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Abstract

To identify the best processor designs, designers explore a vast design space. To assess

the quality of candidate designs, designers construct and use simulators. Unfortunately,

simulator construction is a bottleneck in this design-space exploration because existing

simulator construction methodologies lead to long simulator development times. This bot-

tleneck limits exploration to a small set of designs, potentially diminishing quality of the

final design.

This dissertation describes a method to rapidly construct high-quality simulators. In

particular, it examines structural modeling as a means to reduce construction time because

it eliminates redundant effort required to manage design complexity in many modeling

approaches, including that of programming a simulator in a sequential language. The dis-

sertation also describes how to overcome common limitations in structural modeling that

increase construction time by precluding amortization of component specification effort

across models via component-based reuse. First, some time-consuming to specify design

portions do not benefit from reuse, the logic for managing stall signals (i.e., timing-control)

chief among them. Second, components flexible enough to enjoy reuse are often not reused

in practice because of the number of details that must be understood in order to instantiate

them. This dissertation addresses these issues by:

• Presenting new insight into timing-control that allows it to be partitioned amongst

reusable components.

• Describing the application of programming language techniques (such as polymor-

phism and aspect-oriented programming) to allow creation of easy to reuse flexible

components.

• Allowing models to be statically analyzable in the presence of the above features.

The techniques presented in this dissertation are embodied in the Liberty Simulation

Environment (LSE). LSE users have seen over an order of magnitude reduction in model
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development time. Their models were of high-quality; they were accurate, had adequate

simulation speeds, and were compatible with static techniques for visualization and opti-

mization.

Short model construction times allow more ideas to be explored in less time. This

leads to shorter product time-to-market and more thorough design-space exploration. This

also allows researchers to evaluate new design ideas faster, to efficiently evaluate ideas in

the context of many designs, and, perhaps, develop a more fundamental understanding of

microarchitecture due to these broader evaluations.
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Chapter 1

Introduction

In digital hardware system design, the more meaningful design alternatives that are prop-

erly considered, the more likely designers are to identify a successful design. Since pro-

totyping a candidate design is prohibitively expensive, designers rely instead on models to

evaluate design alternatives. Analytical models have many desirable properties. For exam-

ple, they usually provide results quickly and sometimes allow simultaneous consideration

of a vast design-space [1, 50]. Unfortunately, current analytical modeling methods are only

sufficient to provide accurate guidance for special cases, such as particular applications

running on a specific class of machines [35] or exploring a limited number of parameters

on a specific design-space [1]. As a result, designers generally construct high-level (e.g.,

microarchitecture level) software simulation models for feedback.

1.1 Simulators Built with Sequential Languages

In the computer architecture community, manually coding a simulator using a sequential

language such as C or C++ is the most common method of producing a software simulation

model1. Unfortunately, this methodology does not provide anefficientpath to anaccurate

1In the 30th International Symposium on Computer Architecture in 2003, at least 23 of 37 papers used
this simulator construction methodology.
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simulation model. The methodology requires the designer to meticulously map the mi-

croarchitecture, which is inherently structural and concurrent, to a sequential programming

language with functional composition. At best, this manual mapping is labor intensive and

results in simulator code that does not conveniently convey microarchitectural ideas. At

worst, the simulator code is also difficult to understand and contains potentially serious

errors that go unnoticed.

A common approach aimed at mitigating the problems with construction of these sim-

ulators is to reuse an existing, carefully constructed and validated simulator for exploration

of similar designs [13]. The belief is that modifying a validated simulator will be easier and

result in an accurate derivative. However, as this dissertation will explain, simulator mod-

ification suffers from the same problems as simulator construction; it is time-consuming

and error-prone. Worse, the quality of the original simulator is likely to lead one to a false

sense of confidence in the derivative, resulting in only cursory validation, and permitting

potentially serious errors to remain unnoticed.

The challenge of manually mapping a design to a sequential simulator, and the resulting

difficulties, is called the mapping problem. Chapter 2 covers building simulators using

sequential languages and consequences of the resulting mapping problem in detail.

1.2 Architecture Description Languages

An alternative to writing a simulator in a general purpose sequential language is to use a

purpose built processor modeling language. Many such systems have been proposed, and

most authors refer to these systems as architecture description languages or ADLs [7, 17,

18, 21, 22, 23, 37, 40, 45, 47]. These ADLs provide a number of advantages over simply

writing using a sequential language. First, they more clearly convey certain architectural,

and sometimes microarchitectural ideas. Second, many of these systems reduce the com-

plexity of the specification by inferring aspects of the design. Third, these systems often
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provide descriptions that can be analyzed to construct a compiler for the design or build an

optimized simulator that is faster than hand-coded ones [45].

Unfortunately, these systems are not without problems. First, many of the systems still

suffer from the mapping problem or variants of it. In fact, the very design elements intro-

duced to make instruction set architecture (i.e., architectural ideas) ideas clear cause these

systems to have the mapping problem and obscure microarchitectural ideas. Second, the

systems often make modeling easier by making assumptions about the underlying hard-

ware, greatly limiting the class of designs to which they can be applied.

Chapter 3 explores the strengths and weaknesses of these ADLs in detail.

1.3 Concurrent-structural Modeling Systems

The concurrent-structural approach [28, 38] is an approach that eliminates the mapping

problem by simply eliminating the manual mapping [57]. This approach involves a lan-

guage which allows designers to directly express the composition of the hardware in terms

of components and connections. Without the need to manually map, the modeling process

is much less labor intensive. Since the model is a description of the hardware design, the

model conveys microarchitectural ideas, is easy for designers to understand, and exposes

model/design mismatches.

