns,uidicig
the belief that the data dependences for the instructioh beil
satisfied in this cycle in the final schedule. The hazard detés
queried by the instruction scheduler with the candidateeduale
and determines whether this schedule now contains a stalictu
hazard. If it does not, the candidate schedule is kept. @iker
the scheduler will respect the structural hazard and loolotber
scheduling alternatives to propose.

Hazard detectors traditionally use resources encodeck4n
source mapf8, 10, 15, 17], which describe the resources consumed
by an instruction as it flows through the processor. Usinguese
maps, a hazard detector can determine when a structuratchaza
conflict will occur. The diversity of instructions in instructiorets
architectures (ISA), coupled with numerous asymmetrioueses
in modern microarchitectures, yields large and compleouese
maps. Consequently, manually describing the resource ofams
ISA can be a tedious and error prone process [26].

To automate resource map generation, techniques based on a
formal processor model have been proposed [16, 34]. These re
quire that the model be developed in architecture desorigtn-
guages (ADL) such as TDL, LISA, etc. [23, 36, 37]. Unfortueigt
in practice, ADLs are not useful to compiler writers. The treasm-
mon problem for compiler writers is that an ADL specificatioay
not be available for the target processor. There are sexesabns
for this. First, there is no standard ADL. Of those that hagerb
proposed, none can accurately describe the wide class lufese
tures used today [27]. Second, while ADL descriptions dateeir
some machines, the languages themselves often includmpassu
tions about a set of machines. This means that the final tileel
design constraints often deviate from the ADL specificatonl
the abilities of the ADL itself, making the ADL inaccuratenglly,
even if an accurate ADL were to exist for a given machine, glmhi
be kept as a trade secret. For most processors, these psofvieam
that compiler writers must look to other approaches for
map generation.

The solution most commonly pursued by compiler writers is to
manually create enachine description filgt, 8, 15] to provide haz-
ard detectors with machine-specific resource maps. Thedsuilt
from publicly available information, usually in the form wistruc-
tion and processor reference manuals. The accuracy ofshéirey



resource maps is dependent upon both the accuracy of thiemeée
manuals and the thoroughness of the compiler writer whaopnits
these manuals. Unfortunately, the manuals are often comnipded

to read, and contain inaccuracies or contradictions. Famgte,
the Itanium 2 processor manual [22] and microarchitectuag-m
ual [21] make contradictory statements regarding the ol of
bank conflicts in the L2 data cache. The former states thatya 7 ¢
cle latency for the data to be retrieved, while the lattetestan 11
cycle latency.

Even when the manuals are correct, the compiler writer may
make a mistake when writing the description. High-level hiae
description languages have been proposed [17, 23, 37]doiaté
this problem by factoring descriptions into simpler paHswever,
creating these descriptions is time-consuming since tlitemmust
still model the inherently complex interactions presera microar-
chitecture [9, 16]. For example, the Itanium 2 IMPACT maehin
description, written in the high-level IMPACT MDes, take&0®
lines to describe 309 instructions. Even though resouritization
in the Itanium 2 can be broken down into categories, the hagdl
constraints, unigue to this microarchitecture, are 80edialone
and took approximately a month to add [20]. Even after maryye
of use, this description still contains several errors aswhin Sec-
tion 6.4.

Since ADL or other formal descriptions often do not exisg th
manuals are often incomplete or inaccurate, and consbrudty
hand is error prone, perhaps structural hazard informatind be
automatically extracted from the processor itself. Thetigbution
of this paper is to show that such an approach is viable. Téis p
per describes and demonstrates the previously unexplpmdach
of automatically reverse-engineering structural hazéas a real
processor or, in general, any machine model. The techngcem-
patible with any processor design methodology and toolrtaaid
it only requires a machine or simulation model that can rethe
execution time of a program executed on it. While this papeves
that automatically reverse-engineerialyj structural hazards by ob-
serving only the machine’s behavior is impossible in allesast
also demonstrates that a heuristic-based approach camméteze
almost allstructural hazards in practice. This automatically deter-
mined structural hazards can be used to alleviate the prabées-
sociated with manual creation or to verify an existing sfieafion.
We show that scheduling with these automatically derivedcst
tural hazards yields almost all of the performance gainexad
using perfect hazard information. Additionally, our te@jue sug-
gests hybrid approaches in which manual specification afures
maps is validated by automatic reverse-engineering arewacsa.

The rest of the paper is organized as follows. Section 2 dis-
cusses work related to resource maps, hazard detectionawand
tomatic compiler construction. Section 3 describes thdlera of
automatic determination of structural hazards. Practidteerva-
tions used to reduce the search space are given in SectidredeT
observations are used to produce an algorithm for autonestic
ploration in Section 5. This algorithm is evaluated for bsthtic
schedule height reduction and runtime performance in Sedi
Finally, Section 7 concludes.

2. Related Work

Many people have have recognized the promise of automatie co
piler retargeting, either by directly retargeting the calep or
through the automated synthesis of a compiler. Collbergritess
how to reverse-engineer an entire compiler by querying stiag
C compiler for the machine being reverse-engineered [6} te-
lated area, Engler et al. describe a technique for revargayeering
the operation encodings for a machine via queries to aniegias-
sembler [12]. Yotov et al. describe how to use microbenclmar
and an existing C compiler to automatically derive micrditexc-

tural hardware parameters related to memory, such as céobe s
and associativity [35]. Dupré et al. describe a method toraat-
ically derive an instruction scheduler for machines givetyele-
accurate VLIW simulator with superscalar-like dynamicndaying
capabilities that can report the status of each instruatiomg ex-
ecution [9]. Description languages, such as ADLs, and astwat
tools for automating the synthesis of compilers and sinousafrom

a single description have been proposed [32, 37, 37, 23].

