
SEMANTIC LANGUAGE EXTENSIONS FOR

IMPLICIT PARALLEL PROGRAMMING

PRAKASH PRABHU

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: PROFESSOR DAVID I. AUGUST

SEPTEMBER 2013

c© Copyright by Prakash Prabhu, 2013.

All Rights Reserved

Abstract

Several emerging fields of science and engineering are increasingly characterized by com-

putationally intensive programs. Without parallelization, such programs do not benefit

from the increasing core counts available in todays chip multiprocessors. However, writ-

ing correct and well-performing parallel programs is widely perceived to be an extremely

hard problem. In order to understand the challenges faced by scientific programmers in

effectively leveraging parallel computation, this dissertation first presents an in-depth field

study of the practice of computational science.

Based on the results of the field study, this dissertation proposes two new implicit par-

allel programming (IPP) solutions. With IPP, artificial constraints imposed by sequential

models for automatic parallelization are overcome by use of semantic programming exten-

sions. These preserve the ease of sequential programming and enable multiple parallelism

forms without additional parallelism constructs, achieving the best of both automatic and

explicit parallelization.

The first IPP solution, Commutative Set, generalizes existing notions of semantic com-

mutativity. It allows a programmer to relax execution orders prohibited under a sequen-

tial programming model with a high degree of expressiveness. The second IPP solution,

WeakC, provides language extensions to relax strict consistency requirements of sequential

data structures, and dynamically optimizes a parallel configuration of these data structures

via a combined compiler-runtime system.

This dissertation evaluates both Commutative Set and WeakC on real-world applica-

tions running on real hardware, including some that are actively used by some scientists

in their day-to-day research. The detailed experimental evaluation results demonstrate the

effectiveness of the proposed techniques.

iii

Acknowledgements

First, I would like to thank my advisor, David I. August for everything that has made

this dissertation possible. David’s passion and vision for research, his ability to identify

new and interesting directions for solving hard research problems and his immense faith

and courage in relentlessly pursuing these directions successfully for years on end have

always been inspiring. His approach of only demanding the best for and from me, though

seemed like a bitter medicine at times, has only made me a better student and a researcher

in the long run. David’s faith in my abilities and his consistent encouragement all through-

out my years in graduate school, more so when I was faced with tough situations, have

been indispensable to my success as a graduate student. For all this and more – providing

me with a platform within the Liberty Research Group, opportunities to work on exciting

research projects, proactively encouraging and recommending me at external research av-

enues, moulding my writing and presentation skills and for providing me with many unique

life lessons, I am extremely grateful and thankful.

Next, I would like to thank the rest of the members of my PhD committee. I thank Prof.

David Walker and Prof. Jaswinder Pal Singh for reading this dissertation and providing me

with interesting feedback which helped improve it in myriad ways. They also suggested

significant improvements during my preliminary FPO from which this dissertation has ben-

efited. I would like to also thank Prof. Margaret Martonosi and Prof. Kai Li for serving

as my thesis committee members. Their insightful feedback on my work and presentation

during my preliminary FPO has been extremely valuable.

I would like to thank members of the Liberty Research group for creating an exceptional

research atmosphere, and their support over years ranging from critical reviews of early pa-

per drafts to their support in conducting the field study to last-minute help in writing scripts

and experiments before paper deadlines. I thank Tom for the innumerable brainstorming

sessions we had as a result of which my research benefited immensely. His engineering

iv

expertise and incredible attention to detail are at least two things that I can only aspire to

emulate. I thank Arun for some of most engaging intellectual conversations on the widest

range of topics I have ever had with anyone over a period of few years. I thank Nick for his

contribution to the compiler infrastructure. His creativity in solving research problems and

expertise in architecting and implementing solutions have always been exemplary. I would

like to thank Ayal Zaks for his support and the numerous lively discussions we had during

his visit at Princeton and also during our later collaborations. Yun is one of the nicest per-

sons I know, and I thank her and Jialu for various discussions held by the window-facing

desks of 223. I thank Deep – his excellent analytical thinking coupled with deep interests

in several topics have served as the seed for many engaging conversations. Feng’s and

Taewook’s work ethics are the stuff of legend, and I continue to be awed by them. I thank

Hanjun and Stephen for giving very insightful feedback on presentations and paper drafts.

I would like to acknowledge the support of Matt and Jordan during paper deadlines; Jack

and Thomas Mason for their help. I also thank Guilherme and Easwaran for their help

during my initial year at Princeton and the many enlightening discussions I had with them.

I would also like to thank the staff of Computer Science Department. I would like to

thank Melissa Lawson for simplifying many of the complexities of graduate school and in

always accommodating many of my last-minute requests. I thank Google for supporting

my research with fellowship support and to the Siebel Scholars program for their support

during the later years of graduate school. I would like to acknowledge the support for

this work provided by National Science Foundation via Grants 1047879, 0964328, and

0627650, and United States Air Force Contract FA8650-09-C-7918. Additionally, I would

like mention that the materials from Chapter 2 and Chapter 4 have been published and

presented publicly at SC 2011 and PLDI 2011 respectively.

I would like to thank Prof. Priti Shankar, my Masters advisor at the Indian Institute

of Science for introducing me to compilers and program analysis research. Her warm and

v

compassionate words filled with genuine concern for all her students is something I will

always cherish. I would also like to thank Prof. Govindarajan, my academic advisor at

IISc, for his advice and initial tips on critical reading of research papers. I would like to

thank my internship mentors, Kapil Vaswani, Ganesan Ramalingam, Gogul Balakrishnan,

Franjo Ivancic, Naoto Maeda and Aarti Gupta for providing me with valuable and enjoyable

research experience in an industry setting. In particular, I would like to thank Kapil and

Franjo for recommending me, long after my internships got over.

Outside of work, I am deeply appreciative all the enriching conversations and time

spent with the wonderful people I’ve met and am friends with. I thank Easwaran for all

his guidance on grad school life during my initial years at Princeton – everything from the

joint cooking sessions to regular PHS meetings were highly memorable. Tushar, thanks for

all the time spent together during the first two years and the in-depth phone conversations

ever since – your meticulous approach towards so many things have always been inspiring.

Arun, thanks for being an exemplar of grad-school-resilience and for all the shared time

– ranging from forays into testing out “healthy” diet regimens to playing basketball to

occasional parsing of verses from Vivekachudamani. Ajay, thanks for being my roommate

for 3+ years – your foresight and zeal for pursuing new ideas have always been refreshing.

I would also like to acknowledge Arnab, Anuradha and Divjyot for their support.

Stimit, thanks for all the stimulating discussions on everything from nature to nurture,

the joint work sessions at Frist/Small World/Starbucks and squash games. Your competitive

spirit is amazing, I probably learnt a thing or two about competing from you. Thanks

Deep for your exemplifying the hit-the-round-running attitude, for epitomizing passion for

football and not to forget your amazing penchant for writing. Srinivas Ganapathy Narayana

(who will not have his name specified any other way), thanks for the myriad long and

in-depth conversations on so many topics of shared interests, your rational and approach

vi

to problem solving always shines through. The three of you made my last two years at

Princeton really fun and memorable.

I thank Sriram for being a great and affable friend – being there to make me feel at home

when I arrived in the US, the great many conversations on virtually any topic under the sun,

your passion for history, the time spent at Princeton, Toronto and REC, the list goes on. I

thank Raghavan for being a role model in so many respects – the uber-energetic passion

for everything you set your mind on and your happy-go-lucky attitude towards many things

have always been influential for people around you. Arvind has never ceased to amaze

with his zeal for learning new things all the time, and our discussions on static analysis at

IISc were instrumental in deepening my interest in pursuing research. Rajdeep’s energy

and his cheerful optimism are highly infectious. I thank Mani and Kaushik for various

grad-school related discussions on wide-ranging topics from paper review and conference

related things to systems design and implementation ideas throughout my PhD. I would

also like to acknowledge Vishal and Rajesh. I thank Naveen, Kannan, Subba, Dilip and the

rest of “decagonites” for all the wonderful time spent together at REC, Hyderabad and at

RRI.

I cannot thank my family enough for their love, affection and support which has made

me who I am today. I am indebted to Amma, Aanu, Bapama, Smitha, Anna, Vanni,

Sangeetha akka and little Aditi for being there for me at all times rough and smooth and for

making all the hard work worth it. Amma and Aanu have overcome innumerable hardships

to make sure we get a good education and have a great environment for learning, and have

always encouraged and supported us to freely pursue our interests. Amma’s care and love,

her meticulousness and her wish for the best for her children, Aanu’s dedication to learning

and his calm, reassuring and loving concern for us have always stood us in good stead. Ba-

pama’s love for her grandchildren, and her strength in the face of adversity will forever be

inspiring for me. Smitha’s love for all of us is special. Anna has always been full of ideas

vii

since our early childhood, I’ve sought to imitate him in so many respects, and I am so for-

tunate to benefit from his forthright and clear views and advice on so many things. Vanni’s

simplicity, her courage and entrepreneurial spirit and smiling demeanor have always been

amazing. Aditi’s smile and enthusiasm have overpowering charm and a few minutes with

her are enough to enliven even the dreariest of proceedings. Sangeetha akka never ceases to

inspire me with her strength and views and her clear and rational advice on everything has

been crucial for helping me complete this dissertation – thank you and Niyant for helping

me in times of stress, and by hosting me so many times at NYC with cheerful enthusiasm.

I would also like to thank Mamama, Prasad maam, Geetha mai, Nitish, Goplee, Jyotsna,

all my Mhavs, Manthus, and other cousins for their love and affection.

viii

Contents

Abstract . iii

Acknowledgements . iv

List of Figures . xiii

1 Introduction 1

1.1 Approaches to Obtaining Parallelism . 5

1.2 Dissertation Contributions . 8

1.3 Dissertation Organization . 10

2 Field Study 11

2.1 Methodology . 11

2.2 Results . 13

2.2.1 Computing Environment . 13

2.2.2 Programming Practices . 14

2.2.3 Computational Time and Resource Use 23

2.2.4 Performance Enhancing Methods 28

2.3 Summary . 33

3 Implicit Parallel Programming 34

3.1 Automatic Parallelization Techniques . 35

3.2 Implicit Parallel Programming Approaches 39

ix

3.3 Explicitly Parallel Approaches . 42

3.4 Interactive and Assisted Parallelization . 47

4 Generalized Semantic Commutativity 52

4.1 Limitations of Prior Work . 54

4.2 Motivating Example . 56

4.3 Semantics . 63

4.4 Syntax . 67

4.4.1 Example . 69

4.5 Compiler Implementation . 70

4.5.1 Frontend . 71

4.5.2 CommSet Metadata Manager . 71

4.5.3 PDG Builder . 72

4.5.4 CommSet Dependence Analyzer 73

4.5.5 Parallelizing Transforms . 74

4.5.6 CommSet Synchronization Engine 75

5 Weakly Consistent Data Structures 77

5.1 Prior Work and Limitations . 78

5.2 Motivating Example . 80

5.3 Semantics . 87

5.4 Syntax . 90

5.5 The WEAKC Compiler . 92

5.5.1 Frontend . 92

5.5.2 Backend . 93

5.6 The WEAKC Runtime . 95

5.6.1 Design Goals . 95

x

5.6.2 The Parallelization subsystem . 97

5.6.3 The Synchronization subsystem 99

5.6.4 The Tuning subsystem . 100

5.6.5 Online adaptation . 102

6 Experimental Evaluation 106

6.1 Commutative Set evaluation . 106

6.1.1 Parallelizable without semantic changes 108

6.1.2 Parallelizable with basic Commutative 113

6.1.3 Parallelizable with Commutative Set 115

6.1.4 Not parallelizable with Commutative Set 122

6.1.5 Summary of results across four categories 124

6.2 WEAKC Evaluation . 125

6.2.1 Boolean satisfiability solver: minisat 127

6.2.2 Genetic algorithm based Graph Optimization: ga 130

6.2.3 Partial Maximum Satisfiability Solver: qmaxsat 132

6.2.4 Alpha-beta search based game engine: bobcat 133

6.2.5 Unconstrained Binary Quadratic Program: ubqp 134

6.2.6 Discussion . 134

6.3 Case Studies of Programs from the Field 136

6.3.1 WithinHostDynamics . 136

6.3.2 Packing . 138

6.3.3 Clusterer . 139

6.3.4 SpectralDrivenCavity . 141

7 Related Work 143

7.1 Prior studies of the practice of computational science 143

xi

7.2 Research related to Commutative Set . 144

7.3 Research related to WEAKC . 147

8 Future Directions and Conclusions 151

8.1 Future Directions . 152

8.2 Summary and Conclusions . 155

xii

List of Figures

1.1 Plot showing the growth in the number of recorded DNA base pairs and

sequences within GenBank, in log-scale, over the last two decades. Gen-

Bank [31] is a genetic sequence database that has an annotated collection

of all publicly available DNA sequences. Data for the plot was obtained

from the GenBank webpage [11]. 2

1.2 Normalized SPEC scores for all reported configuration of machines be-

tween 1992 and 2013 [136]. 3

1.3 Workflow of explicit and automatic parallelization compared with implicit

parallel programming . 6

2.1 Survey Data I. The categories in the graphs marked †are not mutually ex-

clusive and do not sum to 100%. 15

2.2 Survey Data II. The categories in the graphs marked †are not mutually ex-

clusive and do not sum to 100%. 16

2.3 Proportional representation of two classes of numerical languages, inter-

secting with general purpose and scripting languages. 18

2.4 Proportional distribution of Computational Resource Usage. Others in-

clude Servers and GPUs . 28

4.1 Sequential version of md5sum extended with COMMSET 58

xiii

4.2 Program Dependence Graph for md5sum with COMMSET extensions . . . 59

4.3 Timeline for md5sum Parallelizations . 60

4.4 COMMSET Syntax . 67

4.5 COMMSET Parallelization Workflow . 70

5.1 The SAT main search loop skeleton that accesses and modifies learnts

database . 81

5.2 SAT class declarations with WEAKC annotations 82

5.3 Impact of disabling learning on sequential SAT execution time 83

5.4 Parallel execution timeline of Privatization (N-Way) 84

5.5 Parallel execution timeline of Complete-Sharing (Semantic Commutativity) 85

5.6 Parallel execution timeline of WEAKC . 86

5.7 WEAKC Syntax . 90

5.8 The WEAKC Parallelization Workflow . 94

5.9 The WEAKC runtime execution model . 97

6.1 Performance of the best parallelization schemes on applications that were

parallelizable without any semantic changes (first six out of nine programs). 111

6.2 Performance of the best parallelization schemes on applications that were

parallelizable without any semantic changes (last three out of nine programs).112

xiv

6.3 Performance of DOALL and PS-DSWP schemes using the basic Commu-

tative extension. Parallelization schemes in each graph’s legend are sorted

in decreasing order of speedup on eight threads, from top to bottom. The

DSWP + [. . .] notation indicates the DSWP technique with stage details

within [. . .] (where S denotes a sequential stage and DOALL denotes a

parallel stage). Schemes with Comm- prefix were enabled only by the

use of basic Commutative extension. For each program, the best Non-

Commutative parallelization scheme, obtained by ignoring the basic Com-

mutative extension is also shown. 114

6.4 Performance of DOALL and PS-DSWP schemes using COMMSET exten-

sions (first six of eight programs). Parallelization schemes in each graph’s

legend are sorted in decreasing order of speedup on eight threads, from top

to bottom. The DSWP + [. . .] notation indicates the DSWP technique with

stage details within [. . .] (where S denotes a sequential stage and DOALL

denotes a parallel stage). Schemes with Comm- prefix were enabled only

by the use of COMMSET. For each program, the best Non-COMMSET par-

allelization scheme, obtained by ignoring the COMMSET extensions is also

shown. In some cases, this was sequential execution. 116

xv

6.5 Performance of DOALL and PS-DSWP schemes using COMMSET exten-

sions (last two of eight programs). Parallelization schemes in each graph’s

legend are sorted in decreasing order of speedup on eight threads, from top

to bottom. The DSWP + [. . .] notation indicates the DSWP technique with

stage details within [. . .] (where S denotes a sequential stage and DOALL

denotes a parallel stage). Schemes with Comm- prefix were enabled only

by the use of COMMSET. For each program, the best Non-COMMSET

parallelization scheme, obtained by ignoring the COMMSET extensions is

also shown. In some cases, this was sequential execution. The last graph

compares the geomean speedup of the eight programs parallelized with

COMMSET to the geomean speedup of the non-COMMSET parallelization. . 117

6.6 Program that does not scale with COMMSET parallelization. 123

6.7 Best performance result for each applicable scheme across all 20 program . 124

6.8 Results of parallelization categorized by four buckets (a) Geomean speedup

of 13 programs parallelized without semantic changes, marked as Auto

Parallelization (b) Geomean speedup of 2 programs parallelized

with Commutative, marked as Commutative + Auto Parallelization

(c) Geomean speedup of 8 programs parallelized with COMMSET, marked

as CommSet + Auto Parallelization (d) Speedup of program

that does not scale with COMMSET, marked as Non-Scalable with

CommSet (e) Overall geomean speedup of all all 20 programs 125

6.9 WEAKC Experimental results for minisat 128

6.10 WEAKC Experimental Results II . 131

6.11 Speedup over sequential execution for WithinHostDynamics, a pro-

gram for simulating dynamics of parasitic evolution within a host 137

6.12 Speedup over sequential execution for Packing 138

xvi

6.13 Speedup over sequential execution for Clusterer, a computational biol-

ogy program for performing non-hierarchical clustering of gene sequences . 140

6.14 Speedup over sequential execution for SpectralDrivenCavity 141

xvii

Chapter 1

Introduction

Computational science [182], a multidisciplinary field encompassing various aspects of sci-

ence, engineering, and computational mathematics is increasingly being seen as the “third

approach” [66], after theory and experiment, to answering fundamental scientific questions.

Researchers practicing computational science typically face two concerns competing for

their time. Primarily, they must concentrate on their scientific problem by forming hy-

potheses, developing and evaluating models, performing experiments, and collecting data.

At the same time, they also have to spend considerable time converting their models into

programs and testing, debugging, and optimizing those programs.

In the past two decades, there has been an exponential increase in the amount of data

generated and computation performed within many scientific disciplines [182, 194], sig-

nifying an increasing need for high performance computing. A particularly stark example

is in the field of Computational Biology. Figure 1.1 shows the growth in the number of

recorded DNA base pairs and sequences within GenBank [31], a genetic database that has

an annotated collection of all publicly available DNA sequences. As shown by the graph,

the number of bases in GenBank has doubled approximately every 18 months in the past

1

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

10-4

10-3

10-2

10-1

100

101

102

103

Lo
g
-S

ca
le

Growth of GenBank (1982-2012)

Base Pairs of DNA (billions)
Sequences (millions)

Figure 1.1: Plot showing the growth in the number of recorded DNA base pairs and se-
quences within GenBank, in log-scale, over the last two decades. GenBank [31] is a ge-
netic sequence database that has an annotated collection of all publicly available DNA
sequences. Data for the plot was obtained from the GenBank webpage [11].

two decades. Given this data growth rate, the need for high performance computing for

retrieving, processing, and analyzing this data is more important now than ever.

Concurrently, the semiconductor industry is undergoing a paradigm shift in the design

of newer generations of microprocessors, signifying the importance of parallelism for both

small and large scale computing. Figure 1.2 shows the performance of various commod-

ity processors from 1992 to 2013 using the SPEC [189] benchmark suite. Up until 2004,

improvements in hardware and innovations in microarchitecture had guaranteed an expo-

nential performance growth for single-threaded programs without any software changes.

However, this rate of growth has decreased substantially since 2004 due to power and

2

S
P
E
C

C
IN

T
P
er
fo
rm

an
ce

(l
o
g
sc
a
le
)

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
Year

CPU92
CPU95
CPU2000
CPU2006

> 3 years behind

Figure 1.2: Normalized SPEC scores for all reported configuration of machines between
1992 and 2013 [136].

thermal walls encountered when scaling clock frequency and due to the increased design

complexity of aggressive out-of-order processing substrates aimed at exploiting instruction

level parallelism. As a result, this has forced a paradigm change in the design of processors,

with the leading manufacturers resorting to packing the exponentially increasing number

of transistors resulting from Moore’s law [149] into a chip multiprocessor. These single-

chip multiprocessors, or multicore have multiple independent processing cores packed on a

single die. Consequently, in the multicore era, parallel hardware is ubiquitous and the only

way to sustain the decades old performance trends is creating parallel programs that allow

simultaneous execution of multiple threads of control on the different cores.

Conventional wisdom has held that writing correct and well-performing parallel pro-

grams is an extremely tedious and error-prone task [110]. However, to date, there has

been no in-depth formal study of the problems faced by scientific programmers in effec-

tively leveraging parallel computation in their disciplines. To this end, this dissertation

presents an in-depth study of the practice of computational science at Princeton University,

3

a RU/VH institution, which stands for “very high research activity doctoral-granting uni-

versity” as classified by the Carnegie Foundation [7]. This study was conducted through a

field study of researchers from diverse scientific disciplines and covers important aspects of

computational science including parallel programming practices commonly employed by

researchers, the importance of computational power, and performance enhancing strategies

in use. This field study was conducted through personal interviews with 114 researchers

randomly selected from diverse scientific fields.

The analysis of results from the field study reveals several interesting patterns. In con-

trast to the popular view that scientists use only numerical algorithms written in MATLAB

and FORTRAN, the field study discovered that C, C++, and Python were popular among

many scientists and there is a growing need for non-numerical algorithms. Interestingly,

a substantial portion of scientific computation is sequential and still takes place on scien-

tists’ desktops, most of which are multicore. In spite of this, knowledge of shared-memory

parallelization techniques in the scientific community is low. Furthermore, the field study

reveals that the dominant perception of parallel programming within the community is that

of black art. Some of the reactions to the difficulty of parallel programming were of the

form “it is hard”, “big learning curve”, “not a good experience”, and “implementation time

too high”.

Based on the results of the field study, this dissertation adopts the approach of implicit

parallel programming (IPP) and contributes two new solutions within this framework. In

order to see the benefits of IPP, consider two very different alternatives: explicit parallel

programming and automatic parallelization.

4

1.1 Approaches to Obtaining Parallelism

Explicit parallel programming [43, 46, 218] is the dominant parallel programming model

for multicore today. These models require programmers to expend enormous effort reason-

ing about complex thread interleavings, low-level concurrency control mechanisms, and

parallel programming pitfalls such as races, deadlocks, and livelocks. Despite this effort,

manual concurrency control and a fixed choice of parallelization strategy often result in

parallel programs with poor performance portability. Consequently, parallel programs of-

ten have to be extensively modified when the underlying parallel substrates evolve, thus

breaking abstraction boundaries between software and hardware.

Recent advances in automatic thread extraction [173, 205, 220] present a promising

alternative. They avoid pitfalls associated with explicit parallel programming models but

retain the ease of reasoning of a sequential programming model. However, sequential lan-

guages often express a more restrictive execution order than required by various high-level

algorithm specifications. As a result, automatic parallelizing tools, overly constrained by

the need to respect the sequential semantics of programs written in languages like C/C++,

are unable to extract scalable performance.

Implicit parallel programming models (IPP) [34, 95, 104, 208] offer the best of both

approaches. In such models, programmers implicitly expose parallelism inherent in their

program without the explicit use of low-level parallelization constructs. An interesting

subclass of models within this space includes those that are based on top of sequential

programming models [104]. In such models, programmer insights about high-level se-

mantic properties of the program are expressed via the use of extensions to the sequential

model. Transformation tools then exploit these extensions to automatically synthesize a

correct parallel program. This approach not only frees the programmer from the burden

5

MPI
pthreads

CUDA

Explicit Parallel
Programming Toolbox

Parallel
Program

Scientific
Model

Scientist
Programmer

(a) Explicit Parallel Programming

Scientific
Model

Scientist
Programmer

Parallelizing
Compiler

Parallelized
Program

Sequential
Program

Frontend
 +
Backend
 Passes

(b) Automatic Parallelization

Scientific
Model

Scientist
Programmer

Parallelized
Program

Implicitly
Parallel
Sequential
Program

Parallelizing
Compiler

Frontend
 +
Backend
 Passes

(c) Implicit Parallel Programming

Figure 1.3: Workflow of explicit and automatic parallelization compared with implicit par-
allel programming

of having to worry about the low-level details related to parallelization, but also promotes

retargetability of such programs when presented with newer parallel substrates.

Figure 1.3 compares the explicit parallel programming and automatic parallelization

with implicit parallel programming within the context of scientific computing. In a scenario

6

typical in many scientific disciplines, a scientist-programmer starts with a scientific model

at hand and wants to convert this model into an efficient and scalable parallel program.

With explicit parallel programming approaches (Figure 1.3(a)), the abstraction bound-

aries between hardware and software are weak. A scientist programmer has typically learn

a new parallel programming model for every new architecture type. Although such pro-

gramming models are generally usable for a few successive generations of such archi-

tectures, scientists programmers typically spend enormous programming effort in perfor-

mance debugging for every new generation. For instance, pthreads [43] based programs

that run on shared memory machines have to be manually modified using message passing

libraries like MPI [150] to run on clusters. These models force the learning of low-level

concurrency control mechanisms that still does not ensure performance portability. How-

ever, since a programmer has fine-grained control over parallel execution, programmer

insights about high level semantic properties can be explicitly encoded in these programs

to a great amount of detail.

With automatic parallelization (Figure 1.3(b)), the scientific model is encoded into a se-

quential program, which scientists are more comfortable in doing than writing explicit par-

allel programs. This program is parallelized with the help of parallelizing compiler. This

approach retains the ease of sequential programming and does not break the abstraction

boundaries between software and hardware. However, in writing the program in a sequen-

tial programming model, the programmer insight about high level algorithmic properties

about the scientific model is filtered out, which limits the freedom given to the parallelizing

compiler for parallelization.

Implicit parallel programming (Figure 1.3(c)) represents an approach that combines the

best of both explicit parallel programming and automatic parallelization. Here, the sci-

entist still encodes her model in the form of a sequential program as earlier, but insights

7

about the semantic properties of the model are expressed via annotations that relax sequen-

tial semantics by introducing controlled levels of non-determinism within the sequential

program. This approach still retains the ease of sequential programming, while providing

additional freedom to the parallelizing compiler to obtain a much better parallel schedule

than before.

1.2 Dissertation Contributions

This dissertation presents two new semantic programming extensions and their associated

implicit parallel programming solutions. The first solution, called Commutative Set [165]

or COMMSET, generalizes existing semantic commutativity constructs and enables multi-

ple forms of parallelism from the same specification. COMMSET has several advantages

over existing semantic commutativity constructs: it allows commutativity assertions on

both interface declarations and in client code, syntactically succinct commutativity asser-

tions between a group of functions, and enables multiple parallelism forms without addi-

tional parallelism constructs.

The second IPP solution, WEAKC, is based on a data-centric language extension that

is used to weaken the semantics of sequential data structures that are commonly employed

in several classes of combinatorial search and optimization algorithms. Accesses to these

data structures, while crucial to improving the convergence times of the main search or

optimization loops, create dependences that obstruct parallelization. Weakening the se-

mantics of these data structures can expose new parallelism opportunities without violat-

ing programmer intentions. WEAKC provides language extensions to express this weak-

ened semantics, and dynamically optimizes a parallel configuration of these sequential data

structures via a runtime system.

8

Both COMMSET and WEAKC have been implemented as extensions of the clang/L-

LVM [130] compiler framework, and are evaluated on several real-world applications run-

ning on real hardware. These applications include programs that were collected during the

field study which are used by some scientists in their day-to-day research. Based on exper-

imental results, this dissertation demonstrates the effectiveness of the proposed techniques.

To summarize, this dissertation has the following contributions:

• An in-depth field study of the practice of computational science at a RU/VH institu-

tion that was conducted through personal interviews with 114 researchers randomly

selected from diverse fields of science and engineering, and an analysis of results

from the field study that reveals several interesting patterns that motivate the IPP

approach.

• The design, syntax, and semantics of COMMSET, a novel programming extension

that generalizes, in a syntactically succinct form, various existing notions of seman-

tic commutativity; and an end-to-end implementation of COMMSET within a paral-

lelizing compiler that enables multiple parallelizations with automatic concurrency

control.

• A semantic parallelization framework, WEAKC, that provides novel programming

extensions for weakening the consistency of sequential data structures to implicitly

expose parallelism in loops using them; and a compiler and a runtime system that

dynamically optimizes a parallel configuration of the WEAKC data structures.

• A demonstration of the effectiveness of COMMSET and WEAKC in extending sev-

eral real-world applications with a modest number of annotations that require min-

imal programmer effort for effectively parallelizing them on real hardware. These

applications include programs collected during the field study, which are used by

scientists in their day-to-day research.

9

1.3 Dissertation Organization

This dissertation is organized as follows. Chapter 2 presents a field study of the practice

of computational science conducted within a research university. Chapter 3 describes the

motivation behind the adoption of implicit parallel programming (IPP), and compares IPP

with different paradigms for parallel programming and parallelization. Chapter 4 describes

the limitations of prior semantic commutativity proposals and the design, syntax, seman-

tics and implementation of COMMSET. Chapter 5 describes the motivation behind the

design of weakly consistent data structures and the syntax, semantics and implementation

of WEAKC. Chapter 6 presents an experimental evaluation of the techniques proposed in

this dissertation. Chapter 7 presents an in-depth discussion of existing work related to the

proposals in this dissertation. Chapter 8 discusses promising areas for future research and

concludes.

10

Chapter 2

Field Study

This chapter presents a field study of scientists from diverse disciplines, practicing compu-

tational science at a doctoral-granting university with exceptionally high research activity.

The field study covers many things, among them, prevalent programming practices within

this scientific community, the importance of computational power in different fields, use

of tools to enhance performance and software productivity, computational resources lever-

aged, and prevalence of parallel computation. The results motivate the implicit parallel

programming techniques presented in this dissertation, and at the same time reveal several

patterns that suggest interesting avenues to bridge the gap between scientific researchers

and programming tools developers.

2.1 Methodology

The field study covers a set of 114 randomly selected researchers from diverse fields of sci-

ence and engineering at Princeton University. The pool of field study candidates includes

all graduate students, post doctoral associates, and research staff in various scientific dis-

ciplines at Princeton University. An email soliciting participation in the field study was

11

Field Discipline Count
Natural Astrophysics 3
Sciences Atmospheric and Oceanic Sciences 2

Chemistry 5
Ecology and Evolutionary Biology 5
Physics 5
Geosciences 6
Molecular Biology 4
Plasma Physics 2

Engineering Chemical 7
Civil and Environmental 5
Mechanical and Aerospace 11
Electrical 12
Operations Research and Financial 5

Interdisciplinary Music 4
Sciences Applied and Computational Math 2

Computational Biology 4
Neuroscience/Psychology 13

Social Economics 10
Sciences Sociology 5

Politics 4
Total 114

Table 2.1: Subject population distribution

initially sent to randomly selected candidates from the university database. The email men-

tioned “use of computation in research” as a criterion for participation. After a candidate

had replied indicating interest in the field study, an interview was conducted exploring, in

depth, the various aspects of scientific computing related to the candidate’s research.

Table 2.1 shows the distribution of subjects across different scientific fields. In this dis-

sertation, the word “scientist” is used in a broad sense, to cover researchers from natural

sciences, engineering, interdisciplinary sciences, and social sciences. A total of 20 disci-

plines were represented. Of the 114 subjects, 32 were from the natural sciences, 40 from

engineering, 23 from interdisciplinary sciences and 19 from the social sciences. Most of

the interviewees were graduate students in different stages of their research. Six intervie-

wees were postdoctoral researchers and research staff. Barring two instances, researchers

from the same discipline were from different research groups.

The field study was conducted through personal interviews, in order to allow for a

deeper understanding of the different computing scenarios and situations unique to each

subject. Each interview conducted was in the form of a discussion that lasted for about 45

12

minutes. All the interviews were conducted over a period of 8 months. The field study

covered three main themes central to scientific computing: (a) programming practices (b)

computational time and resource use, and (c) performance enhancing methods.

2.2 Results

This section presents the results of the field study. To begin with, the scientific computing

environment at Princeton University is characterized. With this as the background, the

results of the field study are presented suitably categorized into the three themes mentioned

above. Each theme is introduced by posing a broad set of questions, and then answering

these questions through a general set of patterns observed during the field study along with

data to substantiate each observation. To highlight these key patterns, and other central

ideas or conclusions that appear later in this chapter we set them apart from the main text

as a subsection heading in bold.

2.2.1 Computing Environment

Researchers at Princeton University are heavily supported in terms of computational re-

sources and expertise. The Princeton Institute for Computational Science and Engineering

(PICSciE) [9] aims to foster the computational sciences by providing computational re-

sources as well as the experience necessary to capitalize on those resources. At the time of

writing, these resources include the larger cluster hardware available through the Terascale

Infrastructure for Groundbreaking Research in Engineering and Science (TIGRESS) [6].

TIGRESS is a high performance computing center that is an outcome of collaboration

between PICSciE, various research centers [4, 5, 8, 10], and a number of academic depart-

ments and faculty members.

13

TIGRESS offers four Beowulf clusters (with 768, 768, 1024, and 3584 processors), and

a 192 processor NUMA machine with shared memory and 1 petabyte of network attached

storage. These clusters serve the computational needs of 192 researchers. Administrators at

TIGRESS estimate that their systems are at 80% utilization. Additionally, PICSciE offers

courses, seminars and colloquia to aid the computational sciences. Since 2003, PICSciE

has offered mini-courses on data visualization, scientific programming in Python, FOR-

TRAN, MATLAB, Maple, Perl and other languages, technologies for parallel computing

(including MPI and OpenMP), as well as courses on optimization and debugging parallel

programs. Recently, PICSciE began offering a course on scientific computing. PICSciE

also offers programming support for troubleshooting malfunctioning programs, paralleliz-

ing existing serial codes, and tuning software for maximum performance.

2.2.2 Programming Practices

Representative questions concerning this theme included: What kind of programming

paradigms, languages and tools do scientists use to perform scientific computation? Do

scientists employ effective testing methods to certify the results of their programs? What

fraction of research time do scientists spend in programming or developing software?

Scientists commonly interface a diverse combination of numerical, general purpose,

and scripting languages.

One common perception is that scientific computation is dominated by heavy array-based

computation in languages that are specially tuned for numeric computation like FORTRAN

and MATLAB [148, 167]. Contrary to this perception, our field study indicates that scien-

tists commonly interface a diverse combination of numerical, general purpose and scripting

languages in an ad-hoc manner. Around 65% of scientists use at least one combination of

numerical/scripting language and a general purpose language.

14

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

M
ultiple�Projects

External�Interface

D
ata�Processing

Prototype

N
one

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(a) Multiple Language Use-Case Scenarios

 0%

 10%

 20%

 30%

 40%

 50%

 60%

M
A

TLA
B

FO
R
TR

A
N

Stata
R C C

++
python

shell

O
thers

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(b) Programming Language Use Distribution†

 0%

 10%

 20%

 30%

 40%

 50%

C
ode�Inspection

D
ebugger

C
onsole�Prints

O
thers

N
one

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(c) Debugging Techniques Employed

 0%

 10%

 20%

 30%

 40%

 50%

0−25%

25−50%

50−75%

75−100%

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(d) Programming Time, as Percentage of Research
Time

Figure 2.1: Survey Data I. The categories in the graphs marked † are not mutually exclusive
and do not sum to 100%.

The distribution of multiple-language use-case scenarios is shown in Figure 2.1(a).

Close to one-fourth of scientists used numerical computing/scripting languages only for

pre- and post- processing of simulation data, while writing all of the heavy duty computa-

tion code in general purpose languages like C and C++ for performance.

18% of scientists leveraged external interface functionality provided by languages like

MATLAB to call into libraries pre-written in C/C++. Interfacing of this kind often involved

writing wrappers to emulate the native programming model. For instance, researchers in

Ecology and Evolutionary Biology, wrote a “call by reference” emulation framework in

MATLAB when interfacing pointer-based data acquisition code written in C.