Unlike in the manually-coded simulator approach, reuse can be quite effective in the

concurrent-structural approach. In concurrent-structural models, reuse at the component

level is an attractive way to reduce model construction time [10, 52]andimprove accuracy.

A component can be built and validated once and then used repeatedly, reducing modeling

effort and potential sources of errors. The utility of such reuse is demonstrated by com-

mon hardware components such as queues and arbitration elements which can be used,

unmodified, in vastly different hardware designs.

Unfortunately, existing concurrent-structural modeling systems tools force a trade-off
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between the ability to easilybuild reusable components and the ease ofusingsuch compo-

nents [55]. In current systems, this puts a high overhead on reuse in the form of components

that are difficult to reuse because they require manual specification of too many parameters.

The implementation of features that allow for easy construction of reusable components in

these systems precludes general, automatic mechanisms for inferring the values of many

of these parameters. As a result, users are left with either too few reusable components

or reusable components that are too hard to use. This reduces reuse in practice, and thus

negates its benefits.

In addition to this, some portions of a hardware design’s specification do not benefit

from reuse in concurrent-structural systems. The portion of the control logic that deter-

mines when and what computation to stall in a processor (i.e., timing control) is a prime

example. Timing control does not benefit from reuse because it is non-local in nature. The

timing-control logic must be aware of all components, their interactions, and sometimes

their semantics. Changes to one part of a processors datapath often requires updating the

stall conditions in the global controller. The global nature of this timing control makes

it difficult to partition into one or more reusable model components. Consequently, in

existing concurrent-structural systems, users are forced to manually specify this complex

control for each design, foregoing reuse.

Chapter 4 examines concurrent-structural systems, the trade-off between construction

and use of reusable components, and the modularity of timing control in more detail.

1.4 Contributions

This dissertation shows that it is possible to dramatically reduce the time needed to create a

high-quality model specification (e.g., a model that is accurate, can be visualized, and can

be compiled to an efficient simulator) by exploiting component-based reuse in a concurrent-

structural environment. This is accomplished by first analyzing existing modeling systems

4



(including sequential programming languages) to identify the root cause of their shortcom-

ings. The dissertation shows that mapping a microarchitecture to a sequential program is

slow and error-prone and why reuse cannot allow the cost of simulator development to be

amortized when using this approach (Chapter 2). This dissertation then proceeds by ana-

lyzing the strengths and weaknesses of various non-structural and pseudo-structural ADLs

to identify their strengths and weaknesses (Chapter 3). Finally, this dissertation examines

true concurrent-structural systems to see why they still do not create an environment which

encourages reuse (Chapter 4).

Based on this analysis, this dissertation then presents the design and implementation

of techniques that enable a concurrent-structural modeling system that avoids the pitfalls

but preserves many strengths of existing systems (Chapter 5, 6, and 7). To evaluate these

ideas, they were implemented in the context of the Liberty Simulation Environment (LSE),

a new high-level modeling framework. Since LSE incorporates the techniques developed

in this dissertation, it allows users to exploit component-based reuse in practice and has a

model compiler that can compile their specifications into an efficient simulator. LSE avoids

the mapping problem because it is based around a concurrent-structural model specifica-

tion language. Unlike existing concurrent-structural systems, LSE supports low overhead

useandconstruction of reusable components through several existing and novel program-

ming language techniques presented in this dissertation. These techniques include para-

metric polymorphism, component overloading, structure-based type inference, and aspect-

oriented programming. LSE also incorporates a control abstraction developed in this work

to simplify the specification of timing control. This control abstraction functions similarly

to the control mechanisms used in asynchronous digital hardware design methodologies to

manage synchronization of computation in the absence of a clock. Since these techniques

have been carefully designed to permit static analysis of models, LSE can exploit static

analyses such as optimizations for simulators generated from models.

Though young, LSE has already been used to rapidly produce accurate models that have
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been compiled to efficient simulators. Highlights include a simulator for Intel’s Itanium

2 processor, developed at Princeton University by a single student in only 11 weeks, that

predicts performance to within 3% for a variety of benchmarks as well as a validated model

of a 3COM TIGON-2 network interface controller constructed at Rice University by two

students in only 6 weeks.

This dissertation concludes by summarizing contributions, highlighting remaining short-

comings, and discussing promising avenues for future research (Chapter 8).
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Chapter 2

The Sequential Mapping Problem

To manage the design of complex hardware, designers divide the system’s functionality

into separate communicating hardware components and design each individually. Since

each component is smaller than the whole, designing the component is significantly easier

than designing the entire system. If components are too complex, they too can be divided

into sub-components to further ease the design process. The final system is built by assem-

bling the individually designed components. To ensure that the components will interop-

erate, designers, when dividing the system, agree on the communication interface of each

component. This interface, which defines what input each component requires and what

output each component will produce, encapsulates the functionality of each component;

other parts of the system can change without affecting a particular component provided its

communication interface is respected. This type of encapsulation and communication is

calledstructural composition.

Leveraging encapsulation to allow this divide-and-conquer design strategy is also very

common in software design. Sequential programming languages such as C or C++ use

functions to encapsulate functionality. Each function has a communication interface (its

arguments and return value) and this interface encapsulates the function’s behavior. Soft-

ware systems are built by assembling functions which communicate by calling one another
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with arguments and receiving return values. This type of encapsulation and composition is

calledfunctional composition.

The presence of encapsulation combined with designer familiarity and tool availabil-

ity make sequential programming languages seem like a natural tool with which to model

hardware systems. However, as will be seen in this chapter, the encapsulation permitted by

functional composition in sequential languages is not the same as the encapsulation pro-

vided by structural composition. This mismatch forces designers tomaptheir structurally

composed hardware designs to functionally composed sequential programming languages.