Non-automatic retargeting of compilers has also been stlidi
Bradlee et al. created Marion, a system for retargetinguoton
selection, instruction scheduling, and register allaratirom a
machine description [3]. Hanono et al. describe similaanggting
in the embedded processor domain using the AVIV retargetabl
code generator [18].

Researchers have also explored the area of representétions
efficient hazard scheduling. Resource maps were proposed by
Davidson et al. [7]. Additional representations based oitefstate
machine hazard detectors have also been proposed [2, 36 Wo
also exists on factoring and optimizing resource-map-thasa-
chine descriptions to improve compile time [10, 17].

While instruction schedulers can be automatically retmde
no technique yet proposed can do so automatically from &blac
box machine. This paper draws inspiration from Baker, wheoad
cates the automatic reverse-engineering approach t@etiag of
instruction schedulers [1].

3. Structural Hazard Discovery Problem

The task of the hazard detector is to determine whether aruais
tion schedule contains structural hazards. On an ideafirchine

or machine modé| structural hazards are revealed when a sched-
ule takes longer to execute than expected. Thus, the taayshine
itself can be used as a hazard detector during schedulindJft]
fortunately, this is impractical as instruction schedslguery the
hazard detector repeatedly during the scheduling of easthuicx
tion. This means that adding even a small amount of overhead t
each query will quickly accumulate, significantly increasicom-
pilation time. Additionally, the overhead of each query igikely

to be small, as itincludes the time to prepare the code fargian
(e.g. register allocation), to execute it, and to evaluagerésult.

Since querying the actual machine during compilation issexp
sive, the alternative is to query the machmeriori, that is, be-
fore the compiler is created, and to store the results ooralict
databaseldeally, the conflict database is both sound, all stru¢tura
hazards it contains are correct, and complete, it contdirstrac-
tural hazards. One methodology for obtaining this is to rese
engineer the machine or machine model, as the machine is both
sound and complete with respect to the structural hazaatseth
ist in it. Unfortunately, as we now prove, an algorithm binlgl a
conflict database solely by reverse-engineering canno kmoen
the conflict database is complete. Despite this theoratigabssi-
bility, the remainder of this paper shows that reverse-asgjiing
in practice can identify enough (possibly all, but not knogly so)
structural hazards to produce high-quality instructiohestules at
compile time.

The theoretical impossibility for perfect structural hedzdeter-
mination stems from the unbounded number of possible icstmi
schedules with hazards. Since exhaustive exploration sthed-
ules is impossible, some finite set must be used instead.rUnfo
tunately, as we will prove, all finite subsets can miss somest
tural hazards. Conceptually, there may exist some straldbaizard
which manifests itself only for schedules larger than anthifi-

1An idealized machine is one free from noise generated byecatfects,
page faults, etc. Section 5.2 discusses how to measureuebenh real
machines.



nite set. Before formally proving this, we will introducerse ter-
minology to aid in discussion.

Definition 1. Aninstruction scheduleor scheduleis a collection
of (instruction, issue time, issue slot) tuples. Each tigsatifies an
instruction that is to be executed, the time that it shouldsbaed,
and the issue slot, within that cycle, in which it is issued.

Definition 2. A static schedulds a schedule that describes the
compiler’s belief about how the instructions will execute.

Definition 3. Anexecution schedulier a given static schedule and
machine is the schedule of when instructionsatuallyissued on
the given machine, instead of the time that the compileebet
the instructions would issue.

Definition 4. Theschedule heightf a schedule is
(last instruction issue time- earliest instruction issue time 1).

Definition 5. A machineaccepts a static schedule and outputs the
schedule height of the execution schedule.

Definition 6. A resource maps a set of resource usage tuples
(R,t), where R is the resource used and t is the time the resource
is used, relative to the issue time of the instruction.

Definition 7. An instruction withscheduling alternativesas a set
of resource maps, each of which describes a potential resous-
age when it executes. Scheduling alternatives that alloimstnuc-
tion to execute without a structural hazard are chosen leetores
that will cause a structural hazard on an ideal machine.

Using the definitions above, we now formally define 8teuc-
tural Hazard Discovery ProblefSHDP). The problem is to create
an algorithmA that can create another algorithm that can perfectly
answer any and every query about structural hazards for himac
M. That is, A constructs another algorithmd,;, a generalization
of the conflict database to an algorithrh,, determines if a given
static schedule contains a structural hazardnA can queryM
with a finite, though unbounded number of static scheduleseT
flect that the machind/ can only be queried priori, A is not
allowed to queryM . We prove that this is impossible for machines
that can be characterized by resource maps, which implagsitth
is impossible in the general case. Resource maps can be ased t
describe, among others, modern processors and machineg-wit
regular constraints [31], as are often found in embeddedgssors.
Theroem 1 proves that SHDP is not solvable for a general ofass
machines.

Theorem 1. SHDP for machines whose structural hazards can be
characterized by resource maps is unsolvable.