15

 0%

 5%

 10%

 15%

 20%

 25%

 30%

0−60M
inutes

1−12hours

12−24hours

D
ays

W
eeks

M
onths

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(a) Program Execution Time Distribution

 0%

 10%

 20%

 30%

 40%

 50%

 60%

C
luster

D
esktop

Server

G
PU

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(b) Computational Resource Use†

 0%

 10%

 20%

 30%

 40%

 50%

A
lgorithm

ic�C
hanges

D
ata�Structure�O

ptis

Specialized�Library

Loop�O
ptim

izations

O
thers

C
om

piler�Flags

N
one

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(c) Distribution of Performance enhancing strate-
gies†

 0%

 10%

 20%

 30%

 40%

 50%

Job
M

essage�Passing

Threading

G
PU

�based�Parallelism

Loop�Parallelism

O
thers

N
one

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(d) Use of Parallelism†

Figure 2.2: Survey Data II. The categories in the graphs marked † are not mutually exclu-
sive and do not sum to 100%.

Nearly 9% of researchers used scripting/numerical languages for fast prototyping. They

wrote their programs first in MATLAB/Python-like languages and tested their algorithms

on small data sets. Once tested, these programs were re-written in C and C++ for bigger

data sets. Around 13% of researchers used both numerical and general purpose languages

for different projects, typically influenced by the perceived productivity versus performance

trade-offs for the given problem at hand.

The distribution of different kinds of programming languages employed by scientists

in the field study is shown in Figures 2.1(b) and 2.3. As Figure 2.3 shows, there is con-

siderable overlap between the use of general purpose, scripting and numerical languages.

The most dominant numerical computing language in use was MATLAB – more than half

16

the researchers programmed with it. This is followed by FORTRAN, which was used by

around 27% of researchers. Researchers using FORTRAN were influenced by the availabil-

ity of legacy code, typically written by their advisors during the early nineties. More than

40% of surveyees relied on a general purpose language to deliver on computational perfor-

mance. Two specific languages, C and C++, dominated in equal measure. An interesting

point was the discipline-wise stratification of researchers using C/C++ and FORTRAN

code. Researchers working in emerging interdisciplinary fields like Psychology, Neuro-

science and Computational Biology wrote programs in C/C++. By contrast, most of the

FORTRAN use was restricted to established scientific fields in natural sciences like Astro-

physics, Chemistry, and Geosciences. The dominant scripting language in use was Python.

Around one-fourth of interviewees used Python, with shell scripts as the second favorite.

Apart from normal string and data parsing and processing, researchers leveraged several

scientific packages written in Python like SciPy [111], NumPy [156], and Biopython [63].

In the fields of sociology, politics, music, and astrophysics, the use of domain specific

languages (DSLs) was nearly universal. Although DSLs are not as general as other pro-

gramming solutions, their higher level specialized programming constructs are best suited

for tasks that are repeated sufficiently often within each scientific domain. Interactive Data

Language (IDL) [2] is an example of a DSL that is hugely popular amongst astrophysi-

cists. BUGS [164], a DSL for describing graphical models, is almost the de facto standard

amongst researchers studying politics. Chuck [209] and Max/MSP [3] are DSLs that are

heavily used by researchers in Music for audio and video processing.

Scientists spend a substantial amount of research time programming.

On average, scientists estimate that 35% of their research time is spent in programming/de-

veloping software. The distribution is shown in Figure 2.1(d). While initially some time

is spent on writing code afresh, a considerable portion of time is spent in many tedious

17

Python/Perl/Shell(53)

FORTRAN(32)
C/C++/Java(51)

14

22

17

12

5

7
8

33

22

15

15

9

12

4

MATLAB/R/STATA (85)

Python/Perl/Shell(53) C/C++/Java (51)

Figure 2.3: Proportional representation of two classes of numerical languages, intersecting
with general purpose and scripting languages.

activities. For example, researchers in Politics and Sociology who used R/Stata had to do

considerable programming to retrofit census data into formats that individual packages in

R/Stata understood. Some researchers in Chemical Engineering had to reverse engineer

undocumented legacy code that performed flame simulation, long after the original authors

had graduated, in order to adapt the code to newer fuels.

Many researchers also re-wrote code for performing similar tasks rather than templatize

and re-use code. Quite often, this was done via a copy, paste and modify procedure which

is highly error prone. None of these activities were well tested. Many scientists write

programs to solve infrastructure problems unrelated to their research. Some scientists had

to write utilities to translate between file-formats expected by different tools. For example,

many geophysics applications each use a different data format for representing the model

of the earth, making them difficult to interact with each other.

Despite this, a vast majority of these researchers felt that they “spend more time pro-

gramming than they should,” and that research time was better spent in focusing on sci-

entific theories or on experiments (“more concerned about physics,” said one researcher).

For many researchers, it is often a case of “What is limiting us is not processor speeds but

knowledge about programming the machines”.

18

Scientists do not rigorously test their programs.

Given that the computational method has taken over as the method of first choice in many

scientific fields [194], one would expect scientists to rigorously test their programs using

state-of-the-art software testing techniques. However, our field study results point to the

contrary. We asked researchers to estimate the amount of their programming time that

they spend on testing and debugging. Although researchers estimate that they spend any-

where from between 50% to 60% of their programming time on finding and fixing errors

in their programs, the debugging and testing methods employed were primitive. Only one

researcher considered the use of assertions at all in her code. Only three researchers wrote

unit tests. Not many researchers were aware of version control systems, given their utility

in detecting sources of regressions.

More than half of the researchers did not use any debugger (Figure 2.1(c)) to detect

and correct errors in their code. 18% of researchers never tested their programs once they

were written, either because they thought it was “too simple” or relied on code written

by others, which was assumed to be “well-tested.” 11% of researchers relied on “trial and

error” to detect bugs, which typically involved checking subsections of code for correctness

by commenting out the rest of the code. Given the inherent combinatorial space of code

changes that are possible, this process itself was error-prone and slow. A small minority of

researchers relied on the expertise of their more knowledgeable peers to fix errors (“call up

people who have experience,” said one researcher).

Although some scientists acknowledged the gap between theory and practice of compu-

tational science, the current outlook of scientists on software and programming in general

is not good (“scientists are not interested in software as a first-order concern,” as noted by

one researcher).

Responses from the field study indicate that software frameworks for scientific compu-

tation allow researchers who are just getting started on research to learn faster. Scientists

19

Scientific Application Software Engineeering Programming
Model/

Typical Execution Scenario

Discipline Ver Mail Doc Bug EI Language Run time Architecture(s)
Astrophysics Athena [195] X - Extensive X - MPI + FOR-

TRAN/C
20 hours Cluster with

192 nodes,
2 cores per
node

Neuroscience /
Psychology

AFNI [58] - X Moderate X X OpenMP + C 15 hours Cluster with
52 nodes,
8 cores per
node

Chemical
Engineering

LAMMPS
[163]

X X Moderate X X MPI + C 3 days Cluster with
4 nodes, 4
cores each

Chemistry Quantum
Espresso [83]

X X Moderate - - MPI + FOR-
TRAN/C

1 month Cluster with
384 nodes,
2/4 cores per
node

Civil and
Environmental
Engineering

VIC [134] - X Moderate - - Sequential + C 1.5 weeks Cluster with
384 nodes,
2.4 cores per
node

Computational
Biology

Sleipnir [103] X - Extensive - X Pthreads +
C++

1 day Cluster with
58 nodes,
8 cores per
node

Economics Dynare [113] - - Extensive X X Sequential +
MATLAB/
C++

12 hours Desktop with
2 cores 2
cores

Electrical
Engineering

fftw [80] - - Moderate - X MPI/Pthreads
+ C

30 mins Desktop and
GPU

Geosciences SPECFEM3d
[122]

X X Extensive X - MPI/Pthreads
+
FORTRAN/C

30mins to
9hrs

Cluster with
384 nodes,
8 cores per
node

Molecular
Biology

HMMER [71] - - Moderate - X Pthreads +
C/C++

1 week Cluster with
58 nodes,
8 cores per
node

Physics GEANT4 [15] - - Extensive X X Sequential + C 1 week Cluster with
70 nodes,
2 cores per
node

Politics JAGS [164] X - Moderate X X Sequential +
C++

4 days Desktop with
2 cores

Table 2.2: Open source compute-intensive scientific applications collected during the field
study, along with typical execution scenarios for many interviewees. Software Engineering
category notes the use of Version control systems, Mailing Lists, Documentation, Bug
tracking, and Extensible Interfaces.

interviewed during the field study used frameworks such as Sleipnir [103], AFNI [58],

Quantum Espresso [83], and Dynare [113]. These domain specific scientific coding frame-

works provide a variety of builtin features that enable easier implementation and testing of

new ideas.

20

Given the interdisciplinary expertise needed for writing robust scientific code, it is de-

sirable to have many theses focused on scientific tools. Unfortunately, scientists are not

rewarded for developing and releasing robust scientific software. As noted by two promi-

nent scientists during the field study, faculty generally believe that development of software

tools “does not make for a scientific contribution.” Similar sentiments echoed included “If

you are not going to get tenure for writing software, why do it?” Alarmingly, even “funding

agencies think software development is free,” and regard development of robust scientific

code as “second class” compared to other scientific achievements.

A few scientific programs conform to best software engineering practices and have

high standards of reproducibility.

A recent article that appeared in Nature News [145] cast a rather bleak picture of scientific

programming practices, citing complete absence of known software engineering methods,

testing, and validation procedures in most scientific computing projects. While our field

study results do agree in large part with those results, we also found many interviewees

leveraged a small set of open source scientific programs that stood out both in terms of the

best software engineering practices and high standards of reproducibility. Typically, each

discipline had a few open source programs developed by scientific teams world-wide that

were popular and were utilized by many others in their field. In our subject population,

around 48% of interviewees used or modified these open source software at some stage of

their research.

Table 2.2 lists some of the representative open source programs in each field that are in

this category. Most of these programs are results of projects characterized by sophisticated

software engineering practices and evolved with goals of reproducibility, validation, and

21

extensibility. These programs were written by researchers in science rather than profes-

sional programmers. These projects are distinguished from the various scientific programs

developed in-house by the following critical features:

• Focus on Extensibility. Most of these open source programs had extensibility and

interoperability as a first order design concern. This often meant that the codes were

modular and portable. For instance, AFNI [58] has a plug-in based architecture.

AFNI users can write their own plug-ins for analysis and visualization of MRI data.

GEANT4 [15] developers specifically adopted object oriented paradigms to allow for

customized implementation of several generic interfaces. JAGS [164], although writ-

ten in C++, has well defined R interfaces. The developers of LAMMPS [163] chose

portability over optimality by opting not to use vendor specific APIs for message

passing.

• Long History of Software Development. The level of sophistication achieved by

these programs is the result of years of dedicated programming effort. Often, these

programs were in development since the 1990s and underwent significant changes

that often made the newer versions more general and portable than the earlier designs.

In many cases, the open source program was an outgrowth of collaboration between

scientists across different institutions. For instance, SPECFEM3d [122] was initially

prototyped for the Thinking Machine using High Performance FORTRAN, and later

redesigned using MPI to make it portable to run on different clusters. JAGS was

written to achieve a platform independent implementation of an existing Bayesian

analyzer. GEANT4, Quantum Espresso [83] and SPECFEM3d were designed and

developed over many years by international teams with common interests, and with

an experience of having developed similar programs in the past.

22

• Performance and “Separation of Concerns.” The current set of open source pro-

grams adopt diverse performance optimization techniques. At the same time, the

sections of the program that included machine specific optimizations were carefully

separated from the machine independent portions of code using modularized inter-

faces. Many of these programs provide an interface to the user to choose accuracy-

performance tradeoffs, often as a compile time or a run time option. Developers of

these programs did not make any compromises on performance for providing flex-

ible interfaces. For instance, fftw [80] provides a module called the “planner” that

is responsible for choosing the best optimization plan for a given architecture with-

out requiring any additional code changes from the user. SPECFEM3d’s flexibility

has given rise to versions that are being used across 150 different academic institu-

tions and at the same time has also won the Gordon Bell prize [1, 123] for scalable

performance.

• Extensive testing and validation. The programs listed in Table 2.2 have a large user

base. These programs had extensive testing and validation methods in place. Very

often, these open source projects had robust testing frameworks and used version

control systems. These programs were accompanied by considerable documentation

in the form of tutorials and user guides that made it easier to detect discrepancies in

the program behavior. An active user community around the software existed that

regularly reported bugs which were quickly fixed. Some of the projects even had a

bug tracking system.

2.2.3 Computational Time and Resource Use

Representative questions concerning this theme included: How long do scientists wait for

a computer to complete project runs? What kind of computational resources do scientists

23

typically use to meet their computational needs? How would their research change with

faster computation?

Programs run by scientists take on the order of days to complete.

Scientists spend a significant amount of time waiting for programs to run to completion.

The distribution of waiting times is shown in Figure 2.2(a). Nearly half of the researchers

who participated in the field study spend more than a few days waiting for program comple-

tion. Of this, around 15% of researchers wait on the order of months. While the researchers

who ran programs for days and weeks were randomly distributed across different scien-

tific disciplines, the researchers who waited for months were from three distinct depart-

ments: Chemistry, Geosciences, and Chemical Engineering. The corresponding programs

in Chemistry and Chemical Engineering involved various forms of molecular dynamics

simulations, although in each case, different scientific theories were leveraged. The pro-

gram from Geosciences performed ocean modeling.

Around a third of the researchers wait on the order of a few hours for program com-

pletion while one-fifth waited on the order of minutes. Almost all the people who waited

only for a few minutes used numerical computing environments like MATLAB to run their

programs. A vast majority of these researchers were primarily experimentalists/theorists

and employed computation to either validate theories or do data analysis. In the latter case,

the analysis programs dealt with small data sets and were written by the researchers them-

selves. On the other hand, researchers who waited for days used an even mix of programs

written in numerical computing languages and programs written in general purpose pro-

gramming languages like C, C++ and FORTRAN and performed analysis over larger data

sets along with other computational tasks like simulation and optimization.

24

Currently, the research conducted by 85% of researchers would profoundly change with

faster computation. Nothing evoked stronger reactions during the interviews than ques-

tions regarding the impact of faster computation. Responses included “more papers, more

quickly,” “I’ll graduate in 3 years instead of 5,” “can get you out of school earlier,” and “if

it is 2x faster, life will be five times better.” Several patterns regarding the potential areas of

research improvement emerged during the field study, which can be concretely categorized

as follows.

• Accurate scientific modeling. Across several disciplines, researchers approximate

scientific models to reduce running-times. Faster computation enables accurate sci-

entific modeling within time scales that are previously thought as unattainable. Across

disciplines, an order of magnitude performance improvement was cited as a require-

ment for significant changes in research quality. For instance, researchers simulating

precipitation/evaporation of earth science processes (Civil and Environmental Engi-

neering), can adopt the use of finer resolution models which are currently avoided

due to prohibitive communication costs between fine-grained cells and consequent

increased time for convergence. A similar pattern holds for molecular dynamics sim-

ulations (Chemical Engineering), where increasing computation speed would not re-

quire researchers to relax error thresholds/step sizes to allow for faster convergence.

The field study data reveals that 34% of the interviewees would directly benefit from

accurate models.

• Speeding up the scientific feedback loop. Scientific computation is typically not

performed in isolation, but as part of a three step feedback loop: (a) Evolve scientific

models (b) Perform computation using models (c) Revise models based on compu-

tational results. For 30% of researchers, slower computation in Step (b) leads to an

overall slow feedback loop. An example instance observed was in Computational

25

Biology, where different machine learning techniques are iterated over genome/pro-

tein data to predict gene interactions/protein structure. Faster computation shortens

this feedback loop which in turn results in faster availability of prediction data to the

larger scientific community.

• Wider exploration of parameter space. Currently, many researchers fit their sci-

entific models to only a subset of available parameters for faster program runs. For

instance, psychologists studying human decision making build models that fit only a

sparse subset of parameters, despite the potential of obtaining accurate information

about human subject by choosing a larger set of parameters. Other cases included the

use of a faster but more approximate heuristic for determining shortest path problems

in a stochastic network (Operations Research and Financial Engineering). Around

23% of researchers fall into this category. For these researchers, faster computation

translates into better heuristics and eventually broadening their research scope to be

more general and realistic.

• Others. For 12% of researchers, faster computation leads to better sensitivity anal-

ysis to data (lower normalized errors with repeated runs in parallel), faster post-

processing of a huge amount of experimental data, and reduced effects of queuing

time on simulation runs.

Over the past few decades, generations of newer parallel hardware have met the need of

faster computation for scientific applications [85]. The continuing doubling of transistors

as per Moore’s Law [149], even in the presence of power and thermal walls for uniprocessor

design, has meant that parallel hardware is now ubiquitous. Faster hardware will no doubt

enable accurate scientific modeling and wider parameter space exploration for free in many

applications. However, for an increasing number of applications, it is software and not

hardware that is on the critical path of performance [214].

26

Despite enormous wait times, many scientists run their programs only on desktops.

Traditionally, large scale scientific computing problems have been solved by relying on

powerful supercomputers, massively parallel computers, and compute clusters [115]. In

practice, do scientists take advantage of these powerful computing resources when they are

available and easily accessible?

While researchers use a wide variety of computational resources, a substantial portion

(40%) of them only use desktops for their computation. This is despite the fact that the

computational tasks performed take more than a few hours for completion, for more than

half of these researchers. Although more than three-fourths of these desktops have multiple

cores (most commonly two), almost all of them run only single threaded code. Further-

more, surveying the algorithms and computational techniques employed in these programs

reveals that several of these are amenable to parallelization.

Around half of the interviewees use clusters, with about one-fifth leveraging both desk-

tops and clusters in their research. Use of multiple clusters with varying architecture types

was common in this group as well. Typically the same code was run unaltered on multiple

machines. Only a small proportion of researchers used GPUs and shared-memory compute

servers in their research. Servers offer a unified memory address space as opposed to a

divided address space in the case of clusters. The servers were further characterized by

the lack of a job submission system, whereas clusters usually had a job submission system

for batch processing. The distribution of computational resources employed is shown in

Figures 2.2(b) and 2.4.

A vast majority of subjects continually trade-off speed for accuracy of computation.

However, even while doing so, scientists very rarely tune their applications to perform

optimally on each specific cluster that they use for running them. Frequently seen pat-

terns include increasing the error thresholds to allow for faster convergence of optimization

27

Desktop(71)

Cluster(60)

Others(17)

46

2036

1

9

4

3

Figure 2.4: Proportional distribution of Computational Resource Usage. Others include
Servers and GPUs

solvers, performing fewer simulation runs which made the results more susceptible to out-

liers, using coarse-grained scientific models that are greater approximations of the physical

reality, and analyzing fewer data points to do hypothesis testing. Most of these choices

were guided by the execution time witnessed on the first machine on which these programs

were run. Some researchers while testing their initial implementations on their desktops

wanted the runs to complete overnight. Often, these programs were run unaltered after an

initial implementation on multiple machines with widely varying architectures.

2.2.4 Performance Enhancing Methods

Representative questions concerning this theme included: Do researchers care enough

about performance to optimize their code? What tools and techniques are used to opti-

mize for performance? Do researchers target the most time consuming portions of their

code? Are researchers aware of parallelism and do they make use of different paralleliza-

tion paradigms to deliver performance in their code?

28

Scientists do not optimize for the common case.

Compiler writers and computer architects are well acquainted with the adage “90% of the

execution time is spent in 10% of the code.” Therefore, the general belief is by optimizing

hot code, greater performance gains can be expected per unit of effort. The results from

the field study indicate that scientists have hypotheses on which portions of their code

are hot, but more often than not do not test these hypotheses. Consequently, scientists

may not be targeting the important sections of their program. A little more than half of the

interviewees manually optimized code for performance. However, only 18% of researchers

who optimize code leveraged profiling tools to inform their optimization plans. More than

one-third of researchers were not aware of any profiling tools and did not time different

portions of their code while nearly one-fourth of researchers had heard about profiling but

did not take advantage of them.

The most common reasons given for not using profilers were “not a first order concern,”

“not heard of them,” “will not help,” and “I know where time is spent.” As a result, quite

a few scientists misjudged the portions of code that were the most time consuming and

ended up optimizing code that did not contribute much to overall runtime. For example,

one researcher performing biophysics simulations mistook MPI communication in his code

for a performance bottleneck, even though it contributed to only 10% of the execution time.

Profiling the application revealed that the real bottleneck was in a sorting algorithm, which

accounted for more than 40% of execution time. Replacing the sorting algorithm with a

faster one gave greater improvements in performance than optimizing for communication.

Of the people who leveraged profiling information, close to three-fourths used a standard

profiling tool like gprof and MATLAB profiler, while the remaining wrote custom

timers (for example, function call counts rather than time spent in certain functions) in

specific portions of code to profile for execution time.

29

Researchers employed a wide variety of performance enhancing strategies in their code

as shown in Figure 2.2(c). These strategies can be grouped into two categories. High level

optimizations (done by 28% of researchers) included algorithmic changes, choice of better

data structures, and use of specialized libraries. Typical examples for these include better

heuristics for optimization problems, choice of a concurrent data structure over sequential

one, use of specialized digital signal processing engines and built-in libraries in MATLAB.

Low-level optimizations (done by 26% researchers) included manual loop optimizations

and use of compilation flags. The most popular of loop optimizations was manual loop vec-

torization. Of the people doing high-level optimizations, only around half actually profiled

their code. Of the people doing loop optimizations, only a third ever profiled their code.

A little less than 10% of researchers use compiler optimization flags (e.g., -O3). Many

researchers were either unaware of compiler optimization flags or thought of compiler op-

timizations as too low-level to actually make a significant difference in performance.

Scientists are unaware of parallelization paradigms.

Very few researchers were aware of or took complete advantage of various paralleliza-

tion paradigms like message passing and shared memory parallelism directly in their code.

Less than one-third of researchers had heard about different forms of parallelism (data,

task/functional, and pipeline) that could potentially be applicable to improve the perfor-

mance of their code. About a third of researchers did not use any form of parallelism in

their research at all. Half the researchers relied heavily on batch processing. Researchers

who leveraged parallelization paradigms in their programs can be categorized as follows

(Figure 2.2(d)):

• Message Passing based Parallelization.

30

Around 22% of researchers exploited message-passing-based parallelism in their re-

search. Except for one researcher who used UNIX sockets directly, the rest of the

researchers used MPI [86]. The vast majority of these people did not actually write

MPI code themselves, but rather ran open source programs based on MPI. Many of

them modified only the sequential portions of these programs and lacked knowledge

about MPI concepts. Many researchers wanted to learn more about MPI via peer

training and academic courses. Some of them had attended various two-day mini-

courses offered by PicSCiE on MPI. However, they still had many complaints like

“it is hard,” “looks complex,” “big learning curve,” and “implementation time is too

high.”

Of the few researchers who wrote MPI code, most faced enormous problems debug-

ging. Their experience using debuggers like gdb and TotalView was not good. All of

them uniformly complained about the complexity of understanding and using such

“unintuitive” tools on clusters. Researchers had significant difficulty exploiting par-

allel I/O on clusters. Quite often, they resorted to using a single process to do all the

prints, even when it increased communication costs.

• Thread based CPU Parallelization. Despite the fact that most desktops today have

at least two cores and almost all nodes in a cluster have multiple processors operating

on a shared memory address space, only 7% of researchers leveraged any form of

thread based shared memory CPU parallelism. A total of only eight researchers (of

114) admitted any knowledge of threads or had any experience using explicit thread

based parallelism in their research.

• GPU based Parallelism. Around 9% of researchers leveraged GPUs. Of these, there

was one expert per research group who wrote the GPU based parallel code and the

rest of the researchers were users of this code. For instance, research staff studying

31

collective animal behavior in ecology and evolutionary biology included postdoctoral

researchers with relevant computer science background who wrote the initial version

of the code. Other researchers used GPU based open source versions of well known

programs (for example, hoomd [18]).

• Loop Based Parallelism. Only 11% of researchers utilized loop-based parallelism,

where programmer written annotations enable a parallelizing system to execute a

loop in parallel. The most common form of loop based parallelism was the use

of parfor construct in MATLAB, which enables execution of multiple iterations

of a loop in parallel and requires that the iterations access/update disjoint memory

locations.

Only one researcher exploited pipeline parallelism, even though pipeline parallelism is

a natural way of extracting performance for many “simulate, then analyze” kind of applica-

tions. In these applications, a simulation run generates a lot of data (typically on the order

of gigabytes), which is then analyzed by another piece of code after the simulation ends.

Instead of sequentializing the simulation and analysis codes, creating a pipeline between

these codes can achieve a significant overlap between them. This in turn would reduce the

feedback cycle time drastically.

Even though researchers understand the importance of parallelism in accelerating their

research, the predominant perception of parallel programming is that of black art (“heard

it is notoriously hard to write” on MPI, “scared of it” on shared memory parallelism). The

emerging heterogeneity in parallel architectures and explicit programming models is not

helping either. Even though researchers seem excited at the potential of newer parallel

architectures, they seem overwhelmed by current programming techniques for these ma-

chines (“GPUs can give 25x instantly instead of waiting for generations of Moore’s Law,

but I don’t know how to program them,” said a prominent scientist).

32

2.3 Summary

The results from the field study, as described in this chapter, make a strong case for the

design, implementation and evolution of parallel programming solutions that require min-

imal programming effort for delivering performance. Although the importance of parallel

performance cannot be overstated given the enormous running times of many scientific

applications, one of the central results of the field study is that programming time is on

the critical path of delivering on this performance. Specifically, solutions that preserve the

sequential programming model as the default would be preferable since it is not likely to

result in a steep learning curve for most scientific programmers.

Designing solutions for general purpose, imperative languages like C and C++ has the

potential for making the maximum impact as evidenced by its widespread use across differ-

ent scientific domains and more so in computationally intensive fields. Given the prevalent

use of desktops for computational runs and the trend of increasing core counts on chip

multiprocessors on these desktops, parallelization solutions that are no longer just focused

on clusters but are agnostic to underlying machine architectures are preferable. These so-

lutions preserve abstraction boundaries between software and hardware and preserve per-

formance portability across successive generations of parallel architectures. The implicitly

parallel programming (IPP) approach adopted in this dissertation has all the characteristics

outlined above.

33

Chapter 3

Implicit Parallel Programming

This chapter describes and compares various state-of-the-art parallel programming and par-

allelization solutions. Table 3.1 gives an overview of the comparison. In this chapter, we

use the term “automatic parallelization” to refer to compiler, runtime and other techniques

for extracting parallelism from sequential code without requiring any intervention from a

programmer.

We use the term “implicit parallel programming” to refer to a model of programming

where parallelism is exposed implicitly as a result of certain design choices made at the lan-

guage level, either in the form of specific high-level programming abstractions, extensions,

or restrictions to sequential languages with no explicit support for manual parallelization.

Therefore, the key distinction from the other approaches described in this chapter is that

IPP does not require any special manual effort in low level parallel programming and the

task of how to select the optimal parallelization strategy and synchronization mechanism is

left to an automated tool-chain that includes a compiler and a runtime system.

We use the term “explicitly parallel” to refer to an approach that requires any of the

following:

34

• a programmer to specify a parallelization strategy. For instance, the programming

model may require a programmer to manually write code for specifying creation,

management, and termination of a particular form of parallelism like task, data or

pipeline parallelism.

• a programmer to specify a synchronization mechanism. For instance, the program-

ming model may require a programmer to write code to manually specify specific

forms of concurrency control mechanisms like transactions, locks, or condition vari-

ables.

• a programmer to explicitly specify thread partitioning. For instance, the program-

ming model may require a programmer to write code to manually specify the code

that constitutes the stages of a pipeline, and explicitly manage the flow of data be-

tween the stages by means of a producer-consumer library.

Finally, “interactive and assisted parallelization” refers to a methodology for reducing

the effort of manual parallel programming by providing a programmer-friendly paralleliza-

tion tool. The rest of this chapter describes each of these solutions in greater detail and

makes a broad comparison between them and the IPP techniques proposed in this disserta-

tion.

3.1 Automatic Parallelization Techniques

Automatic parallelization techniques based on compiler transformations can be classified

into three main categories: (a) independent multithreading (IMT) (b) pipeline multithread-

ing (PMT) and (c) cyclic multithreading (CMT). All these techniques extract loop level

parallelism. The baseline versions of these techniques are non-speculative. When com-

bined with speculation, these techniques have increased applicability and performance.

35

Methodology Representative Default Paralle- Concurrency Code Paralleli- Annotation
Systems Prog. lization Control Partiti- zation Support

Model Strategy oning Assistance
Automatic DOALL [17], Polaris [36] Sequential Auto Auto Auto × ×
Parallelization SUIF [191], DOACROSS [59]

DOPIPE [62], DSWP [158]
PS-DSWP [172]
LOCALWRITE [92]
Inspector-Executor [185]
SpecDOALL [220]
STMLite [143]
LRPD [177], Spice [174]
TLS [192], SpecDSWP [204]

Implicit Physis [142], Chorus [139] Sequential Auto Auto Auto X X
Parallel Liszt [67], Paralax [206]
Programming VELOCITY [41], N-way [54]

ALTER [203], pH [154]
SQL [?], COMMSET, WEAKC

Explicit Cilk [81], Cyclone [87] Parallel Manual Manual Manual × ×
Parallel X10 [52], DPJ [37]
Programming Intel TBB [162], TPL [131]

C++0x [29], Erlang [21]
Atomos [47], AME [105]
OpenTM [26], BOP [69]
pthreads [43], MPI [86]

Interactive Parascope [119] Parallel Manual Manual Manual X ×
and SUIF Explorer [135]
Assisted Tulipse [215]
Parallelization Intel Parallel Advisor [12]

Dragon [99], Parameter [126]
D Editor [100], PAT [188]

Table 3.1: Comparison of various parallelization paradigms. The programming effort is
represented by the combination of (a) Default programming model (Parallel takes more ef-
fort than Sequential) and the entity responsible for specifying (b) the Parallelization Strat-
egy (data, task, pipeline) (c) Concurrency Control (transactions, locks) (c) Code Partition-
ing (pipeline stages). In all cases, ‘Manual’ implies more effort than ‘Auto’. Paralleliza-
tion Assistance refers to tool support for determining impediments for parallelization and
‘Annotation Support’ refers to language support for removing artificial constraints on par-
allelizing programs.

Within this general categorization, there are several differences in the various state-of-the-

art implementations depending on the exact mechanisms employed to either improve appli-

cability or performance or both. The rest of this section describes many of these important

automatic parallelization techniques and specifies how our IPP techniques relate to them.

IMT refers to extraction of parallelism from a loop with no loop-carried dependence.

In the absence of loop carried dependences, a compiler can execute all iterations of a loop

entirely in parallel without any need for synchronization. The DOALL [17] technique is

36

most popular of all independent multithreaded techniques. It was initially proposed for

loops with regular memory accesses in FORTRAN based scientific computation. Early

automatic parallelization systems like Polaris [36] and SUIF [191] supported DOALL. This

technique has the highest performance potential due to the absence of any synchronization

but has limited applicability due to its strong requirement of not having any inter-iteration

dependences.

CMT refers to extraction of a particular form of parallelism from loops with loop-

carried dependences where each iteration of the loop executes as a complete unit on a

single thread or core while synchronizing any data dependence that exists from earlier iter-

ations (threads) to later iterations (threads) to preserve sequential execution semantics. The

DOACROSS [59] technique falls under this category and is supported within SUIF [191].

Cyclic multithreading has the advantage that it applies to more loops than DOALL but

the synchronization overheads associated with this technique often result in poorer perfor-

mance.

PMT refers to extraction of parallelism from loops that may contain loop-carried de-

pendences into a pipeline of threads. In this technique, an iteration of a loop is split into

different stages of a pipeline and each stage is scheduled to be run on a separate core/thread

in such a way that all loop carried dependences are kept local within a thread and the intra-

iteration dependences are communicated in a single direction from earlier stage to a later

stage of the pipeline. Early proposals of DOPIPE [62] are an example of PMT.

The DSWP family of transformations [158, 172] which extract pipelined parallelism

from loops with irregular memory accesses are a recently proposed set of PMT techniques.

The primary insight behind the DSWP algorithms is that by keeping dependence cycles lo-

cal, parallel computation is decoupled from communication and the parallelization is more

latency tolerant. The original DSWP [158] algorithm extracted parallelism onto sequential

stages, ie, each stage could be scheduled to run only on a single thread.

37

The PS-DSWP [172] technique extends DSWP to obtain greater scalability. It allows

stages with no loop-carried dependences internal to them to run in parallel on multiple

threads. Overall, the DSWP family of transformations are more applicable than DOALL

and has much better performance characteristics than DOACROSS.

In addition to the above, other techniques such as LOCALWRITE [92], Inspector-

Executor [185] and recent techniques based on matrix multiplication [183] have been pro-

posed for specialized non-speculative parallelization of loops with irregular reductions. All

the techniques described so far in this section rely on static analysis to determine the ab-

sence of dependencies in order to obtain a parallel schedule. Static analysis is inherently

conservative due to its requirement to be sound across all inputs to a program. However,

very often various kinds of dependences rarely manifest at runtime (for eg, error conditions)

even though when viewed statically they can inhibit parallelization.

Various solutions have been proposed to enhance each of the above automatic paral-

lelization techniques with speculation. The idea behind speculation is that by predicting

that certain infrequent dependences (identified via profiling) do not manifest during ex-

ecution, and by providing a runtime system that validates this prediction and recovers in

case of a misprediction, sound and scalable parallelization of many programs with irregular

memory access and control flow can be obtained. Most of the modern speculative paral-

lelization systems depend on offline profiling [28, 217, 201] to determine dependences that

manifest infrequently at runtime.

Speculative DOALL [220] is a system to extract speculative IMT parallelism and demon-

strate its benefits for SPECfp programs. STMLite [143] is a speculative system for extract-

ing DOALL parallelism that is based on a customized version of software transactional

memory. The LRPD test [177] determines the criterion speculative parallelization of loops

with iteration-local arrays and reductions. Privateer [109] is a recently proposed system

38

for speculative privatization and reductions that enable scalable speculative DOALL paral-

lelization. Spice [174] is another technique that leverages value speculation for extracting

DOALL parallelism.

Thread-level speculation (TLS) techniques present a speculative version of

DOACROSS. While the initial versions of TLS [192, 193] required custom changes to hard-

ware, recent proposals [155] implement TLS in software. Speculative Decoupled Software

Pipelining (SpecDSWP) [204] is a technique that enhances DSWP with intelligent specu-

lation where speculation is applied only to break longest few dependence cycles to increase

both applicability and scalability of pipeline multithreading.

While automatic parallelization techniques require little or no effort from a program-

ming perspective for extracting parallelism, they are constrained by the need to respect

sequential semantics. Due to this, these techniques fail to achieve scalable speedups in

many cases where the non-determinism present in a high-level algorithm is obscured by

the artifacts of the sequential programming model.

3.2 Implicit Parallel Programming Approaches

Implicit parallel programming (IPP) addresses the problems associated with automatic par-

allelization described above. In particular, the IPP techniques proposed in this dissertation

have automatic parallelization at its core. Given a sequential program, our IPP techniques

first attempt to parallelize a program without any help from a programmer using some of

the automatic parallelization techniques discussed above. In particular, our current im-

plementation applies non-speculative versions of DOALL, DSWP, and PS-DSWP, and a

specific form of OR parallelization. Our IPP annotations are applied only when these

techniques fail to achieve scalable speedup. These IPP annotations exploit programmer

knowledge about domain algorithms to relax the sequential semantics, and provide these

39

automatic parallelization techniques with additional freedom to scalably parallelize these

relaxed programs.