This chapter demonstrates that this mapping is time-consuming, error-prone, and yields

simulators that are difficult to understand and hard to modify. Thus, we can conclude that,

despite the popularity of this methodology, manually coding hardware models in sequential

languages is ill-suited for design space exploration.

The discussion of themapping problemproceeds as follows. Section 2.1 describes why

simulators built using sequential languages (sequential simulators) are hard to build, diffi-

cult to understand and thus, prone to error. Section 2.2 presents empirical data supporting

this claim. Section 2.3 explains why building a new sequential simulator by modifying an

existing one is difficult, illustrating that the cost of building and validating sequential sim-

ulators cannot be amortized across many designs during exploration. Section 2.4 presents

empirical data supporting this claim.

2.1 Simulator Construction and the Mapping Problem

When dividing a complex hardware design into simpler components, designers choose a

partitioning that allows them to most easily understand the design. Often this partitioning

forms the vocabulary that designers use to think about and discuss the design. Conse-

quently, the easiest simulator to build and understand would share this same partitioning.

Unfortunately, differences between the styles of encapsulation used in hardware and se-
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quential programming languages prevent this. As will be described in this section, when

mapping from hardware components to software functions, the encapsulation provided by

the hardware components must be broken forcing the designer to reason about many com-

ponents simultaneously. This reasoning, and therefore the mapping, is laborious and ex-

tremely time consuming. Further, since the encapsulation of code in the simulator is not

representative of the hardware, understanding how a simulator written in a sequential lan-

guage models hardware is also difficult. Ultimately, modeling hardware in a sequential

language hides pieces of a component’s interface, intertwines computation and communi-

cation, and requires manual orchestration of concurrency.

A fundamental attribute of the encapsulation provided by hardware is the explicit spec-

ification of interfaces and the clear separation between functionality and communication.

A hardware component will typically define its communication interface as a collection

of ports through which it receives input and sends output. The component will define its

behavior by specifying how it translates data arriving at its input ports to data it will send

to its output ports. Independent of this specification of interface and behavior, the com-

munication of the system is determined by the connectivity of its components’ ports. A

particular component may receive input from one or more other components and similarly,

may send its output to one or more recipients.

The encapsulation provided by functions in sequential programming languages seems

similar. The arguments to the function seem to mirror a component’s input ports, and the

return value seems to mirror the output ports. The body of the function specifies its behav-

ior as a translation from inputs to outputs. Unfortunately, calling a function from within

the body of another function implicitly augments the communication interface of the caller

and intertwines functionality with communication. The arguments sent to the callee and

the return value received from it fromimplicit communication channels between the caller

and callee function. The arguments to the callee are implicit outputs of the caller and the

callee return value and implicit input. The communication is implicit because it is not part

9



of the caller’s declared communication interface, namely its arguments and return values.

Further, the recipient of data sent on these implicit outputs and the sender of data received

on these implicit inputs is determined by the function named as the callee in the code of

the caller. Thus, the user is not free to reconnect these implicit inputs and outputs freely as

they can in with structural composition. Furthermore, unlike structurally composed com-

ponents, a function must receive all of its arguments from a single caller and send all of its

outputs back to that same caller. Therefore, the arbitrary and independently specified com-

munication patterns provided by structural composition are absent when using functional

composition.

An alternate style of modeling hardware in a sequential programming language uses

global variables, as opposed to function arguments and return values, to communicate in-

formation through the system. Unfortunately, in such systems, the problems discussed

above still exist. The communication interface of a particular function is still implicitly

specified through its behavior specification. Each global variable accessed defines a piece

of the function’s communication interface. Further, the behavior and communication of a

function are still intertwined since two functions communicate if one writes to a global vari-

able that the other reads. Furthermore, when using global variables, even the specification

of communication is implicit, unlike in the previous style. The target of communication

is never explicitly specified but implied and obfuscated by how data flows through global

variables. Two functions may appear to communicate because they access the same global

variable, but a third function may overwrite the global variable after the first has written

it but before the second has consumed the data. Careful examination is required to truly

understand the communication present in such systems.

The implicit communication when using global variables reveals another shortcoming

of the encapsulation provided by functional composition. Components in a hardware sys-

tem executeconcurrentlywith one another. If a component has sufficient input to perform

a computation, it will proceed without waiting for additional input. With sequential pro-

10



gramming languages and functional composition, however, the interactions between com-

ponents must be manually orchestrated by sequencing function invocation. Sequencing

these invocations may not be straightforward. For example, when using global variables

to communicate, interchanging the order in which two functions are called can cause data

to be delayed by a cycle or can even change the communication pattern. Great care must

be taken to ensure that the proper sequence is specified. Worse still, if functions have not

been appropriately partitioned, there may be no correct order of invocation. For example,

if component A generates output that feeds component B, and an output of component B

feeds component A, then no order of invocation between A and B will work. The functions

would need to be partitioned so that the new functions could be scheduled.

The problems discussed above are all manifestations of the mapping problem. To see

how this problem can occur in practice, consider the following example. Figure 2.1(a)

shows a typical main simulation loop for a sequential simulator that models a typical five

stage superscalar processor pipeline. The hardware is modeled using a function per pipeline

stage. The functions communicate through global variables, which effectively model the

pipeline registers between the stages. Since later pipeline stages wish to use data produced

from previous cycles, they must run before the global variables get overwritten by earlier

stages. Therefore, the main simulator loop begins computation at the back of the pipe and

moves toward the front so that later pipeline stages use state from previous cycles, before

earlier stages overwrite the data. This invocation order also allows back-pressure to flow

through the pipe. If a stage later in the pipeline stalls, it can set a global variable to inform

earlier stages of the stall.