Proof. We will prove the theorem by contradiction. Assume there
is a deterministic algorithmd that, given a machiné/ (that can
be described using resources), can produce, by queiingith a
finite number of schedules, an algorithin,. Ay can determine
if an input static schedule contains a structural hazart(lLee the
set of all static schedules tested Ayn M. Let h be the maximum
static schedule height it. Finally, lett be the maximum time that
aresource is used in any schedule&’in

Construct a new machin®’ from M, whereM' has the same
resources and resource usage patternd/asiith the following
additions. LetS represent the maximum number of instructions
in any tested schedule, aid = maz(h,t) + 1. Let M’ have
S new resourcesRi, Rz, ..., Rs. For each instruction], in M
with scheduling alternatives,, . . ., a, let the same instruction in
machineM’ haveS x n scheduling alternativeaj, ais, . . ., a,s.
For eachl < k < S alternativea;; uses resourc&y, from time 1
to time 1/, relative to the instruction issue time. Figure 2 shows a
resource assignment far= 1 andS = 3.

al RL R2 R3 a2 R1 R2 R3 R1 R2 R3

1

a3

h’ h’

Figure 2. Examplen =1,5 =3

Since the behavior o/ is identical to the behavior af/’ for
all schedules whose heightish, Ay = Ajyr. Forany instruction
1, consider the schedulé’, 1,0),(1,2,0),...,(I,S,0),(I,S +
1,0)), which causes a conflict at timig on M’, but cannot cause
a conflict inM by construction. Therefored,; = Ay will either
accurately characterize machiné or machineM’, but not both.
This contradicts the assumption thésolves SHDP. |

Corollary 1. The SHDP is unsolvable in general.

Proof. It follows directly from Theorem 1 that SHDP is unsolvable
in general because it is unsolvable for the special case ohimes
that can be described using resources. a

Since SHDP is unsolvable, it is impossible for an algoritlam t
provably determine all structural hazards of every maclain®i-
ori. Thus, it is also impossible for such an algorithm to knowng
create a complete conflict database. In practice, though,pios-
sible to bound the number of instruction schedules necgssar
explore using machine properties such as the number ofigrans
tors, the maximum number of cycles a resource is used by &esing
instruction, the number of instructions in the ISA, etc.

Unfortunately, as shown in Section 4, even with this informa
tion, the space of instruction schedules that must be exglordis-
cover all structural hazards typically remains too largeg@xhaus-
tively explored. However, it is possible to construct a gapgrox-
imate conflict database in practice by identifying certaictural
hazards and inferring the existence of additional strattugzards.
The remainder of the paper describes the observations osed t
fer additional structural hazards, proposes an algorithoohstruct
the conflict database, and shows that it works well in practic

4. Reducing the Instruction Schedule Space

As we saw in Section 3, building a complete conflict database
would require testing an infinite number of schedules. Tovall
reverse-engineering to finish in a finite amount of time, wegdo
building a complete conflict database by searching only aefini
subspace of instruction schedules. The following subsestshow
how to select a candidate finite subspace that can be exgloeged
tractable amount of time. Section 4.1 selects an intragtige,

but finite subspace, while the remaining subsections prhige t
subspace down to a tractable size, which can be searchedin a f
hours.

4.1 Pipelining

If one can assume that there exists a bound on the length efatim
instruction can have an effect on the timing of other instours,
then only schedules whose height is less than or equal to the
bound need be considered. As an approximation, only irsbruc
schedules that are within a time bound are chosen for expora
Using this, the size of the schedule spacd s whereT is the
number of instructions in the ISA anl = w x d, whered is the
time bound andb is the issue width of the machine.

A first approximation ofd can limit it to the depth of the
pipeline. However, for modern wide-issue processargan be
further approximated to 1. This observation comes aboualrse



same-cycle hazards are usually more prevalent than iptée-baz-
ards. Instruction interaction across cycle boundariesllisaoccurs
because a resource is consumed for several cycles. Sincermod
and embedded processors attempt to fully pipeline funationits,
conflicts arising from multi-cycle resource usage are digfiimg.
Thus, for many processors, the set of instruction schedidade
limited in size to the width of the machine, essentially igng
depth. For processors that are not fully pipelined, it iSasfy pos-
sible to limitd to small integers.

TheNo Depthbar in Figure 3 shows the results of only detecting
structural hazards in the current cycle, equivalent taregptt = 1.

found in the reduced space, it can be mapped back to the akigin
space by taking all permutations of the multi-set.

While the ordering among instructions in the same cycle may
be considered irrelevant, a specific ordering is still cimosar
testing. While a random ordering could be used if ordering is
indeed irrelevant, we have empirically observed that mmesiy
tested orders provide better performance since their hehas
known. Though ignoring the ordering of instructions is madsier
by limiting the instruction schedules to depth 1, the notborder
independence can be extended to multi-cycle situations.

The No Order bar in Figure 3 shows the results of only de-

The x-axis shows the results for five machines across a set of tecting structural hazards in the current cycle and igrgtire or-

benchmarks, details of which are in Section 6. The y-axidés t
speedup achieved over scheduling without hazard detecTioa

der of instructions when doing so. While ignoring the ordeime
structions does matter in terms of speedup, the loss is ratt,gr

Full bar denotes speedup from using resource maps, while themeaning that effective scheduling can still be performetheuit
No Depthbars shows the speedup obtained with hazard detection knowledge of order-based structural hazards. Moving te@iorgH

limited to instructions in the current cycle. As the graplbwsh, the
depth of the instruction schedules is only relevant on th&RSP
machine.

< 120
g = Ful ]
T 115 No Depth |
2 g2 No Order
¢ 110
o
p}
? 105
g 1
o
(7]
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Figure 3. Speedup over scheduling without resource maps for
scheduling with full resource maps, single-cycle resour@ps,
and single-cycle resource maps without order.

To illustrate how large and time-consuming the scheduleepa
can be to exhaustively explore, consider the largest and cons-
plex machine described in Section 6.1, the Itanium 2, whashadp-
proximately 300 instructions and can issue 6 instructi@rgcle.
Assuming these values were all known beforehand, an extiaust
exploration must still searck00® = 7.29 x 10'® instruction sched-
ules. Assuming a testing implementation that cant@stchedules
each second, it would tak& 311, 643 years to explore all these
schedules.