This section reviews broadly related prior work in the area of implicit parallel program-

ming, and places the IPP techniques proposed in this dissertation in context. An in-depth

comparison of work related to the specific techniques proposed in this dissertation is made

in Chapter 7.

A lot of work has been done on exploiting parallelism within functional programming

languages that impose programming constraints at the language level [112, 154, 95, 61].

For instance, properties such as function purity, data structure immutability are enforced by

default in many functional languages. In addition, for many of these languages the paral-

lel and sequential semantics coincide. Feedback directed implicit parallelism systems [95]

present a model for implicitly exploiting speculative parallelism within the runtime sys-

tem of a lazily evaluated functional language. This approach employs profiling at runtime

for feedback-directed extraction of parallelism transparently at runtime. Skeleton func-

tions [61] serve as building blocks of a parallel program and provide a set of program

transformations between these skeletons aimed at obtaining performance portable code.

Specific parallel programming frameworks have been proposed for effective paralleliza-

tion of scientific code within certain domains. For instance, Physis [142] is a programming

framework for translating high-level specifications for grid computation into a scalable

parallel implementation in CUDA or MPI via compiler based techniques. Chorus [139]

presents a high-level parallel programming approach based on “object assemblies” for

mesh refinement and epidemic simulations. Liszt [67] is a domain specific language for

building highly parallel mesh-based PDE solvers on a wide variety of heterogeneous archi-

tectures.

40

Two salient features distinguish the IPP techniques described in this dissertation from

conventional IPP approaches described so far. Our extensions have the sequential program-

ming model as the default without additional restrictions. This helps programmers since it

is much easier to think sequentially rather than in parallel. In addition, eliding the IPP ex-

tensions results in a deterministic, sequential output and the IPP extensions provide a way

to incrementally relax sequential semantics and implicitly introduce parallelism. Secondly,

our IPP extensions are semantic in nature, and their use changes the output of the pro-

gram. They require programmers intervention as no static analysis tool can deduce these

extensions automatically. Thus, these extensions are not redundant, and by involving the

programmer only when necessary in breaking artificial dependences that restrict automatic

parallelization, our IPP methodology significantly reduces the burden on the programmer.

Similar to the language extensions for IPP proposed in this dissertation, similar propos-

als for semantic language extensions have been made in the past. Jade [179], Galois [128],

DPJ [38], Paralax [206], and VELOCITY [41] propose various forms of semantic com-

mutativity annotations with various degrees of expressiveness. Chapters 4 and 7 make

an in-depth comparison of these proposals with COMMSET, the semantic commutativ-

ity based construct and IPP system that is proposed in this dissertation. Similarly, apart

from the above-mentioned semantic commutativity proposals, N-way [54], Cilk++ hyper-

objects [79], and ALTER [203] present programming extensions and systems that could

be applied for weakening strong consistency requirements on sequential data structures.

Chapters 5 and 7 make an in-depth comparison of these proposals with weak consistency

data structures proposed in this dissertation.

41

3.3 Explicitly Parallel Approaches

Despite the advances made in the field of automatic parallelization and implicit parallel

programming, the prevalent paradigm for parallelization today is still explicitly parallel.

In the last few decades, many explicitly parallel languages have been invented that give a

programmer a lot of freedom with respect to parallelization. However, this comes at the

cost of increased programming effort. This section describes recent and past approaches to

explicit parallel programming.

Cilk [81] is an explicitly parallel, multithreaded extension of C that provides primitives

for parallel control. In particular, it relies on a programmer to explicitly specify which

functions can be executed in parallel and when threads can be joined using spawn and sync

keywords. Cilk also provides an analytical model for performance based on the concepts

of “work” and “critical path length”. Similar to the IPP techniques presented in this disser-

tation, Cilk has the nice property that eliding the extensions results in a sequential program

with well defined serial semantics. Cyclone [87] is another extension of C with multi-

threading, which additionally also guarantees safety from race conditions if a program type

checks. Kawaguchi [116] presents a similar system of dependent type system that guaran-

tees deterministic parallelism. Our IPP techniques relax strict determinism requirements

imposed by a sequential programming model to accurately reflect application semantics.

X10 [52] provides an object oriented (OO) approach to parallelism at the language level

and has a memory model that is partitioned within a global address space. It provides OO

primitives like foreach, ateach, future, and async that a programmer can use to specify the

units of work to be executed in parallel and also specify how the work has to be partitioned

to execute on separate memory regions within a global address space. Our IPP techniques

rely on compiler and runtime support for partitioning both memory and tasks for parallel

execution.

42

DPJ [37] is another language that presents a region-based memory model for the pur-

poses of safe deterministic parallelism (see Chapter 7 for a complete comparison with

COMMSET). Ribbons [101] is a recently proposed programming model that supports full

or partial heap isolation for shared memory parallel programming.

Futures [213] represent a piece of computation that can be computed asynchronously

or lazily in parallel with the main computation and the result used when needed within

the main program. Welc et al. [213] present a programming model and an API for safe

futures for Java. In this model, a programmer needs to explicitly choose annotate functions

that can execute in parallel with a program’s main computation as futures, and a runtime

system guarantees preservation of sequential semantics in its execution. Our IPP techniques

relax sequential semantics, and our annotations declare a semantic property and are not

imperative injunctions for creating parallel tasks.

Intel Threaded Building Blocks(TBB) [162] is a C++ runtime library that provides ob-

ject oriented abstractions, primarily using template based generic programming, to specify

the creation and management of parallelism at a higher level than provided by the POSIX

threading primitives. TBB provides abstractions for programmers to create both data and

pipeline parallelism by wrapping sections of code within appropriate functors and instan-

tiating templates that perform the functionality of foreach keyword in Cilk. Additionally,

the runtime library provides functionality to adapt the number of threads and provide load

balancing at runtime. The Task Parallel Library (TPL) [131] provides a similar framework

to TBB but for a managed language. While our IPP compiler does not rely on a program-

mer for generating pipeline and data parallel schedules, the load balancing functionality of

TBB and TPL could be beneficial in its backend.

The newest C++ standard provides support for concurrency [29] at the language level.

In particular, the proposed concurrency primitives are based on threading using functors

(std::thread) within the C++ standard library. Programmers can use these facilities

43

to explicitly create threads, manage the concurrency with condition variables, mutual ex-

clusion primitives, and memory barriers, and terminate them with halt primitives provided

within the standard.

Several parallel extensions of functional languages are explicitly parallel. Concurrent

ML [178] is an extension of ML with support for concurrency via message passing. Er-

lang [21] is another language that is functional and parallel by default and also relies on

message passing. In contrast, our IPP annotations are designed and implemented as ex-

tensions to imperative languages like C/C++ and can be easily ported over to functional

languages.

The map-reduce paradigm [65, 175] is an application of a well-known functional pro-

gramming idiom for large scale, fault tolerant parallel data processing over clusters of

machines. It imposes a strict two-phase (DOALL and reduce) programming model and

presents a shared memory abstraction to the programmer. Parallelization and load balanc-

ing are hidden from the programmer. FlumeJava [50] is a generalization of the MapReduce

API that enables easier development of efficient data-parallel pipelines. NESL [34] is a

data-parallel language that is functional at its core. Data Parallel Haskell [49] and pH [154]

are extensions to Haskell that support nested data parallelism.

The Berkeley dwarfs [22] represent a pattern language for parallel programming. This

language is based on 13 core patterns for parallel programming (13 “dwarfs”) and reflect

the design patterns based approach to software engineering. The language supports a wide

variety of parallelization paradigms based on representative application use cases from a

variety of computational domains. It also envisions a larger role for “autotuners” to maxi-

mize performance while minimizing programming effort. While this approach is similar to

a library based approach, our IPP techniques have been integrated with autotuning frame-

works, one as part of the Parcae [171] system for flexible parallel execution, and another

within WEAKC (see Chapter 5).

44

Several solutions have been proposed that support transactional memory at the language

level. Atomos [47] is a language that is derived from Java but replaces Java’s synchroniza-

tion constructs with transactional memory constructs. Although programmers no longer

need to use low level synchronization primitives like locks and condition variables, the task

of identifying and parallelizing profitable code sections still has to be manually performed.

Transaction Collection Classes [46] provide a transactional replacement for Java collec-

tion classes. Automatic Mutual Exclusion [105] provides a programming model based on

transactions where all state is implicitly shared between different threads by default unless

explicitly specified using mutual exclusion primitives by a programmer. In our IPP sys-

tem, transactional memory is used as one of synchronization mechanisms in the backend

whenever applicable and is not exposed to the programmer.

OpenTM [26] extends the OpenMP programming interface with primitives for trans-

action based synchronization and parallelism. Even though programmers have to identify

the individual units of work that need to be executed in parallel and specify the code sec-

tions where synchronization need be enforced, the OpenTM compiler and runtime system

is free to ignore or vary the degree of parallelism at runtime. Transactional constructs for

C/C++ [152] present a similiar model. Like OpenTM, our IPP annotations use pragmas

and serve as hints that can be readily ignored. However, our approach does not require

programmers to specify either a parallelization strategy or synchronization mechanism.

Safe programmble speculative systems [166] present programmatic constructs for safely

exploiting value speculation to parallelize seemingly sequential applications. Sofware

BOP [69] is a similar system that relies on value speculation but does not guarantee any

particular ordering in its parallel execution. Recent proposals [117, 32] add support for

ordering and determinism. Currently, our IPP techniques do not exploit value speculation,

but they can be integrated transparently with prior compiler techniques [174].

45

OpenMP [51] is a popular programming model for shared memory parallel program-

ming. It provides a set of compiler directives (pragmas) that can be applied on a sequential

program and relies on associated compiler support and a runtime system to create and op-

timize parallelism during execution. Although OpenMP provides a relatively higher-level

programming interface than compared to pthreads [43] or MPI [86], programmers still have

to identify profitable sections of code, determine the best parallelization strategy and use

specific synchronization mechanisms with differing semantics (using keywords like atomic,

critical, ordered).

POSIX threads [43] provides a highly flexible, relatively low level support for explicit

parallel programming for shared memory systems using a library based approach. The

pthreads API is flexible which programmers can use to manually create any form of paral-

lelism – task, data, or pipeline parallelism. It also provides a wide variety of low level

synchronization constructs ranging from different kind of locking primitives (mutexes,

semaphores) to condition variables and so on. Although the expressiveness obtained by

composing many of these primitives is high, amount of programmer effort required is high

and the parallel programming pitfalls like race conditions, deadlocks, atomicity violations

are quite common when using this API.

MPI [86] is a message passing API that is targeted toward cluster-based systems con-

taining nodes with disjoint memory spaces. Similar to pthreads, the API is extremely

flexible and expressive, with various routines for point-to-point and broadcast communica-

tion. While it is relatively easy to exploit data parallelism with MPI, exploiting task and

pipeline parallelism can be quite cumbersome since synchronization has to be explicitly

implemented manually via message passing protocols.

Many languages have been proposed for effectively programming high-performance

streaming applications. StreamIt [200] is one such language that provides a structured

model for streams with filters, and various mechanisms to composing these filters such as

46

a pipeline, split-join, and feedback loops. The language is supported by a compiler that

has many stream specific analyses and optimizations. StreamFlex [190] is a recently pro-

posed streaming language for Java. Several techniques have been also been proposed at

the language level [88, 210] to efficiently map stream parallelism on to multicore. Com-

pared to these, our IPP techniques rely on the DSWP family of compiler transforma-

tions [158, 204, 172] which considerably lessen the burden on the programmer.

Several parallel programming frameworks have been proposed for heterogeneous archi-

tectures. Merge [137] provides a library-based approach for programming heterogeneous

architectures using the map-reduce approach, and a compiler converts a map-reduce pro-

gram into low-level parallel codes for GPUs and other architectures. Lime [23] is a lan-

guage with many built-in safety features for synthesizing parallel programs on heteroge-

neous architectures and presents a task programming model with support for split-join and

streams. Compared to these, our IPP techniques are at a relatively high-level, architecture-

agnostic, and not restricted to a particular parallelization methodology.

3.4 Interactive and Assisted Parallelization

Implicit Parallel Programming takes complete advantage of automatic parallelization by

providing annotation support to remove artificial constraints that cannot be automatically

deduced. Interactive and Assisted Parallelization provides a methodology for reducing the

effort of manual parallel programming by providing a programmer-friendly parallelization

tool. This tool is usually interactive and provides an user interface that describes various

program properties relevant for parallelization at the program source level or in general at

a high level. The user interface is usually part of an integrated development environment

and gets its information from various backend modules like a compiler, runtime system or

an analysis tool. Some of the tasks that the interactive tool assists a programmer with are in

47

identifying hotspots for parallelization, identifying performance bottlenecks in explicitly

parallelized programs, eliciting programmer’s help in identifying spurious dependences,

and in performing some hard-to-do automatic transformations manually. This section de-

scribes recent and past approaches to interactive and assisted parallelization.

Parascope [119] represents one of the earliest tools for interactive parallel program-

ming. It provided an intelligent interactive editor to support parallel programming by a

combination of program analysis tools and expert advice via interactive editing. It was

originally aimed at parallel FORTRAN programs that have regular array based accesses.

Incremental parallelization of a program was supported by allowing a programmer to delete

spurious dependences, ignore dependence sets, filter certain dependences all of which were

displayed visually. Additionally, the tool could be used to point out the potential hazards in

programmer-written parallel code using a combination of analysis of program text and pro-

gram structure. Once parallelized, the tool could be used to give feedback on the different

parallelization strategies by providing profitability estimates.

The D Editor [100], similar to Parascope, is an interactive tool for aiding parallel pro-

gramming using Fortran D and High Performance Fortran. In particular, the D Editor

provided assistance with dependence filtering, and guidance for a programmer on program

partitioning, parallelism finding, effective placement of data placement annotations, and

optimization of MPI communications.

SUIF Explorer [135] is an interactive parallelizer that focuses on minimizing the num-

ber of lines of code on which it requires programmer assistance for parallelization. It does

so by utilizing precise interprocedural analysis to eliminate spurious dependences of which

array dependence analysis is useful in particular. Another important component is the tech-

nique of program slicing [212] that enables reduction in the amount of code a programmer

has to peruse. The Explorer provides a “parallelization guru” that combines static and dy-

namic information to identify hotspots for parallelization and also identifies the optimal

48

granularity for parallelization. Whenever analysis is imprecise, SUIF explorer also allows

a programmer to specify that specific dependences do not exist and also to manually write

privatization-code when automatic code transformation is hard.

PAT [188] is an incremental parallelizing tool that acts on both sequential and partially

parallel FORTRAN programs. It provides guidance to a programmer to safely add explic-

itly parallel directives to existing FORTRAN programs. The main conceptual novelty of

PAT is the incremental nature of its dependence analysis, ie, its ability to incrementally

update dependence information as a programmer changes source code for parallelization.

This ability plays a crucial role in providing a seamless user experience for interactive

parallelization.

Dependence visualization tools [186] similar to PAT have been implemented as a plu-

gin to an integrated development environment, for on-the-fly dependence visualization in

assisting programmers with parallelization. Tulipse [215] is another tool for dependence

visualization, especially for dependences that span loop nests, also provided as a plugin to

an integrated development environment. Intel Parallel Advisor [12] is a recently released

tool that helps developers to simplify and speed parallel application design and implemen-

tation.

Balasundaram [27] presents an interactive parallelization tool specifically targeted to-

wards numerical scientific programs. In addition to developing and applying a general

theory of dependence testing for pipeline parallelization, it provides support for synchro-

nization analysis. Also, it provides debugging support for identification of race conditions.

Parallel programming environments for OpenMP [160] provide tools for interactive

program parallelization using OpenMP. These tools help a programmer with program struc-

ture visualization, performance modeling, and with general parallel tuning. The first step

in this approach is to put the program through a parallelizing compiler. Only when it fails

49

to uncover sufficient parallelism, it resorts to parallelization with a programmer’s assis-

tance. Dragon [99] is another tool that provides dynamic information for feedback-driven

OpenMP-based parallelization in addition to assistance through static analysis.

Dig [68] advocates a refactoring approach to parallelism where a programmer begins

with a sequential program, incrementally and interactively parallelizes it by selecting sec-

tions of code to be refactored while relying on analysis tools to validate the thread-safety of

each incremental step. In addition to improving programmer productivity and performance,

this approach is also aimed at improving code portability. Dig also describes different forms

of refactoring each aimed at optimizing throughput, scalability, or thread safety.

Krelim [82] is a tool that exclusively focuses on identifying profitable sections of code

for parallelization using profiling. It uses an analysis called the hierarchical critical path

analysis, and provides a parallelism planner for ranking the different code regions in order

of their profitability. Kismet [107] extends this work with sequence regions that separate

instruction-level parallelism from other forms of parallelism.

Hawkeye [202] is a dynamic dependence analysis tool that assists programmers in iden-

tifying impediments to parallelization. In contrast to other such tools, Hawkeye tracks de-

pendences based on the abstract semantics of well-defined data types, and ignores depen-

dences that manifest as implementation artifacts. Parameter [126] is a tool that produces

parallelism profiles for irregular programs, depicting the amount of parallelism when im-

plementation artifacts are overridden.

The IPP techniques proposed in this dissertation are similar in many respects to the

interactive and assisted parallelization techniques described earlier. Similar to SUIF ex-

plorer and other tools, our IPP techniques also have at its backend a parallelizing compiler

and aim at minimizing the number of lines of code of programmer assistance. Similar to

dependence visualization tools, our IPP system provides a frontend that displays program

50

properties at the source level in HTML to programmers to determine beneficial points in

the source for insertion of semantic annotations. However, there are key distinctions:

1. Unlike interactive tools, our IPP techniques provide a rich and general semantic an-

notation language that enables programmers to specify relaxations of sequential pro-

gram behavior in expressive ways. In addition, our backend provides associated

support for understanding these annotations to aid in transparent parallelization in

the “write once, optimize many” model.

2. Most of the interactive parallelization tools described above require programmers to

eventually perform some form of explicit parallelization. By contrast, the annotations

provided by our IPP techniques are semantic in nature and enable programmers to

succinctly express high-level program properties without worrying about the details

of how parallelization is achieved.

51

Chapter 4

Generalized Semantic Commutativity

Several class of emerging scientific applications contain computations involving random

number generators, hash tables, binary search trees, list data structures, file I/O involv-

ing sequences of function calls (e.g., fread and fwrite to different files) that can be

executed out of order (or commute with each other). For instance, gene sequencing ap-

plications frequently read and write data files of several gigabytes of data. Monte Carlo

algorithms employed in simulation programs in several fields of science of engineering

frequently call various forms of random number generation routines. Clustering applica-

tions employed in computational biology employ tree data structures where different orders

of insertion operations result in different internal structures, although semantically repre-

senting the same cluster. However, such applications cannot be automatically parallelized

due to artificial constraints imposed by the sequential model – all the above computations

involve flow dependences on the internal state that cannot be broken without changing the

output of the program, even though alternate outputs may be legal according to the seman-

tics of the application.

Recent work has shown the importance of programmer specified semantic commuta-

tivity assertions in exposing parallelism implicitly in code [38, 41, 128, 179, 205]. The

52

IPP System Concept
Expressiveness of Commutativity Specification Requires

Predication Commuting Group Additional
Interface Client Blocks Commutativity Extensions

Jade [179] × × × × Yes
Galois [128] X × × × Yes
DPJ [38] × × × × Yes
Paralax [205] × × × × No
VELOCITY [41] × × × × No
COMMSET X X X X No

Table 4.1: Comparison between the COMMSET concept and other parallel models based
on semantic commutativity

IPP System Specific Parallel Implementation
Parallelism Forms Concurrency Parallelization Optimistic

Task Pipelined Data Control Driver Parallelism
Mechanism

Jade [179] X X × Automatic Runtime ×
Galois [128] × × X Manual Runtime X
DPJ [38] X × X Manual Programmer ×
Paralax [205] × X × Automatic Compiler ×
VELOCITY [41] × X × Automatic Compiler X
COMMSET × X X Automatic Compiler ×

Table 4.2: Comparison between the COMMSET implementation and other parallel models
based on semantic commutativity

programmer relaxes the order of execution of certain functions that read and modify muta-

ble state, by specifying that they legally commute with each other despite violating existing

partial orders. Parallelization tools exploit this relaxation to extract performance by per-

mitting behaviors prohibited under a sequential programming model. However, existing

solutions based on semantic commutativity either have limited expressiveness or require

programmers to use additional parallelism constructs.

53

4.1 Limitations of Prior Work

Tables 4.1 and 4.2 shows existing parallel programming models based on semantic com-

mutativity and compares them with COMMSET, the solution proposed in this dissertation.

Jade [179] supports object-level commuting assertions to specify commutativity between

every pair of operations on an object. However, Jade requires programmer written read-

/write specifications for exploiting task and pipeline parallelism, which can be quite tedious

to write. Galois [128], a runtime system for optimistic parallelism, leverages commutativity

assertions on method interfaces. However, it requires programmers to use special set ab-

stractions with non-standard semantics to enable data parallelism. DPJ [38], an explicitly

parallel extension of Java uses commutativity annotations to override restrictions placed

by the type and effect system of Java. However, these annotations can only be made at

method interfaces within library classes. Several researchers have also applied commuta-

tivity properties for semantic concurrency control in explicitly parallel settings [46, 125].

Paralax [205] and VELOCITY [40, 41] exploit self-commutativity at the interface level to

enable pipelined parallelization. VELOCITY also provides special semantics for commu-

tativity between pairs of memory allocation routines for use in speculative parallelization.

However, these commutativity constructs can only be used to specify self-commutativity

of functions at their interfaces and hence are limited in terms of their expressiveness. This

dissertation proposes an implicit parallel programming model based on semantic commu-

tativity, called Commutative Set (COMMSET), that generalizes all the above semantic com-

mutativity constructs and enables multiple forms of parallelism from the same specifica-

tion.

The main advantages of COMMSET over existing approaches are: (a) COMMSET’s

commutativity construct is more general than others. Prior approaches allow commutativ-

ity assertions only on interface declarations. However, commutativity can be a property

54

of client code as well as code behind a library interface. COMMSET allows the commu-

tativity assertions between arbitrary structured code blocks in client code as well as on

interfaces, much like the synchronized keyword in Java. It also allows commutativity

to be predicated on variables in a client’s program state, rather than just function arguments

as in earlier approaches. (b) COMMSET specifications between a group of functions are

syntactically succinct, having linear specification complexity rather than quadratic as re-

quired by existing approaches. (c) COMMSET presents an implicit parallel programming

solution that enables both pipeline and data parallelism without requiring any additional

parallelism constructs. Existing approaches use parallelism constructs that tightly couple

parallelization strategy with concrete program semantics, in contravention of the principle

of “separation of concerns.” In contrast, using only COMMSET primitives in our model,

parallelism can be implicitly specified at a semantic level and is independent of a specific

form or concurrency control mechanism.

The subsequent sections of this chapter describe:

1. The design, syntax, and semantics of COMMSET, a novel programming extension

that generalizes, in a syntactically succinct form, various existing notions of semantic

commutativity.

2. An end-to-end implementation of COMMSET within a parallelizing compiler that

includes the front-end, static analysis to enhance the program dependence graph with

commutativity properties, passes to enable data and pipeline parallelizations, and

automatic concurrency control.

A detailed experimental evaluation of the COMMSET programming model on a set of

twenty programs and programs collected from the field study is given in Chapter 6.

55

4.2 Motivating Example

Figure 4.1 shows a code snippet from a sequential implementation of md5sum (plus high-

lighted pragma directives introduced for COMMSET that are discussed later). The main

loop iterates through a set of input files, computing and printing a message digest for each

file. Each iteration opens a file using a call to fopen, then calls the mdfile function

which, in turn, reads the file’s contents via calls to fread and then computes the digest.

The main loop prints the digest to the console and closes the file by calling fclose on

the file pointer. Although it is clear that digests of individual files can be safely com-

puted out of order, a parallelizing tool cannot infer this automatically without knowing the

client specific semantics of I/O calls due to its externally visible side effects. However,

the loop can be parallelized if the commuting behaviors of fopen, fread, fclose, and

print digest on distinct files are conveyed to the parallelizing tool.

One way to specify commuting behavior is at the interface declarations of file opera-

tions. Galois [128] extracts optimistic parallelism by exploiting semantic commutativity

assertions specified between pairs of library methods at their interface declarations. These

assertions can optionally be predicated on their arguments. To indicate the commuting be-

haviors of calls on distinct files, one would ideally like to predicate commutativity on the

filename. Since only fopen takes in the filename as an argument, this is not possible.

Another approach is to predicate commutativity on the file pointer fp that is returned by

fopen. Apart from the fact that expensive runtime checks are required to validate the

assertions before executing the I/O calls (which are now on the critical path), this approach

may prevent certain valid commuting orders due to recycling of file pointers. Operations

on two distinct files at different points in time that happen to use the same file pointer value

are now not allowed to commute. This solution is also not valid for all clients. Consider the
1The commutativity specifications languages of Galois, Paralax, VELOCITY and COMMSET are concep-

tually amenable to task and speculative parallelism

56

following sequence of calls by a client that writes to a file (fp1) and subsequently reads

from it (fp2) in the next iteration: fwrite(fp1), fclose(fp1), fopen(fp2),

fread(fp2). Here, even though fp1 and fp2 may have different runtime values, they

still may be pointing to the same file. Commuting fopen(fp2), fread(fp2) with

fclose(fp1) may cause a read from the file before the write file stream has been com-

pleted. Approaches that annotate data (file pointer fp in this case) to implicitly assert

commutativity between all pairs of operations on that file pointer [179], run into the same

problem.

Allowing predication on the client’s program state can solve the above problem for

md5sum. Since the input files naturally map to different values of the induction variable,

predicating commutativity on the induction variable (in the client) solves the problems

associated with interface based predication. First, no legal commuting behavior is prohib-

ited since induction variables are definitely different on each iteration. Second, runtime

checks for commutativity assertions are avoided since the compiler can use static analysis

to symbolically interpret predicates that are functions of the induction variable to prove

commutativity on separate iterations.

In order to continue using commutativity specifications on function declarations while

still predicating on variables in client state, programmers either have to change existing

interfaces or create new wrapper functions to take in those variables as arguments. Chang-

ing the interface breaks modularity since other clients which do not want commutative

semantics are now forced to pass in additional dummy arguments to prevent commuting

behaviors. Creating wrapper functions involve additional programmer effort, especially

while replicating functions along entire call paths. In the running example, the mdfile

interface has to be changed to take in the induction variable as an argument, to allow for

predicated commutativity of fread calls with other file operations (fopen and fclose)

in the main loop.

57

#pragma CommSetDecl(FSET, Group) 1
#pragma CommSetDecl(SSET, Self) 2
#pragma CommSetPredicate(FSET, (i1), (i2), (i1 != i2)) 3
#pragma CommSetPredicate(SSET, (i1), (i2), (i1 != i2)) 4

for (i=0 ; i < argc; ++i) { // Main Loop A
 FILE *fp; unsigned char digest[16];

#pragma CommSet(SELF, FSET(i)) 5
 {
 fp = fopen(argv[i], FOPRBIN);
 } B

#pragma CommSetNamedArgAdd(READB(SSET(i), FSET(i))) 6
 mdfile(fp, digest);

#pragma CommSet(SELF, FSET(i)) 7
 {
 print_digest(digest);
 } H
#pragma CommSet(SELF, FSET(i)) 8
 {
 fclose(fp);
 } I
}

#pragma CommSetNamedArg(READB) 9
int mdfile(FILE *fp, unsigned char *digest);

int mdfile(FILE *fp, unsigned char *digest)
{
 unsigned char buf[1024]; MD5_CTX ctx; int n;
 MD5Init(&ctx); C
 do {
#pragma CommSetNamedBlock(READB) 10
 {
 n = fread(buf, 1, sizeof(buf), fp);
 } D
 if (n == 0) break;
 MD5Update(&ctx, buf, n); E
 } while (1); F

 MD5Final(digest, &ctx);
 return 0; G
}

M
a
i
n

L
o
o
p

M
e
s
s
a
g
e

D
i
g
e
s
t

C
o
m
p
u
t
a
t
i
o
n

F
u
n
c
t
i
o
n

Figure 4.1: Sequential version of md5sum extended with COMMSET

The additional programmer effort in creating wrappers can be avoided by allowing

structured code blocks enclosing the call sites to commute with each other. This is eas-

ily achieved in md5sum by enclosing the call sites of fopen, fread, print digest,

58

Comm-DOALL Comm-PS-DSWP

B

Par

D

E

G

H

I

C

B

Par

D

E

G

H

I

C

B

Seq

D

E

G

H

I
C

ico(7,10)

uco(5)

ico(5,7)

ico(5,8)

ico(10,5)

ico(10,7)

ico(10,5)

ico(7,5)
ico(7,8)

ico(8,5)

uco(8)

uco(7)

uco(10)

uco(8)
ico(5,8)

uco(5)

ico(10,8)
ico(10,8)

ico(8,5)

ico(7,5)

ico(7,8)

ico(5,7)

ico(10,7) ico(7,10)

Seq

Intra-Iteration Dependence
Loop Carried Dependence

uco: Unconditionally Commutative

ico: Inter-Iteration Commutative

Commutative EdgeI

Non-Deterministic Output Deterministic Output

COMMSET Node

Non COMMSET Node

Figure 4.2: Program Dependence Graph for md5sum with COMMSET extensions

and fclose within anonymous commutative code blocks. Commutativity between multi-

ple anonymous code blocks can be specified easily by adding the code blocks to a named

set, at the beginning of their lexical scope. Grouping commutative code blocks or func-

tions into a set, as presented here, has linear specification complexity. In contrast, existing

approaches [38, 128] require specifying commutativity between pairs of functions individ-

ually leading to quadratic specification complexity. The modularity problem (mentioned

above) can be solved by allowing optionally commuting code blocks and exporting the

option at the interface, without changing interface arguments. Clients can then enable the

commutativity of the code blocks if it is in line with their intended semantics, otherwise

default sequential behavior is preserved. In the case of md5sum, the fread call can be

made a part of an optionally commuting block. The option is exported at the interface

59

Core 1

Time

B1

C1

G1

I1

F1

D1

Sync Op Communication COMMSET Code Block

A1

G1

H1

A2 A3

B1

C1

D1

F1

Comm-PS-DSWP Comm-DOALL

H2

H1

Core 2 Core 3 Core 1 Core 2 Core 3

B2

C2

G2

I2

F2

D2

I1

G2

B2

C2

D2

F2

G3

B3

C3

D3

F3

E3

E2

H2

I2

H3

I3

B3

C3

D3

A1

E1

G1

H1

B1

C1

D1

F1

Seq

Core 1

I1

A2

B2

C2

D2

E3

G3

F3

I3 H3

G2

H2

F2

I2

A3

B3

C3

D3

G3

H3

F3

I3

E3

E1 E1

A3

E2

E2

A1 A2

Output:

digest1 , digest2 , digest3

[Deterministic]

Output:

digest2 , digest1 , digest3

[Non-Deterministic]

Figure 4.3: Timeline for md5sum Parallelizations

60

declaration of mdfile and is enabled by the main loop while other clients that require

sequential semantics can ignore the option.

A commuting code block gives the programmer the flexibility to choose the extent to

which partial orders can be relaxed in a program. This, in turn, determines the amount of

freedom a parallelizing tool has, to extract parallelism. For instance, enclosing fread

calls inside mdfile within a commuting block gives more freedom to a parallelizing

tool to extract performance, as opposed to the outer call to mdfile. Depending on the

intended semantics, the programmer can choose the right granularity for the commuting

blocks which a parallelizing system should automatically guarantee to be atomic. Com-

muting blocks allow for a declarative specification of concurrency which a parallelizing

tool can exploit to automatically select the concurrency mechanism that performs best for a

given application. Automatic concurrency control has the advantage of not requiring inva-

sive changes to application code when newer mechanisms become available on a particular

hardware substrate.

Parallelizing tools should be able to leverage the partial orders specified via commu-

tativity assertions without requiring the programmer to specify parallelization strategies.

Existing runtime approaches require the use of additional programming extensions that

couple parallelization strategies to program semantics. Galois [128] requires the use of set

iterators that constrain parallelization to data parallelism. Jade [179] requires the use of

task parallel constructs. DPJ [38] uses explicitly parallel constructs for task and data paral-

lelism. COMMSET does not require such additional extensions. For instance, in md5sum,

a programmer requiring deterministic output for the digests, should be able to express the

intended semantics without being concerned about parallelization. The implementation

should be able to automatically change to the best parallelization strategy given the new

semantics. Returning to md5sum, specifying that print digest commutes with the

other I/O operations, but not with itself constrains output to be deterministic. Given the

61

new semantics, the compiler automatically switches from a better performing data parallel

execution of the loop to a slightly less performing (in this case) pipelined execution. In the

data parallel execution, each iteration of the loop executes in parallel with other iterations.

In a pipeline execution, an iteration is split into stages, with the message digests computed

in parallel in earlier stages of the pipeline being communicated to a sequential stage that

prints the digest in order to the console.

Parallelization within the compiler is based on the Program Dependence Graph (PDG)

structure [78]. Figure 4.2 shows the simplified PDG for sequential md5sum. Each labeled

code block is represented by a node in the PDG and a directed edge from a node n1 to

n2 indicates that n2 is dependent on n1. Parallelizing transforms (e.g. DOALL [118] and

PS-DSWP [173]) partition the PDG and schedule nodes onto different threads, with de-

pendences spanning threads automatically respected by insertion of communication and/or

synchronization operations. With the original PDG, DOALL and PS-DSWP cannot be di-

rectly applied due to a cycle with loop carried dependences: B → D→ H → I → B and

self loops around each node in the cycle. The COMMSET extensions help the compiler

to relax these parallelism-inhibiting dependences, thereby enabling wider application of

existing parallelizing transforms.

Figure 4.3 shows three schedules with different performance characteristics for md5sum

execution. The first corresponds to sequential execution and the other two parallel sched-

ules are enabled by COMMSET. Each of these schedules corresponds to three different se-

mantics specified by the programmer. The sequential execution corresponds to the in-order

execution of all I/O operations, as implied by the unannotated program. The PS-DSWP

schedule corresponds to parallel computation of message digests overlapped with the se-

quential in-order execution of print digest calls. Finally, the DOALL schedule corre-

sponds to out-of-order execution of digest computation as well print digests. Every

COMMSET block in both the DOALL and PS-DSWP schedules is synchronized by the use

62

of locks (provided by libc) while PS-DSWP has additional communication operations. The

DOALL schedule achieves a speedup of 7.6x on eight threads over sequential execution

while PS-DSWP schedule gives a speedup of 5.8x. The PS-DSWP schedule is the result of

one less COMMSET annotation than the DOALL schedule. The timeline in Figure 4.3 il-

lustrates the impact of the semantic choices a programmer makes on the freedom provided

to a parallelizing tool to enable well performing parallelizations. In essence, the COMM-

SET model allows a programmer to concentrate on the high-level program semantics while

leaving the task of determining the best parallelization strategy and synchronization mech-

anism to the compiler. In doing so, it opens up a parallel performance optimization space

which can be systematically explored by automatic tools.

4.3 Semantics

This section describes the semantics of various COMMSET features.

Self and Group Commutative Sets. The simplest form of semantic commutativity is a

function commuting with itself. A Self COMMSET is defined as a singleton set with a code

block that is self-commutative. An instantiation of this COMMSET allows for reordering

dynamic invocation sequences of the code block. A straightforward extension of self-

commutativity that allows commutativity between pairs of functions has quadratic speci-

fication complexity. Grouping a set of commuting functions under a name can reduce the

specification burden. However, it needs to account for the case when a function commutes

with other functions, but not with itself. For instance, the insert() method in a STL

vector implementation does not commute with itself but commutes with search()

on different arguments. A Group COMMSET is a set of code blocks where pairs of blocks

63

commute with each other, but each block does not commute with itself. These two concepts

together achieve the goal of completeness and conciseness of commutativity specification.