We now focus on the issue stage of the pipeline, whose code is shown in Figure 2.1(b).

From the pseudo-code we see that when an instruction is sent to its functional unit, it is si-

multaneously removed from the instruction window (lines 7-8 and 12-13 in Figure 2.1(b)).

When the fetch stage (the stage that places instructions into the instruction window) is

executed, the newly created space will be available for new instructions.
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foreach simulation cycle          

   do issue stage                  
   do fetch stage        

1
2    do commit stage                 

   do writeback stage             3
   do ex stage                     4

5
6

instr[1..n] = first n instructions in queue
for each instr[i] that was fetched
   if instr[i] is a branch
      fetch source registers

         compute the target PC
      if branch unit is available

         issue instruction to the branch unit

   if instr[i] is an ALU op
      fetch source registers
      If ALU is available
         issue instruction to the ALU
         dequeue instr[i]

         dequeue instr[i]

foreach simulation cycle          
   do commit stage                 
   do writeback stage             
   do ex stage                     
   do issue stage                  
   do fetch stage        

foreach instr[i]
   if instr[i].issued 
      dequeue instr[i]

instr[1..n] = first n instructions in queue
for each instr[i] that was fetched
   if instr[i] is a branch
      fetch source registers
      if branch unit is available
         compute the target PC
         issue instruction to the branch unit
         instr[i].issued=TRUE
   if instr[i] is an ALU op
      fetch source registers
      If ALU is available
         issue instruction to the ALU
         instr[i].issued=TRUE

(c) modified main simulator loop

(b) original issue stage

(a) original main simulator loop

(d) modified issue stage

Figure 2.1: Sequential simulator code for a 5-stage superscalar processor.
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Now, suppose that the designers would like to model a different behavior in which

freed slots in the instruction window are not available until the cycle after the instruction

was issued. Such a behavior may be desirable if, for example, the dequeue signals would

arrive too late in the cycle with the original behavior. The hardware differences between

the original and the new behavior simply amount to removing the dequeuing logic from the

computation of a control signal indicating the number of slots available. Figures 2.1(c) and

2.1(d) show the necessary changes to the simulator main loop and issue logic, respectively,

to model the new behavior.

Notice that the sequential simulator code that models two very similar architectures

contains significant differences. These differences are indicated by the bars to the right of

the line numbers in Figure 2.1. Specifically, the change to the microarchitecture required

partitioning of code for the issue logic and the addition of new simulator state to allow

the pieces of the issue logic to communicate. The code to dequeue instructions from the

instruction window had to be separated from the code that dispatched instructions to the

functional units since these two events occur at different times in the modified hardware

design. The majority of the issue logic remains in the issue stage function, but some of

the logic is now intermingled with the code that schedules the execution of the pipeline

stages (lines 7-9 in Figure 2.1(c)). The modified code also needs an additional global

variable to maintain the issued status for each issue window slot so that the piece of the

issue logic that dequeues instructions knows which instructions were issued.

Just as changing instruction window timing required partitioning a logical entity in the

hardware into different functions in the simulator model, other microarchitecture features

may also force undesirable partitioning. While this small example may not seem over-

whelming, this kind of partitioning is very common throughout the code for sequential

simulators. Because of this, sequential simulator authors need to carefully plan how hard-

ware component functionality needs to be partitioned, decide what global state will be used

for communication, and carefully orchestrate the invocation of functions to ensure that all

13



global state is updated in the correct sequence.

Notice that this mapping process can be extremely complicated and therefore difficult

to perform correctly. Since mistakes can easily be made, the resulting simulator needs to

be carefully checked to ensure correctness. Correctness is usually determined by testing

each component as a unit and then testing the composed whole. In the best case, the

entire model will be built by reusing pre-validated components. As we have seen, however,

the mapping process breaks structural encapsulation, thus making component testing and

component-based reuse impossible. Even components commonly thought of as testable

units in a sequential simulator, such as a cache component, are not independently testable

since, to allow correct modeling of timing, they are often tightly coupled to the whole

simulator [13].

Sequential simulators are also difficult to manually validate as a whole. Designers un-

derstand the hardware in terms of hardware components and their communication. A strict

separation of computation, communication, and operation sequencing is critical to the un-

derstanding of a hardware design. As seen above, however, the way in which a sequential

simulator is built breaks component encapsulation and intermingles communication and

computation. Furthermore, recall that with sequential simulators communication between

code that models hardware blocks is often implicit. This makes the resulting simulator dif-

ficult to understand and thus difficult to manually validate. This in turn makes anaccurate

simulator even more difficult and time-consuming to build.

2.2 Simulator Construction and the Mapping Problem:

Model Clarity

The previous discussion describes why accurate sequential simulators are difficult to build.

Correctness is especially hard to ensure because the simulator is very hard to understand.

The semi-formal user experiment presented in this section supports the claim that sequen-
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tial simulators are difficult understand and thus difficult to validate.

2.2.1 Experimental Setup

To quantify the clarity of sequential simulators, a group of subjects was asked to examine

sequential simulator code modeling a microprocessor and identify properties of the ma-

chine modeled. As a reference point, the subjects were askedexactlythe same questions

for a model of a similar machine built in the Liberty Simulation Environment (LSE). As

described in detail in Chapter 5, LSE is a hardware modeling framework in which mod-

els are built by connecting concurrently executing software blocks much in the same way

hardware blocks are connected. Thus, LSE models closely resemble the hardware block

diagrams of the machines being modeled. We call these structurally composed models

structural modelsto distinguish them from functionally composedsequential simulators.