4.2 Ordering

Another reason for the large instruction schedule spadaistvery
possible order of each combination of instructions is cdersd in-
dependently. In practice, however, the order of instrungissued
in the same cycle tends not to matter. This occurs becausedns
tions tend to utilize the same resources or an identicalhabing
set of resources when their position within a cycle is chdnge
To take advantage of this, the set of instruction schedutes e

plored in the reduced space is limited to all unique mults s in-
structions. By exploring only the combinations of instians us-
ing representative orders, the size of the search spaceliced

I4+w-1
w

d
from 1> to [24], assuming empty slots are

filled with nops nopsare instructions that utilize a fetch resource,
but consume no back-end resources. When a structural hazard

norant instruction schedules, the Itanium 2 search spaeelised

1
305
6

searched ir83, 742 years (again assuming 10 schedules per sec-
ond).

to = 1.06 x 10'? instruction schedules, which can be

4.3 Categorization

Another observation that can be used to reduce the spacatis th
processors’ instructions tend to fall into one of severaegaries
with respect to their resource usage. These categories tmgy a
with the categories of functionality, such as Load, StoreUA
and Branch, but often partitioning solely by functionality not
sufficient and, if set incorrectlg priori, can even be detrimental.
Consequently, in the algorithm presented in this papeegeates
are discovered automatically.

We can define a category of instructions as a set of instmgtio
exhibiting the same behavior in schedules. This allows aman
ical instruction to be chosen from each category and be used t
represent all instructions in the category. The set of casflileter-
mined for the set of canonical instructions effectivelyressents the
conflicts of the entire instruction space. By using candritstruc-
tions, the size of thé term in I'Z is greatly reduced. In practice,
this number often reducek from several hundred instructions to
around a dozen or so canonical instructions.

Each instruction category can be viewed as an equivaleass cl
of instructions. Any pair of scheduleS; andS-, are equivaleniff
for any triple (i,¢,s) € Si there is a matching tupl&’, ¢, s) €
S2 such thati and s’ are in the same category. A mechanism
to automatically categorize instructions is presentedenti®n 5.
The fully reduced search space for the Itanium 2, which dngata

. . 29
approximately 2 dozen categories, now asg
instruction schedules, which can be searchedl3i2 hours (once
again assuming a rate of 10 schedules per second, pipeliing
no order). Without the order assumption, there would24é =

1.9 x 10 instruction schedules that would tagears to search.

=4.7x 10°

5. Building the Conflict Database

In this section, the observations from Section 4 are usedveldp
an algorithm for building the conflict database. The higlele
algorithm for building the conflict database is shown in Fegd.

The setC represents the set of all categories and all instruc-
tions start out in a single category. A schedule of randonhig-c
sen instructions is created to initialize a random walk. Tée-
dom walk continues until it finds a category suitable for tsipig,
returning the category to split), and the schedule templatg,
with which to split it. The random walk and category splitiare
described in Section 5.15plit(Q, T) splits the instructions i)



1: C = {{All Instructions}}
2: Conflict_Database = {}
3: while TRUEdo
Q, T = Randomwalk()
C = (C\Q)U Split(Q,T)
S = set of schedules formed froflanonical (C)
for s € S do
Query the machine with static schedule
if s contained a structural hazattten

UpdateCon flict-Database, {s})

QUENoO R

1

Figure 4. High-level algorithm for building the conflict database

into a set of new categorieS;, Cs, ..., C,. After this, a canon-
ical instruction is chosen from each category, enforcinat the
Canonical(C;) = Canonical(Q) if Canonical(Q) € C;. The

set of schedules formed by the canonical instructions isesh
tively searched. Sinc€anonical(Q) is still a canonical instruc-
tion for some category, the results of all previously testestruc-
tion schedules are still valid. Thus, nothing needs to beokem
from the conflict database and the results of this search aelyd

be used to add new conflicts to the database. The algorithm the
repeats by starting a new random walk.

The output of this algorithm is a categorization and a conflic
database, which is valid after any exhaustive search onaherc
ical instructions has finished. Any of the conflict databaased
categorizations thus produced can be used for hazard wetect
though the algorithm creates a more accurate conflict de¢aba
it is given more time and finds more categories. To use the con-
flict database and categorization during scheduling, tsitiotion
schedule is converted into a canonical, depth-ignoramt,cader-
ignorant version. This version is then used to query the @infl
database and return whether a structural hazard existsoWele-
scribe the process of automatically classifying instrgsiinto cat-
egories (steps 4 and 5, Section 5.1) and methods for quesgingl
hardware (step 8, Section 5.2).

5.1 Instruction Categorization

Though perfect formation of instruction categories regsiiknowl-
edge of all structural hazards, in practice, categoriesesapprox-
imated by observing differences in schedule executiondiniéwo
schedules (with no data dependencies) differ in only ortetiason
and have differing execution times, then they experientferdint
structural hazards. Since the schedules differ only by gleim-
struction, the resource utilization, and therefore thegaty, of the
two instructions must also differ.

Given an initial categorization of instructions, the abobeser-
vation is used to refine the categories. Any pair of schedwids
the properties described above can be used to partitiogkesiate-
gory C, which occurs as follows. Achedule templatd’, is formed
by taking the common portions of the schedule pair and |ggthia
differing portion vacant. Since the pair differs by one fostion,
there is one slot in the resulting template where each meoflibe
pair of schedules had a different instruction. The origitetiegory
C is discarded, and the instructionsdhare placed into new cat-
egories,C1, Cs, .. ., based on the execution times observed when
inserting each instruction fro®' into the empty slot iff". That is,
all of the instructions inC,, have the same execution time when
placed intoT".