Domain of Concurrency. A COMMSET aggregates a set of code blocks that read and

modify shared program state. The members are executed concurrently in a larger paral-

lelization scope, with atomicity of each member of the COMMSET guaranteed by automatic

insertion of appropriate synchronization primitives. In this sense, COMMSET plays the role

of a “concurrency domain,” with updates to the shared mutable state being done in arbitrary

order. However, the execution orders of members of a COMMSET with respect to the rest

of code (sequential or other COMMSETs) are determined by flow dependences present in

sequential code. These properties ensure that execution runs of a COMMSET program are

serializable.

Non-transitivity and Multiple Memberships. Semantic commutativity is intransitive.

Given three functions f, g, and h where two pairs (f, g), (f, h) semantically commute, the

commuting behavior of (g, h) cannot be automatically inferred without knowing the se-

mantics of state shared exclusively between g and h. Allowing code blocks to be members

of multiple COMMSETs enables expression of either behavior. Programmers may create a

single COMMSET with three members or create two COMMSETs with two members each,

depending on the intended semantics. Two code blocks commute if they are both members

of at least one COMMSET.

Commutative Blocks and Context Sensitivity. In many programs that access generic

libraries, commutativity depends on the client code’s context. The COMMSET construct is

flexible enough to allow for commutativity assertions at either interface level or in client

code. It also allows arbitrary structured code blocks to commute with other COMMSET

members, which can either be functions or structured code blocks themselves. Functions

64

belonging to a module can export optional commuting behaviors of code blocks in their

body by using named block arguments at their interface, without requiring any code refac-

toring. The client code can choose to enable the commuting behavior of the named code

blocks at its call site, based on its context. For instance, the mdfile function in Figure 4.1

that has a code block containing calls to fread may expose the commuting behavior of

this block at its interface via the use of a named block argument READB. A client which

does not care about the order of fread calls can add READB to a COMMSET optionally at

its call site, while clients requiring sequential order can ignore the named block argument.

Optional COMMSET specifications do not require any changes to the existing interface

arguments or its implementation.

Predicated Commutative Set. The COMMSET primitive can be predicated on either in-

terface arguments or on variables in a client’s program state. A predicate is a C expression

associated with the COMMSET and evaluates to a Boolean value when given arguments cor-

responding to any two members of the COMMSET. The predicated expression is expected

to be pure, i.e. it should return the same value when invoked with the same arguments. A

pure predicate expression always gives a deterministic answer for deciding commutativity

relations between two functions. The two members commute if the predicate evaluates to

true when its arguments are bound to values of actual arguments supplied at the point where

the members are invoked in sequential code.

Orthogonality to Parallelism Form. Semantic commutativity relations expressed using

COMMSET are independent of the specific form of parallelism (data/pipeline/task) that are

exploited by the associated compiler technology. Once COMMSET annotations are added

to sections of a sequential program, the same program is amenable to different styles of

parallelization. In other words, a single COMMSET application can express commutativity

65

relations between (static) lexical blocks of code and dynamic instances of a single code

block. The former implicitly enables pipeline parallelism while the latter enables data and

pipeline parallelism.

Well-defined CommSet members. The structure of COMMSET members has to obey

certain conditions to ensure well-defined semantics in a parallel setting, especially when

used in C/C++ programs that allow for various unstructured and non-local control flows.

The conditions for ensuring well-defined commutative semantics between members of a

COMMSET are: (a) The control flow constructs within each code block member should be

local or structured, i.e. the block does not include operations like longjmp, setjmp,

etc. Statements like break and continue should have their respective parent structures

within the commutative block. (b) There should not be a transitive call from one code

block to another in the same COMMSET. Removing such call paths between COMMSET

members not only avoids the ambiguity in commutativity relation defined between a caller

and a callee but also simplifies reasoning about deadlock freedom in the parallelized code.

Both these conditions are checked by the compiler.

Well-formedness of CommSets. The concept of well-definedness can be extended from

code blocks in a single COMMSET to multiple COMMSETs by defining a COMMSET graph

as follows: A COMMSET graph is defined as a graph where there is a unique node for each

COMMSET in the program, and there exists an edge from a node S1 to another node S2,

if there is a transitive call in the program from a member in COMMSET S1 to a member

in COMMSET S2. A set of COMMSETs is defined to be well-formed if each COMMSET

has well-defined members and there is no cycle in the COMMSET graph. Our paralleliza-

tion system guarantees deadlock freedom in the parallelized program if the only form of

parallelism in the input program is implicit and is expressed through a well-formed set of

66

CSets ::= PredCSet | PredCSet, CSets
PredCSet ::= CSet | CSet(CVars)
CVars ::= Cvar | Cvar, Cvars
CSet ::= SELF | Setid

BPairs ::= Bid(CSets) |Bid(CSets), BPairs
Blocks ::= Bid | Bid, Blocks

#pragma CommSetNamedArgAdd(BPairs)
retval = function­name(x1, ...,xn);

CommSet
Global
Declarations

#pragma CommSetDecl(CSet, SELF|Group)

#pragma CommSetPredicate(CSet,
 (x1, ..., xn), (y1, ..., yn),
 Pred(x1, ..., xn, y1, ..., yn))

#pragma CommSetNoSync(CSet)

CommSet
Instance
Declarations

#pragma CommSet(CSets)
 |CommSetNamedArg(Blocks)
typereturn function­name(t1 x1, ..., tn xn);

#pragma CommSet(CSets)
 |CommSetNamedBlock(Bname)
{
 Structured code region
}

CommSet
List

Figure 4.4: COMMSET Syntax

COMMSETs. This guarantee holds when either pipeline or data parallelism is extracted and

for both pessimistic and optimistic synchronization mechanisms (see Section 4.5.6).

4.4 Syntax

This section describes the semantics of various COMMSET features and the syntax of the

COMMSET primitives. The COMMSET extensions are expressed using pragma directives

in the sequential program. pragma directives were chosen because a program with well-

defined sequential semantics is obtained when they are elided. Programs with COMMSET

annotations can also be compiled without any change by a standard C/C++ compiler that

does not understand COMMSET semantics.

67

Global Declarations. The name of a COMMSET is indicative of its type. By default,

the SELF keyword refers to a Self COMMSET, while COMMSETs with other names are

Group COMMSETs. To allow for predication of Self COMMSETs, explicit type declaration

can be used. The COMMSETDECL primitive allows for declaration of COMMSETs with

arbitrary names at global scope. The COMMSETPREDICATE primitive is used to associate

a predicate with a COMMSET and is declared at global scope. The primitive takes as argu-

ments: (a) the name of the COMMSET that is predicated, (b) a pair of parameter lists, and

(c) a C expression that represents the predicate. Each parameter list represents the subset

of program state that decides the commuting behavior of a pair of COMMSET members,

when they are executed in two different parallel execution contexts. The parameters in the

lists are bound to either a commutative function’s arguments, or to variables in the client’s

program state that are live at the beginning of a structured commutative code block. The C

expression computes a Boolean value using the variables in the parameter list and returns

true if a pair of COMMSET members commute when invoked with the appropriate argu-

ments. By default, COMMSET members are automatically synchronized when their source

code is available to the parallelizing compiler. A programmer can optionally specify that

a COMMSET does not need compiler inserted synchronization using COMMSETNOSYNC.

The primitive is applied to COMMSETs whose members belong to a thread-safe library

which has been separately compiled and whose source is unavailable.

Instance Declarations and CommSet List. A code block can be declared a member of

a list of COMMSETs by using the COMMSET directive. Such instance declarations can be

applied either at a function interface, or at any point in a loop or a function for adding an ar-

bitrary structured code block (a compound statement in C/C++) to a COMMSET. Both com-

pound statements and functions are treated in the same way as far as reasoning about com-

mutativity is concerned. In the case of predicated COMMSETs in the COMMSET list, the

68

actual arguments for the COMMSETPREDICATE are supplied at the instance declaration.

For function members of a COMMSET, the actual arguments are a list of parameter dec-

larations, while for compound statements, the actual arguments are a set of variables with

primitive type that have a well-defined value at the beginning of the compound statement.

Optionally commuting compound statements can be given a name by enclosing the state-

ments within COMMSETNAMEDBLOCK directive. A function containing such a named

block can expose the commuting option to client code using COMMSETNAMEDARG at its

interface declaration. The client code that invokes the function can enable the commuting

behavior of the named block by adding it to a COMMSET using the COMMSETNAMEDAR-

GADD directive at its call site.

4.4.1 Example

Figure 4.1 shows the implicitly parallel program obtained by extending md5sum with

COMMSET primitives. The code blocks B, H, I enclosing the file operations are added to

a Group COMMSET FSET using annotations 5, 7, and 8. Each code block is also added to

its own Self COMMSET. FSET is predicated on the loop induction variable’s value, using a

COMMSETPREDICATE expression (3) to indicate that each of the file operations commute

with each other on separate iterations. The block containing fread call is named READB

(10) and exported by mdfile using the COMMSETNAMEDARG directive at its interface

(9). The client code adds the named block to its own Self set (declared as SSET in 2) us-

ing the COMMSETNAMEDARGADD directive at 6. SSET is predicated on the outer loop

induction variable to prevent commuting across inner loop invocations (4). A deterministic

output can be obtained by omitting SELF from annotation 7.

69

P
ro

g
ra

m
m

e
r

C
O

M
M

S
E

T
 A

n
a

ly
s
is

P
a

ra
ll

e
li

z
a
ti

o
n

Add COMMSET

Annotations

Front-End

Original Sequential

Source Code

Parallel Code

COMMSET Pragma

Parser

COMMSET Predicate

Synthesizer

COMMSET Block

Structuredness

Checker

COMMSET Metadata

Manager

COMMSET Block

Canonicalizer

COMMSET Well

Formedness Checker

COMMSET Predicate

Purity Analysis

IR + Metadata

COMMSET Sync

Engine

COMMSET Sync

Analysis

Optimistic &

Pessimistic Sync

HTML

Dependence

Renderer

COMMSET

Dep

Analyzer

Section 4.4

Implicitly Parallel Code

Source Level

Deps

Deps at

IR Level

COMMSET

Metadata

UnSync Parallel IR

COMMSET

Metadata

DAG-SCC

+ PDG

Parallelizing

Transforms

DOALL

PS-DSWP

UnSync Parallel IR

PDG Builder

SCC Computation

Loop Carried

Dependence Detector

Annotated

PDG
PDG

DAG-SCC

+ PDG

Canonicalized IR

Figure 4.5: COMMSET Parallelization Workflow

4.5 Compiler Implementation

We built an end-to-end implementation of COMMSET within a parallelizing compiler. The

compiler is an extension of the clang/LLVM framework [130]. Figure 4.5 shows the par-

allelization workflow. The parallelization focuses on hot loops in the program identified

70

via runtime profiling. The PDG for the hottest loop is constructed over the LLVM IR,

with each node representing an instruction in the IR. The memory flow dependences in

the PDG that inhibit parallelization are displayed at source level to the programmer, who

inserts COMMSET primitives and presents the program back to the compiler. The subse-

quent compiler passes analyze and transform this program to generate different versions of

parallelized code.

4.5.1 Frontend

The COMMSET parser in the frontend parses and checks the syntax of all COMMSET direc-

tives, and synthesizes a C function for every COMMSETPREDICATE. The predicate func-

tion computes the value of the C expression specified in the directive. The argument types

for the function are automatically inferred by binding the parameters in COMMSETPRED-

ICATE to the COMMSET instances. Type mismatch errors between arguments of different

COMMSET instances are also detected. Commutative blocks are checked for enclosing

non-local control flow by a top-down traversal of the abstract syntax tree (AST) starting

at the node corresponding to the particular commutative block. Finally, global COMMSET

meta-data is annotated at the module level, while COMMSET instance data is annotated on

individual compound statement or function AST nodes. This meta-data is automatically

conveyed to the backend during the lowering phase.

4.5.2 CommSet Metadata Manager

In the backend, the COMMSET meta-data is an abstraction over the low-level IR constructs,

instead of the AST nodes. The COMMSET Metadata Manager processes and maintains a

meta-data store for all COMMSET instances and declarations, and answers queries posed by

subsequent compiler passes. The first pass of the manager canonicalizes each commutative

71

compound statement, now a structured region (set of basic blocks) within the control flow

graph, by extracting the region into its own function. Nested commutative regions are ex-

tracted correctly by a post-order traversal on the control flow graph (CFG). The extraction

process ensures that arguments specified at a COMMSET instance declaration are parame-

ters to the newly created function. At the end of this pass, all the members of a COMMSET

are functions. Call sites enabling optionally commutative named code blocks are inlined

to clone the call path from the enabling function call to the COMMSETNAMEDBLOCK

declaration. A robust implementation can avoid potential code explosion by automatically

extending the interface signature to take in additional arguments for optional commuting

blocks. Next, each COMMSET is checked for well-formedness using reachability and cycle

detection algorithms on the call graph and the COMMSET graph respectively. The COMM-

SETPREDICATE functions are tested for purity by inspection of its body.

4.5.3 PDG Builder

The PDG builder constructs the PDG over the LLVM IR instructions for the target loop

using well-known algorithms [78]. A loop carried dependence detector module annotates

dependence edges as being loop carried whenever the source and/or destination nodes read

and update shared memory state. Memory dependence edges are constructed by relying on

a variety of alias analysis techniques [153] composed together, including those that support

loop, field, calling-context, shape and type sensitivity. In addition, to disprove certain spu-

rious memory dependences involving external functions, our alias analysis implementation

was enhanced with custom aliasing rules (see Table 6.2 in Chapter 6). However, it should

be noted that COMMSET annotations were applied only in instances where there is a real

memory flow dependence due to the sequential programming model.

72

Algorithm 1: CommSetDepAnalysis
1 foreach edge e ∈ PDG do
2 let n1 = src(e); let n2 = dst(e);
3 if typeOf(n1) 6= Call ∨ typeOf(n2) 6= Call then
4 continue
5 end
6 let Fn(n1) = f(x1, . . . , xn) and Fn(n2) = g(y1, . . . , yn);;
7 let Sin = CommSets(f) ∩ CommSets(g);
8 foreach Cs ∈ Sin do
9 if not Predicated(Cs) then

10 Annotate(e, PDG, uco);
11 end
12 else
13 let fp = PredicateFn(Cs);
14 let args1 = CommSetArgs(Cs, f);
15 let args2 = CommSetArgs(Cs, g);
16 let fargs = FormalArgs(fp);
17 for i = 0 to | args1 − 1 | do
18 let x1 = args1(i) ; let x2 = args2(i);
19 let y1 = fargs(2 ∗ i) ; let y2 = fargs(2 ∗ i+ 1);
20 Assert(x1 = y1); Assert(x2 = y2);
21 end
22 if LoopCarried(e) then
23 Assert(i1 6= i2); // induction variable;
24 r = SymInterpret(Body(fp), true);
25 if (r = true) and (Dom(n2, n1)) then
26 Annotate(e, PDG, uco);
27 end
28 else if (r = true) then
29 Annotate(e, PDG, ico);
30 end
31 end
32 else
33 r = SymInterpret(Body(fp), true);
34 if (r = true) then
35 Annotate(e, PDG, uco);
36 end
37 end
38 end
39 end
40 end

4.5.4 CommSet Dependence Analyzer

The COMMSET Dependence Analyzer (Algorithm 1) uses the COMMSET metadata to an-

notate memory dependence edges as being either unconditionally commutative (uco) or

inter-iteration commutative (ico). Figure 4.2 shows the PDG edges for md5sum annotated

with commutativity properties along with the corresponding source annotations. For every

memory dependence edge in the PDG, if there exists an unpredicated COMMSET of which

both the source and destination’s target functions are members, the edge is annotated as uco

73

(Lines 9-11). For a predicated COMMSET, the actual arguments of the target functions at

their call sites are bound to corresponding formal parameters of the COMMSETPREDICATE

function (Lines 17-19). The body of the predicate function is then symbolically interpreted

to prove that it always returns true, given the inequality assertions about induction variable

values on separate iterations (Lines 21-22). If the interpreter returns true for the current pair

of COMMSET instances, the edge is annotated with a commutativity property as follows: A

loop carried dependence is annotated as uco if the destination node of the PDG edge dom-

inates the source node in the CFG (Lines 23-34), otherwise it is annotated as ico (Lines

26-27). An intra-iteration dependence edge is always annotated as uco if the predicate is

proven to be true (Lines 32-34). Once the commutative annotations are added to the PDG,

the PDG builder is invoked again to identify strongly connected components (SCC) [118].

The directed acyclic graph of SCCs (DAG-SCC) thus obtained forms the basis of DSWP

family of algorithms [157].

4.5.5 Parallelizing Transforms

The next step runs the DOALL and PS-DSWP parallelizing transforms, which automat-

ically partition the PDG onto multiple threads for extracting maximal data and pipelined

parallelism respectively. For all the parallelizing transforms, the ico edges are treated as

intra-iteration dependence edges, while uco edges are treated as non-existent edges in the

PDG. The DOALL transform tests the PDG for absence of inter-iteration dependencies,

and statically schedules a set of iterations to run in parallel on multiple threads. The DSWP

family of transforms partition the DAG-SCC into a sequence of pipeline stages, using pro-

file data to obtain a balanced pipeline. The DSWP algorithm [158] only generates sequen-

tial stages, while the PS-DSWP algorithm [173] can replicate a stage with no loop carried

SCCs to run in parallel on multiple threads. Dependences between stages are communi-

cated via lock-free queues in software. Together, the uco and ico annotations on the PDG

74

enable DOALL, DSWP, and PS-DSWP transforms when previously they were not appli-

cable. Currently, the compiler generates one of each (DSWP, PS-DSWP, and DOALL)

schedule whenever applicable, with a corresponding performance estimate. A production

quality compiler would typically use heuristics to select the optimal across all paralleliza-

tion schemes.

4.5.6 CommSet Synchronization Engine

This step automatically inserts synchronization primitives to ensure atomicity of COMM-

SET members with respect to each other, taking multiple COMMSET memberships into

account (Algorithm 2). The compiler generates a separate parallel version for every syn-

chronization method used. Currently three synchronization modes are supported: opti-

mistic (via Intel’s transactional memory (TM) runtime [218]), pessimistic (mutex and spin

locks) and lib (well known thread safe libraries or programmer specified synchronization

safety for a COMMSET). Initially, the algorithm assigns a unique rank to each COMMSET

which determines the global order of lock acquires and releases. The next step determines

the set of potential synchronization mechanisms that apply to a COMMSET. Synchroniza-

tion primitives are inserted for each member of a COMMSET by taking into account the

other COMMSETs it is a part of. In the case of TM, a new version of the member wrapped

around transactional constructs is generated. For the lock based synchronizations, lock ac-

quires and releases are inserted according to the assigned global rank order. The acyclic

communication primitives that use the lock free queues together with the synchronization

algorithm maintain the following two invariants required to ensure deadlock freedom [132]:

• A blocking consume on a lock-free queue is matched by a produce with the same

control flow conditions [157].

• Each thread performs lock and unlock operations in accordance with a global order

75

Algorithm 2: CommSetAutoSynch
Input: Pin: Unsynchronized Parallel Program, PT : Thread Partition, SCS : Set of Commutative Sets
Output: Pout: Synchronized Parallel Code

1 let Ctrrank = 0
2 for Cs ∈ SCS do
3 Rank(Cs) = Ctrrank

4 Ctrrank = Ctrrank + 1

5 end
6 foreach Cs ∈ SCS do
7 foreach f ∈ Cs do
8 if Callees(f) = ∅ and not Declaration(f) then
9 Synchattr(S) = {TM}

10 end
11 end
12 if

⋂
f∈Cs

ModRef(f) = {x | x ∈ AbsLocLib} then
13 Synchattr(Cs) = {NOSY NC}
14 end
15 if NOSY NC 6∈ Synchattr(Cs) then
16 Synchattr(Cs)

⋃
= {SPIN,MUTEX}

17 end
18 if (∃ f ∈ Cs which is part of a parallel stage in PT) then
19 Scands

⋃
= Cs

20 end
21 end
22 for f ∈ partition in PT do
23 if f 6∈ Scands then
24 continue
25 end
26 let Sf = {Cs | ∃Cs ∈ Scands such that f ∈ Cs}
27 Synchint(f) =

⋂
Cs∈Sf

Synchattr(Cs)

28 if Synchint(f) = ∅ then
29 raise InCompatibleSynchException
30 end
31 if Sf = {NOSY NC} then
32 pass
33 end
34 if TM ∈ Sf then
35 Generate a version of f wrapped with tm atomic
36 end
37 if MUTEX ∈ Sf then
38 Create a mutex lock for each Cs ∈ Sf if not already created
39 Lockseq = Order locks associated with each Cs ∈ Sf using Rank(Cs)

40 Generate a version f
′

of f
41 for i = 1 to | Lockseq | do
42 Insert pthread mutex lock(&locki) in the start block of f

′

43 Insert pthread mutex unlock(&locki) at the exit block of f
′

44 end
45 end

// Repeat above step for spin locks

46 end

After this step, the parallelized code is optimized using various scalar optimization passes

and is ready to run.

76

Chapter 5

Weakly Consistent Data Structures

Search and optimization problems play an important role in many modern-day scientific

applications. These problems are typically combinatorial in nature, having search spaces

that are prohibitively expensive to explore exhaustively. As a result, many real-world al-

gorithmic implementations for these problems employ various heuristic techniques. One

common technique uses auxiliary data structures: as the main loop iteratively explores

the search space, new facts are recorded in the data structure. These facts are later re-

trieved by subsequent iterations to prune or guide the search. Examples of such data struc-

tures include kernel caches in support vector machines [108], learned clause databases

in SAT solvers [76], elite sets in genetic algorithms [140], cuts in mixed integer linear

programs [170], “wisdom” data structures in FFT planners [80], and transposition tables

in chess programming [187]. This technique greatly improves the running times of such

search algorithms.

The emergence of multicore architectures onto mainstream computing presents a tremen-

dous opportunity to parallelize many search and optimization algorithms. Explicitly paral-

lelizing search loops by synchronizing accesses to the auxiliary data structure is one way of

77

Programming Model Concept (Section 5.3)
Out of Partial Weak Annotation
Order View Deletion Type

N-way [54] X X × I
Semantic Commutativity [40, 179] X × × I
Galois [128] X × × I
Cilk++ hyperobjects [79] X × × E
ALTER [203] X X × I
WEAKC X X X I

Table 5.1: Conceptual comparison between WEAKC and related parallelization frame-
works (I: Implicitly Parallel, E: Explicitly Parallel)

optimizing such programs. This is however a slow, manual and error-prone process which

results in performance-unportable and often sub-optimal programs.

5.1 Prior Work and Limitations

Recent work demonstrates how high-level semantic programming extensions can facili-

tate parallelization. Semantic commutativity extensions [40, 128, 179] allow functions that

atomically access shared state to execute out-of-order concurrently, breaking flow depen-

dences across function invocations. Cilk++ hyperobjects [79] and the N-way programming

model [54] provide programming support to implicitly privatize data for local use within

each parallel task before starting execution, and provide join semantics upon completion of

parallel execution. ALTER [203] presents an optimistic execution model allowing parallel

tasks to read stale values of shared data as long as they do not write to the same locations.

Programs accessing auxiliary data structures can be parallelized by the methods de-

scribed above, but each has its pitfalls: (a) synchronizing every access to a shared data

structure as implied by semantic commutativity is expensive, given the high frequency of

access to these data structures; (b) complete privatization of auxiliary data structures within

each parallel task without communicating any auxiliary data can adversely affect the con-

vergence times of search loops by providing fewer pruning opportunities; and (c) with the

78

Programming Model Parallel Implementation (Sections 5.5 and 5.6)
Parallelization Driver Sharing Synchronization

N-way [54] Runtime None Static
Semantic Commutativity [40, 179] Compiler All Static
Galois [128] Runtime All Static
Cilk++ hyperobjects [79] Programmer None Static
ALTER [203] Compiler All Static
WEAKC Compiler & Runtime Sparse Static/Adaptive

Table 5.2: Comparison between the WEAKC implementation and the other related paral-
lelization frameworks

ALTER model, conflicts based on writes to memory would occur frequently due to updates

to auxiliary data structures.

WEAKC is based on the following insight: auxiliary data structures present a much

stronger sequential semantics than required by the programs using them. Such programs

often continue to function correctly even when queries to the data structure return stale val-

ues, or when inserted values are absent. This weaker semantics can be leveraged to break

dependences between data structure operations, potentially facilitating parallelization of

the main search loops. Once parallelized, it is important to optimize the tradeoff between

increased parallelism and potential delay in algorithmic convergence. Frequent communi-

cation of auxiliary data between parallel tasks can lead to shorter algorithmic convergence

at the cost of synchronization overheads, and conversely little or no communication of aux-

iliary data may prolong algorithmic convergence while reducing synchronization overhead.

This chapter presents WEAKC, a framework for efficiently parallelizing search loops

that access auxiliary data structures. WEAKC consists of:

• semantic language extensions for weakening consistency of data structures, which

expose parallelism in code that uses them

• a compiler that parallelizes search loops;

79

• a runtime system that adaptively optimizes parallel configurations of auxiliary data

structures.

Tables 5.1 and 5.2 compare WEAKC with frameworks that leverage relaxed semantics

for parallelization. The main advantage of WEAKC stems from expressing a much weaker

semantics than any of the other frameworks, and having the WEAKC parallelization frame-

work leverage this weaker semantics to realize an adaptively synchronized parallel scheme,

as opposed to static parallel schemes realized by others.

5.2 Motivating Example

WEAKC is motivated by the boolean satisfiability problem (SAT), a well-known search

problem with many important applications. A SAT solver attempts to solve a given boolean

formula by assigning values to variables such that all clauses are satisfied, or determine that

no such assignment exists. Figures 5.1 and 5.2 show main parts of a SAT solver’s [76] C++

implementation.

The main search loop of a SAT solver selects an unassigned variable, set its value,

and recursively propagates this assignment until either all variables are assigned (thereby

completing a solution) or a constraint becomes conflicting under the current assignment. In

case of a conflict, an analysis procedure learns a clause implying the conflict, records it in

an auxiliary data structure (Line 11), and applies backtracking.

Learnt clauses help subsequent iterations prune their search space. When learning is

disabled, we found an average slowdown of 8.15x when running a sequential SAT solver

across several workloads (Figure 5.3). However, while more learning implies more pruning

opportunities, traversals of the auxiliary data structure (Line 4) can slow down considerably

if its size grows excessively, and hence the SAT solver loop periodically removes “useless”

learnt clauses (Line 21).

80

1 lbool Solver::search(int nof_learnts) {
2 model.clear();
3 while (1) {
4 // propagate() accesses learnts[i]
5 Constr confl = propagate();
6 if (confl != NULL) { // Conflict
7 if (decisionLevel() == root_level)
8 return False;
9 learnt_clause =analyze(confl, backtrack_level);

10 cancelUntil(max(backtrack_level, root_level));
11 learnts.push(learnt_clause);
12 decayActivities ();
13 ... // backtrack
14 }
15 else { // No conflict
16 ...
17 int n = learnts.size() - nAssigns();
18 if (n >= nof_learnts) {
19 // Reduce the set of learnt clauses
20 for (int i=0; i < 2*n; ++i)
21 learnts.remove(learnts[i]);
22 }
23 if (nAssigns () == nVars ()) {
24 // Model found:
25 model.growTo(nVars ());
26 ...
27 cancelUntil (root_level);
28 return True;
29 } else {
30 // New variable decision
31 lit p = lit (order.select());
32 assume (p);
33 }
34 }
35 }
36 }

Figure 5.1: The SAT main search loop skeleton that accesses and modifies learnts
database

Considering the intractable nature of the SAT problem and the increasing availability of

multicore on desktops and servers, parallelizing such search loops has the potential to dras-

tically reduce search times. One common approach to parallelize search and optimization

algorithms is multisearch [198]. In this approach multiple parallel workers search in dis-

tinct regions of the search space, until some worker finds a solution. Convergence times are

81

37 class Solver {
38 protected:
39 #pragma WeakC(SET, L)
40 vec<CRef> learnts;
41 #pragma WeakC(ALLOCATOR, A)
42 ClauseAllocator ca;
43 ...
44 void attachClause (CRef cr);
45 };
46

47 template<class T> class vec {
48 public:
49 #pragma WeakCI(L, SZ);
50 int size(void) const;
51 #pragma WeakCI(L, ILU)
52 T& operator [](int index);
53 #pragma WeakCI(L, INS)
54 void push(const T& elem);
55 #pragma WeakCI(L, DEL)
56 void remove(const T& elem);
57 ...
58 };
59

60 class ClauseAllocator : public RegionAllocator
61 {
62 public:
63 #pragma WeakCI(A, ALLOC)
64 void reloc(CRef& cr, ClauseAllocator& to);
65 #pragma WeakCI(A, DEALLOC)
66 void free(CRef cid);
67 ...
68 };
71 #pragma WeakCI(L, PROG)
72 double Solver::progressEstimate() const {
73 return (pow(F,i)* (end-beg))/ nVars();
74 }

Figure 5.2: SAT class declarations with WEAKC annotations

greatly improved when clauses learnt by each worker are shared with other workers [91].

However, manually parallelizing a SAT search loop using explicit parallel programming

requires considerable effort. Auto-parallelizing tools can relieve programmers from this

effort, but are constrained by the need to respect sequential semantics. In our example,

read accesses, inserts and deletes into the learnts data structure within the search loop

are inter-dependent (Lines 4, 11 and 21), inhibiting parallelization.

82

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

S
lo

w
d

o
w

n
 o

b
ta

in
e
d

 b
y
 d

is
a

b
lin

g
 l
e
a

rn
in

g

SAT Input instance

50.1 21.9

Figure 5.3: Impact of disabling learning on sequential SAT execution time

The use of learnts data structure in the context of SAT solvers, however, requires

much weaker consistency than imposed by a sequential programming model. In particular,

the SAT search loop will function correctly even when reads from learnts only return

a partial set of clauses inserted so far, or when deleted clauses persist. This weaker se-

mantics of learnts can be used to break dependences between data structure operations

and facilitate parallelization. Programming extensions can express this weaker semantics,

enabling transformation tools to parallelize the loop without sacrificing ease of sequential

programming. Note that a SAT solver using learnts with weaker consistency property

may explore the search space differently from a sequential search, which may result in a

different satisfying assignment on each run.

Recent work on semantic extensions to the sequential programming model for paral-

lelism impose much stronger requirements on the learnts data structure operations than

required by SAT solvers. In these solutions, all inserts into learnts have to eventually

succeed [203] and operations either access one shared learnt data structure which is

83

Core	
 0	
 Core	
 2	

c1	
 =	
 L1[i]	

Core	
 1	

L1.push(l1)	

L1.push(l2)	

SAT	

propaga9on	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

	

SAT	

propaga9on	

L1.remove(i)	

L2.push(l3)	

SAT	

propaga9on	

L2.push(l5)	

L3.push(l4)	

SAT	

propaga9on	

L2.remove(i)	

c2	
 =	
 L3[i]	

SAT	

propaga9on	

L2.push(l7)	

SAT	

propaga9on	

L1.push(l3)	

c2	
 =	
 L2[i]	

L2.remove(i)	

redundant	

computa8on	

L3.push(l6)	

L3.push(l8)	

L3.remove(i)	

SAT	

propaga9on	

	

	

L1	
 L2	
 L3	

redundant	

computa8on	

Time	

redundant	

computa8on	

Figure 5.4: Parallel execution timeline of Privatization (N-Way)

always synchronized [40, 128, 179] or operate on multiple private copies with no clause

sharing [54, 79]. Choosing “all” or “nothing” synchronization strategies for learnts data

structure can adversely affect parallel performance: using fine-grain synchronization mech-

anisms to completely share every clause learnt amongst the workers can lead to increased

overheads while having private copies with no sharing can increase the convergence time

due to redundant computation.

84

Core	
 0	
 Core	
 2	

c1	
 =	
 L[i]	

Core	
 1	

L.push(l1)	

L.push(l2)	

SAT	

propaga9on	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

SAT	

propaga9on	

L.remove(i)	

L.push(l3)	

SAT	

propaga9on	

c2	
 =	
 L[i]	

L.push(l6)	

SAT	

propaga9on	

L.remove(i)	

c2	
 =	
 L[i]	

L.push(l5)	

L.remove(j)	

L.push(l4)	

L	

SAT	

propaga9on	

Idle	

Wait	

Cycles	

Idle	

Wait	

Cycles	

Idle	

Wait	

Cycles	

Idle	

Wait	

Cycles	

Idle	

Wait	

Cycles	

Idle	

Wait	

Cycles	

Time	

Figure 5.5: Parallel execution timeline of Complete-Sharing (Semantic Commutativity)

Instead, sparse sharing, a hybrid synchronization strategy that completely exploits the

weak consistency property of learnts has much better performance characteristics com-

pared to private and complete sharing strategies. In sparse sharing, each worker maintains

a copy of the learnts data structure and selectively synchronizes with other workers by

exchanging subsets of locally learnt clauses at certain intervals, balancing the tradeoff be-

tween synchronization overhead and algorithmic convergence. Figures 5.4, 5.5, and 5.6

85

Core	
 0	
 Core	
 2	

c1	
 =	
 L1[i]	

Core	
 1	

L1.push(l1)	

L1.push(l2)	

SAT	

propaga9on	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

SAT	

propaga9on	

L1.remove(i)	

L2.push(l3)	

SAT	

propaga9on	

L2.remove(i)	

L3.push(l4)	

SAT	

propaga9on	

c2	
 =	
 L3[i]	

SAT	

propaga9on	

L1.push(l3)	

c2	
 =	
 L2[i]	

L3.push(l6)	

L3.push(l8)	

SAT	

propaga9on	

	

	

Synchronize	

Synchronize	

L2.push(l5)	
 L3.remove(i)	

L1	
 L2	
 L3	

Time	

SAT	

propaga9on	

SAT	

propaga9on	

	

	

Synchro-­‐	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐nize	

SAT	

propaga9on	

Figure 5.6: Parallel execution timeline of WEAKC

compare the timeline of parallel multisearch using the three synchronization strategies out-

lined above.

The running times of the SAT solver, similar to many search and optimization algo-

rithms, varies widely depending on characteristics of their input. Very often candidate

programs exhibit phase changes in their computation [219]. In such scenarios adapting the

synchronization strategy to the differing progress rates of parallel workers can accelerate

convergence. For instance, during certain phases some workers might quickly learn facts

86

that could help other workers prune their search space considerably. Online adaptation

tunes to this varying runtime behavior, effectively enabling workers to cooperatively find a

solution faster than otherwise possible.

Varying the synchronization strategy is only one parameter exposed by the weakened

semantics of the learnts data structure. Allowing inserted clauses to disappear opens

new opportunities for efficient eviction mechanisms, and mechanisms for deciding which

clauses to share, with whom and when. These parameters are important due to the tradeoff

between the usefulness of the the learnts database and the time spent synchronizing

it, which is proportional to its size. Given the dynamic nature of SAT search, adapting

these parameters at runtime in response to the varying progress made by different workers

(measured on Line 72 in our example) has the potential to accelerate search convergence.

5.3 Semantics

We describe the semantics of a weakly consistent data structure in terms of operations

supported on the data structure through its interface. A weakly consistent set is defined

as an abstract data structure that stores values, in no particular order, and may contain

repeated values similar to multiset. The semantics of the operations supported by a weakly

consistent set is as follows:

1. Out of order mutation: The insertion operations into a weakly consistent set can

be executed in a different order from that of a sequential specification. Similarly,

deletions of multiple elements can execute out of order with respect to each other and

also with respect to earlier insertions of non-identical elements. Both these properties

follow directly from a conventional set definition [96].