The sequential simulators used were a collection of modified and unmodified versions

of sim-outorder.c from version 3.0 of the popular SimpleScalar tool [4]. The code in

sim-outorder.c models a superscalar machine that executes the Alpha instruction set.

The LSE models were variations of a superscalar processor model that executed the DLX

instruction set [26]. A refined version of this model was released along with the Liberty

Simulation Environment in the packagetomasulodlx [32].

Subjects received different versions of the machine models to ensure that the effects ob-

served were not due to a particularly difficult to understand hardware policy in a particular

model. There were 4 sequential simulator models:

• Stocksim-outorder.c which has a unified issue window and flags mispredicted

branches in the decode stage, begins recovery in the write-back stage. Note that flag-

ging mispredicted branches in the decode stage involves emulating instructions at

decode which provides results that would not be available in hardware. This infor-

mation is used to prevent recovery for mispredicted branches that will be squashed.
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• A modified sim-outorder.c which had a unified issue window, but identified

and resolved mispredicted branches in the commit stage, in-order.

• A modified sim-outorder.c which had a unified issue window, but identified

and resolved mispredicted branches in the write-back stage, supporting recovery of

mispredicted branches that would eventually be squashed.

• A modifiedsim-outorder.c which had a distributed set of reservation stations

and the stocksim-outorder.c branch semantics.

There were 2 structural models built in LSE:

• A machine with a unified set of reservation stations with mispredicted branches iden-

tified and resolved at commit.

• A machine with a distributed set of reservation stations with the above branch reso-

lution policy.

The base LSE model was built for instructional and demonstration purposes and thus the

machine was modeled at a fairly low-level and closely resembles the hardware. This made

the model an excellent reference point for clarity. There are fewer LSE models than se-

quential simulators because the low-level of the base LSE model (the machine actually

computed results in the pipeline instead of pre-computing the results in the decode stage)

made the construction of models that used data that would be unavailable in hardware dif-

ficult.

To ensure that the experiment measured the quality of the model, not the knowledge

of the subjects, all the subjects were either Ph.D. students studying computer architecture

or Ph.D. holders whose primary work involved computer architecture. To ascertain the

background of subjects, each was given a questionnaire to determine their familiarity with

computer architecture, programming languages, and existing simulation environments, par-

ticularly, SimpleScalar. A summary of the answers to this questionnaire is in Table 2.1. The

questions in the questionnaire are shown in Section A.1.
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Years Wrote Wrote Years Days Used
in a C RTL for a Experience Experience Simple-

Subject Architecture Simulator CPU Core w/ C/C++ w/ LSE Scalar
S1 3 Yes No 5 3 Yes
S2 10 Yes Yes 15 2 No
S3 3 No Yes 5 2 No
S4 3 No No 6 3 Yes
S5 3 No No 7 3 No
S6 3 Yes Yes 6 3 Yes
S7 3 No Yes 8 3 Yes
S8 3 No No 5 4 No
S9 2 No No 14 5 No

S10 6 Yes No 10 5 Yes
S11 7 No No 7 2 No
S12 3 Yes Yes 2 2 Yes
S13 7 No Yes 10 2 No
S14 2 No No 10 2 No
S15 1 No No 10 2 No
S16 2 Yes No 8 2 Yes
S17 6 No No 6 2 No
S18 3 No No 4 2 Yes
S20 3 No No 5 2 Yes
S21 2 Yes No 6 2 Yes
S22 2 Yes No 6 2 Yes
S23 1 No Yes 10 21 No
S24 4 No Yes 6 7 No

Table 2.1: Subject responses to the background questionnaire.
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Note that finding qualified subjects unaffiliated with the Liberty Research Group for this

experiment was challenging given the requirements. Subjects had to be very familiar with

computer architecture and also had to be familiar with LSE. Though growing in popularity,

LSE is still a young system, making the second constraint the most difficult to satisfy. Only

24 of all LSE users could be recruited as subjects for this experiment. As will be seen,

however, even with 24 subjects the results are quite dramatic.

Subjects were given 90 minutes to answer 2 control questions, 2 multipart questions for

the structural model, and 2 identical multipart questions for the sequential simulator. These

questions, with placeholders for the line numbers, are shown in Section A.2. The control

questions were used to determine if the subjects had basic familiarity with LSE since all

but one subject had less than one week of experience with the tool. The answers to the

control questions indicated that all subjects, except subject S19, understood LSE enough

for the purposes of this experiment. Accordingly, the data presented here excludes subject

S19. It is clear from the questionnaire results in Table 2.1 that all remaining subjects were

familiar with the C programming language, the language with which the sequential model

was constructed.

2.2.2 Experimental Results

Figure 2.2(a) summarizes the results. Since the subjects had limited time, not all subjects

could answer all questions. The first pair of bars corresponds to responses regarding the

structural model. The first bar in the pair assumes that all questions left unanswered were

answered incorrectly. The second bar in the pair of bars shows the same data assuming

that all unanswered questions were answered correctly. The second pair of bars shows the

same information for questions regarding the sequential simulator. From the graph, we

can see that in all but a few cases subjects were able to identify the machine properties

at least as accurately with the structural model as they were with the sequential simulator,

usually much more accurately. On average, subjects answered 8.87 questions correctly with
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Figure 2.2: Results of the simulator clarity experiment.
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the structural model versus 4.87 for the sequential model. Even if unanswered questions

are assumed correct foronly the sequential simulator, almost all subjects answered more

questions correctly with the structural model. The only subjects who do better with the

sequential simulator, under these circumstances, are subjects S8 and S20. Subject S20

simply failed to respond to 7 out of 10 of the questions for the sequential simulator. S8

spent an unusually long time on the control questions and thus did not have time to answer

any questions regarding the sequential simulator. In fact, S8 only completed the first two

parts of the first non-control question for the structural model (questions 1(a) and 1(b)) as

numbered in Section A.2 and no questions for the sequential simulator. Clearly subject S8

is an outlier.