An obvious and simple initial categorization is to make all
instructions a single category. If schedule pairs with {hgrapriate
properties can be found, the refinement process can buildra mo
accurate categorization. To solve the problem of findingeypate
schedule pairs, a random walk through the space of instructi
schedules is performed.

The random walk starts with a seed schedule, chosen at ran-
dom from the set of all instructions. The walk then randomly
chooses one instruction in the schedule and replaces itanitim-
dom instruction chosen from. Information is gleaned with every
iteration because the new schedule and old schedule diffexb
actly one instruction. Additionally, the random walk is yesim-
ple, requiring no complicated heuristics or fore-knowledmean-
ing that progress can be made quickly without having anyrapsu
tions about the underlying hardware. Though a random watlois
the only means by which to categorize instructions, as Sedi
will show, the random walk is a highly effective means fomfiing
categories even when the categorization process ignodes and
schedule depth.

1) Random Walk
Instruction Schedule Space

\@

2) Classification 3) Schedule Template

[i1,i2,i4] => 3 cycles [i1,i2,4]
[i1,i2,i3] => 2 cycles

e [i1,i2,i4] 4) Split Instruction Category
o i3 i3
@ \ [i1,i2,i3] !
™Y o
\. i4 i4

Figure 5. Example of classification

The instruction categorization process is illustratediguFe 5.
Each step in the walk randomly changes one instruction fitoen t
previous schedule. When two adjacent schedules in the walk a
found with different execution times, a schedule pair hasnbe
found. For example, in Figure 5, the random walk steps froen th
schedulefil, 42, 4] to [i1,42,43]. Since:3 and:4 belong to the
same category and have different execution times, the aatég
split. Each instruction from the category is placed into ltst slot
of the schedule, with each unique execution time formingwa ne
category.

5.2 Querying Actual Hardware

If the machine model queried is actual hardware, detectfae-o
source over-subscription may require some engineerimytef
naive approach would simply present the hardware with eciude
and measure the cycle count returned by the processor. tythe
cle count is greater than expected, a conflict has occurratbry
tunately, real processors may not have the measurementaagcu
to perform the test, as most processors do not have cycleatec
performance counters. Others, such as the Itanium 2, haterpe
mance counters which are accurate to a certain tolerandie If
inaccuracies can be modeled as zero-mean, such as from cache
misses, page faults, etc., or transient noise, then thestshean be
executed in a loop to negate the noise generated. Existiegureh
demonstrates strategies to determine execution timespefiped
processors with non-zero mean noise [11, 29].

When executing instructions in a loop to cancel out noisee ca
must be taken to avoid conditions in the processor that aréheo
result of structural hazards. Specifically, each iteratibthe loop
should effectively clear the pipeline so that there are fiects that
build up in the loop and cause a stall that executing the segue
only once would not.

In general, such conditions come from instructions thaeasc
memory or instructions that utilize a resource for a longiqeer
of time. Each instruction that accesses memory shouldzetthe
same address each time around the loop, but should not have th
same or overlapping address as another memory instrudhus.
avoids output, anti, and flow dependences through memory and



avoids the variable latency of memory instructions by alsvhit-
ting in the cache. To avoid stalls that build up from resosresed
for several cycles, the loop should be buffered witipssufficient
to flush the pipeline. Note that the numbermafpsneeded can be
an overestimation, and that the system itself can explofiadoan
approximate number of cycles nbpsnheeded to effectively empty
the pipeline. Additionally, care must be taken to avoid eorcases
that can arise from misalignment of the loop itself to uninted
cache stalls because of the address chosen [5]. Automaticte
nation of cache behavior is beyond the scope of this workhbat
been explored by Yotov et al. [35]. In this paper, all suchflicis
were avoided by ensuring that memory addresses assignedho e
memory reference were independent of such effects.
Additionally, depending on the type of ISA, the algorithmyma
be unable to present to the hardware an instruction schebhile
stead, it may only be possible to present a sequence of atising.
If the schedule height of all queries is limited to 1, theniagkruc-
tion schedules correspond directly to instruction seqeenif it is
greater than 1, then data dependences can be used to fdroe-ins
tions to execute according to a particular schedule. Thisisiec-
essary for the machines explored in this work, and the ptaten
of this extension to the technique is beyond the scope optper.

Another issue with hardware queries arises when a machine

fails silently upon structural hazards violation. In suclease, a
compiler can produce invalid, not just inefficient, schedulTo
support this type of machine, the querying framework needs t
be expanded to check results of the computation. Note tleat th
technique would still be machine independent; the insimastand
their semantics are still a given. This paper does not addssthis
because the machines of interest do not fail silently withcstral
hazards; they either stall or throw an exception.

6. Evaluation

SPARC Viking 8 A 3-issue machine with resources for 1 FP ALU,
1 FP MUL, 1 FP DIV, 1 Shifter, 4 Register File (RF) Read
Ports, and 2 RF Write Ports. There are several instructions i
the Viking 8 (e.g. branches) that utilize resources for 2 oren
cycles. Additionally, branches must be the last instructioa
set of issuing instructions.

Itanium (Merced) The Itanium is the first implementation of the
Intel Itanium Processor family and is a six-issue machine. |
has 2 integer units, 2 FP units, 2 memory units, and 3 branch
units. There are no instructions that utilize a resourcerfore
than one cycle; however, certain instructions have ordezon-
straints. Additionally, the execution units are not synmicet
with respect to the instructions they can execute (e.gaiteir-
structions can only execute on one functional unit evenghou
there are two units in the class).