2. Partial View: The set supports lookup operations that may return only a subset of its

contents, giving only a partial view of the data structure that may not reflect the latest

87

insertions. Each element returned by a lookup must, however, have been inserted at

some earlier point in the execution of the program 1. This partial view semantics

corresponds to the concept of weak references [70] in managed languages like Java,

where it is used for non-deterministic eviction of inserted elements allowing for early

garbage collection. In the SAT example, a partial view of learnt clause set during

propagation may only reduce pruning opportunities, but has no effect on program

correctness.

3. Weak Deletion: Deletions into a weakly consistent data structure need not be persis-

tent, with the effect of deletions lasting for a non-deterministic length of time. When

combined with partial view, this semantics implies that between two lookup opera-

tions that are invoked after a deletion, certain elements not present in the first lookup

may appear during the second lookup without any explicit insertion operations. In

the SAT example, the weak deletion property safely applies to the learnt clause set

due to the temporally-agnostic nature of learnt clauses: since a learnt clause remains

globally true regardless of when it was learnt, it is safe to re-materialize deleted

clauses.

The abstract semantics outlined above translates into concurrent semantics by adding

one additional property: atomicity of individual operations. A weakly consistent set can

have different concurrent implementations, each trading consistency for different degrees

of parallelism. We describe three realizations of a weakly consistent set, two of which

– privatization and complete sharing have been studied in the context of other parallel

programming models. The third realization, titled sparse sharing, takes full advantage of

weakened semantics for optimizing the tradeoff between consistency and parallelism, and is

1The terms later and earlier relate to a time-ordered sequence of operations invoked on the data structure
as part of an execution history or trace

88

the one implemented by WEAKC. In the following, the term client refers to an independent

execution context such as a thread or an OS process.

1. Privatization [54, 79]: A weakly consistent set can be implemented as a collection

of multiple private replicas of a sequential data structure, one for each client. Op-

erations invoked by a client operate on its private replica. There is no interference

between clients and all operations are inherently atomic without any synchroniza-

tion. Insertion and deletion operations on a single replica execute in sequential order

while executing out of order with respect to other replica operations. In any time-

ordered history of operations, lookups in a client only return elements inserted earlier

into a local replica and not the remote ones, thus giving only a partial global view

of the data structure. However, deletion operations are persistent: once an element

is deleted in a replica, it will not be returned by a subsequent lookup on that replica

without an explicit insertion of the same element.

2. Complete Sharing [40, 128, 179]: A weakly consistent set is realized by a sin-

gle data structure that is shared amongst all clients. Operations performed on the

data structure by clients are made atomic by wrapping them in critical sections and

employing synchronization. This realization is implied by and implemented using

semantic commutativity annotations on the operations of the data structure. In this

method insertions and deletions of non-identical elements can occur out of order.

Lookups present a complete view of the data structure for each client and return the

most up-to-date, globally available contents of the set. Deletion of an element is

persistent, with effects immediately visible across all clients.

3. Sparse Sharing: A third realization of a weakly consistent set combines the above

two to take full advantage of the partial view and weak deletion property. This

scheme uses a collection of replicas, one for each client, and non-deterministically

89

WEAKC #pragma WeakC(dstype, id)
Data typed obj;
Structure
Declarations dstype := SET | MAP | ALLOCATOR
WEAKC #pragma WeakCI(id, itype)
Interface typer class::fn(t1 p1, ...);
Declarations

itype := INS | DEL | ILU | ALLOC
SZ | DEALLOC | PROG | CMP

Figure 5.7: WEAKC Syntax

switches between two sharing modes. In private mode, each operation is performed

on the local replica without any synchronization. In sharing mode, insertions are

propagated transparently to remote replicas while deletions continue to apply to the

local replica only. In this model, lookups return a partial view of cumulative contents

of all replicas: elements made visible to a client correspond to a mix of insertions per-

formed locally and remotely at some earlier point in execution. Deletions are weak:

an element deleted in a local replica can reappear if it has been propagated to a re-

mote replica prior to deletion and is propagated back to the local replica transparently

at some point after deletion.

The weak consistency concept easily extends to other sequential data structures as well.

In particular, a weakly consistent map is very useful for applications performing associative

lookups of memoized data. The use of kernel caches in SVMs [108], “wisdom” data struc-

tures in FFT planners [80], and transposition tables in alpha-beta search [187] are instances

of such weakly consistent maps.

5.4 Syntax

We describe a WEAKC data structure using a standard abstract interface. This interface

corresponds to that of an indexed set class with member functions for insertion, deletion,

90

indexed search and querying the size of the data structure. WEAKC extensions are specified

as pragma directives within a client’s sequential program 2. pragmas are used for two

reasons: first, arbitrary data structure implementations within a client can be regarded as

weakly consistent by annotating relevant accessor and mutator interfaces using WEAKC’s

pragmas without any major re-factoring. Second, use of pragmas preserves the sequen-

tial semantics of the program when the annotations are elided and allows programs with

WEAKC’s annotations to be compiled unmodified by C++ compilers that are unaware of

WEAKC semantics.

Figure 5.7 shows the syntax of WEAKC directives which include two parts: exten-

sions to annotate a data structure with a WEAKC type at its instantiation site, and for

declaring the data structure’s accessors and mutators as part of the WEAKC interface. The

two main WEAKC data structures are the weakly consistent set (SET) and map (MAP),

with corresponding member functions for insertion (INS), deletion (DEL), indexed search

(ILU), and querying the size of the data structure (SZ). Combining ILU and SZ gives a

multi-element lookup functionality. An allocator (ALLOCATOR) class can be optionally

associated with a weakly consistent data structure. This class is akin to allocators for C++

standard template library classes, and can be used when collections of pointers that rely on

custom memory allocation are annotated as weakly consistent. The associated allocation

(ALLOC) and deallocation (DEALLOC) methods are used by WEAKC to transparently

orchestrate replication and sharing among parallel workers. Finally, the parent solver class

containing a weakly consistent data structure can specify a member function that reports

search progress (PROG) – a real valued measure between 0 and 1, and a member function

2WEAKC also provides a library of weakly consistent data structures based on C++ templates akin to STL
that can be directly used

91

to compare the relative quality of weakly consistent element pairs (CMP). Both these func-

tions serve as hints to the WEAKC runtime for optimizing sparse sharing. Figure 5.2 shows

WEAKC directives applied to the SAT example.

5.5 The WEAKC Compiler

The WEAKC parallelization workflow is shown in Figure 5.8. The programmer first an-

notates a sequential program using pragmas at interface declarations and data structure

instantiations. The annotated program is then fed into the WEAKC compiler which ana-

lyzes it to extract semantic information (in its frontend) and later introduces parallelism (in

its backend). The resulting parallelized program executes in conjunction with the WEAKC

runtime that performs online adaptation. Each phase is explained in detail in following

subsections.

5.5.1 Frontend

The WEAKC compiler frontend is based on clang++ [129]. It includes a pragma parser,

a type collector module within the compiler’s semantic analysis, and a source-to-source

rewriter consuming the output of the type collector module. The pragma parser records

source level and abstract syntax tree (AST) level information about weakly consistent data

structures and interface declarations, within in-memory data structures, and includes sup-

port for multiple pragmas associated with the same source entity.

The type collector module uses WEAKC information associated with AST nodes to

correctly deduce fully qualified (including namespace information) source level type in-

formation of weakly consistent containers and the contained data’s type from instantiation

sites. Additionally, the type collector gathers and checks that the type information of all

annotated interface declarations (including overloaded operators) to see if they conform

92

to declarations of the canonical weakly consistent data structure prototypes. Finally, the

rewriter module adds and initializes additional data member fields into the parent class of

weakly consistent types. In particular, it includes a unique identifier field for distinguish-

ing between different object instances belonging to different parallel workers at runtime, to

support an object based parallel execution model [114] within WEAKC.

The output of the rewriter is then translated by the frontend from C++ code into LLVM

IR [129], titled “Augmented Source IR” in Figure 5.8. Meta-data describing WEAKC an-

notations is embedded within this IR destined for the backend. The frontend also creates

runtime hooks — fully qualified types and names of WEAKC data structures and interface

declarations that are used by the runtime instantiator to: (a) instantiate concrete types for

abstract data types declared within the WEAKC runtime library; (in the form of typedef

declarations); (b) synthesize functors for measuring progress of each solver; and (c) spe-

cialize the runtime’s function templates with the concrete types and interface declarations

of the client program. The output of the runtime instantiator is then translated into LLVM

IR by feeding it into the frontend, producing a version of WEAKC runtime library special-

ized to the current client program.

5.5.2 Backend

The WEAKC compiler backend first profiles the augmented source IR using a standard loop

profiler to identify hot loops. Search programs typically concentrate their execution on one

main loop that iterates until convergence. The hot loop found is search loop’s body, after

identification using profile data, is marked for runtime instrumentation by subsequent back-

end passes. The WEAKC parallelizer injects parallelism into the IR by spawning threads

at startup, replicating parent solver objects to introduce object based concurrency to per-

form search in parallel, granting ownership of each replica to a newly spawned thread, and

starting parallel execution. These transformations are applied at the outermost loop level.

93

P
ro

g
ra

m
m

e
r

W
e

a
k

C
 S

rc
 A

n
a

ly
s

is
W

e
a

k
C

 b
a

c
k

e
n

d

Add WeakC

Annotations

Frontend

Original Sequential

Source Code

WeakC Pragma Parser

Loop Profiler

Augmented +

Source IR

WeakC Parallelizer

Runtime Instrumentor

WeakC

Runtime

Instantiator

Linker

Annotated Code

Profile Data

Parallelized Source IR

Online Adaptation

Embedded

Metadata

WeakC Runtime Hooks

Specialized WeakC Runtime Source

Parallelism Injector

Coop Cancellation

Specialized

WeakC

Runtime

IR

Parallelized

Executable

P
a

ra
ll
e

l
E

x
e

c
u

ti
o

n

Main

Loop

Monitor

Adapt Tune

Runtime

Worker 1

Main

Loop

Monitor

Adapt Tune

Runtime

Worker 2

Share

 Data

WeakC Type Collector

WeakC Rewriter

Figure 5.8: The WEAKC Parallelization Workflow

By injecting parallelism in the backend, the WEAKC system can transparently target dif-

ferent parallel execution models. Currently, the WEAKC system uses a pthreads-based

execution model for shared memory systems, but can be easily targeted for clusters using

a MPI-based parallelizer.

The runtime instrumentor augments the search loop with calls into the runtime for

sparse sharing. These include calls to save a parallel worker’s native weakly consistent

set for exchange with other workers, and calls to exchange weakly consistent data between

94

workers at periods determined by the runtime. The final step in parallelizing the loop han-

dles graceful termination — ensuring cancellation of remaining workers when one worker

completes execution. WEAKC follows the cooperative cancellation model [196] where the

compiler inserts cancellation checks at well-defined syntactic points in the code. In our

implementation these points correspond to the return sites of the transitively determined

callers into the WEAKC runtime. Finally, the parallelized IR is linked with the specialized

runtime IR to generate a parallel executable.

5.6 The WEAKC Runtime

This section describes the WEAKC runtime system.

5.6.1 Design Goals

The design of WEAKC runtime API and system has the following goals:

• First, the API design should have a clear separation of concerns between the subcom-

ponents that achieve parallelism injection and management, synchronization, and

tuning, with each subcomponent making minimal assumptions about the other sub-

components. Such a design ensures easy retargeting of the API to multiple parallel

substrates. For example, in order to target clusters, there should not be any need

to change the tuning algorithms or the sharing protocol, and only calls to low level

parallel library primitives need be changed.

• In order to allow for standalone use by expert programmers, the interface presented

by the runtime should be relatively medium to higher level, and should not make any

assumptions about the use of particular data structures (for example, STL or STAPL)

within a client.

95

Function Description
Parallelization API

weakC initRuntime() Intialize the WEAKC runtime, setting up various
defaults. Creates and sets defaults for globals
including termination status and various
bookkeeping data structures.

template<typename S, template<typename> class W, Clones the parent data object (of type S,
typename ER, typename A> first argument) that contains the weakly consistent

weakC cloneParentObject(S*, int (*)(S*), set (of type W<ER>). Records a pointer to the
double (S::*)() const) search’s driver function that uses S and a pointer to a

member function of S that estimates search progress
weakC spawnWorkers() Spawns parallel workers, each given ownership of a

uniquely cloned parent object
weakC joinWorkers() Waits for termination of spawned workers
weakC finiRuntime() Finalizes the WEAKC runtime. Deletes various data

structures

Synchronization API
template<typename S, template<typename> class W, Phase I of sparse sharing. Saves weak data elements

typename ER, typename A> from a worker’s native set into it’s local replica within
weakC saveIntoLocalReplica(id t, W<ER>&, A&) the runtime. Takes in the identity of the worker,

a reference to the native set (W<ER>), and
a reference to an allocator for ER.

template<typename S, template<typename> class W, Phase II of sparse sharing. Pulls in weakly consistent
into typename ER, typename A> data from remote worker’s local replica into one’s

weakC copyFromRemoteReplicas(id t, W<ER>&, A&) own native version, which is passed in as the second
argument. Copying is done with a distributed and point
to point synchronization mechanism.

Tuning API
weakC initOptimizer() Initializes tuning by binding tuning algorithm state

to each parallel worker
weakC registerTunableParam(id t, int*, int lb, int ub) Register a tunable parameter from a worker, along with

is upper and lower bounds.
weakC tune(id t) Tune the parallel configuration of worker identified

by id t
weakC deregisterTunableParam(id t, int*) Deregister a tuning parameter for worker identified

by id t
weakC finiOptimizer() Finalize tuning algorithm state, and detach from

parallel workers

Table 5.3: The WEAKC Runtime API

In order to achieve the above goals, the WEAKC runtime maintains a clear separation

between its parallelization, synchronization, and tuning subsystems. Although its current

implementation is POSIX-threads based, no interface changes are required to port to par-

allel runtimes like Intel’s TBB or OpenMP. Furthermore, the runtime interface is based on

generic data types that can be targeted by compilers and programmers alike and there is

no dependence on libraries like C++ STL. Table 5.3 shows the runtime API and Figure 5.9

shows a schematic of WEAKC’s parallel runtime execution.

96

Header

Save native

(Main computation)

(Main computation)

Check
cancellation

Copy from
remote replica

Exit

Search Loop

Setup

(Gradient Ascent)

Tuning Loop
Header

Check
deregistration

Finalization

Registration

Worker Thread jTuning Thread j

Tuning Algorithm

Setup

(Gradient Ascent)

Tuning Loop
Header

Check
deregistration

Finalization

Registration

Tuning Thread i

Tuning Algorithm

Search program state

Solver object

Header

Save native

(Main computation)

(Main computation)

Check
cancellation

Copy from
remote replica

Exit

WeakC Runtime state

 ...

Tuning parameters

Search Loop

Worker Thread i

Sentinels and Profiling Data

Shadow WeakC

replica

Native WeakC
 version

WeakC Runtime state

 ...

Tuning parameters

Sentinels and Profiling Data

Shadow WeakC

replica

Solver object

Native WeakC
 version

Search program state

Solver object

Native WeakC
 version

 ...

Initial Values

Offline Trainer

1

37

7

7

8

8

9

9

10

10

4

4

5

5

6

6

main()
1

2

2

7 3

Figure 5.9: The WEAKC runtime execution model

5.6.2 The Parallelization subsystem

This component controls parallelism injection, management, and termination as follows:

97

• Initialization 1 : Records initial values of tuning parameters from the environment,

prepares sentinels for starting and stopping worker and tuning threads; initializes

bookkeeping and profiling data.

• Replicating Search Objects 2 : Following an object-based concurrency model [114],

the WEAKC runtime maintains a one-to-one map between parallel workers and repli-

cated search objects. The replication function uses a reference to the original solver

object declared in the sequential program to create new solver objects that are recorded

as runtime state. Additionally, functors encapsulating (a) the main driver that per-

forms the search and (b) a progress measure function for online adaptation are recorded

internally in the runtime.

• Spawning Parallel Workers 3 : Creates independent threads of control, each given

ownership of its unique search object, initialized to search from a distinct point in the

search space.

The current implementation is based on the POSIX threading library. Once created,

each thread invokes a functor that encapsulates the driver search function (recorded

earlier) to start its search.

• Finalization 4 : Upon completing its execution successfully, a worker sets a global

cancellation sentinel flag which is polled by all workers at appropriate cancellation

points. The other workers thus quickly exit their search and terminate gracefully. The

finalization routine then releases internal resources associated with each worker such

as replicated memory for weak data structures, destroys locks and barriers, closes

profile data files and returns the identity of the successful solver along with its return

status for continued use within the original sequential program.

98

5.6.3 The Synchronization subsystem

The synchronization subsystem orchestrates sparse sharing in two phases: in first phase,

data from a worker’s native weakly consistent data structure is copied into a shadow replica

that resides within the WEAKC runtime. In the second phase, remote workers pull data

from other worker’s shadow replica into their own native version.

Sparse sharing was designed according to this two-phased protocol for several reasons.

First, a shadow replica distinct from a native version allows remote workers to exchange

data asynchronously with a more efficient coarser grained synchronization mechanism. The

data exchange is decoupled from a local worker’s operations on its native version, thereby

preventing incorrect program behavior due to data races. Second, two-phased sharing has

the effect of buffering: given a sequence of insert and delete operations on a native ver-

sion, only its net result is carried over into the shadow replica, effectively amortizing the

synchronization costs over this sequence. Third, this protocol naturally leads to a sharing

discipline that avoids deadlocks. In particular, no remote worker ever requests access to a

worker’s shadow replica while holding access to another worker’s shadow replica and so

hold-and-wait conditions necessary for a deadlock do not arise.

Operationally, synchronization is done as follows:

1. Saving into shadow replica 5 : Given a native version of a weakly consistent set,

iterates through the elements of the set adding them to the shadow replica. If the

shadow replica is full, an existing element is chosen and replaced using a comparison

function designated by WEAKC annotations. All operations on the shadow replica

are performed within a critical section to prevent remote workers from accessing the

replica’s intermediate state.

2. Copying from remote shadow replica 6 : Copies data from a remote worker’s

shadow replica into its own native version. This function is invoked asynchronously

99

by each worker. Interference may arise only when two or more workers attempt

to copy data from the same shadow replica. Each worker attempts to copy data

by acquiring exclusive access to a shadow replica in sequence, with the order of

acquisition and release determined apriori. As above, existing elements in a native

version are replaced if needed using a comparison function.

The API for a weakly consistent set is shown in Table 5.3, while that for a map takes in

a key, value pair instead of a single element and is omitted for brevity. The synchronization

interface includes an optional allocator object to support custom memory management of

weakly consistent data structures. In such a case, an instance of this allocator class is

used within the WEAKC runtime to manage a shadow replica’s memory allocation and

deallocation.

5.6.4 The Tuning subsystem

The tuning component implements WEAKC’s online adaptation and allows for both syn-

chronous [197] and asynchronous models of tuning [199]. Synchronous tuning is done

as part of a worker’s thread of computation, while asynchronous tuning is done concur-

rently by tuner threads that update tunable program state within a worker periodically. The

asynchronous model has minimal impact on original search computation since the cost of

the tuning algorithm itself is not borne by the search process. At the same time, tuning

of variables within search process’s state can be done transparently by the tuner without

affecting the rest of search program state. It is also possible to plug in a variety of tuning

algorithms without affecting rest of the library. The main advantage of synchronous tuning

is that the effect of tuning is immediately visible on search program’s computation and no

100

additional tuning threads need to be created. The WEAKC library maintains a clear sepa-

ration between tuning algorithm state and the search/parallel program state. Tuning works

as follows:

• Setup 7 : Initializes tuning algorithm state, including seed values for tuning param-

eters from the environment. For asynchronous tuning, lightweight tuning threads are

created as part of the setup – one for each parallel worker.

• Registration of tunable parameters 8 : Records pointers to tuning variables along

with lower and upper bounds for these variables to constrain tuning to within these

limits. For example, by constraining set size to not be negative, tuning algorithms

are prevented from necessarily exploring infeasible regions in a search space.

• Tuning 9 : Tuning of parameters for each solver is done independently of each

other. Each tuner perturbs variables registered for tuning, observes the effect of

perturbation by estimating change in progress using the progress measure functor

recorded internally within WEAKC, and then uses it to perform optimization.

• Deregistration and Finalization 10 : Parameters can be de-registered on the fly to

disable tuning during certain phases of computation. A tuning algorithm terminates

when a worker completes its search. In case of asynchronous tuning, pre-emptive

thread cancellation primitives are employed to finalize tuning threads. Cancellation

routines are invoked instead of the cooperative cancellation used for graceful ter-

mination of worker threads because cancellation primitives cause tuner threads to

wake from sleep immediately (usleep is a POSIX thread cancellation point). Tun-

ing threads sleep for the majority of their execution waiting to measure the results of

their perturbation on worker state, so cancellation routines save valuable time. This is

especially beneficial when WEAKC is entered multiple times with the main program

(as in qmaxsat, see Section 6.2).

101

5.6.5 Online adaptation

Desired Properties. Online adaptation within WEAKC poses a number interesting chal-

lenges. First, concurrent access to a search program’s runtime state by both a worker and

a tuning thread (in asynchronous tuning) during execution can result in inconsistencies if

mutual exclusion is not ensured, or in performance penalties otherwise. In WEAKC, param-

eters relating to shadow replicas within the runtime library are tuned, which a search thread

has no access to, except during phases of synchronization that are explicitly controlled

by the runtime. Second, online adaptation is useful only when programs run sufficiently

long for a tuner to sample enough parameter configurations to optimize at runtime. Search

and optimization programs typically satisfy this requirement due to the intractability of the

underlying problems. Third, tuning algorithms should be lightweight, and should not in-

terfere with and slow down the main search algorithm computation. This implies that a

tuning algorithm should either be invoked infrequently or involve only relatively inexpen-

sive computations, and should not increase contention for hardware resources shared with

the search threads. The tuning algorithm used within WEAKC has these properties.

Approach. The goal of online adaptation in WEAKC is to improve the overall exe-

cution time of parallel search. Online tuning systems for programs having parallel code

sections with regular memory accesses that are invoked multiple times can monitor the

execution time of those code sections in response to changes in tuning parameters and re-

calibrate accordingly. However, search programs typically contain one main loop that is

iterated many times and do not exhibit regular memory access patterns. Hence, we rely

on application level progress measures that serve as a proxy for online performance. Most

solvers already provide such a measure that is conveyed to WEAKC using an annotation.

WEAKC tuning strives to maximize progress of each worker by tuning parameters that

are implicitly exposed by the weakened consistency semantics of the auxiliary data struc-

tures. The current implementation tunes three parameters: (a) the replica save period that

102

determines how often elements are saved from native to shadow replica (b) the replica ex-

change period that determines how often elements are copied from remote worker’s shadow

replica to native version and (c) sharing set size – the number of elements that are saved

and copied between parallel workers. The WEAKC tuning algorithm works by perturbing

the values of these parameters, waiting for the impact of these changes to reflect in sharing,

measuring the difference in progress effected by tuning and incorporating this feedback

for online adaptation. The WEAKC runtime currently includes an online tuning algorithm

based on gradient ascent, implemented under an asynchronous model of tuning. In this

model, tuning is done concurrently in a separate thread and has minimal interference on

the main thread’s computation.

Algorithm 3: Offline selection of parameter values
1 for inp ∈ I1 do
2 env ← (nthreads = 1);
3 (niter,Dsize)← prog(env, inp);

4 sizeam = (
∑|Dsize|

i=1 Dsize(i))/ |Dsize|;
5 (gmsize, gmiter)← (gmsize ∗ sizeam, gmiter ∗ niter);
6 end
7 (gmsize, gmiter)← (gm

1/|I1|
size , gm

1/|I1|
iter);

8 for i = 1 to blog(gmiter)c do
9 (nxchg , nsave)← (10i, 2 ∗ 10i);

10 Dsharing ← Dsharing • (nxchg , nsave);
11 end
12 for i = 1 to |k| do
13 Dsize = Dsize • (gmsize/i) • (gmsize ∗ i);
14 end
15 for inp ∈ I2 do
16 for s ∈ Dsize ∧ (n,m) ∈ Dsharing do
17 env ← (size = s, xchg = n, save = m);
18 X (inp, s, n,m)← T (progpar(env, inp))/T (progseq(env, inp));
19 end
20 S(s, n,m)← S(s, n,m) ∗ X (inp, s, n,m);
21 end
22 for s ∈ Dsharing ∧ (n,m) ∈ Dsize do
23 S(s, n,m)← S(s, n,m)1/|I2|;
24 end
25 (sini, xchgini, saveini)← argmax(s,n,m)∈Dsize×Dsharing

S(s, n,m);

Profile-based offline selection of initial parameter values. The initial values of pa-

rameters for tuning are determined based on profiling. First, approximate measures for

typical WEAKC set sizes and number of iterations for convergence are determined. This

103

is done by sampling the sequential runs of a set of randomly selected inputs that run for

at least one minute. Based on these measures, a range of potential starting values for each

parameter is selected for offline training. The combined space of parameter values is pro-

hibitively large, hence the selected range is obtained by sampling at regular periods around

the approximate measures computed earlier. Next, offline training is done using a second

input set by invoking a parallelized version of the search program that performs sparse

sharing. In this program, values for each parameter (like sharing period, set size) are stati-

cally set at the beginning of the program and do not change during execution. This parallel

version is invoked for every combination of parameter values computed in the prior step,

and corresponding speedup is measured. The particular combination of parameter values

that results in the best geometric mean speedup across all inputs is then selected as the

initial condition to guide online adaptation. This combination also constitutes the setting

for the non-adaptive version of WEAKC evaluated in Section 6.2. Algorithm 3 gives the

outline of the profile-based offline parameter selection algorithm.

Algorithm 4: Online adaptation using gradient ascent
1 def gradient(id, x̃) :
2 ~a← ~x
3 for i = 1 to dim(~a) do
4 ~ai ← ~xi + δi
5 f1 ← perturbAndMeasure(id,~a)
6 ~ai ← ~xi − δi
7 f2 ← perturbAndMeasure(id,~a)
8 5i = (f2 − f1)/(2× δi)
9 end

10 ~x← ~xini where ~xini is from offline parameter selection
11 for i = 1 to NUMITERS do
12 5f ← gradient(id, ~x)
13 if (‖5f‖ < ε) then
14 return ~x
15 end
16 ~x← ~x+ α ∗ 5f
17 end
18 return ~x

Online adaptation using gradient ascent. The online adaptation algorithm used within

WEAKC is based on gradient ascent (Algorithm 4). It is invoked independently for each

104

worker, with the goal of determining the parameter configuration that maximizes the progress

made by each worker. The parameters correspond to those exposed by the WEAKC data

structures, and the objective function is regarded as a function of these parameters. Start-

ing with the initial values seeded by the offline profiling based parameter selection algo-

rithm, the tuning algorithm first perturbs these values in either direction for each param-

eter (Lines 4 to 7) and computes the gradient of the objective by measuring the differ-

ence in progress made due to this perturbation (Line 8). Because the objective function

is not a direct function of the WEAKC parameters, measurement is performed only af-

ter sufficient number of sharing cycles have elapsed beyond the perturbation point (within

perturbAndMeasure on Lines 5 and 7). Once the gradient has been computed, the pa-

rameter configuration is updated in the direction of the gradient, scaled appropriately by a

fraction α. This whole cycle is iterated until the gradient norm is very small (which would

be the case near a local maxima) or for a fixed number of iterations (Lines 15 to 17).

105

Chapter 6

Experimental Evaluation

This chapter describes the evaluation of the COMMSET and WEAKC programming models.

Each model is evaluated on set of programs sourced from a variety of benchmark suites and

on case studies of programs selected from the field study.

6.1 Commutative Set evaluation

The COMMSET programming model is evaluated on a set of twenty programs. These

programs along with the details of their parallelization is shown in Table 6.1 and Table 6.2.

The programs were selected based on the following criteria:

• The number of actual lines of code for each program, excluding comments and

whitespaces, should be greater than a reasonable minimum (400 in our experiments).

In our experiments, the relevant lines of code were measured using cloc [60] tool.

• Programs should be written in an imperative language like C or C++ on which

COMMSET pragmas can be applied.

• Programs should have at least 40% of their execution time spent in loops for their

representative inputs.

106

• Overall, the entire collection of candidate programs should represent a diverse set of

application domains.

Additionally, the selection generally avoided programs that have been shown to be scalably

parallelized by prior automatic parallelization techniques.

Each candidate program is evaluated for both applicability and performance of different

parallelization schemes with and without semantic changes. First, a program is attempted

to be parallelized with data parallel (DOALL) and pipelined (PS-DSWP) parallelization

techniques without the use of any commutativity extensions. If a program is scalably paral-

lelized with DOALL, the DOALL scheme is marked as applicable, its performance noted,

and no further parallelization/annotations are applied for this program. If DOALL scheme

fails to obtain scalable speedup due to its inapplicability to the dependence patterns exhib-

ited in the hot loops, then PS-DSWP parallelization is applied and its performance noted.

Only when neither DOALL or PS-DSWP is inapplicable due to the presence of re-

strictive loop-carried dependence patterns within the hot loops, the program’s source is

examined to determine if certain execution orders can be relaxed without changing its in-

tended behavior. If the relaxation only requires the application of basic Commutative [41]

annotation to obtain scalable speedup, then COMMSET extensions are not evaluated on the

candidate program. Only when a given program needs semantic changes for scalable par-

allelization beyond the basic Commutative primitive, the COMMSET primitives are applied

at all and the resulting performance is measured. Apart from evaluating parallelization

schemes enabled by COMMSET primitives in these programs, alternative parallelization

schemes without using COMMSET primitives are also evaluated for performance compari-

son.

All evaluations are carried out on a 1.6GHz Intel Xeon 64-bit dual-socket quad core ma-

chine with 8GB RAM that runs Linux 2.6.24. The candidate programs and their resulting

parallelization, described in the following subsections are categorized into four buckets:

107

• Programs parallelizable without semantic changes. The semantic changes are either

not needed for scalability or cannot be applied due to strict conformance of these

programs to the sequential model.

• Programs parallelizable with basic Commutative.

• Programs parallelizable with Commutative Set.

• Programs not parallelizable with Commutative Set. These programs either do not

scale with Commutative Set, or do not exhibit execution orders relaxable by Com-

mutative Set.

6.1.1 Parallelizable without semantic changes

Of the twenty programs, thirteen programs were parallelizable without any semantic changes.

Of these, four programs exhibited code patterns whose execution orders could be relaxed

further via commutativity assertions. The result of parallelizing the remaining nine pro-

grams are shown in Figure 6.1 and Figure 6.2. The rest of this section discusses the paral-

lelization of each program in detail.

171.swim is a program that performs shallow water modeling, originally written in

Fortran 77 and converted to C using the f2c [77] tool. Although the original Fortran pro-

gram is array based, the conversion introduces pointers and structures within the C pro-

gram. The majority of execution time is spent in four loops all of which were parallelized

with DOALL. However, each loop is invoked a large number of times and the time spent

per invocation inside each loop are relatively small. The resulting parallelism overheads

limit the overall speedup to 4.2x.

myocyte is a program that simulates heart muscle cell behavior. The sequential ver-

sion of this program was parallelized with DOALL and scales well till eight threads to give

108

Program Origin Application Target Exec Total LOC LOC
Domain Function(s) Time of Src Changed Change

Target LOC Desc.
Loops

171.swim SPEC2000 [189] Meteorology calc 1, 99% 1338 0 -
calc 2,
calc 3,
inital

myocyte Rodinia [53] Heart main 100% 1815 0 -
modeling

stringsearch MiBench [90] Office main 100% 2943 3 Priva-
tization

disparity SD-VBS [207] Computer finalSAD 76% 2202 0 -
Vision

rsearch MineBench [151] RNA serial 100% 21624 0 -
Sequencing search

database
EBGMFaceGraph FacePerf [39] Graph main 100% 10428 0 -

Matching
facerec ALPBench [133] Face readAnd- 96% 11106 0 -

Recognition Project-
Image

ecbdes VersaBench [169] Encryption driver 100% 1302 2 Priva-
tization

autocorr EEMBC [55] Telecomm t run 100% 681 2 Priva-
test tization

url NetBench [144] Network main 100% 629 1 Priva-
Processing tization

crc NetBench [144] Error main 100% 10284 0 -
Correction

md5sum Open Src [20] Security main 100% 470 1 Priva-
tization

456.hmmer SPEC2006 [97] Comp. main 99% 20658 2 Priva-
Biology loop tization

serial
geti MineBench [151] Data FindSomeETIs 98% 889 2 Priva-

Mining tization
ECLAT MineBench [151] Data newApriori 97% 3271 0 -

Mining
potrace Open Src [184] Graphics main 100% 8292 25 Priva-

tization
kmeans STAMP [147] Data work 99% 516 0 -

Clustering
em3d Olden [45] Material initialize 97% 464 0 -

Simulation graph
tracking SD-VBS [207] Computer main 99% 2509 0 -

Vision
ga HPEC [93] Search main 99% 811 0 -

Table 6.1: Sequential programs evaluated, their origin and domain, functions enclosing
the target loops, execution time spent in these loops, lines of source code as measured by
cloc [60], sequential non-semantic changes made before parallelization

a speedup of around 6.3x. stringsearch is a program that finds a set of search strings

within a corpus of text, and prints out whether the search string was found or not. Since the

prints to the console do not specify the input string being searched for, the prints cannot be

109

Program Num of COMMSET Applicable Best Best Num of
COMMSET attributes Parallelizing Speedup Parallelization custom
Annotations Transforms Scheme AA rules

171.swim 0 - DOALL 4.2x DOALL 4
myocyte 0 - DOALL 6.3x DOALL 1
stringsearch 0 - PSDSWP 6.5x PS-DSWP 4
disparity 0 - DOALL 1.8x DOALL 0
rsearch 0 - PS-DSWP 6.5x PS-DSWP 5
EBGMFaceGraph 0 - PS-DSWP 3.8x PS-DSWP 2
facerec 0 - PS-DSWP 1.9x PS-DSWP 2
ecbdes 0 - DOALL 7.0x DOALL 0
autocorr 0 - DOALL 7.6x DOALL 0
crc 1 I, S DOALL, 3.3x DOALL + 2

PS-DSWP Spin
url 2 I, S DOALL, 7.7x DOALL + 6

PS-DSWP Spin
md5sum 10 PC, C, S&G, O DOALL, 7.6x DOALL + 0

PS-DSWP Lib
456.hmmer 9 PC, C&I, S&G, O DOALL, 5.8x DOALL + 18

PS-DSWP Spin
geti 11 PI&PC, C&I, S&G DOALL, 3.6x PS-DSWP + 23

PS-DSWP Lib
ECLAT 11 PC, C&I, S&G DOALL, 7.5x DOALL + 28

PS-DSWP Mutex
potrace 10 PC, C, S&G DOALL, 5.5x DOALL + 0

PS-DSWP Lib
kmeans 1 C, S DOALL, 5.2x PS-DSWP 4

PS-DSWP
em3d 8 I, S&G DSWP, 5.8x PS-DSWP + 7

PS-DSWP Lib
tracking 10 PC, C&I, S&G, O DOALL 3.3x DOALL + 13

Spin
ga 5 PC, C, S&G OR 0.94x OR + 0

parallelism Spin

Table 6.2: Sequential Programs evaluated, number of lines of commutativity annotations
added, the various COMMSET attributes used (PI: Predication at Interface, PC: Predica-
tion at Client, C: Commuting Blocks, I: Interface Commutativity, S: Self Commutativity,
G: Group Commutativity, O: Optional Commuting Block), applicable parallelizing trans-
forms, the best speedup obtained and the corresponding (best) parallelization scheme, and
the number of custom alias disambiguation rules employed

reordered and so a PS-DSWP schedule was the result of parallelizing the main loop. This

parallelization gets the benefit of buffering prints in the last stage to obtain a speedup of

6.5x on eight threads.

disparity is a computer vision program that computes the depth information based

on objects represented in two pictures. The candidate loop for parallelization does array

computation on different sections of an image and is DOALLable. The resulting speedup

is limited to 1.8x on eight threads primarily due to only 76% of execution time spent inside

110

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

DOALL

(a) 171.swim

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

DOALL

(b) myocyte

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

DSWP+[S,P,S]

(c) stringsearch

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

DOALL

(d) disparity

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

DSWP+[S,DOALL,S]

(e) rsearch

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

DSWP+[S,DOALL]

(f) EBGMFaceGraph

Figure 6.1: Performance of the best parallelization schemes on applications that were par-
allelizable without any semantic changes (first six out of nine programs).

the loop and its high invocation count. rsearch is a program that searches gene databases

111

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

DSWP+[S,DOALL]

(a) facerec

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

DOALL

(b) ecbdes

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

DOALL

(c) autocorr

Figure 6.2: Performance of the best parallelization schemes on applications that were par-
allelizable without any semantic changes (last three out of nine programs).

for RNA sequences. The sequential version of this program was parallelized using a three-

stage PS-DSWP pipeline, with the first stage reading search sequences, the parallel stage

performing the search in the database, and the final stage writing the result of the search to

its output. A peak speedup of 6.5x was obtained on eight threads.