If subject S8 is excluded from the data, we see that, on average, 9.23 questions were

answered correctly for the structural model versus 5.09 for the sequential simulator. Even

when unanswered questions are assumed correct for the sequential simulator and incorrect

for the structural model, the structural model still has 9.23 correctly answered questions

versus 6.73 for the sequential simulator. The only subject who actually answers more

questions correctly for the sequential simulator is Subject S18. The best explanation for

this is that S18 was extremely familiar withsim-outorder.c . The model that the

subject examined was the stocksim-outorder.c model and, the subject takes very

little time to answer the sequential questions. An interesting experiment would have been

to test S18 on a modified version of thesim-outorder.c models, but a retest was not

possible.

Figure 2.2(b) summarizes the time taken to answer each class of questions: control

questions, questions for the structural model, and questions for the sequential model. With

S8 excluded, the average time taken per question for the structural model is greater by

about 10 minutes when compared to the time for questions about the sequential simulator.

Some of this gap is due to the fact that some subjects did not complete all the sequential

simulator questions, and the time taken for unanswered questions does not count toward the
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average. Despite this, the increased number of correct responses for the structural model is

not likely due to the extra time spent on those questions; many of the total times are well

below the 90 minute time limit. One conclusion to be drawn from the timing data is that

the sequential simulator is extremely misleading. Subjects voluntarily spend less time an-

swering the sequential simulator questions despite plenty of extra time. Presumably, this is

due to their confidence in their rapid analysis. Yet, the subjects frequently mischaracterize

properties of the machine modeled. Timing data for subject S3 was unavailable because

the subject failed to record the data during the examination.

Note that the experiment is skewed in favor of the sequential simulator. First, subjects

were asked the LSE question immediately before being asked the same question for the

sequential simulator. Thus, subjects could use the hardware-like model to understand what

to look for in the sequential simulator. Second, many of the subjects were familiar with

the stocksim-outorder.c simulator. Third, all subjects had many years of experi-

ence using the C language (the language used forsim-outorder.c ) and less than a

week of experience with LSE (the tool used to build the structural model). Fourth, no sub-

ject had ever seen a full LSE processor model before the experiment. Finally, the testing

environment did not permit subjects to use the LSE visualization tool [6] to graphically

view block diagrams of the structural specification. Experience indicates that this tool

significantly simplifies model understanding; subject responses to the questions indicated

that much of their time answering questions about the structural model was spent drawing

block diagrams. Despite all this, the results clearly indicate that sequential simulators are

significantly more difficult to understand.

2.3 Reuse and the Mapping Problem

A tempting approach to allow rapid construction of simulation models in the face of the

previously described difficulties is to amortize the cost of model construction via whole-
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Figure 2.3: The structure and pseudo-code for two Tomasulo-style machines.

model reuse. In this approach, a sequential simulator is built once, validated versus a

“golden” reference, such as real hardware, and then modified to model a new design. Since

the new model is a modification of a validated model, the belief is that the likelihood

of error is reduced and modeling efficiency is increased. However, this is not the case.

Sequential simulators are not only difficult to build and understand, but also difficult to

modify correctly.

To see why these simulators are difficult to modify correctly, consider a simulator,

written in the same style as the one in Figure 2.1, which models a machine that uses Toma-

sulo’s dynamic scheduling algorithm [54]. Figure 2.3 presents a block diagram of such a

machine and shows the code for the writeback stage of the pipeline. The code iterates over

all instructions that have completed execution and updates the dependency information of

instructions pending execution. While the code seems to model the hardware reasonably
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well, closer examination reveals that this machine has unrestricted writeback bandwidth;

any instruction that has completed execution will be written back.

Limiting the writeback bandwidth seems simple. It seems that one need only modify the

loop termination condition to cause the loop to exit if the writeback bandwidth has been

exceeded. Figure 2.3(d) shows this modified code. Careful inspection, however, reveals

that this one line code modification has had unexpected results. The functional units which

will be able to successfully write back results to the writeback buses is determined by the

order that the while loop (line 1 in Figure 2.3(d)) processes the requests. Thus, as shown in

Figure 2.3(c), the sequential semantics of the programming language used during modeling

hasimplicitly introduced a bus arbiter that is notexplicitlymodeled by the code.

Worse still, the arbiter’s exact functionality depends onsimulator statethat does not

correspond to anymicroarchitectural state. The order in which the simulator iterates over

the instructions in the while loop determines which instructions are written back. Prior to

this modification, the iteration order was irrelevant. Now, the iteration order determines

the behavior of the microarchitecture and this order is not necessarily determined in any

one place in the simulator’s code. For example, the iteration order can be affected by

the order in which functional units are processed (which is often arbitrary) or the specific

implementation of the data structure used to store the instructions waiting to write back.

Thus, this small change breaks the encapsulation of the writeback stage allowing seemingly

irrelevant implementation details to affect simulation results.