Itanium 2 (McKinley) The Itanium 2 is the second implementa-
tion of the Intel Itanium Processor Family (IPF) and is a six-
issue machine. It has 2 integer units, 2 FP units, 4 memory
units, and 3 branch units. There are no instructions thiz e
resource for more than one cycle; however, certain instost
have ordering constraints. Additionally, the integer aneihm
ory unit sets are not symmetric with respect to the instomgi
they can execute.

To evaluate the effectiveness of a conflict database forrdaza
detection, several detectors were implemented for corapari

No Hazard The base hazard detector for comparison is a hazard
detector that never detects a hazard.

Full Hazard A hazard detector that uses existing complete re-
source maps to determine if a structural hazard exists.

Section 5 presented an algorithm that does not build a perfec No Depth A modified Full Hazard detector that uses resource

conflict database. As a result, there are two potentiallfstfa the
algorithm presented. First, the algorithm could producesflct
database that sacrifices too much performance. This inacgean

maps with structural hazard detection limited to the curren
cycle, which ensures that the only structural hazards fared
intra-cycle structural hazards.

come about because the machine model queried does not matctNo Order This detector is the same as tNe Depthdetector ex-

the actual hardware or from the approximations made dutieg t
conflict database formation. Second, the algorithm coukd tao
much time to produce a useful conflict database. This sestiows
that neither occurs in practice for a variety of machines.

6.1 Exploration Setup

The conflict database was implemented as a simple hash tadle a
contained only the structural hazards found by the algorithSec-
tion 5. To determine if an instruction schedule containguacstral
hazard, the instruction schedule is converted to a canpmiepth-
ignorant, and order-ignorant version and then used as a/ daer
the conflict database. This allowed efficient lookup for thieesi-
uler while maintaining a reasonable conflict database &iaple-
mentations based on other data structures are possibletfz@am

in the technique assumes a specific implementation. Torditer
the quality of the algorithm, it was evaluated on several mraes.

Idealized EPIC machine A 4-issue machine with 2 ALUs, 2 float-
ing point (FP) ALUs, 1 Divide unit (DIV), 2 memory units, and
1 branch unit. There are no ordering or depth constraintsig t
processor.

TI TMS320C3x A 2-issue machine with resources for auxiliary
register file access, 1 ALU, 1 multiply unit (MUL), 2 memory
ports, and 1 branch per cycle. All resources modeled for the T
TMS320C3x have no ordering or depth constraints.

cept that the instructions are arranged in an arbitrary roirde

the current cycle before hazard detection is performed.drhe

der chosen is a sorted order based on a random numbering of
the instructions, which ensures an arbitrary but consisten
dering. This detector effectively ensures that the onlycttral
hazards that occur are ones that occur regardless of ortlee in
current cycle.

Conflict Database A hazard detector based on an automatically
generated conflict database for a randomly selected set of
canonical instructions. To determine if an instruction exth
ule contains a structural hazard, the instruction schedile
converted to a canonical, depth-ignorant, and order-igmor
version and then used as a query to the conflict database. The
conflict database is then queried with the canonical scleedul

The No Hazardand Full Hazard detectors represent the lower
and upper bounds, respectively, of the performance ofCieflict
Databasehazard detector on an optimal scheduler. The hazard de-
tectors were developed in the OpenIMPACT compiler [28].yThe
were evaluated by scheduling the SPEC CINT2000 benchmark
suite, compiled with standard optimizations using the Qiden
PACT compiler. The OpenIMPACT compiler uses a list-schizgul
algorithm with a heuristic that gives higher priority to insction
that lead to exits. Profiles were gathered on train inputsrane
time performance was measured on reference inputs.
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To determine the effectiveness of the technique describe&kc-
tion 5, we first run the technique on a compiler that models the
resource usage during scheduling.

The conflict database is formed by querying the schedule man-
ager (SM) in the OpenIMPACT compiler. SM has a complete re-
source map for each of the machines and can be queried with a™
static schedule. An in-order version of SM that schedulghaut
reordering instructions, but that respects all structhealards in the
hardware, was developed to get the true static schedulbth&gch
benchmark was scheduled using each hazard detector and tiven
tal static schedule height was calculated by multiplying phofile
weight by the in-order schedule height.

Figures 6-8 show the speedup of each hazard detection mecha-
nism over theNo Hazarddetector for three of the machines. The
Full Hazard detector provides a theoretical upper bound on the
speedup that can be obtained by any of the detectors as this de
tector is aware oéll conflicts. This bound is theoretical due to the
heuristic nature of the list scheduler which may produce téebe Figure 8. Static Schedule Height - SPARC Viking 8
schedule with different or less accurate information. NweDepth
andNo Order hazard detectors provide theoretical upper bounds
on the speedup that the categorization and exploratiorritigo ] rov-conticr ) ent-Cont [ | No Onder [ o oo [ v
can obtain, as discussed in Section 4. The conflict databased 1.3
from the compiler is th&€M-Conflictbar.

Figure 6 shows the results for the generalized EPIC proces-
sor, which represents a broad class of processors (sucheas th
FR500 [33] and the Lx/ST200 [14]) that are relatively widedan
that have sufficient structural hazards to warrant schegulith
hazard detection. Since the machine has no depth or ordevimg
straints, the technique finds all categories and achiewtsrpsnce
equivalent to using full resource maps. While full resourags for
this machine are relatively simple, the purpose of this rirects to
show that the technique can perform well in general. Therattze
chines show how the technique performs in the presence of mor
complex structural hazards.