EBGMFaceGraph is a program within a repository of implementations of face recog-

nition algorithms that read a sequence of images and constructs “face graphs” for each

image. This graph building step is implemented in the form of a doubly nested loop of

linked list traversals of which the innermost loop was parallelized using PS-DSWP to yield

112

a speedup of 3.8x on eight threads. facerec is a program for face recognition that per-

forms a projection of each image on a subspace matrix in one of its phases. This projection

step is again implemented as a doubly nested loop of linked list traversals to which PS-

DSWP was applied to get a speedup of 1.9x. The limited speedup is a result of spending

only 96% of execution time in the main loop and overheads associated with parallel execu-

tion.

ecbdes is a program that does encryption of textual data using the Data Encryption

Standard (DES) [57] algorithm. The main loop in this program performs encryption of

input data for a number of times repeatedly. This loop was parallelized using DOALL

and the parallelization scales well to yield a speedup of 7x on eight cores. autocorr

is a program that perform auto-correlation of input data for a number of iterations. The

parallelization of this auto-correlation loop yields a speedup of 7.6x on eight threads.

6.1.2 Parallelizable with basic Commutative

URL: url based switching

The main loop in the program switches a set of incoming packets based on its URL and

logs some of the packet’s fields into a file. The underlying protocol semantics allows out-

of-order packet switching. Marking the function to dequeue a packet from the packet pool

and the logging function as self commutative broke all the loop carried flow dependences.

No synchronization was necessary for the logging function while locks were automatically

inserted to synchronize multiple calls to the packet dequeuing function. A two stage PS-

DSWP pipeline was also formed by ignoring the commutativity annotation on the packet

dequeue function. The DOALL parallelization (7.7x speedup on eight threads) outperforms

the PS-DSWP version (3.7x on eight threads) because of low lock contention on the de-

queue function and the overlapped parallel execution of the packet matching computation.

113

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

Comm−DOALL
Non−Comm−DSWP+[S,DOALL,S]

(a) url

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

Comm−DOALL
Non−Comm−DSWP+[S,DOALL,S]

(b) crc

Figure 6.3: Performance of DOALL and PS-DSWP schemes using the basic Commutative
extension. Parallelization schemes in each graph’s legend are sorted in decreasing order of
speedup on eight threads, from top to bottom. The DSWP + [. . .] notation indicates the
DSWP technique with stage details within [. . .] (where S denotes a sequential stage and
DOALL denotes a parallel stage). Schemes with Comm- prefix were enabled only by the
use of basic Commutative extension. For each program, the best Non-Commutative paral-
lelization scheme, obtained by ignoring the basic Commutative extension is also shown.

crc: Checksums for Internet packets

crc is a program that successively dequeues incoming packets from an internet queue,

computes a cyclic redundancy checksum on each packet and accumulates these checksums.

Since the dequeuing of the packets can be done out-of-order without changing the seman-

tics of the program, the dequeue function was marked as self-commutative at the interface

level. With this relaxation, the COMMSET compiler is able to DOALL this loop to obtain a

speedup of 3.2x on eight threads, the speedup limited due to locking overheads in the high-

frequency dequeue operation. As an alternate parallelization, without using commutativity

annotation, the main loop in this program can be parallelized using a three-stage PS-DSWP

pipeline, with the first stage dequeuing packets, the checksum computed in a parallel stage

and the final sequential stage accumulating the checksum. This parallelization also yields

a speedup of 3.2x on eight threads.

114

6.1.3 Parallelizable with Commutative Set

456.hmmer: Biological Sequence Analysis

456.hmmer performs biosequence analysis using Hidden Markov Models. Every iteration

of the main loop generates a new protein sequence via calls to a random number generator

(RNG). It then computes a score for the sequence using a dynamically allocated matrix data

structure, which is used to update a histogram structure. Finally, the matrix is deallocated

at the end of the iteration. By applying COMMSET annotations at three sites, all loop car-

ried dependences were broken: (a) The RNG was added to a SELF COMMSET since any

permutation of a random number sequence still preserves the properties of the distribution.

(b) The histogram update operation was also marked self commuting, as it performs an

abstract SUM operation even though the low-level statements involve floating point addi-

tions and subtractions. (c) The matrix allocation and deallocation functions were marked

as commuting with themselves on separate iterations. Overall, the DOALL parallelization

using spin locks performs best for eight threads, with a program speedup of about 5.82x.

A spin lock works better than mutex since it does not suffer from sleep/wakeup overheads

in the midst of highly contended operations on the RNG seed variable. The three stage

PS-DSWP pipeline, gives a speedup of 5.3x (doing better than the mutex and TM versions

of DOALL) by moving the RNG to a sequential stage, off the critical path.

GETI: Greedy Error Tolerant Itemsets

GETI is a C++ data mining program that determines a set of frequent items that are

bought together frequently in customer transactions (itemsets). Itemsets are implemented

as Bitmap objects, with items acting as keys. Items are queried and inserted into the

Bitmap by calls to SetBit() and GetBit(). Each itemset is inserted into an STL

vector and then printed to the console. By adding COMMSET annotations at three sites,

115

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

Comm−DOALL
Non−Comm−Seq

(a) md5sum

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

Comm−DOALL
Non−Comm−Seq

(b) 456.hmmer

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

Comm−DSWP+[S,DOALL]
Non−Comm−Seq

(c) geti

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

Comm−DOALL
Non−Comm−Seq

(d) ECLAT

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

Comm−DOALL
Non−Comm−Seq

(e) potrace

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

Comm−DOALL
Non−Comm−DSWP+[S,DOALL,S]

(f) kmeans

Figure 6.4: Performance of DOALL and PS-DSWP schemes using COMMSET extensions
(first six of eight programs). Parallelization schemes in each graph’s legend are sorted
in decreasing order of speedup on eight threads, from top to bottom. The DSWP + [. . .]
notation indicates the DSWP technique with stage details within [. . .] (where S denotes a
sequential stage and DOALL denotes a parallel stage). Schemes with Comm- prefix were
enabled only by the use of COMMSET. For each program, the best Non-COMMSET paral-
lelization scheme, obtained by ignoring the COMMSET extensions is also shown. In some
cases, this was sequential execution.

116

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

Comm−DSWP+[S,DOALL]
Non−Comm−DSWP+[S,S,S]

(a) em3d

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

Comm−DOALL
Non−Comm−Seq

(b) tracking

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

CommSet Best
Non CommSet Best

(c) Geomean over eight programs

Figure 6.5: Performance of DOALL and PS-DSWP schemes using COMMSET extensions
(last two of eight programs). Parallelization schemes in each graph’s legend are sorted
in decreasing order of speedup on eight threads, from top to bottom. The DSWP + [. . .]
notation indicates the DSWP technique with stage details within [. . .] (where S denotes a
sequential stage and DOALL denotes a parallel stage). Schemes with Comm- prefix were
enabled only by the use of COMMSET. For each program, the best Non-COMMSET par-
allelization scheme, obtained by ignoring the COMMSET extensions is also shown. In
some cases, this was sequential execution. The last graph compares the geomean speedup
of the eight programs parallelized with COMMSET to the geomean speedup of the non-
COMMSET parallelization.

the main loop was completely parallelizable with DOALL and PS-DSWP: (a) Itemset con-

structors and destructors are added to a COMMSET and allowed to commute on separate

iterations. (b) SetBit() and GetBit() interfaces were put in a COMMSET predicated

on the input key values, to allow for insertions of multiple items to occur out of order. (c)

The code block with vector::push back() and prints was context sensitively marked

117

as self commutative in client code. The correctness of this application follows from the set

semantics associated with the output. The inter-iteration commutativity properties for con-

structor/destructor pairs enabled a well performing three-stage PS-DSWP schedule. Trans-

actions were not applicable due to use of external libraries and I/O. Although DOALL

schemes initially did better than PS-DSWP, the effects of buffering output indirectly via

lock-free queues for PS-DSWP and the increasing number of acquire/release operations

for DOALL led to a better performing schedule for PS-DSWP on eight threads. PS-DSWP

achieved a limited speedup of 3.6x due to the sequential time taken for console prints but

maintained deterministic behavior of the program.

ECLAT: Association Rule Mining

ECLAT is a C++ program that computes a list of frequent itemsets using a vertical database.

The main loop updates objects of two classes Itemset and Lists<Itemset∗>. Both

are internally implemented as lists, the former as a client defined class, and the latter as an

instantiation of a generic class. Insertions into Itemset have to preserve the sequential

order, since the Itemset intersection code depends on a deterministic prefix. Insertions

into the Lists<Itemset∗> can be done out of order, due to set semantics attached

with the output. COMMSET extensions were applied at four sites: (a) Database read calls

(that mutate shared file descriptors internally) were marked as self commutative. (b) Inser-

tions into Lists<Itemset∗> are context-sensitively tagged as self commuting inside

the loop. Note that it would be incorrect to tag Itemset insertions as self-commuting

as it would break the intersection code. (c) Object construction and destruction opera-

tions were marked as commuting on separate iterations. (d) Methods belonging to Stats

class that computes statistics were added to a unpredicated Group COMMSET . A speedup

of 7.4x with DOALL was obtained, despite pessimistic synchronization, due to a larger

fraction of time spent in the computation outside critical sections. Transactions are not

118

applicable due to use of I/O operations. The PS-DSWP transform, using all the COMMSET

properties generates a schedule (not shown) similar to DOALL. The next best schedule is

from DSWP, that does not leverage COMMSET properties on database read. The resulting

DAG-SCC has a single SCC corresponding to the entire inner for loop, preventing stage

replication.

potrace: Bitmap tracing

potrace vectorizes a set of bitmaps into smooth, scalable images. The code pattern is similar

to md5sum, with an additional option of writing multiple output images into a single file. In

the code section with the option enabled, the SELF COMMSET annotation was omitted on

file output calls to ensure sequential output semantics. The DOALL parallelization yielded

a speedup of 5.5x, peaking at 7 threads, after which I/O costs dominate the runtime. For

the PS-DSWP parallelization, the sequentiality of image writes limited speedup to 2.2x on

eight threads.

kmeans: K means clustering algorithm

kmeans clusters high dimensional objects into similar featured groups. The main loop

computes the nearest cluster center for each object and updates the center’s features us-

ing the current object. The updates to a cluster center can be re-ordered, with each such

order resulting in a different but valid cluster assignment. Adding the code block that per-

forms the update to a SELF COMMSET breaks the only loop carried dependence in the

loop. The DOALL scheme with pessimistic synchronization showed promising speedup

until five threads (4x), beyond which frequent cache misses due to failed lock/unlock op-

erations resulted in performance degradation. Transactions (not shown) do not help either,

with speedup limited to 2.7x on eight threads. The three-stage PS-DSWP scheme was best

119

performing beyond six threads, showing an almost linear performance increase by execut-

ing the cluster update operation in a third sequential stage. It achieved a speedup of 5.2x on

eight threads. This highlights the performance gains achieved by moving highly contended

dependence cycles onto a sequential stage, an important insight behind the DSWP family

of transforms.

em3d: Electro-magnetic Wave propagation

em3d simulates electromagnetic wave propagation using a bipartite graph. The outer loop

of the graph construction iterates through a linked list of nodes in a partition, while the inner

loop uses a RNG to select a new neighbor for the current node. Allowing the RNG routine

to execute out of order enabled PS-DSWP. The program uses a common RNG library, with

routines for returning random numbers of different data types, all of which update a shared

seed variable. All these routines were added to a common Group COMMSET and also to

their own SELF COMMSET. COMMSET specifications to indicate commutativity between

the RNG routines required only eight annotations, while specifying pair-wise commutativ-

ity would have required 16 annotations. Since the loop does a linked list traversal, DOALL

was not applicable. Without commutativity, DSWP extracts a two-stage pipeline at the

outer loop level, yielding a speedup of 1.2x. The PS-DSWP scheme enabled by COMM-

SET directives achieves a speedup of 5.9x on eight threads. A linear speedup was not

obtained due to the short execution time of the original instructions in the main loop, which

made the overhead of inter-thread communication slightly more pronounced.

tracking: Feature Tracking

This is a computer vision program that implements feature extraction as part of gathering

motion information from a sequence of images. For the given input parameters, the loop

120

that processes the remaining frames of each image after the first frame constitutes the ma-

jority (99%) of the execution time. This loop involves I/O calls to read image data from

the file system and to build in-memory structures. These calls are made within a transitive

call chain, inside a readImage function. Here, the different I/O calls commute with each

other when invoked on separate iterations, even though there could be a case where the file

pointers while being different refer to the same file. However, sequential ordering needs to

be preserved between I/O calls belonging to the same file. Using a combination of optional

commuting blocks and predication, a DOALL parallelization scheme is obtained by the

COMMSET compiler which achieves a speedup of 3.3x on eight cores. This program is a

good illustration of combining optional commuting blocks and predication. In this case, I/O

calls at different points within readImage function are added to separate named blocks,

which are exported at the readImage interface and then bound to the same COMMSET

at the call site. At the binding point, commutativity of the named blocks is predicated on

the induction variable. Group and self commutativity annotations are applied to break se-

quential dependences on the image blur and feature tracking operations by allowing the use

of any updated image from the last few images (and not necessarily the last image). This

has the effect of not using the latest values in an iterative computation, albeit at a higher

algorithmic level, with out of order execution. Without breaking this dependence, there

is a single strongly connected component that thwarts automatic parallelization without

annotation support.

Discussion

The application of COMMSET achieved a geomean speedup of 5.1x on eight threads for

eight programs, while the geomean speedup for Non-COMMSET parallelizations on these

programs is 1.26x (Figure 6.5(c)). For five out of the eight programs, the main loop was

not parallelizable at all without the use of COMMSET primitives. With the application of

121

COMMSET, DOALL parallelization performs better than PS-DSWP on 6 benchmarks, al-

though PS-DSWP has the advantage of preserving deterministic output in two of them. For

two of the remaining programs, PS-DSWP yields better speedup since its sequential last

stage performs better than concurrently executing COMMSET blocks in the high lock con-

tention scenarios. DOALL was not applicable for em3d, due to pointer chasing code. In

terms of programmer effort, an average of 8 lines of COMMSET annotations were added to

each program to enable the various parallelization schemes. Predication based on the client

state, as a function of the induction variable enabled well performing parallelizations with-

out the need for runtime checks. The use of commuting blocks avoided the need for major

code refactoring. The applicability of COMMSET compared favorably to the applicability

of other compiler based techniques like Paralax and VELOCITY. VELOCITY and Paralax

cannot be used to parallelize five benchmarks: geti, eclat, md5sum, tracking, and potrace

since they do not support predicated commutativity. For 456.hmmer, VELOCITY would

require a modification of 45 lines of code (addition of 43 lines and removal of 2 lines) in

addition to the commutativity annotations. COMMSET did not require those changes due

to the use of named commuting blocks.

6.1.4 Not parallelizable with Commutative Set

ga is a program that implements a genetic algorithm for performing graph optimization.

The algorithm maintains a population of candidate solutions, represented as chromosomes

within the program. It uses operations like mutation, selection and crossover to create new

generations of candidate solutions from the current generation and iterates this process to

convergence. Within the main iterative loop, a data structure is used to implement elitism

where a certain fraction of fittest individuals within certain thresholds are carried forward

across generations. The insertion, removal and query operation into this data structure

creates loop-carried dependencies.

122

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

DOANY

(a) ga

Figure 6.6: Program that does not scale with COMMSET parallelization.

There are two interesting aspects to the semantics of this loop as far as parallelization

is concerned. First, neither DOALL or PS-DSWP can be applied to this iterative loop due

to a strict loop-carried data dependence of the form x = f(x) on the computation of a new

generation from the previous generations. Instead, a OR style execution model and paral-

lelization can be applied in this case: The original sequential loop is executed in parallel on

multiple threads, each on its own replicated memory space, and the entire execution com-

pletes if any one thread finishes execution. Second, the operations on the elite chromosome

data structure can be marked as commutative, and this relaxation translates into a single

shared, concurrent data structure with each operation wrapped as a critical section that is

accessed mutually exclusively by the different threads.

However, due to the high frequency of operations on this data structure, the synchro-

nization overheads associated with these operations on a single, concurrent data structure

is also very high. As a result, the above parallelization results in no speedup beyond two

threads, and in fact slows down the sequential execution by 1.06x on eight threads. How-

ever, by applying semantics weaker than commutativity, it is possible to get a much better

performance profile for this program (see Section 6.2).

123

 8

1
7
1
.s

w
im

m
y
o
cy

te

st
ri

n
g
se

ar
ch

d
is

p
ar

it
y

rs
ea

rc
h

E
B

G
M

F
ac

eG
ra

p
h

fa
ce

re
c

ec
b
d
es

au
to

co
rr u
rl

cr
c

m
d
5
su

m

4
5
6
.h

m
m

er

g
et

i

E
C

L
A

T

p
o
tr

ac
e

k
m

ea
n
s

em
3
d

tr
ac

k
in

g g
a

P
ro

g
ra

m
 S

p
ee

d
u
p

Benchmark

Auto Parallelization

Basic Commutative + Auto Parallelization

Commutative Set + Auto Parallelization

 0

 1

 2

 3

 4

 5

 6

 7

Figure 6.7: Best performance result for each applicable scheme across all 20 program

6.1.5 Summary of results across four categories

Figure 6.7 summarizes the best performance scheme for every applicable scheme in the

order in which parallelization was attempted for each of twenty evaluated programs. Fig-

ure 6.8 shows the categorization of the results across all the four buckets. Overall, the

end-to-end COMMSET parallelization system obtains a speedup of 4x for the twenty pro-

grams studied. These twenty program together constitute 102,232 lines of source code.

With respect to programming effort, a total of 38 lines of non-semantic code changes were

made (primarily for privatization of iteration local data), and a total of 78 commutativity

annotations were added. Of these results, automatic parallelization with no commutativity

annotations were applicable to 13 programs with a geometric mean speedup of 3.9x over

124

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Worker Threads

P
ro

g
ra

m
 S

p
e
e

d
u
p

Overall (all programs)
Auto Parallelization
Commutative + Auto Parallelization
CommSet + Auto Parallelization
Non−Scalable with CommSet

Figure 6.8: Results of parallelization categorized by four buckets (a) Geomean
speedup of 13 programs parallelized without semantic changes, marked as Auto
Parallelization (b) Geomean speedup of 2 programs parallelized with Com-
mutative, marked as Commutative + Auto Parallelization (c) Geomean
speedup of 8 programs parallelized with COMMSET, marked as CommSet + Auto
Parallelization (d) Speedup of program that does not scale with COMMSET, marked
as Non-Scalable with CommSet (e) Overall geomean speedup of all all 20 pro-
grams

these programs. With the basic Commutative annotation, the applicability extended to two

more programs with geometric mean speedup of 5x. The generalized commutativity an-

notations provided by the COMMSET language increased applicability to eight programs

yielding a geometric speedup of 5.1x.

6.2 WEAKC Evaluation

WEAKC is evaluated on five open source sequential search/optimization programs shown

in Table 6.3. They were selected based on their use of memoization and evaluated on

multiple randomly selected inputs from well-known open source input repositories that

take at least 30 seconds to run. Table 6.3 also shows the programming effort in number

125

Program Description
Total Source Changes Profiling
LOC # Additions/Mods Overhead

Annot. LOC Desc
minisat Boolean Satisfiability 2343 12 36 CC, C, CB 8.4x

Solver
ga Optimization via 811 8 114 CPP, C, P 8.6x

genetic algorithms
qmaxsat Partial MAX 1783 12 49 CC, C, AO 10.7x

Satisfiability solver
bobcat Alpha-beta search 5255 8 47 CC, C, P 4.9x

based game engine
ubqp Binary quadratic 1387 8 81 CC, C, P 15x

program solver

Table 6.3: Applications evaluated using WEAKC, total lines of source code, number of
annotations, additional changes to source to enable WEAKC parallelization (CC: Copy
constructor, C: Comparison operator, CB: Callback, CPP: C++ conversion, P: Progress
Measure, AO: Assignment operator) and overhead of profiling over sequential execution.

of WEAKC annotations added and additional changes for implementing standard object

oriented abstractions relevant to WEAKC. These changes only introduce sequential code

and use no parallel constructs. Safe addition of WEAKC annotations relies on correctly

asserting that memoized values within an application can be safely discarded at any time

without affecting its correctness, a property that follows from knowledge of application

semantics. In all programs, this property was determined after a few hours of studying the

baseline sequential implementations.

In addition to WEAKC, two most related non-WEAKC semantic parallelization

schemes were evaluated for comparison: Privatization [54, 79] and Complete-Sharing [40,

128, 179]. Both these schemes have different (non-adaptive) synchronization methods as

described in Section 5.3, but are based on the same POSIX-based parallel subsystem as

WEAKC. Figure 6.9 shows detailed performance results for minisat and Figure 6.10

shows all other results. The evaluation was done on a 1.6Ghz Intel Xeon 64-bit dual-socket

quad core machine with 8GB RAM running Linux 2.6.24.

126

Program
Input # Best Gain over best

Source Inps. Speedup/ non- non-
Quality adaptive WEAKC

minisat Sat-Race 21 5.2x 29.3% 148.0%
ga HPEAC 22 3.4x 42.6% 86.1%

qmaxsat Max-SAT 20 2.6x 24.8% 22.8%
bobcat EndGDB 10 3.2x 14.1% 54.2%
ubqp ACO-Set 15 11% 1.5% 3.8%

Table 6.4: The input repositories for the evaluated programs, number of inputs, best
speedup/quality of result achieved and the performance improvement of adaptive-WEAKC
over other best schemes.

6.2.1 Boolean satisfiability solver: minisat

A total of 12 annotations are inserted to annotate (a) learnts as a weakly consistent

set, (b) ClauseAllocator class as an allocator for elements of the weakly consistent

set (c) progressEstimate member function, which computes an approximate value

for search progress using current search depth and number of solved clauses and assigned

variables, as a progress measure. Additionally, a copy constructor was added to Solver

to enable WEAKC runtime to perform initial solver replication; an overloaded comparison

operator that uses activity heuristics within the solver to rank weakly consistent set ele-

ments, and two callbacks to interface garbage collected elements with the main Solver

state.

Speedup and Variance. Figure 6.9(a) shows the speedup graph for minisat. The adap-

tive version of WEAKC outperforms the rest by a wide margin. It scales up to six worker

threads (a total of twelve POSIX threads, with six additional tuning threads) achieving

a geomean program speedup of 5.2x over sequential, after which the speedup decreases

mainly due to cache interference between multiple parallel workers (14% increase in L2

data cache miss rate from 6 to 7/8 threads). The non-adaptive WEAKC version achieves

better speedup than adaptive WEAKC for up to three worker threads but slows down be-

yond that point. Both Privatization and Complete-Sharing versions show poor scaling. In

127

2 3 4 5 6 7 8
0

1

2

3

4

5

Num of Worker Threads

P
ro

g
ra

m
 S

p
e
e

d
u
p

WeakC (adaptive)
WeakC (non−adaptive)
Privatization
Complete−Sharing

(a) Performance (Geomean Speedup)

2 4 6 8
10

0

10
1

10
2

Number of Worker Threads

P
ro

g
ra

m
 S

p
e

e
d

u
p

 (
lo

g
 s

c
a

le
)

Input Instance
Arithmetic mean

(b) Variations in Speedup (WEAKC-adaptive)

0 2 4 6 8 10 12

x 10
6

1

2

3

4

5

6

x 10
8

Iteration Number

A
c
ti
v
e

 V
ir
tu

a
l
M

e
m

o
ry

 (
R

S
S

)

WeakC (adaptive)
WeakC (non−adaptive)
Privatization
Complete−Sharing

(c) Memory Consumption

2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Worker Threads%
 o

f
E

x
e

c
u

ti
o

n
 T

im
e

 i
n

 S
y
n

c
h

ro
n

iz
a

ti
o

n

5.2 3.1 3.7 4.9 6.2 7.8 10.8

WeakC (adaptive)
WeakC (non−adaptive)
Complete−Sharing

(d) Synchronization overhead

0 2 4 6 8 10 12

x 10
6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Iteration Number

P
ro

g
re

s
s
 M

e
a

s
u

re

WeakC (adaptive)
WeakC (non−adaptive)
Privatization
Complete−Sharing

(e) Estimate of search progress at runtime

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

5.88

5.9

5.92

5.94

5.96

5.98

6

6.02
x 10

4

R
e

p
lic

a
 E

x
c
h
a

n
g
e
 P

e
ri
o

d
 (

#
It

e
rs

)

Iteration Number

0 0.5 1 1.5 2 2.5 3 3.5

x 10
6

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19
x 10

4

M
a

x
im

u
m

 W
e
a
k
C

 S
e

t
S

iz
e
 (

#
V

a
lu

e
s
)Replica Exchange Period (#Iters)

Maximum WeakC Set Size (#Values)

(f) Tuning of WEAKC parameters

Figure 6.9: WEAKC Experimental results for minisat

128

addition to data cache misses, repeated computation of the same learnt clauses across dif-

ferent parallel workers in the former and extremely high synchronization costs in the latter

lead to speedup curves with negative slopes. Figure 6.9(b) shows the variations in speedups

across different inputs (in log scale) for the adaptive version. The speedups range from a

minimum of 1.1x to a maximum of 25x; this high variance demonstrates the sensitivity of

SAT execution times to input behavior and consequent usefulness of online adaptation in

optimizing parallel configuration at runtime.

Memory Consumption. Figure 6.9(c) shows the active memory consumed during search,

sampled and measured using getrusage(). Amongst the four schemes, Privatization

consumes the maximum amount of memory. Although it starts with a similar memory pro-

file to others as search progresses redundant conflict clause learning by parallel workers in-

creases its memory consumption at a much higher rate than others. The Complete-Sharing

scheme consumes the least memory largely due to avoidance of redundant learning. The

memory consumption for the WEAKCschemes is in between: the memory consumed by

the adaptive version includes that used by tuners threads which, as seen from the graph, has

a modest impact on the program’s overall memory consumption.

Search Progress and Synchronization. Figure 6.9(d) shows the percent of execution

time spent in synchronization. Figure 6.9(e) shows the evolution of progress measured dur-

ing search. As seen from these graphs, although search progress improves fastest per iter-

ation for Complete-Sharing, the corresponding high synchronization costs result in overall

slower convergence. The other schemes make relatively slower progress per iteration than

Complete-Sharing. The WEAKC schemes converge the fastest followed by Privatization

as seen from the early termination of their progress curves. Given that Complete-Sharing’s

synchronization costs is an order of magnitude higher than WEAKC, and Privatization has

129

longer convergence time due to low search space pruning, sparse sharing becomes key to

fast convergence times.

Online adaptation. Figure 6.9(f) shows a snapshot of adaptation for two WEAKC pa-

rameters at runtime: the replica exchange period and shadow replica set size. The curve for

the third parameter, save period, is not shown as it is similar to exchange period offset by a

certain factor. Initially, the replica exchange period is high implying a low initial frequency

of sharing, but as the search progresses, WEAKC tuning decreases the value of the replica

exchange period. The value for shadow replica size is high in the beginning, but with time

the number of elements shared decreases. Overall, tuning in minisat causes plenty of

elements to be shared less frequently during the initial phases of search; as parallel workers

start to converge in later phases, tuning causes fewer elements to be shared more frequently

among parallel workers.

6.2.2 Genetic algorithm based Graph Optimization: ga

ga is a genetic algorithm program originally written in C [93] which we converted to C++.

It uses operations like mutation, selection, and crossover to probabilistically create newer

generations of candidate solutions, based on fitness scores of individuals in the current

generation. Solutions are represented as chromosomes within the program. The search

terminates on reaching sufficient fitness for a population. The ga program in our evalua-

tion additionally uses the concept of elite chromosomes [140], where a non-deterministic

fraction of the fittest individuals within certain thresholds are carried forward across gen-

erations. WEAKC annotations were applied to the elite chromosome set. The thresholds

on elite chromosomes were automatically enforced by a hard limit defined on the native

130

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Num of Worker Threads

P
ro

g
ra

m
 S

p
e
e
d
u
p

WeakC (adaptive)
WeakC (non−adaptive)
Privatization
Complete−Sharing

(a) ga speedup

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Num of Worker Threads

P
ro

g
ra

m
 S

p
e
e
d
u
p

WeakC (adaptive)
WeakC (non−adaptive)
Privatization
Complete−Sharing

(b) qmaxsat speedup

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Num of Worker Threads

P
ro

g
ra

m
 S

p
e
e
d
u
p

WeakC (adaptive)
WeakC (non−adaptive)
Privatization
Complete−Sharing

(c) bobcat speedup

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Num of Worker Threads

P
ro

g
ra

m
 S

p
e
e
d
u
p

WeakC (adaptive)
WeakC (non−adaptive)
Privatization
Complete−Sharing

(d) geomean speedup (4 programs)

2 3 4 5 6 7 8

1.04

1.06

1.08

1.1

1.12

1.14

Num of Worker Threads

Im
p
ro

v
e
m

e
n
ts

 i
n
 S

o
lu

ti
o
n
 Q

u
a
lit

y
 (

x
)

WeakC (adaptive)
WeakC (non−adaptive)
Privatization
Complete−Sharing

(e) ubqp QoS
minisat ga bobcat qmaxsat ubqp

40

60

80

100

P
ro

c
e

s
s
o

r
U

ti
liz

a
ti
o

n
 (

%
)

WeakC (adaptive)
WeakC (non−adaptive)
Privatization
Complete−Sharing

(f) Processor Utilization (8 worker threads)

Figure 6.10: WEAKC Experimental Results II

131

chromosome set. The correctness of applying WEAKC annotations follows from the obser-

vation that missing a few elite chromosomes can only delay convergence without affecting

core algorithm functionality.

On the other hand, sharing the best chromosomes between different parallel workers

can potentially speed up convergence. Apart from the annotations for weakly consistent

sets, code changes involved conversion of C code into C++. The progress measure returns a

scaled fitness value of the best chromosome in the current generation. Figure 6.10(a) shows

the speedup graph for ga. Adaptive WEAKC scales up to eight worker threads achieving

a speedup of 3.4x. Although both non-adaptive WEAKC and Privatization show similar

scaling trends, their speedup curves have a much smaller slope than adaptive WEAKC.

Finally, Complete-Sharing shows no speedup beyond two threads, with synchronization

costs at higher thread counts causing a slight slowdown.

6.2.3 Partial Maximum Satisfiability Solver: qmaxsat

qmaxsat [124] solves partial MAXSAT, an optimization problem of determining an as-

signment that maximizes the number of satisfied clauses for a given boolean formula. It

works by successively invoking a SAT subroutine, each time with a new input instance.

Each SAT invocation adds to a growing set of learnt clauses. However, there is a subtle dif-

ference in semantics of learnt clauses between qmaxsat and minisat. In qmaxsat in-

put instances change across SAT invocations, so learnt clauses from newer generations have

different variables/clauses compared to previous generations. In the context of WEAKC,

this means that when parallel workers progress at different speeds, learnt clauses of newer

generations belonging to a parallel worker should not be shared and merged with learnt

clauses of previous generations belonging to other workers.

The re-entrant and compositional nature of WEAKC guarantees correctness transpar-

ently by ensuring that parallel SAT invocations across generations always proceed in lock

132

step. The potential increase in overheads for thread creation, destruction, solver replication,

and re-initialization due to multiple entries into the runtime is avoided by performing par-

allel independent replication and re-initialization. Figure 6.10(b) shows the speedup graph.

The adaptive version peaks at five threads with a geomean speedup of 2.6x. Interestingly,

the Privatization scheme performs better than the non-adaptive WEAKC scheme although

both start to scale down beyond three threads. The synchronization costs for the Complete-

Sharing scheme cause a slowdown at all thread counts. Overall, although qmaxsat is rea-

sonably long running, learnt clause sharing and tuning occur within a shorter window for

each of the multiple invocations of SAT within the main program, compared to minisat.

The consequent constrained sharing profile together with the cache sensitive nature of par-

allel SAT are reflected in the performance.

6.2.4 Alpha-beta search based game engine: bobcat

bobcat [89] is a chess engine based on alpha-beta search. It uses a hash table called the

“transposition table” [187] that memoizes the results of a previously computed sequence of

moves to prune the search space of a game tree. Using WEAKC annotations, this table was

assigned weakly consistent map semantics. Being a purely auxiliary data structure akin to

a cache, partial lookups and weak mutation of the transposition table only cause previously

determined positions to be recomputed, without affecting correctness. Apart from adding a

copy constructor and a comparison operator that uses the age of a transposition for ranking,

the transposition table interface was made generic using C++ templates to expose key and

value types. The progress measure employed returns the number of nodes pruned per

second weighted by search depth. Figure 6.10(c) shows the speedup graphs. In contrast to

minisat, the benefits of WEAKC start only after five worker threads, with the adaptive

version achieving a best geomean speedup of 3.2x on eight worker threads compared to

a best of 2x for Privatization. Compared to the weakly consistent sets in other programs,

133

the transposition table in bobcat is small in size and is accessed with a high frequency.

This causes Complete-Sharing to perform poorly, resulting in a 20% slowdown due its

associated high synchronization overhead.

6.2.5 Unconstrained Binary Quadratic Program: ubqp

ubqp [35] solves an unconstrained binary quadratic programming problem using ant colony

optimization. The algorithm maintains a population of “ants” that randomly walk the solu-

tion space and record history about the fitness of a solution in a “pheromone matrix” struc-

ture. Similar to ga, elitism within this program holds a collection of fittest solutions within

a set, to which we applied WEAKC annotations. Instead of a conventional convergence

criterion, the search loop in ubqp stops when a given time budget expires. Parallelizing

ubqp can improve this program not by reducing its execution time, but by improving the

quality of the solution obtained within this fixed time frame. Our evaluation measures the

improvement in the quality of the final solution (via an application level metric) of parallel

execution over sequential when both are run for a fixed time duration. Figure 6.10(e) shows

the results. Although for few threads the adaptive version has a better solution quality than

the other techniques (11% improvement), the general trend of all the curves is downward.

This occurs because although WEAKC enables sharing of fitter solutions among different

workers, the pheromone matrix that encodes solutions history is not shared among workers

due to high associated communication costs.