2.4 Reuse and the Mapping Problem: Simulator Modifi-

cation Time

To show that correctly modifying a sequential simulator is unnecessarily difficult and time

consuming, an informal experiment that gauges how rapidly an existing sequential sim-

ulator could becorrectly modified was conducted. Specifically, a subject was asked to
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Configuration Name Configuration Description
mispredimm Force all branches to resolve immediately in the writeback stage

mispredold Force all branches to resolve in order in the writeback stage
mispredcom Force all branches to resolve in order in the commit stage

delaydec Place one cycle of delay after decode
splitda Split the decode stage into decode and register rename

splitruu Split the RUU into a separate issue window and reorder buffer

Table 2.2: Descriptions of the modeled microarchitectural variants.

perform various modifications to a sequential simulator and to an equivalent model whose

specification more closely resembles hardware. The requested modifications are shown

in Table 2.2. The sequential simulator modified by the subject was the SimpleScalar 3.0

sim-outorder.c simulator. The model that more closely resembles hardware was once

again built with the Liberty Simulation Environment (LSE). The base LSE model and the

basesim-outorder simulator1 that were modified in the experiment had exactly match-

ing pipeline traces. At the time this experiment was conducted the subject had little ex-

perience with both LSE and SimpleScalar. To ensure correctness of the modified models,

each pair of modified models’ output was carefully checked by hand and against each other.

The subject had to resolve any discrepancies between pipeline traces generated by the two

models.

In order to evaluate how difficult it was to correctly modify the sequential simulator,

three metrics were used to compare the sequential model to the LSE model. The first

metric, the diff/wc metric, measured how much a specification deviated from the base

specification by counting the number of lines in adiff between the original and mod-

ified configuration. The second metric captured the locality of the changes necessary to

move from an initial architectural model to a modified one. Since the specifications of the

two simulators being compared are different, a hand count of the number of components

affected in the LSE model was compared to a hand count of the number of C functions

modified for SimpleScalar. The final metric used was a timing of how long each particular

1The basesim-outorder.c model had a few patches applied to fix bugs in the stock model.
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LSE Model Sequential Model
Modules Functions

Configuration diff/wc Affected Time diff/wc Affected Time
mispredimm 146 8 1.5hrs 400 16 5 hrs

mispredold 165 9 45 min 413 16 1.5 hrs
mispredcom 177 10 15 min 629 17 15 min

delaydec 16 1 15 min 94 6 2 hrs
splitda 124 5 40 min N/A N/A > 5 hrs

splitruu 13 1 36 min 50 7 3 hrs

Table 2.3: Time spent and code changed for modifications from the baseline configuration.

modification took. Any time required to resolve discrepancies between the output of two

models was charged to the model that was deemed to be incorrect.

The results of the experiment are summarized in Table 2.3. Note that thesplitda

modification could not be completed in the sequential model in under five hours and was

abandoned. Across the board, it took less time and fewer modifications to build the LSE

model when compared to the hand-coded sequential C simulator. Furthermore, the changes

were more local in the LSE specification than they were in SimpleScalar. These results

clearly indicate that sequential models are unnecessarily time-consuming to modify given

that the LSE models can be used to automatically generate simulators. Note that in each

case where there was a discrepancy, inspection revealed that the sequential model was

the one that contained the error. This lends support to the claim that sequential simulator

construction and modification are error prone.

2.5 Summary and Prognosis

When designing a microarchitecture, designers manage complexity by dividing the design

into smaller components each performing simpler computations. Each component has a

well-defined communication interface in the form of a declared set of ports. Full system

behavior is realized by specifying the communication between components by connecting

up the component ports. In this method communication is orthogonal to computation; each
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component can perform an arbitrary computation and the designer is free to connect any

component port to any other compatible component port.

Building a simulator for such systems in a sequential language such as C or C++ (i.e.,

building a sequential simulator) has much appeal. The arguments and return values of

functions seem analogous to ports and function bodies can perform arbitrary computation.

Furthermore, these languages can model any architecture and most designers are proficient

in some sequential language resulting in a short learning curve for using the tools.

Unfortunately, the examples and data presented demonstrate that manually mapping

a concurrent, structural microarchitecture to acorrect sequential program can be quite

difficult because functionsdo not encapsulate computation like a structural component.

The data shows that sequential simulators are difficult for users to understand and time-

consuming for users to modify. Others have noted that there is a problem with the accuracy

of simulators, but disagree on the source of the problems [5, 9, 13, 20]. The results in this

chapter indicate that the mapping problem is the fundamental cause of many inaccuracies

in and long development times of sequential simulators.

While validation may seem like an attractive solution to the problem of sequential sim-

ulator accuracy, validating a sequential simulator will further lengthen simulator develop-

ment times. Furthermore, for a novel design, it is difficult to determine if a simulator is

correct since no “golden” reference exists and the simulator is difficult to understand.

Unfortunately, no obvious technique to rapidly hand-craft correct sequential simula-

tors has been proposed to date. Others have proposed a number of alternative means of

modeling. These systems are explored in Chapters 3 and 4.
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Chapter 3

Non-structural and Pseudo-structural

Architecture Description Languages

As an alternative to writing a simulator in a sequential language such as C or C++, re-

searchers have proposed a number of special purpose architecture description languages

(ADLs). These languages improve the efficiency with which processor models can be cre-

ated and some allow analysis and concise specification of the processor’s instruction set.

ADLs fall into two broad categories. Behavioral ADLs and microarchitectural ADLs

(µADLs). Behavioral ADLs are concerned with specifying instruction set behavior, while

µADLs are concerned with modeling microarchitectural properties, such as instruction tim-

ing, power consumption, and resource utilization. In this section, ADLs will be classified

into three categories: behavioral ADLs, instruction-centricµADLs, and pseudo-structural

µADLs1. This chapter examines these three ADL categories to identify strengths and weak-

nesses. In particular, the sections below will evaluate how well the ADLs preserve the gen-

eral applicability of sequential languages and to what extent the ADLs address the mapping

problem.