Figure 7 shows the results for the TI TMS320C3x. The graph
shows that the conflict database hazard detector perforrsatne
as theNo Order No Depth and Full hazard detectors, meaning
that the categorization algorithm found all categories tnad the
conflict database represented all conflicts. This is notrging
given that the resources for the TI TMS320C3x have no orderin Figure 9. Static Schedule Height - Itanium
or depth constraints.
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Figure 10. Static Schedule Height - Itanium 2

Figure 8 shows the results for the SPARC Viking 8 processor.
Since the SPARC contains instructions with depth and ordef ¢
straints, particularly branches, there is a performanss Vehen ig-
noring order and depth. As the figure shows, the Conflict Degab
hazard detector is able to obtain 94% of the potential speehd
performs as well as thdo Orderhazard detector. This implies that
most of the relevant categories and thus conflicts were fdunidg
the conflict database formation.

As Figures 9 and 10 show, theM-Conflict conflict database
realizes 89% and 81% of the potential performance improweme
for the Itanium and Itanium 2, respectively. The graphs alsow
that the conflict database is as good as resource maps fadhaza
detection provided instruction order is ignored. Furthealgsis of
the produced schedules indicate thatBegosi t andExt r act
instructions (which must be the first integer instructiosuisd in a
given cycle) account for the majority of the slowdown duetie t
No Orderheuristic. This suggests that one could explore method-
ologies for determining if an instruction is an order-degent in-
struction to recover this lost performance.

Note that the hazard detectors that use@i-Conflictconflict
database (which ignores hazards due to instruction ortightly
outperform theNo Order detector on several benchmarks for the
SPARC machine and 253.perlbmk for the Itanium 2 machines Thi
occurs because the order of the instructions used to deteatdis is
different from the scheduled order. Specifically, the ofiggorant
resource maps encode a conflict for a sequence of instrgction
even on@rdering of that sequence conflicts. This occurs even if the
actual instruction order in the final schedule has no conflibe
generated hazard detectors, however, fail to detect thanfiat
exists at all, generating a better schedule.

We now examine the time required to derive the instruction
categories and exhaustively search the reduced spacerriidtie
CM-Conflictconflict database, the algorithm presented in Section 5
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Figure 11. Schedule Height Speedup over time &vl-Conflictas
a percentage attained Byll. Lines end when search is terminated.

conflict database converged to the resource map speedupén un
10 minutes and is not shown. For the remaining machinespite t
of the graph represents the speedup of fu hazard detector
as shown by theéGeo.Meanbar in Figures 7-10. As Figure 11
shows, the algorithm quickly achieves a large portion ofttital
conflict database speedup within 10 minutes. After 2 hotitsas
effectively determined all conflicts that it is likely to firtat are
relevant to schedule performance. After halting the atbari it has
achieved, 100%, 82%, 89%, and 81% of thdl hazard detector
performance for the Tl, SPARC, Itanium, and Itanium 2 maebin
respectively.

6.3 Reverse-Engineering Using the Hardware

The previous section dealt with reverse-engineering thecttral
hazards from a compiler. A more realistic scenario mighbing
directly querying the hardware to generate the conflict lnkzda.
This section explores the ability to query to machines armivsh
that the generated conflict database performs as good asrtflietc
database generated from a compiler.

6.3.1 Hardware Conflict Database Schedule Height
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was run on a 2.8GHz Pentium 4 with 1 Gb of memory and averaged Figure 12. Schedule Height Speedup over time FB//-Conflictas

approximately 15,000 instruction schedule tests per hodrtests
per second. The implementation of the random walk used & thi
evaluation is itself subject to the no-order and no-deptistraints.
Because of this, it may not find all the categories that algtual
exist. Additionally, due to the heuristic nature of the §sheduling
algorithm used in IMPACT, more accurate structural hazandy
cause a less optimal schedule to be chosen.

a percentage attained Bylll. Lines end when search is terminated.

The hardware queried conflict database was formed for beth th
Itanium and Itanium 2. Queries to the hardware were perfdrme
by placing the instruction schedule to be tested inside ateolu
loop that was executed 100,000 times. This number was drate
by hand testing a small set of schedules until the one-tinsescuf

Figure 11 shows the speedup of each conflict database formedthe loop, as discussed in Section 5.2, were removed whedityi

after each exhaustive search for 4 of the machines. The BPIC-

by the iteration count. The loop was also buffered with 6 egcl



of nops to ensure the pipeline was empty and to avoid stralctur
hazard across loop iterations. Execution times were obthirsing

the performance counters of the IPF architecture andpfheon

tool [13]. The Itanium machine used was a HP i2000 workstatio
with a 733Mhz Itanium and 1Gb of memory, while the Itanium 2
machine used was a HP workstation zx2000 with a 900Mhz Intel
Itanium 2 processor and 2Gb of memory. Both systems run Redha
Advanced Workstation 2.1. The system averaged 12,00Qict8tn
schedule tests per hour or 3 tests per second.

TheHW-Conflictbar in Figures 9 and 10 represents the speedup
of the hardware queried conflict database oveMibeHazardhaz-
ard detector and shows that it realized 89% and 81% of thenpote
tial performance improvement for the Itanium and Itanium & m
chines, respectively. Essentially, thi¥V-Conflictconflict database
achieves equivalent speedup to tB-Conflict conflict database
generated from the compiler. This shows that hardware carsée
to build an effective conflict database.