6.2.6 Discussion

The application of WEAKC achieves a geomean speedup of 3x on four programs (Fig-

ure 6.10) and improves the solution quality for one program by 11%, while the best non-

WEAKC scheme (Privatization) obtains a geomean speedup of 1.8x and 7.2% improvement

134

Program Scientific Target Exec Total LOC LOC
Field Function(s) Time of Src Changed Change

Target LOC Desc.
Loops

WithinHostDynamics Ecology and main 100% 2415 2 Priva-
Evolutionary tization
Biology

packing Computational ForAllNeighbors 98% 1802 46 Loop
Physics Fission

Clusterer Computational Cluster 99% 18865 - -
Biology

SpectralDrivenCavity Computational main 66% 840 - -
Fluid
Dynamics

Table 6.5: Details of Case Studies of Programs from the Field: the program evaluated,
scientific field/domain, target function containing the parallelized loop, execution time of
target loops, total source lines of code, lines of code changed and its description

in solution quality, respectively. Regarding programmer effort, an average of 10 WEAKC

annotations and 67 sequential lines of code per program are added or modified to implement

C++ abstractions related to WEAKC. In spite of creating more threads than the number of

available hardware contexts, adaptive WEAKC outperforms other schemes for all evaluated

programs. For ga and bobcat, it attains peak speedup at eight worker threads with six-

teen threads in total, outperforming other schemes that create only eight threads in total. For

minisat and qmaxsat, although the peak speedups for adaptive version are obtained at

six and five worker threads respectively, their processor utilization is comparable to or bet-

ter than the other schemes as seen in Figure 6.10(f). This points to a relatively low impact

of context switching and synchronization on parallel execution. By contrast, Complete-

Sharing has much lower processor utilization compared to other schemes, indicating that

synchronization takes away a fair share of processor time from useful computation.

135

Program Num of COMMSET Applicable Best Best Num of
COMMSET attributes Parallelizing Speedup Parallelization custom
Annotations Transforms Scheme AA rules

WithinHostDynamics 4 I, S, O, C DOALL, 6.5x DOALL + 9
PS-DSWP Mutex

packing 1 S, C DOALL 3.1x DOALL + 5
Mutex

Clusterer 1 S, C DOALL, 7.4x DOALL + 3
PS-DSWP Spin

SpectralDrivenCavity 0 - DOALL 1.9x DOALL 0

Table 6.6: Details of Case Study Programs parallelized: the program parallelized, num-
ber of lines of commutativity annotations added, the various COMMSET attributes used
(PI: Predication at Interface, PC: Predication at Client, C: Commuting Blocks, I: Interface
Commutativity, S: Self Commutativity, G: Group Commutativity, O: Optional Commuting
Block), applicable parallelizing transforms, the best speedup obtained and the correspond-
ing (best) parallelization scheme, and the number of custom alias disambiguation rules
employed

6.3 Case Studies of Programs from the Field

This section describes the evaluation of the IPP techniques developed in this dissertation

with some case studies of programs collected during the field study. Tables 6.5 and 6.6 give

the details of these programs.

6.3.1 WithinHostDynamics

This program is from the field of Ecology and Evolutionary Biology. As gathered from our

field study, the author of this program is interested in studying the within-host competition

of parasites and how this impacts epidemiology and control of a disease. This study en-

ables a better understanding of anti-malarial drug resistance, which is a major public health

problem that impedes the control of malaria.

The program is written in C++ and performs discrete simulation of within-host dynam-

ics. The simulation is performed within an outer loop that runs for 10000 times, with each

136

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Threads

P
ro

g
ra

m
 S

p
e
e
d
u
p

Comm−DOALL (Spin Lock)

Comm−DOALL (Mutex)
Non−Comm−DSWP+[S,P,S]

Figure 6.11: Speedup over sequential execution for WithinHostDynamics, a program
for simulating dynamics of parasitic evolution within a host

iteration that takes about 1 minute to run, resulting in a total of around 6 days for comple-

tion. Speeding up this loop can enable the author to gain the ability to create more complex

models for spread of malaria that run within the same amount of time.

COMMSET annotations were applied to relax the semantics of the program in two

places: (a) To commute a shuffle function transitively called from the main loop with the

use of named commuting blocks which are bound to COMMSETs at their call site. This

shuffle function internally uses a random number generator (b) To commute console prints

and insertion of simulation output into a vector that has set semantics. This commutativ-

ity specification was made by use of a atomic self-commuting code block that encapsu-

lated both the functions. With these annotations, a DOALL parallelization was enabled

that achieved a peak speedup of 6.5x on eight threads. This compares favorably to a PS-

DSWP style parallelization that gave a speedup of 5.4x without any use of annotations. The

speedup graphs are shown in Figure 6.11.

137

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Threads

P
ro

g
ra

m
 S

p
e
e
d
u
p

Comm−DOALL (Spin Lock)
Comm−DOALL (Mutex)

Figure 6.12: Speedup over sequential execution for Packing

6.3.2 Packing

This sequential program is from the field of Computational Physics. The author of this pro-

gram is interested in studying the equilibrium and dynamical properties of a variety of ma-

terials which have important applications in nano-engineering. To this end, this program,

written in C++, implements a collision-driven packing generation algorithm for studying

hard-packings in higher dimensional spaces.

For large inputs, the original sequential code in packing takes weeks to produce

interesting packings. The author estimates that with accelerated computation, artificial

effects due to small system sizes can be removed and additional numerical validation for

the author’s new theory on particle packings would be produced. Additionally, it would

enable research into improving the quality of final jammed packings.

Most of the execution time in the original program is spent in an infinite loop that does

iterative refinement of sphere packing. Within this infinite loop, there are three inner loops

that are invoked. The first inner loop computes the nearest neighbors for each cell in the

sphere and the second inner loop computes offsets from nearest neighbors. The second

138

inner loop also tests an exit condition for the outer loop. Finally, a third inner loop predicts

a collision operation based on the offsets computed from each cell.

The inner loops, as written in the original sequential code, get invoked a large number

of times from within the outer loop, but each invocation only executes for a small number

of times. The third loop is parallelizable with COMMSET and DOALL parallelization

but does not give any speedup due to very low time spent per-invocation. However, it

is possible to aggregate different invocations of the first two inner loops across iterations of

the outer loop into a larger inner loop followed by an aggregated loop that does collision

prediction. With this manual transformation, COMMSET enabled DOALL parallelization

gives a speedup 3.1x with packing. Specifically, the COMMSET primitive is applied

as follows: The third inner loop internally calls a function called PredictCollision

which has aggregate MAX reduction operations involving floating point operations. These

operations are wrapped into an atomic code block and added to a SELF commutative set.

6.3.3 Clusterer

This program is part of the sleipnir [102] tool chain, a popular tool for analyzing genomics

data within the field of computational biology. Clusterer implements various kinds of

hierarchical clustering algorithms using one of sleipnir’s different similarity measures.

The target loop for parallelization within Clusterer is an inner loop that performs

k-means clustering. This loop has irregular floating point MAX reduction operations which

are marked are semantically commutative by enclosing them within an atomic commuting

block that is added to a SELF COMMSET. With this modification, this loop is parallelizable

with DOALL. Synchronization is automatically inserted by the compiler using pthreads

locks. With eight threads, a speedup of 7.4x is obtained with DOALL and COMMSET.

An alternate parallelization that does not require semantic changes is scheduling the MAX

139

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Threads

P
ro

g
ra

m
 S

p
e
e
d
u
p

Comm−DOALL (Spin Lock)

Comm−DOALL (Mutex)
Non−Comm−DSWP+[S,P,S]

Figure 6.13: Speedup over sequential execution for Clusterer, a computational biology
program for performing non-hierarchical clustering of gene sequences

operations onto the last sequential stage of a PS-DSWP pipeline. This parallelization results

in a peak speedup of 5.5x. Figure 6.13 shows the speedup graphs.

It is interesting to note that the loop structure of the parallelized loop in Clusterer

is very similar to that of kmeans from the STAMP benchmark suite (see Section 6.1.3).

However, in kmeans, the parallelized loop is tight where the relative execution time of

non-commutative code sections reduces drastically with increasing thread counts. This

makes the synchronization overhead due to lock contention on commutative blocks more

pronounced even for lower thread counts. In contrast, within Clusterer, the distribution

of execution times is skewed in favor of non-commutative sections that can run in parallel

without any synchronization and hence DOALL with COMMSET scales well and performs

much better than a PS-DSWP schedule.

This comparison illustrates one of the main benefits of implicit parallel programming

via semantic annotations: Even though the loop structures are very similar for the two pro-

grams, the optimal parallelization scheme is very different and depends a wide range of

machine and input parameters. Relying on the programmer to express relaxed semantics

140

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Num of Threads

P
ro

g
ra

m
 S

p
e
e
d
u
p

DOALL

Figure 6.14: Speedup over sequential execution for SpectralDrivenCavity

and leaving the “how” of parallelization to rest of the tool chain presents a way to op-

timally extract thread level parallelism while still preserving performance portability and

abstraction boundaries between software and hardware.

The above program was also run two machines that are normally utilized by a scientist-

user of this program. The first is a 2GHz Intel Xeon 64-bit eight-core machine with 4GB

RAM running Linux 2.6.18. The second is a 2.53GHz Intel Xeon 64-bit sixteen-core ma-

chine with 8GB RAM. On the first machine, a speedup of 5.7x was recorded while on the

second machine a speedup of 7.38x was recorded. Both these speedups were produced by

DOALL parallelization after COMMSET annotations were applied.

6.3.4 SpectralDrivenCavity

This program implements the spectral method for numerically solving Navier-Stokes equa-

tions. It is used within the field of Computational Fluid Dynamics. The program in written

in C and the main outer loop is a time-step based loop that performs within its various

inner loops a Xi+1 = f(Xi) operation for various instances of X, where each X is a matrix.

141

Three of these inner loops were automatically parallelizable without any semantic change

with the DOALL transformation. The loops together constitute around 66% of execution

time. A peak speedup of 1.9x is obtained on 8 threads. Figure 6.14 shows the speedup

graphs. The main reason for the limited speedup is that each of the inner loops get invoked

with a high frequency within the outer time step loop while each inner loop execution by

itself relatively runs for a fairly few number of iterations. SpectralCavity was also run on a

machine that is normally used by a scientist-user of this program. The machine is a 3.4GHz

Intel Core i7 eight-core machine with 8GB RAM running Linux 2.6.32. A speedup of 1.6x

was recorded on this machine without any additional changes on this machine.

142

Chapter 7

Related Work

This chapter presents a summary of prior work related to the field study, and parallelization

systems that leverage techniques that are related to semantic commutativity and weakly

consistent data structures and provides an in-depth comparison with the techniques pre-

sented in this dissertation.

7.1 Prior studies of the practice of computational science

Hannay et al. [94, 145] conducted an online survey of two-thousand scientists with a goal

of studying the software engineering aspects of scientific computation, from a correct-

ness and program development perspective. The survey was carried out anonymously and

conclusions drawn without knowledge of the subject’s computing environment. Cook et

al. [56, 159] present a survey to exclusively understand the programming practices and

concerns of potential parallel programmers. The subjects involved in this survey were

attendees of a supercomputing conference (SC 1994), and the majority of subjects were

computer scientists.

143

In contrast, the field study presented in this dissertation involved scientists working in

diverse fields, and was conducted within the framework of a known (university) scientific

computing ecosystem. This field study was carried out in the form of a detailed interview

with the subjects. While also covering the correctness and software engineering aspects

of computational science, the field study presented in this chapter primarily addressed the

need for computational performance, and the practices followed by researchers in enhanc-

ing performance in their research.

7.2 Research related to Commutative Set

Semantic Commutativity based Parallelizing Systems. Jade [179] supports object-

level commuting assertions to specify commutativity between every pair of operations on

an object. Additionally, Jade exploits programmer written read/write specifications for ex-

ploiting task and pipeline parallelism. The COMMSET solution relies on static analysis

to avoid read/write specifications and runtime profiles to select loops for parallelization.

Galois [128], a runtime system for optimistic parallelism, leverages commutativity asser-

tions on method interfaces. It requires programmers to use special set abstractions with

non-standard semantics to enable data parallelism. The COMMSET compiler currently

does not implement runtime checking of COMMSETPREDICATEs required for optimistic

parallelism. However, the COMMSET model is able to extract both data and pipelined

parallelism without requiring any additional programming extensions.

DPJ [38], an explicitly parallel extension of Java uses commutativity annotations at

function interfaces to override restrictions placed by the type and effect system of Java.

Several researchers have also applied commutativity properties for semantic concurrency

control in explicitly parallel settings [46, 125]. Paralax [205] and VELOCITY [40, 41]

144

exploit self-commutativity at the interface level to enable pipelined parallelization. VE-

LOCITY also provides special semantics for commutativity between pairs of memory al-

location routines for use in speculative parallelization. Compared to these approaches, the

COMMSET language extension provides richer commutativity expressions. Extending the

compiler with a speculative system to support all COMMSET features at runtime is part of

future work.

Tables 4.1 and 4.2 summarize the relationship between COMMSET and the above pro-

gramming models.

Commutativity and Concurrency Control. Weihl [211] proposed the use of commuta-

tivity conditions for concurrency control of abstract data types. Koskinen et al. [125] use

commutativity properties for conflict detection in transactional memory systems. Carlstrom

et al. [46] build transactional collection classes with support for semantic concurrency con-

trol. Herlihy et al. [98] leverage commutativity to transform linearizable objects into high

performing transactional objects. Kulkarni et al. [127] propose the idea of a commuta-

tivity lattice to enable the automatic synthesis of different synchronization schemes with

varying degrees of granularity. In our work, we developed abstractions for succinctly spec-

ifying semantic commutativity properties for enabling compiler driven parallelization and

concurrency control is one part of the parallelization scheme.

Checking Semantic Commutativity. Various proposals have been made for checking

semantic commutativity conditions. Kim et al. [120] present a framework for logical spec-

ification of various kinds of commutativity conditions on well known data structure opera-

tions and provide techniques to verify these conditions using a program verification system.

Burnim et al. [42] propose semantic atomicity, a property similar to semantic commutativ-

ity but applied in the context of multithreaded programs, and present a framework based

145

on bridge predicates to specify and verify this property. Elmas et al. [74] present methods

for verification of shared memory multithreaded programs using the concepts of abstrac-

tion and reduction. Based on this, they propose an annotation assistant [75] for interactive

debugging of synchronization idioms. The COMMSET system can be augmented by the

above techniques to formally prove the correctness of the IPP parallelizations presented in

this dissertation.

Implicit Parallel Programming. OpenMP [24] extensions require programmers to ex-

plicitly specify parallelization strategy and concurrency control using additional primitives

(“#pragma omp for”, “#pragma omp task”, “critical”, “barrier”, etc.).

In the COMMSET model, the choice of parallelization strategy and concurrency control is

left to the compiler. This not only frees the programmer from having to worry about low-

level parallelization details, but also promotes performance portability. Implicit parallelism

in functional languages have been studied recently [95]. IPOT [208] exploits semantic an-

notations on data to enable parallelization. Hwu et al. [104] also propose annotations on

data to enable implicit parallelism. COMMSET extensions are applied to code rather than

data, and some annotations like reduction proposed in IPOT can be easily integrated

with COMMSET.

OOOJava [106] presents a system which allows a programmer to reorder code blocks

using annotations. These annotations are analyzed and exploited to produce safe, determin-

istic parallelism. Compared to COMMSET, the annotation language is not as expressive and

does not exploit relaxable semantics that is semantically deterministic.

The PetaBricks [19] language implementation has an autotuning framework that ex-

ploits declaratively specified algorithmic choices to yield scalable performance. Parcae [171]

is a system for platform-wide dynamic tuning that includes a parallelizing compiler and an

autotuning runtime system. The COMMSET system presented in this dissertation has been

146

integrated with Parcae, and many of the COMMSET programs evaluated in Section 6.1 have

been autotuned.

Compiler Parallelization. Research on parallelizing FORTRAN loops with regular mem-

ory accesses [73, 118] in the past has been complemented by more recent work on irreg-

ular programs. The container-aware [216] compiler transformations parallelize loops with

repeated patterns of collections usage. Existing versions of these transforms preserve se-

quential semantics. The COMMSET compiler can be extended to support these and other

parallelizing transforms without changes to the language extension.

Commutativity Analysis. Rinard et al. [180] proposed a static analysis that determines

if commuting two method calls preserves concrete memory state. Aleen et al. [16] apply

random interpretation to probabilistically determine function calls that commute subject to

the preservation of sequential I/O semantics. Programmer written commutativity assertions

are more general since they allow multiple legal outcomes and give a programmer more

flexibility to express intended semantics within a sequential setting.

7.3 Research related to WEAKC

Explicit parallelization of search and optimization. Existing parallelizations of search

and optimization algorithms are pre-dominantly based on explicit parallelism. For instance,

SAT solvers have been parallelized for shared memory [91] and clusters [84] using thread-

ing and message passing libraries. WEAKC, in contrast, presents semantic language exten-

sions to the sequential programming model promoting easy targeting to multiple parallel

substrates without additional programming effort. Additionally, WEAKC performs online

adaptation of parallelized search programs.

147

Smart, distributed, and concurrent data structures. Smart data structures [72] em-

ploy online machine learning to optimize throughput of their concurrent data structure

operations. STAPL [176] is a parallel version of STL that uses an adaptive runtime for

performance portability. Unlike WEAKC, both these libraries preserve semantics of corre-

sponding sequential data structures. Another difference is that online adaptation in WEAKC

is done in conjunction with application level performance metrics (search progress) to op-

timize overall performance and not only to improve data structure throughput. Chakrabarti

et al. [48] present distributed data structures with weak semantics within the context of

parallelizing a symbolic algebra application. Compared to WEAKC, these data struc-

tures require programmers to explicitly coordinate local and remote data transfers, and

its semantics enforces eventual reconciliation of mutated data across all parallel workers.

WeakHashMap [70] has semantics similar to WEAKC’s data structures, but unlike WEAKC

it only supports strong deletion and requires programmers to explicitly insert synchroniza-

tion and coordinate parallel data access. Kirsch et al. [161] propose k-FIFO queue, a con-

current queue that allows semantic deviations from sequential order for up to k elements.

Asynchronous Iterative Algorithms (AIA). Similar to ALTER discussed in Table 1,

asynchronous iterative algorithms [138, 146, 121] are certain types of stencil computations

that are immune to bounded levels of stale reads of scalar values in a parallel setting. How-

ever, they still need to enforce periodic or eventual reconciliation of stale values for correct-

ness. Compared to AIA, WEAKC’s consistency property applies to compound data types

and is much weaker: the throwaway, temporally-agnostic and reusable nature of memoized

data in WEAKC ensuring correct application behavior without needing reconciliation. The

nature of algorithms targeted by our WEAKC implementation, viz. combinatorial search

and optimization utilizing memoization is different from AIA.

148

Adaptive multicore caching. Hardware caches and weakly consistent data structures

are both performance critical structures having data that can be discarded at any time with-

out affecting correctness. Recent work has looked at adapting shared multicore caching

policies to varying workloads. Beckmann et al. [30] present an adaptive data replication

scheme within a private-shared multicore caching system for exploiting low latency of

private caches without incurring high capacity misses. Bitirgen et al. [33] apply online

machine learning to adaptively regulate shared cache partitioning within a wider hardware

resource allocation framework. Qureshi et al. [168] use dynamic cache miss rates induced

by each application to adaptively partition a shared cache between multiple concurrently

running applications. The sharing and adaptation in WEAKC in many ways resemble those

in multicore caches, although at a much coarser-grain, semantic application level.

Memory consistency models. Various notions of weak consistency have been studied in

the context of multiprocessor memory models [13]. A memory model depicts the order

in which load/store operations to memory locations appear to execute, and addresses the

question: “What value can a load of a memory location return?”. By contrast, WEAKC

is concerned with the order and semantics of high-level data structure operations, and ad-

dresses “What values can a data structure query return?”. A concurrent implementation

of weakly consistent data structure (as realized in WEAKC) can be achieved on processors

with either a sequentially or weakly consistent memory model, with conformance to data

structure semantics ensured by appropriate use of low level atomics.

Compiler and runtime support for application adaptation. Adve et al. [14] propose

compiler and runtime support for adaptation of distributed applications. AARTS [199] is

a lightweight auto-tuning framework for optimizing nested loop parallelism. Both these

systems rely on programmers to explicitly parallelize programs, select tuning parameters,

149

and insert runtime calls for tuning at profitable points in application code. Active Har-

mony [197] provides a runtime API for programmers to expose tunable parameters and

specify optimization metrics. The runtime automatically monitors the tunable parameters

and applies a variety of online optimization algorithms for tuning. Rinard et al. [181]

present a parallelizing compiler that performs adaptive runtime replication of data objects

to minimize synchronization overhead. Parcae [171] presents an automatic system for

platform-wide dynamic tuning. Compared to these systems, WEAKC exploits the seman-

tics of weakened consistency data structures to optimize parallel configuration at runtime

by automatically selecting and tuning parameters implicitly exposed by this weakening.

150

Chapter 8

Future Directions and Conclusions

As the field study in this dissertation shows, we are in an era where the twin trends of data-

driven scientific research and ubiquitous parallel computing are converging at a rapid pace.

In this situation, it is vitally important to synergistically exploit this convergence to accel-

erate the pace at which scientific research is conducted. For this to happen, programming

techniques and supporting tools should require minimal effort from a scientist-programmer

while at the same time delivering on scalable performance on a wide variety of platforms.

By preserving the ease of sequential programming and providing natural extensions that re-

quire only specific domain inputs from a scientist-programmer, implicit parallel program-

ming provides a promising approach inclined in this direction. This dissertation proposed

and evaluated two new semantic language extensions and associated compiler and runtime

technology within this area, taking a few more steps toward realizing the full potential of

implicit parallel programming for accelerating scientific research.

151

8.1 Future Directions

This section discusses some avenues for future research related to the implicit parallel

programming approach based on the two techniques proposed in this dissertation.

Approximate Parallel Programming. Similar to search and optimization loops that mo-

tivated the design and implementation of weakly consistent sequential data structures in

WEAKC, several real world scientific applications have hot program loops that iterate to

convergence based on pre-determined statistical error bounds. Programmers often make a

static fixed choice of these error bounds, which remain unchanged even when running the

program on multiple platforms. Static choices for error bounds often result performance

unportable programs.

Implicit in this static choice of error-bounds is the trade-off between accuracy of the

computation and performance of the corresponding program. One important class of ap-

plications where this tradeoff is evident is when performing improving computations, i.e.,

computations that result in monotonically increasing values, with intermediate results be-

ing more approximate than the final result. A classic example occurs in web search [25]

and in “big data” [64] computations.

Similar in spirit to WEAKC generalized IPP extensions that permit a programmer to

not only declaratively specify a relaxable policy involving the tolerable error thresholds in

computation but also a desired performance given a time budget can achieve performance

portability by enabling automatic exploitation of the accuracy-performance tradeoff. As in

WEAKC, the declarative specification of parameters can enable tools to delay the selection

of an optimally performing parallelization or synchronization scheme late in a program’s

life cycle, typically until complete details of a target parallel architecture and the environ-

ment (e.g, input data) are available (either at compile time or runtime).

152

Implicit Parallel Programming and Heterogeneous Parallelism. Increasingly, hetero-

geneity is becoming a norm in the world of computing, with the ubiquity of computing sub-

strates designed with completely different optimization criteria interacting in disparate and

interesting ways. The emergence of GPUs and multicore onto mainstream computing on

both desktops and mobile smartphones and large scale distributed systems that constitute

“the cloud” and their interactions presents interesting use-cases for systems researchers.

For instance, a system where a mobile CPU interacts with a GPU on the same device and

a cloud based backend at a remote location presents endless possibilities for solving com-

putationally hard problems in a parallel and a distributed way. Doing so in a manner that

provides a seamless end-user experience requires design of abstractions that are simple and

at the same time architecture agnostic at the language level, and at the backend – careful

allocation and management of the multiple levels of parallelism exposed by heterogeneous

components and optimally balancing tradeoffs between locality, power, and performance.

The design choices made in carefully separating the concerns between programmer, com-

piler, and runtime in parallelization systems presented in this dissertation can serve as an

interesting starting point to explore the space of heterogeneous parallel systems in interest-

ing ways.

Synergistic combination with speculative parallelism. Bridges et al [41] demonstrate

the utility of combining different forms of speculation, viz. memory, control, alias specu-

lation with commutativity. Extending the different features of COMMSET to work seam-

lessly with speculative parallelism introduces new opportunities and challenges. In partic-

ular, speculatively executing members of a COMMSET while preserving intra-COMMSET

atomicity and avoiding unnecessary bookkeeping overheads due to inter-COMMSET syn-

chronization, value speculating the results of COMMSETPREDICATEs when they cannot be

resolved statically, deciding whether it is better to execute optionally commuting blocks

153

sequentially when the speculative validation and atomicity overheads are high are some

of the aspects worth investigating. Similarly, elements of speculation could potentially en-

hance the WEAKC solution. In particular, speculative synchronization [141] can potentially

lower the synchronization costs in a way that permits more frequent exchange of weakly

consistent data between parallel workers.

Formalizing a general parallelization framework for relaxed programs. In this dis-

sertation, two programming extensions were proposed, one of which was code-centric

(COMMSET) and another data-centric (WEAKC). Each had its own associated paralleliza-

tion solution that was successful in parallelizing a distinct set of applications. It would be

interesting to investigate the feasibility of a general formal framework that is based on a

set of minimal semantic properties which are composable in different ways leading to a

continuum of relaxations of sequential programs along with their associated benefits for

parallelization. When combined with existing parallelization strategies and synchroniza-

tion mechanisms, proving whether specific implementations (e.g, optimistic vs pessimistic

synchronization) would always perform better than other implementations can have many

benefits, including giving useful deployment advice to a systems practitioner and also en-

abling certain optimizations to be done statically while deferring the others to until execu-

tion. Rinard et al. [44] have done some initial theoretical work along this direction, though

it would be interesting to see how the practical solutions proposed and demonstrated in

this dissertation on important class of scientific applications relate to such frameworks and

exploit the relation therein.

An interesting idea is identifying and generalizing algorithmic patterns currently spe-

cific to a particular domain to guide design of general parallelization solutions that across

154

multiple application areas. For instance, the field study found that interactive data lan-

guages are popular for data visualization in astrophysics, primitives for describing graph-

ical models are often employed in political science, and custom solutions exist for audio

and video processing in the field of music. Exploiting such patterns for parallelism on

multicore has a potential for huge impact but introduces new challenges: the identifica-

tion of algorithmic idioms within each domain that are amenable to parallelization, and

design of systems that allow easy expression of these idioms while optimally exploiting

their semantics for delivering on performance.

8.2 Summary and Conclusions

This dissertation presented a field study of the practice of computational science. Overall,

this study reveals that current programming systems and tools do not meet the needs of

computational scientists. Most tools assume the programmer will invest time and energy

to master a particular system. By contrast, scientists tend to want results immediately.

Nevertheless, the study discovered that virtually all scientists understand the importance

of scientific computing, and many spend enormous time and effort programming. Despite

this effort, most scientists are unsatisfied with the speed of their programs and believe

that performance improvements will significantly improve their research. In many cases,

scientists said that increased performance would not just improve accuracy and allow for

larger experiments, but would enable fundamentally new research avenues.

Based on the results of this field study, this dissertation proposed two new implicit

parallel programming models called COMMSET and WEAKC, described their design and

implementation within a parallelizing compiler, and evaluated both on real hardware and

on several real-world applications. Both these solutions preserve the ease of sequential

155

programming and require modest effort from a programmer for creating well-performing

parallelizations.

COMMSET is an implicit parallel programming model that has a unified, syntactically

succinct and generalized semantic commutativity construct. The model provides program-

mers the flexibility to specify commutativity relations between arbitrary structured blocks

of code and does not require the use of any additional parallel constructs. Parallelism ex-

posed implicitly using COMMSET is independent of any particular parallelization strategy

or concurrency control mechanism.

The evaluation of the end-to-end COMMSET parallelization system on a set of twenty

programs shows that it achieves scalable performance with modest programming effort,

and it increases the applicability of existing automatic parallelization techniques. With

a total of 38 lines of non-semantic code changes and 78 commutativity annotations over

102,232 lines of source code, an overall geomean speedup of 4x is obtained.

Within the set of twenty programs, COMMSET extensions and associated compiler tech-

nology enable scalable parallelization of eight programs that do not scale with existing

automatic parallelization techniques, obtaining a geomean speedup of 5.1x. In addition,

COMMSET has also been applied to parallelize four programs used by scientists in their

day-to-day research that were identified during the field study.

WEAKC is a framework for parallelizing search loops with auxiliary data structures

that have weak consistency semantics. WEAKC provides language extensions for express-

ing weak semantics, and a compiler-runtime system that leverages this semantics for paral-

lelization and adaptive runtime optimization. Evaluation on eight cores shows that WEAKC

obtains a geomean speedup of 3x on four programs over sequential execution, and an 11%

improvement in solution quality of a fifth program having fixed execution time, compared

to 1.8x and 7.2% respectively for the best non-WEAKC parallelization.

156

In conclusion, this thesis demonstrates that a semantic approach to parallelization has

the twin advantages of preserving the ease of sequential programming while overcoming

the artificial impediments faced by automatic parallelization in obtaining scalable perfor-

mance. Given that the importance of leveraging parallelization in scientific research is only

set to increase in the era of exponential data growth and increasingly heterogeneous archi-

tectures, the approaches described in this thesis in preserving the abstraction boundaries

between software and hardware while still resulting in performance portable programs will

only become more relevant.

157

Bibliography

[1] Gordon Bell Prize for Peak Performance 2003. http://www.

sc-conference.org/sc2003/tech_awards.html.

[2] Interactive Data Language Online Help. http://idlastro.gsfc.nasa.

gov/idl_html_help/home.html.

[3] Max/MSP: An interactive graphical dataflow programming environment for audio,

video and graphical processing. http://www.cycling74.com.

[4] Princeton Plasma Physics Laboratory. http://www.pppl.gov/.

[5] School of Engineering and Applied Science (SEAS). http://www.

princeton.edu/engineering/.

[6] Terascale Infrastructure for Groundbreaking Research in Engineering and Science.

http://tigress.princeton.edu/.

[7] The Carnegie Classification of Institutions of Higher Education. http://

classifications.carnegiefoundation.org/.

[8] The Lewis-Sigler Institute for Integrative Genomics. http://www.

princeton.edu/genomics/.

158

[9] The Princeton Institute for Computational Science and Engineering. http://

www.picscie.princeton.edu/.

[10] The Princeton Institute for Science and Technology of Materials (PRISM). http:

//www.princeton.edu/prism/.

[11] Genetic Sequence Data Bank NCBI-GenBank Flat File Release 193, 2012. ftp:

//ftp.ncbi.nih.gov/genbank/gbrel.txt.

[12] Intel Advisor XE, 2013. http://software.intel.com/en-us/

intel-advisor-xe.

[13] S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.

Computer, 29(12):66–76, 1996.

[14] V. Adve, V. V. Lam, and B. Ensink. Language and Compiler Support for Adap-

tive Distributed Applications. In Proceedings of the ACM SIGPLAN workshop on

Languages, compilers and tools for embedded systems, LCTES ’01, pages 238–246,

New York, NY, USA, 2001. ACM.

[15] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai,

D. Axen, S. Banerjee, G. Barrand, et al. Geant4-A simulation toolkit. Nuclear In-

struments and Methods in Physics Research-Section A Only, 506(3):250–303, 2003.

http://www.geant4.org/.

[16] F. Aleen and N. Clark. Commutativity Analysis for Software Parallelization: Let-

ting Program Transformations See the Big Picture. In Proceedings of the 14th In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2009.

159

[17] R. Allen and K. Kennedy. Optimizing compilers for modern architectures: A

dependence-based approach. Morgan Kaufmann Publishers Inc., 2002.

[18] J. Anderson, A. Keys, C. Phillips, T. Dac Nguyen, and S. Glotzer. HOOMD-blue,

general-purpose many-body dynamics on the GPU. Bulletin of the American Physi-

cal Society, 55, 2010.

[19] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amaras-

inghe. PetaBricks: a language and compiler for algorithmic choice. In Proceedings

of the 2009 ACM SIGPLAN conference on Programming language design and im-

plementation, PLDI ’09, pages 38–49, New York, NY, USA, 2009. ACM.

[20] Apple Open Source. md5sum: Message Digest 5 computation. http://www.

opensource.apple.com/darwinsource/.

[21] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent programming

in ERLANG, volume 2. Prentice Hall, 1996.

[22] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patter-

son, W. Plishker, J. Shalf, S. Williams, et al. The Landscape of Parallel Computing

Research: A view from Berkeley. Technical report, UCB/EECS-2006-183, EECS

Department, University of California, Berkeley, 2006.

[23] J. S. Auerbach, D. F. Bacon, P. Cheng, and R. M. Rabbah. Lime: a Java-compatible

and synthesizable language for heterogeneous architectures. In OOPSLA, pages 89–

108, 2010.

[24] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,

P. Unnikrishnan, and G. Zhang. The Design of OpenMP Tasks. IEEE Transactions

on Parallel and Distributed Systems, 2009.

160

[25] W. Baek and T. M. Chilimbi. Green: a framework for supporting energy-conscious

programming using controlled approximation. In Proceedings of the 2010 ACM

SIGPLAN conference on Programming language design and implementation, PLDI

’10, pages 198–209, New York, NY, USA, 2010. ACM.

[26] W. Baek, C. Minh, M. Trautmann, C. Kozyrakis, and K. Olukotun. The OpenTM

transactional application programming interface. In Parallel Architecture and Com-

pilation Techniques, 2007. PACT 2007. 16th International Conference on, pages

376–387. IEEE, 2007.

[27] V. Balasundaram et al. Interactive parallelization of numerical scientific programs.

PhD thesis, Rice University, 1989.

[28] T. Ball and J. R. Larus. Optimally Profiling and Tracing Programs. ACM Transac-

tions on Programming Languages and Systems, 16(4):1319–1360, July 1994.

[29] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying and compil-

ing C/C++ concurrency: from C++11 to POWER. In Proceedings of the 39th an-

nual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’12, pages 509–520, New York, NY, USA, 2012. ACM.

[30] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR: Adaptive Selective Replica-

tion for CMP Caches. In Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 39, pages 443–454, Washington, DC,

USA, 2006. IEEE Computer Society.

[31] D. Benson, M. Boguski, D. Lipman, and J. Ostell. GenBank. Nucleic acids research,

25(1):1–6, 1997.

[32] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multithreaded program-

ming for C/C++. In Proceedings of the 24th ACM SIGPLAN conference on Object

161

oriented programming systems languages and applications, OOPSLA ’09, pages

81–96, New York, NY, USA, 2009. ACM.

[33] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management of multiple inter-

acting resources in chip multiprocessors: A machine learning approach. In Proceed-

ings of the 41st annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 41, pages 318–329, Washington, DC, USA, 2008. IEEE Computer Society.

[34] G. E. Blelloch and J. Greiner. A provable time and space efficient implementation

of NESL. In Proceedings of the First ACM SIGPLAN International Conference on

Functional Programming (ICFP), 1996.

[35] C. Blum and M. Dorigo. The Hyper-Cube Framework for Ant Colony Optimiza-

tion. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

34(2):1161–1172, 2004.

[36] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,

B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris: The Next Gener-

ation in Parallelizing Compilers. In Proceedings of the Workshop on Languages and

Compilers for Parallel Computing, pages 10–1. Springer-Verlag, Berlin/Heidelberg,

August 1994.

[37] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli,

J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A type and effect system for

deterministic parallel Java. In Proceedings of the 24th ACM SIGPLAN conference

on Object oriented programming systems languages and applications, OOPSLA ’09,

pages 97–116, New York, NY, USA, 2009. ACM.

[38] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komurav-

elli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A Type and Effect System

162

for Deterministic Parallel Java. In Proceedings of the 24th ACM SIGPLAN Con-

ference on Object Oriented Programming Systems, Languages, and Applications

(OOPSLA), 2009.

[39] D. Bolme, M. Strout, and J. Beveridge. Faceperf: Benchmarks for face recognition

algorithms. In Workload Characterization, 2007. IISWC 2007. IEEE 10th Interna-

tional Symposium on, pages 114–119. IEEE, 2007.

[40] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting the

Sequential Programming Model for Multi-Core. In MICRO ’07: Proceedings of

the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pages

69–84, Washington, DC, USA, 2007. IEEE Computer Society.

[41] M. J. Bridges. The VELOCITY Compiler: Extracting Efficient Multicore Execu-

tion from Legacy Sequential Codes. PhD thesis, Department of Computer Science,

Princeton University, Princeton, New Jersey, United States, November 2008.

[42] J. Burnim, G. Necula, and K. Sen. Specifying and checking semantic atomicity for

multithreaded programs. In Proceedings of the sixteenth international conference on

Architectural support for programming languages and operating systems, ASPLOS

XVI, pages 79–90, New York, NY, USA, 2011. ACM.

[43] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman

Publishing Co., Inc., 1997.

[44] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Reasoning about relaxed pro-

grams. 2011.

[45] M. C. Carlisle. Olden: Parallelizing programs with dynamic data structures on

distributed-memory machines. PhD thesis, 1996.

163

[46] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and K. Olukotun. Trans-

actional Collection Classes. In Proceedings of the 12th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP), 2007.

[47] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh, C. Kozyrakis, and

K. Olukotun. The Atomos transactional programming language. In Proceedings of

the 2006 ACM SIGPLAN conference on Programming language design and imple-

mentation, pages 1–13, New York, NY, USA, 2006. ACM Press.

[48] S. Chakrabarti and K. A. Yelick. Distributed Data Structures and Algorithms for

Gröbner Basis Computation. Lisp and Symbolic Computation, 7(2-3):147–172,

1994.

[49] M. M. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller, and S. Marlow. Data Par-

allel Haskell: A status report. In Proceedings of the 2007 workshop on Declarative

aspects of multicore programming, pages 10–18. ACM, 2007.

[50] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw, and

N. Weizenbaum. FlumeJava: easy, efficient data-parallel pipelines. In Proceed-

ings of the 2010 ACM SIGPLAN conference on Programming language design and

implementation, PLDI ’10, pages 363–375, New York, NY, USA, 2010. ACM.

[51] R. Chandra. Parallel programming in OpenMP. Morgan Kaufmann, 2001.

[52] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar. X10: An Object-Oriented Approach to Non-Uniform Cluster

Computing. In OOPSLA ’05: Proceedings of the 20th Annual ACM SIGPLAN Con-

ference on Object-Oriented Programming Systems, Languages, and Applications,

pages 519–538, New York, NY, USA, 2005. ACM.

164

[53] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.

Rodinia: A benchmark suite for heterogeneous computing. 2009.

[54] R. Cledat, T. Kumar, and S. Pande. Efficiently Speeding up Sequential Computation

through the N-way Programming Model. In Proceedings of the ACM international

conference on Object oriented programming systems languages and applications,

OOPSLA ’11, New York, NY, USA, 2011. ACM.

[55] E. M. B. Consortium et al. EEMBC benchmark suite, 2009.

[56] C. R. Cook, C. M. Pancake, and R. A. Walpole. Are expectations for parallelism too

high? A survey of potential parallel users. In Proc. of SC, pages 126–133, 1994.

[57] D. Coppersmith. The Data Encryption Standard (DES) and its strength against at-

tacks. IBM Journal of Research and Development, 38(3):243–250, 1994.

[58] R. W. Cox. AFNI: Software for analysis and visualization of functional MRI.

Computers and Biomedical Research, 29:162–173, 1996. http://afni.nimh.

nih.gov/afni.

[59] R. Cytron. DOACROSS: Beyond vectorization for multiprocessors. In Proceed-

ings of the International Conference on Parallel Processing, pages 836–884, August

1986.

[60] A. Daniel. CLOC: Count lines of code, 2006. http://cloc.sourceforge.

net/.

[61] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, and Q. Wu.

Parallel Programming Using Skeleton Functions. In Proceedings of the 5th Interna-

tional PARLE Conference on Parallel Architectures and Languages Europe, PARLE

’93, pages 146–160, London, UK, UK, 1993. Springer-Verlag.

165

[62] J. R. B. Davies. Parallel loop constructs for multiprocessors. Master’s thesis, De-

partment of Computer Science, University of Illinois, Urbana, IL, May 1981.

[63] M. de Hoon, B. Chapman, and I. Friedberg. Bioinformatics and computational biol-

ogy with Biopython. Genome Informatics Series, pages 298–299, 2003.

[64] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM, 56(2):74–80, Feb.

2013.

[65] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.

In OSDI’04: Proceedings of the 6th conference on Symposium on Opearting Sys-

tems Design & Implementation, pages 10–10, Berkeley, CA, USA, 2004. USENIX

Association.

[66] P. J. Denning. Computer science. In Encyclopedia of Computer Science, pages

405–419. John Wiley and Sons Ltd., Chichester, UK.

[67] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen,

F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and P. Hanrahan. Liszt: a

domain specific language for building portable mesh-based PDE solvers. In Pro-

ceedings of 2011 International Conference for High Performance Computing, Net-

working, Storage and Analysis, SC ’11, pages 9:1–9:12, New York, NY, USA, 2011.

ACM.

[68] D. Dig. A refactoring approach to parallelism. Software, IEEE, 28(1):17–22, 2011.

[69] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software behavior

oriented parallelization. In Proceedings of the 2007 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’07, pages 223–234, New

York, NY, USA, 2007. ACM.

166

[70] K. Donnelly, J. J. Hallett, and A. Kfoury. Formal semantics of weak references. In

Proceedings of the 5th international symposium on Memory management, ISMM

’06, pages 126–137, New York, NY, USA, 2006. ACM.

[71] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,

July 1999. http://hmmer.janelia.org/.

[72] J. Eastep, D. Wingate, and A. Agarwal. Smart Data Structures: An Online Machine

Learning Approach to Multicore Data Structures. In Proceedings of the 8th ACM

international conference on Autonomic computing, ICAC ’11, pages 11–20, New

York, NY, USA, 2011. ACM.

[73] R. Eigenmann, J. Hoeflinger, Z. Li, and D. A. Padua. Experience in the Auto-

matic Parallelization of Four Perfect-Benchmark Programs. In Proceedings of the

Fourth International Workshop on Languages and Compilers for Parallel Comput-

ing (LCPC), 1992.

[74] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In Proceedings of

the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’09, pages 2–15, New York, NY, USA, 2009. ACM.

[75] T. Elmas, A. Sezgin, S. Tasiran, and S. Qadeer. An annotation assistant for interac-

tive debugging of programs with common synchronization idioms. In Proceedings

of the 7th Workshop on Parallel and Distributed Systems: Testing, Analysis, and

Debugging, PADTAD ’09, pages 10:1–10:11, New York, NY, USA, 2009. ACM.

[76] N. En and N. Srensson. An Extensible SAT-solver. In E. Giunchiglia and A. Tac-

chella, editors, Theory and Applications of Satisfiability Testing, volume 2919 of

167

Lecture Notes in Computer Science, pages 333–336. Springer Berlin / Heidelberg,

2004.

[77] S. Feldman. A Fortran to C converter. In ACM SIGPLAN Fortran Forum, volume 9,

pages 21–22. ACM, 1990.

[78] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Dependence Graph and

Its Use in Optimization. ACM Trans. Program. Lang. Syst., July 1987.

[79] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other

Cilk++ hyperobjects. In Proceedings of the twenty-first annual symposium on Par-

allelism in algorithms and architectures, SPAA ’09, pages 79–90, New York, NY,

USA, 2009. ACM.

[80] M. Frigo and S. Johnson. The Design and Implementation of FFTW3. Proceedings

of the IEEE, 93(2):216 –231, 2005. http://www.fftw.org/.

[81] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5

multithreaded language. In Proceedings of the ACM SIGPLAN 1998 conference on

Programming language design and implementation, PLDI ’98, pages 212–223, New

York, NY, USA, 1998. ACM.

[82] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor. Kremlin: rethinking and re-

booting gprof for the multicore age. In Proceedings of the 32nd ACM SIGPLAN

conference on Programming language design and implementation, PLDI ’11, pages

458–469, New York, NY, USA, 2011. ACM.

[83] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,

G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fab-

ris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,

168

L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,

L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smo-

gunov, P. Umari, and R. M. Wentzcovitch. QUANTUM ESPRESSO: A modu-

lar and open-source software project for quantum simulations of materials. Jour-

nal of Physics: Condensed Matter, 21(39):395502 (19pp), 2009. http://www.

quantum-espresso.org.

[84] L. Gil, P. F. Flores, and L. M. Silveira. PMSat: A Parallel Version of MiniSAT.

JSAT, 6(1-3):71–98, 2009.

[85] S. Graham, M. Snir, and C. Patterson. Getting up to speed: The future of supercom-

puting. National Academy Press, 2005.

[86] W. Gropp, E. Lusk, and A. Skjellum. Using MPI-Portable Parallel Programming

with the Message-Passing Interface. Sci. Program., 5:275–276, August 1996.

[87] D. Grossman. Type-safe multithreading in Cyclone. In Proceedings of the 2003

ACM SIGPLAN international workshop on Types in languages design and imple-

mentation, TLDI ’03, pages 13–25, New York, NY, USA, 2003. ACM.

[88] J. Gummaraju, J. Coburn, Y. Turner, and M. Rosenblum. Streamware: program-

ming general-purpose multicore processors using streams. In Proceedings of the

13th international conference on Architectural support for programming languages

and operating systems, ASPLOS XIII, pages 297–307, New York, NY, USA, 2008.

ACM.

[89] H. Gunnar. Bobcat, 2011. http://github.com/Bobcat/bobcat.

169

[90] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown. MiBench:

A free, commercially representative embedded benchmark suite. In Workload Char-

acterization, 2001. WWC-4. 2001 IEEE International Workshop on, pages 3–14.

IEEE, 2001.

[91] Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: A Parallel SAT Solver. JSAT,

6(4):245–262, 2009.

[92] H. Han and C. Tseng. Improving compiler and run-time support for adaptive irregu-

lar codes. In Parallel Architectures and Compilation Techniques, 1998. Proceedings.

1998 International Conference on, pages 393–400. IEEE, 1998.

[93] R. Haney, T. Meuse, J. Kepner, and J. Lebak. The HPEC challenge benchmark suite.

In HPEC 2005 Workshop, 2005.

[94] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson.

How do scientists develop and use scientific software? Software Engineering for

Computational Science and Engineering, ICSE Workshop on, 0:1–8, 2009.

[95] T. Harris and S. Singh. Feedback Directed Implicit Parallelism. In Proceedings

of the 12th ACM SIGPLAN International Conference on Functional Programming

(ICFP), 2007.

[96] E. Hehner. A practical theory of programming. Springer, 1993.

[97] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit.

News, 2006.

[98] M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-

concurrent transactional objects. In Proc. of PPoPP, 2008.

170

[99] O. Hernandez, C. Liao, and B. Chapman. Dragon: A static and dynamic tool for

OpenMP. Shared Memory Parallel Programming with Open MP, pages 53–66,

2005.

[100] S. Hiranandani, K. Kennedy, C. Tseng, and S. Warren. The D editor: A new interac-

tive parallel programming tool. In Proceedings of the 1994 ACM/IEEE conference

on Supercomputing, pages 733–742. ACM, 1994.

[101] K. J. Hoffman, H. Metzger, and P. Eugster. Ribbons: a partially shared memory

programming model. In Proceedings of the 2011 ACM international conference on

Object oriented programming systems languages and applications, OOPSLA ’11,

pages 289–306, New York, NY, USA, 2011. ACM.

[102] C. Huttenhower, M. Schroeder, M. Chikina, and O. Troyanskaya. The Sleipnir li-

brary for computational functional genomics. Bioinformatics, 24(13):1559–1561,

2008.

[103] C. Huttenhower, M. Schroeder, M. D. Chikina, and O. G. Troyanskaya. The Sleipnir

library for computational functional genomics. Bioinformatics, 24(13):1559–1561,

July 2008. http://huttenhower.sph.harvard.edu/sleipnir/.

[104] W.-m. Hwu, S. Ryoo, S.-Z. Ueng, J. Kelm, I. Gelado, S. Stone, R. Kidd, S. Bagh-

sorkhi, A. Mahesri, S. Tsao, N. Navarro, S. Lumetta, M. Frank, and S. Patel. Im-

plicitly Parallel Programming Models for Thousand-Core Microprocessors. In Pro-

ceedings of the 44th annual Design Automation Conference (DAC), 2007.

[105] M. Isard and A. Birrell. Automatic mutual exclusion. In Proceedings of the 11th

USENIX workshop on Hot topics in operating systems, pages 1–6. USENIX Associ-

ation, 2007.

171

[106] J. Jenista, Y. Eom, and B. Demsky. OoOJava: an out-of-order approach to paral-

lel programming. In Proceedings of the 2nd USENIX conference on Hot topics in

parallelism, pages 11–11. USENIX Association, 2010.

[107] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor. Kismet: parallel speedup estimates

for serial programs. In Proceedings of the 2011 ACM international conference on

Object oriented programming systems languages and applications, OOPSLA ’11,

pages 519–536, New York, NY, USA, 2011. ACM.

[108] T. Joachims. Making large-Scale SVM Learning Practical. Advances in Kernel

Methods Support Vector Learning, pages 169–184, 1999.

[109] N. Johnson, H. Kim, P. Prabhu, A. Zaks, and D. August. Speculative separation

for privatization and reductions. In Proceedings of the 33rd ACM SIGPLAN confer-

ence on Programming Language Design and Implementation, pages 359–370. ACM,

2012.

[110] C. Jones, P. O’Hearn, and J. Woodcock. Verified software: A grand challenge.

Computer, 39(4):93–95, 2006.

[111] E. Jones, T. Oliphant, and P. Peterson. SciPy: Open source scientific tools for

Python. 2001. http://www.scipy.org/.

[112] M. P. Jones and P. Hudak. Implicit and Explicit Parallel Programming in Haskell.

Technical report, 1993.

[113] M. Julliard. Dynare: A Program for the Resolution and Simulation of Dynamic

Models with Forward Looking Variables Through The Use of Relaxation Algorithm.

CEPREMAP, 2005. http://www.dynare.org/.

172

[114] L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented

system based on C++. In Proceedings of the eighth annual conference on Object-

oriented programming systems, languages, and applications, OOPSLA ’93, pages

91–108, New York, NY, USA, 1993. ACM.

[115] W. J. Kaufmann and L. L. Smarr. Supercomputing and the Transformation of Sci-

ence. W. H. Freeman & Co., New York, NY, USA, 1992.

[116] M. Kawaguchi, P. Rondon, A. Bakst, and R. Jhala. Deterministic parallelism via

liquid effects. In Proceedings of the 33rd ACM SIGPLAN conference on Program-

ming Language Design and Implementation, PLDI ’12, pages 45–54, New York,

NY, USA, 2012. ACM.

[117] C. Ke, L. Liu, C. Zhang, T. Bai, B. Jacobs, and C. Ding. Safe parallel programming

using dynamic dependence hints. In Proceedings of the 2011 ACM international

conference on Object oriented programming systems languages and applications,

OOPSLA ’11, pages 243–258, New York, NY, USA, 2011. ACM.

[118] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Architectures: a

Dependence-based Approach. Morgan Kaufmann Publishers Inc., 2002.

[119] K. Kennedy, K. McKinley, and C. Tseng. Interactive parallel programming using

the ParaScope Editor. Parallel and Distributed Systems, IEEE Transactions on,

2(3):329–341, 1991.

[120] D. Kim and M. C. Rinard. Verification of semantic commutativity conditions and

inverse operations on linked data structures. In Proceedings of the 32nd ACM SIG-

PLAN conference on Programming language design and implementation, PLDI ’11,

pages 528–541, New York, NY, USA, 2011. ACM.

173

[121] G. Kollias, A. Grama, and Z. Li. Asynchronous Iterative Algorithms. In Encyclope-

dia of Parallel Computing, pages 87–95. 2011.

[122] D. Komatitsch, J. Labarta, and D. Michéa. A simulation of seismic wave propagation

at high resolution in the inner core of the Earth on 2166 processors of MareNos-

trum. High Performance Computing for Computational Science-VECPAR 2008,

pages 364–377, 2008. http://www.geodynamics.org/cig/software/

specfem3d.

[123] D. Komatitsch, S. Tsuboi, C. Ji, and J. Tromp. A 14.6 billion degrees of freedom, 5

teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. In Proceedings

of the 2003 ACM/IEEE conference on Supercomputing, SC ’03, pages 4–, New York,

NY, USA, 2003. ACM.

[124] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa. QMaxSAT: A Partial Max-

SAT Solver system description. Journal on Satisfiability, Boolean Modeling and

Computation, 8:95–100, 2012.

[125] E. Koskinen, M. Parkinson, and M. Herlihy. Coarse-Grained Transactions. In Pro-

ceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL), 2010.

[126] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval. How much paral-

lelism is there in irregular applications? In Proceedings of the 14th ACM SIGPLAN

symposium on Principles and practice of parallel programming, PPoPP ’09, pages

3–14, New York, NY, USA, 2009. ACM.

174

[127] M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pingali. Exploiting the com-

mutativity lattice. In Proceedings of the 32nd ACM SIGPLAN conference on Pro-

gramming language design and implementation, PLDI ’11, pages 542–555, New

York, NY, USA, 2011. ACM.

[128] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew.

Optimistic parallelism requires abstractions. In Proceedings of the 2007 ACM SIG-

PLAN conference on Programming language design and implementation, PLDI ’07,

pages 211–222, New York, NY, USA, 2007. ACM.

[129] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In CGO ’04: Proceedings of the International Sympo-

sium on Code Generation and Optimization, page 75, Washington, DC, USA, 2004.

IEEE Computer Society.

[130] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program

Analysis and Transformation. In Proceedings of 2nd International Symposium on

Code Generation and Optimization (CGO), 2004.

[131] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel library.

In Proceedings of the 24th ACM SIGPLAN conference on Object oriented program-

ming systems languages and applications, OOPSLA ’09, pages 227–242, New York,

NY, USA, 2009. ACM.

[132] R. Leino, P. Müller, and J. Smans. Deadlock-free Channels and Locks. In Proceed-

ings of the 19th European Symposium on Programming (ESOP), 2010.

[133] M. Li, R. Sasanka, S. Adve, Y. Chen, and E. Debes. The ALPBench benchmark suite

for complex multimedia applications. In Workload Characterization Symposium,

2005. Proceedings of the IEEE International, pages 34–45. IEEE, 2005.

175

[134] X. Liang, D. P. Lettennmaier, E. F. Wood, and S. J. Burges. A simple hydrologically

based model of land surface water and energy fluxes for general circulation mod-

els. 99:14415–14428, July 1994. http://www.hydro.washington.edu/

Lettenmaier/Models/VIC/.

[135] S.-W. Liao, A. Diwan, R. P. Bosch, Jr., A. Ghuloum, and M. S. Lam. SUIF Explorer:

an interactive and interprocedural parallelizer. In Proceedings of the seventh ACM

SIGPLAN symposium on Principles and practice of parallel programming, PPoPP

’99, pages 37–48, New York, NY, USA, 1999. ACM.

[136] Liberty Research Group. The Parallelization Project, 2012. http://liberty.

princeton.edu/Projects/AutoPar/.

[137] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge: a programming

model for heterogeneous multi-core systems. In Proceedings of the 13th interna-

tional conference on Architectural support for programming languages and operat-

ing systems, ASPLOS XIII, pages 287–296, New York, NY, USA, 2008. ACM.

[138] L. Liu and Z. Li. Improving parallelism and locality with asynchronous algorithms.

In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’10, pages 213–222, New York, NY, USA, 2010.

ACM.

[139] R. Lublinerman, S. Chaudhuri, and P. Cerny. Parallel programming with object as-

semblies. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented

programming systems languages and applications, OOPSLA ’09, pages 61–80, New

York, NY, USA, 2009. ACM.

[140] S. Luke. Essentials of Metaheuristics, 2010.

176

[141] J. F. Martı́nez and J. Torrellas. Speculative synchronization: applying thread-level

speculation to explicitly parallel applications. In Proceedings of the 10th interna-

tional conference on Architectural support for programming languages and operat-

ing systems, ASPLOS X, pages 18–29, New York, NY, USA, 2002. ACM.

[142] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka. Physis: an implicitly parallel

programming model for stencil computations on large-scale GPU-accelerated su-

percomputers. In High Performance Computing, Networking, Storage and Analysis

(SC), 2011 International Conference for, pages 1–12. IEEE, 2011.

[143] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequential applica-

tions on commodity hardware using a low-cost software transactional memory. In

PLDI ’09: Proceedings of the 2009 ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 166–176, New York, NY, USA, 2009.

ACM.

[144] G. Memik, W. H. Mangione-Smith, and W. Hu. NetBench: a benchmarking suite

for network processors. In Proceedings of the 2001 IEEE/ACM International Con-

ference on Computer-Aided Design (ICCAD), 2001.

[145] Z. Merali. Why scientific programming does not compute. Nature News, 467, 2010.

[146] R. Meyers and Z. Li. ASYNC Loop Constructs for Relaxed Synchronization. In

Languages and Compilers for Parallel Computing, pages 292–303. Springer-Verlag,

Berlin, Heidelberg, 2008.

[147] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford Trans-

actional Applications for Multi-Processing. In IEEE International Symposium on

Workload Characterization (IISWC), September 2008.

177

[148] C. Moler. Numerical computing with MATLAB. Society for Industrial Mathematics,

2004.

[149] G. Moore. Cramming more components onto integrated circuits. Proceedings of the

IEEE, 86(1):82 –85, Jan 1998.

[150] The message passing interface (MPI) standard. http://www-unix.mcs.anl.gov/mpi/.

[151] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary.

MineBench: A Benchmark Suite for Data Mining Workloads. In IEEE International

Symposium on Workload Characterization (IIWSC), 2006.

[152] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits, J. Cownie, R. Geva,

S. Kozhukow, R. Narayanaswamy, J. Olivier, S. Preis, B. Saha, A. Tal, and X. Tian.

Design and implementation of transactional constructs for C/C++. In Proceedings

of the 23rd ACM SIGPLAN conference on Object-oriented programming systems

languages and applications, OOPSLA ’08, pages 195–212, New York, NY, USA,

2008. ACM.

[153] A. Z. Nick P. Johnson, Taewook Oh and D. I. August. Fast Condensation of the

Program Dependence Graph. In Proceedings of the 34rd ACM SIGPLAN Conference

on Programming Language Design and Implementation (to appear), PLDI, New

York, NY, USA, 2013. ACM.

[154] R. Nikhil. Implicit parallel programming in pH. Morgan Kaufmann, 2001.

[155] C. Oancea, A. Mycroft, and T. Harris. A lightweight in-place implementation for

software thread-level speculation. In Proceedings of the ACM Symposium on Paral-

lel Algorithms and Architectures, pages 223–232, 2009.

178

[156] T. Oliphant. A Guide to NumPy, volume 1. Trelgol Publishing, 2006. http:

//numpy.scipy.org/.

[157] G. Ottoni. Global Instruction Scheduling for Multi-Threaded Architectures. PhD

thesis, 2008.

[158] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction with

decoupled software pipelining. In In Proceedings of the 38th IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 105–118. IEEE Computer Society,

2005.

[159] C. Pancake and C. Cook. What users need in parallel tool support: Survey results and

analysis. In Scalable High-Performance Computing Conference, 1994., Proceedings

of the, pages 40–47. IEEE, 2002.

[160] I. Park, M. Voss, S. Kim, and R. Eigenmann. Parallel programming environment for

OpenMP. Scientific Programming, 9(2-3):143–161, 2001.

[161] H. Payer, H. Roeck, C. M. Kirsch, and A. Sokolova. Scalability versus semantics of

concurrent FIFO queues. In Proceedings of the 30th annual ACM SIGACT-SIGOPS

symposium on Principles of distributed computing, PODC ’11, pages 331–332, New

York, NY, USA, 2011. ACM.

[162] C. Pheatt. Intel threading building blocks. J. Comput. Sci. Coll., 23(4):298–298,

Apr. 2008.

[163] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Com-

put. Phys., 117:1–19, March 1995.

[164] M. Plummer. JAGS: Just Another Gibbs Sampler. http://www-ice.iarc.

fr/˜martyn/software/jags/, 2011.

179

[165] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August. Commutative Set: A

Language Extension for Implicit Parallel Programming. In Proceedings of the 2011

ACM SIGPLAN conference on Programming language design and implementation,

PLDI ’11, New York, NY, USA, 2011. ACM.

[166] P. Prabhu, G. Ramalingam, and K. Vaswani. Safe programmable speculative par-

allelism. In Proceedings of the 2010 ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’10, pages 50–61, New York, NY, USA,

2010. ACM.

[167] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical recipes in For-

tran: the art of scientific computing. Cambridge university press, 1993.

[168] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A Low-Overhead,

High-Performance, Runtime Mechanism to Partition Shared Caches. In Proceed-

ings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 39, pages 423–432, Washington, DC, USA, 2006. IEEE Computer Society.

[169] R. Rabbah, I. Bratt, K. Asanovic, and A. Agarwal. Versatility and Versabench: A

new metric and a benchmark suite for flexible architectures. 2004.

[170] T. Ralphs and M. Güzelsoy. The SYMPHONY callable library for mixed integer

programming. The next wave in computing, optimization, and decision technologies,

pages 61–76, 2005.

[171] A. Raman, A. Zaks, J. W. Lee, and D. I. August. Parcae: A system for flexible

parallel execution. In Proceedings of the 33rd ACM SIGPLAN conference on Pro-

gramming Language Design and Implementation, PLDI ’12, pages 133–144, New

York, NY, USA, 2012. ACM.

180

[172] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August. Parallel-Stage De-

coupled Software Pipelining. In Proceedings of the 2008 International Symposium

on Code Generation and Optimization, April 2008.

[173] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August. Parallel-Stage

Decoupled Software Pipelining. In Proceedings of the 6th annual IEEE/ACM Inter-

national Symposium on Code Generation and Optimization (CGO), 2008.

[174] E. Raman, N. Vachharajani, R. Rangan, and D. I. August. Spice: speculative paral-

lel iteration chunk execution. In CGO ’08: Proceedings of the 2008 International

Symposium on Code Generation and Optimization, pages 175–184, New York, NY,

USA, 2008. ACM.

[175] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluat-

ing MapReduce for Multi-core and Multiprocessor Systems. In High Performance

Computer Architecture, 2007. HPCA 2007. IEEE 13th International Symposium on,

pages 13 –24, feb. 2007.

[176] L. Rauchwerger, F. Arzu, and K. Ouchi. Standard Templates Adaptive Parallel Li-

brary (STAPL). In LCR, pages 402–409, 1998.

[177] L. Rauchwerger and D. A. Padua. The LRPD Test: Speculative Run-Time Paral-

lelization of Loops with Privatization and Reduction Parallelization. IEEE Trans.

Parallel Distrib. Syst., 10:160–180, February 1999.

[178] J. Reppy. Concurrent ML: Design, application and semantics. In Functional Pro-

gramming, Concurrency, Simulation and Automated Reasoning, pages 165–198.

Springer, 1993.

[179] M. C. Rinard. The design, implementation and evaluation of Jade, a portable, im-

plicitly parallel programming language. PhD thesis, 1994.

181

[180] M. C. Rinard and P. Diniz. Commutativity Analysis: A New Analysis Framework

for Parallelizing Compilers. In Proceedings of the ACM SIGPLAN 1996 Conference

on Programming Language Design and Implementation (PLDI), 1996.

[181] M. C. Rinard and P. C. Diniz. Eliminating synchronization bottlenecks using adap-

tive replication. ACM Trans. Program. Lang. Syst., 25(3):316–359, May 2003.

[182] A. Sameh, G. Cybenko, M. Kalos, K. Neves, J. Rice, D. Sorensen, and F. Sulli-

van. Computational Science and Engineering. ACM Comput. Surv., 28:810–817,

December 1996.

[183] S. Sato and H. Iwasaki. Automatic parallelization via matrix multiplication. In Pro-

ceedings of the 32nd ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’11, pages 470–479, New York, NY, USA, 2011. ACM.

[184] P. Selinger. potrace: Transforming bitmaps into vector graphics. http://

potrace.sourceforge.net.

[185] S. Sharma, R. Ponnusamy, B. Moon, Y. Hwang, R. Das, and J. Saltz. Run-time

and compile-time support for adaptive irregular problems. In Supercomputing’94.

Proceedings, pages 97–106. IEEE, 1994.

[186] O. Sinnen, R. Long, and Q. Tran. Aiding parallel programming with on-the-fly

dependence visualisation. In Parallel and Distributed Computing, Applications and

Technologies, 2009 International Conference on, pages 475–481. IEEE, 2009.

[187] D. Slate. A chess program that uses transposition table to learn from experience.

International Computer Chess Association Journal, 10(2):59–71, 1987.

182

[188] K. Smith, B. Appelbe, and K. Stirewalt. Incremental dependence analysis for inter-

active parallelization. In Proceedings of the 4th international conference on Super-

computing, ICS ’90, pages 330–341, New York, NY, USA, 1990. ACM.

[189] Standard Performance Evaluation Corporation (SPEC).

http://www.spec.org.

[190] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. Streamflex: high-throughput

stream programming in java. In Proceedings of the 22nd annual ACM SIGPLAN

conference on Object-oriented programming systems and applications, OOPSLA

’07, pages 211–228, New York, NY, USA, 2007. ACM.

[191] Stanford Compiler Group. SUIF: A parallelizing and optimizing research compiler.

Technical Report CSL-TR-94-620, Stanford University, Computer Systems Labora-

tory, May 1994.

[192] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to

thread-level speculation. In Proceedings of the 27th International Symposium on

Computer Architecture, pages 1–12, June 2000.

[193] J. G. Steffan and T. C. Mowry. The potential for using thread-level data speculation

to facilitate automatic parallelization. In Proceedings of the 4th International Sym-

posium on High-Performance Computer Architecture, pages 2–13, February 1998.

[194] D. E. Stevenson. Science, Computational Science, and Computer Science: At a

Crossroads. In Proceedings of the 1993 ACM conference on Computer science,

CSC ’93, pages 7–14, New York, NY, USA, 1993. ACM.

[195] J. Stone, T. Gardiner, and P. Teuben. Athena MHD Code Project. http://trac.

princeton.edu/Athena/.

183

[196] M. Süß and C. Leopold. Implementing Irregular Parallel Algorithms with OpenMP.

Euro-Par 2006 Parallel Processing, pages 635–644, 2006.

[197] V. Tabatabaee, A. Tiwari, and J. Hollingsworth. Parallel Parameter Tuning for Ap-

plications with Performance Variability. In Supercomputing, 2005. Proceedings of

the ACM/IEEE SC 2005 Conference, page 57, nov. 2005.

[198] E. Talbi. Parallel combinatorial optimization, volume 58. Wiley-Blackwell, 2006.

[199] G. Teodoro and A. Sussman. AARTS: low overhead online adaptive auto-tuning. In

Proceedings of the 1st International Workshop on Adaptive Self-Tuning Computing

Systems for the Exaflop Era, EXADAPT ’11, pages 1–11, New York, NY, USA,

2011. ACM.

[200] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for stream-

ing applications. In Proceedings of the 12th International Conference on Compiler

Construction, 2002.

[201] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle. Towards a holistic approach

to auto-parallelization: integrating profile-driven parallelism detection and machine-

learning based mapping. In Proceedings of the 2009 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’09, pages 177–187, New

York, NY, USA, 2009. ACM.

[202] O. Tripp, G. Yorsh, J. Field, and M. Sagiv. HAWKEYE: effective discovery of

dataflow impediments to parallelization. In Proceedings of the 2011 ACM interna-

tional conference on Object oriented programming systems languages and applica-

tions, OOPSLA ’11, pages 207–224, New York, NY, USA, 2011. ACM.

184

[203] A. Udupa, K. Rajan, and W. Thies. ALTER: exploiting breakable dependences for

parallelization. In Proceedings of the 32nd ACM SIGPLAN conference on Program-

ming language design and implementation, PLDI ’11, pages 480–491, New York,

NY, USA, 2011. ACM.

[204] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I. Au-

gust. Speculative Decoupled Software Pipelining. In PACT ’07: Proceedings of the

16th International Conference on Parallel Architecture and Compilation Techniques,

pages 49–59, Washington, DC, USA, 2007. IEEE Computer Society.

[205] H. Vandierendonck, S. Rul, and K. De Bosschere. The Paralax Infrastructure: Auto-

matic Parallelization With a Helping Hand. In Proceedings of the 19th International

Conference on Parallel Architectures and Compilation Techniques (PACT), 2010.

[206] H. Vandierendonck, S. Rul, and K. De Bosschere. The Paralax infrastructure: auto-

matic parallelization with a helping hand. In Proceedings of the 19th international

conference on Parallel architectures and compilation techniques, PACT ’10, pages

389–400, New York, NY, USA, 2010. ACM.

[207] S. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. Tay-

lor. SD-VBS: The San Diego vision benchmark suite. In Workload Characterization,

2009. IISWC 2009. IEEE International Symposium on, pages 55–64. IEEE, 2009.

[208] C. von Praun, L. Ceze, and C. Caşcaval. Implicit Parallelism with Ordered Trans-

actions. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP), 2007.

[209] G. Wang, P. Cook, et al. ChucK: A concurrent, on-the-fly audio programming lan-

guage. In Proceedings of International Computer Music Conference, pages 219–

226. Citeseer, 2003.

185

[210] Z. Wang and M. F. O’Boyle. Partitioning streaming parallelism for multi-cores: a

machine learning based approach. In Proceedings of the 19th international confer-

ence on Parallel architectures and compilation techniques, PACT ’10, pages 307–

318, New York, NY, USA, 2010. ACM.

[211] W. E. Weihl. Commutativity-Based Concurrency Control for Abstract Data Types.

IEEE Trans. Comput., 37, December 1988.

[212] M. Weiser. Program slicing. In Proceedings of the 5th international conference on

Software engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE

Press.

[213] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In Proceedings

of the 20th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, OOPSLA ’05, pages 439–453, New York,

NY, USA, 2005. ACM.

[214] N. Wirth. A plea for lean software. Computer, 28(2):64–68, 1995.

[215] Y. Wong, T. Dubrownik, W. Tang, W. Tan, R. Duan, R. Goh, S.-h. Kuo, S. Turner,

and W.-F. Wong. Tulipse: A Visualization Framework for User-Guided Paralleliza-

tion. In C. Kaklamanis, T. Papatheodorou, and P. Spirakis, editors, Euro-Par 2012

Parallel Processing, volume 7484 of Lecture Notes in Computer Science, pages 4–

15. Springer Berlin Heidelberg, 2012.

[216] P. Wu and D. A. Padua. Beyond Arrays - A Container-Centric Approach for Paral-

lelization of Real-World Symbolic Applications. In Proceedings of the 11th Inter-

national Workshop on Languages and Compilers for Parallel Computing (LCPC),

1999, 1999.

186

[217] Q. Wu, A. Pyatakov, A. N. Spiridonov, E. Raman, D. W. Clark, and D. I. August.

Exposing Memory Access Regularities Using Object-Relative Memory Profiling. In

Proceedings of the International Symposium on Code Generation and Optimization.

IEEE Computer Society, 2004.

[218] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-H. S. Lee. Kick-

ing the Tires of Software Transactional Memory: Why the Going Gets Tough. In

Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and

Architectures (SPAA), 2008.

[219] W. Zhang. Phase Transitions and Backbones of 3-SAT and Maximum 3-SAT. In

T. Walsh, editor, Principles and Practice of Constraint Programming CP 2001,

volume 2239 of Lecture Notes in Computer Science, pages 153–167. Springer Berlin

/ Heidelberg, 2001.

[220] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering Hidden Loop

Level Parallelism in Sequential Applications. In Proceedings of 14th International

Conference on High-Performance Computer Architecture (HPCA), February 2008.

187