Figure 12 shows static schedule height speedup over time for
the HW-Conflictconflict database after each exhaustive search on
the Itanium and Itanium 2 machines. Once again, the top of the
graph represents the final speedup of Bl hazard detector. As
with the CM-Conflicthazard detector, the algorithm still achieves
a large portion of the total conflict database speedup witltin
minutes. Within 3 hours, it has effectively determined alhfticts
that are relevant to schedule performance, given the neront-
depth assumptions. When the algorithm is halted Hidé Conflict
hazard detector has achieved 89% and 81% ofRbk hazard
detector performance for the Itanium and Itanium 2 respelsti

6.3.2 Hardware Conflict Database Runtime Performance

Since the machines being used are real hardware, it is atsibbe

to generate runtime numbers for the hazard detectors. &giB
and 14 show that the execution time speedups for Itaniumtand |
nium 2 processor, respectively. As the graphs show, steltiedule
height improvement does not translate directly into rusetiperfor-
mance improvement. Overall, full resource maps lead to 8%.7
and a 3.22% gain in runtime performance on the Itanium and Ita
nium 2 processor, respectively. For the Itanium, H&/-Conflict
conflict database realizes 88% of the possible performaagg g
while theCM-Conflictconflict database achieves 84% of the possi-
ble performance gain. For the Itanium 2, tH8V-Conflictconflict
database achieves realizes 84% of the possible perforngginge
while the CM-Conflictconflict database realizes 82% of the possi-
ble performance gain.

Since schedule height does not directly translate intoiment
performance, the overall effect of hazard detection is ceduon
real hardware. This is due to differences in input sets whfbct
the accuracy of the scheduling heuristic, variable lateneyruc-
tions, the heuristic nature of the scheduling algorithnd, different
register pressure from different schedules.

Figure 15 shows the runtime speedup over time for k-

Conflict conflict database after each exhaustive search on the Ita-

nium and Itanium 2 machines. For each machine, the top of the
graph represents the final speedup of EFhél hazard detector as
shown by theGeo.Mearbar in Figures 13 and 14. As Figure 15
shows, the algorithm quickly achieves a large portion of tihve
tal conflict database speedup within 10 minutes. Howeves,tdu
the variability of the dynamic runtime, the speedup overetiim
harder to discern. As the lines in the Figures showH#Hé Conflict
actually achieves better performance earlier in the pmogse to
varying dynamic effects. Even so, within 3 hours, it hasaftely
determined all conflicts that are relevant to schedule perdnce.
When the algorithm is halted, théW-Conflicthazard detector has
achieved 88% and 84% of runtime gain of fhall hazard detector
performance for the Itanium and Itanium 2 respectively.
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6.4 \Verifying Man-Made Machine Descriptions

Figure 15. Runtime Speedup over time fétW-Conflictas a per-
centage attained byull. Line ends when search was terminated.

As discussed in the introduction, man-made machine degmgp

are tedious to create, which often leads to errors in therigemmn.

The Itanium 2 machine description was created in August 2000
and has been used for the IMPACT group’s research into the Ita
nium architecture since that time. Given this, errors inrfechine
description are likely to have been found and corrected. ¢l

the reverse-engineering described here was able to fincsénrthe
resource maps for three instructionéy, shi, andshr.u.



As a simple test of the validity of IMPACT’s resource maps,
we compared the number of times each instruction could issue
with itself on both the manually-derived resource maps (S
the automatically reverse-engineered conflict databdsie.means
that for a given instructiom, the schedulegl A, AAA, and so on
were tested. This allowed us to determine if any instruckiad an
inappropriate number of resources assigned to it in eithsec

This process uncovered that the immediate version oktlie
shl r1 = ra,imms, for the Itanium and Itanium 2 were not prop-
erly modeled in the SM resource maps of the IMPACT compiler.
Specifically, the immediate version of thél is a pseudo-op of
dep.z, which can only execute as the first integer type instrudtion
acycle. Thus, only one immediaté! can execute per cycle. How-
ever, the register version ehl, shl r1 = ro, rs, is not a pseudo-op
and can issue on either integer unit, allowing up to two tccate
per cycle. The IMPACT compiler’s resource maps incorreitt)i-
cate that the immediate version ©fl uses the same resources as
the register version. This error does not exist becauseairesas-
age is assigned by opcode, as IMPACT'’s register maps disthg
between different operand formats for each opcode. Insieésl
likely that the person creating the machine descriptionnditread
the Itanium 2 Instruction Reference Manual in conjunctidgthnvthe
Itanium 2 Processor Reference Manual. The instructiorreafs
indicates thashl with an immediate is a pseudo-op @fp.z, but
the processor reference says that ar = ar, ar can issue twice
in a cycle.ar is not explained and it is easy to mistake the resource
usage for both versions ehil. Theshr andshr.u instructions have
similar resource usage patterns and also suffer from this.er

7. Conclusion

This paper demonstrates that it is impossible to provabgnid
tify all the structural hazards in a machine ahead of timaldb
presents a heuristic approach that reverse-engineerdrtteusal
hazards of the machine being explored using three obsengti
that make reverse-engineer possible and tractable bytisejecfi-
nite subspace of the instruction schedule space to exgtarally,
it presents an algorithm to automatically determine ircitan clas-
sifications that monotonically improves as categories plie s

We experimentally demonstrate that short exploration $icen
detect most structural hazards needed for schedulingctndeatic
schedules, constructed from exploring both the compildrtzard-
ware for several machines, achieve 81-100% of the perfocmah
scheduling with perfect structural hazard information. t@o real
IA-64 machines, these schedules achieve 82-88% of themanti
performance gain of perfect structural hazard information

We plan to explore the effect of providing information to tie
gorithm, both for verification purposes and to assist in esation.
We are also interested in modifying the algorithm detectmwae
instruction is order-dependent or depth-dependent andctrpo-
rate this into the conflict database. Finally, we would like@xplore
the practicality of our algorithm on machines with compleicro-
architectural structures, such as a trace cache.
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