1For convenience, when it does not cause confusion, the term ADL will be used to refer toµADLs as
well.
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3.1 Behavioral ADLs

Behavioral ADLs are those that are designed to describe instruction setbehavior, from

instruction semantics to calling conventions, butnot instruction timing or other microar-

chitectural detail. Since these ADLs are not designed to model microarchitecture level

details, they are not of direct relevance for this dissertation. However, for completeness, a

brief description of these ADLs is included below.

In their simplest form, behavioral ADLs allow designers to specify a list of instructions

and the semantics for each instruction. Usually, the only structural information represented

in these ADLs are the programmer visible structures such as the main memory and register

files. A common feature of these languages is the ability to factor out the common portions

of instruction specifications, such as effective address calculations or instruction decoding.

This idea, first implemented in nML [18], works by allowing users to hierarchically specify

instructions. At the top level of the description are the instructions themselves. These

instruction descriptions can reference partial instructions (PIs) declared elsewhere. Each PI

can in turn include other PIs [18, 51]. Each PI invocation behaves like a BASIC subroutine

invocation or an argument free C preprocessor macro.

Behavioral ADLs often incorporate a number of other specification features. For exam-

ple, ISDL [22], allows users to explicitly specify constraints on which instructions may be

issued or fetched together. This allows a compact representation of the coding constraints

for VLIW like machines. In addition to instruction semantics, CSDL [47] adds support for

calling conventions, and a formal specification of assembly language syntax and complex

instruction encoding rules.

3.2 Instruction-centric µADLs

Instruction-centricµADLs are those which have the user model the timing and behavior of a

processor microarchitecture by specifying processor behavior on an instruction by instruc-
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tion basis. This provides a very natural way to specify many architectures. Architectures in

which all execution behavior is synchronized with a serial instruction stream are extremely

easy to specify in these languages. Such architectures include RISC architectures as well

as VLIW machines (though not all languages support every such architecture).

Aggressive processor designs often have performance critical operations that occur in-

dependently of or are only loosely coupled to the flow of instructions through the processor

(e.g., data prefetching, instruction prefetching, and cache line replacements in non-blocking

caches). Unfortunately, these operations either cannot be modeled in these languages, or

constructing a model that includes these operations requires designers to face the mapping

problem (discussed in Chapter 2). Since each instruction-centricµADL can vary quite a

bit in the manner in which the model is specified, the remainder of this section examines a

few representative instruction-centricµADLs and explains how each suffers from at least

one of these two shortcomings.

3.2.1 Resource-based Instruction-centricµADLs

The simplest instruction-centricµADLs are, in fact, not designed for detailed simulation at

all. They are, instead, designed to expose to a compiler how instructions occupy pipeline

resources. For example, in Maril [7], an instruction definition for an ‘add’ instruction may

appear as follows:

1 %instr Add r, r, r (int)

2 {$3 = $1 + $2}

3 {IF; ID; EX; MEM; WB} (1,1,0)

Line 1 declares the Add instruction to take three integer register operands (denoted by

the r ’s and the(int) ). Line 2 specifies the semantics of the add instruction. Line 3

specifies the resource utilization, cost, and issue latency of the add instruction. The first

part of the line is of the most interest. Each identifier specifies a resource occupied by

the instruction. The semicolon separates a clock cycle. Thus, in this description, theAdd
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instruction occupies theIF resource in the cycle it is fetched, theID resource in the next

cycle, theEX resource in the cycle after, and so on [7, 51].

HMDES [21], used in the IMPACT [27] compiler toolset, also models a processor

pipeline by describing resource utilization on an instruction-by-instruction basis. However,

unlike Maril, HMDES can model VLIW as well as RISC processors and allows for far more

complex resource specifications. In particular, HMDES allows for multiple resource usage

specifications for a single instruction as well as a hierarchical specification of resource

utilization to allow compact specification of complex pipelines.

While it is difficult to build a cycle accurate simulator using just these resource de-

scriptions, it is possible to build a simulator by using the resource utilization for the main

pipeline and modeling the control logic, caches, and other hardware using another specifi-

cation system. The IMPACT compiler’s Lsim simulator combines HMDES in a C simulator

to achieve such a result.

HMDES allows the specification of fairly general pipelines and eliminates the mapping

problem for pipeline specifications it can describe. Unfortunately, it does have limitations.

For example, HMDES cannot describe certain types of issue constraints [46] and does

nothing to address the specification of processor structures outside the in-order portion of

the pipeline (e.g., the caches or scheduling logic in an out-of-order processor). Unfortu-

nately, these structures have a significant effect on performance and must be modeled. Note

that the strategy used in Lsim to model these structures while using HMDES for the main

pipeline suffers from the mapping problem since it relies solely on a sequential language

for modeling processor structures.

3.2.2 The LISA Architecture Description Language

The LISA architecture description language [40] is a instruction-centricµADL developed

at the University of Aachen in Germany. It is designed to allow user specification of ar-

chitecture and microarchitecture from which a compiler and simulator can be generated.
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LISA has the user break down instruction behavior into a single operation per instruction

per pipeline stage. At the conclusion of execution, each operation specifies which operation

to activate in next clock cycle. The framework uses this information along with a number

of assumptions to automatically generate the pipeline control. Processor behavior not di-

rectly tied to instruction behavior, such as prefetch mechanisms and line replacements in

non-blocking caches, can be modeled using a “main” operation that executes in each clock

cycle and is not associated with any instruction.

In the Compiler Design Handbook [51], Qin et al. give a sample specification for LISA,

a reduced version of which is shown below. Users first specify a set of pipelines for the dif-

ferent instruction types. For example, the pipeline declaration for a 5 stage RISC machine

would be as follows:

PIPELINE pipe={FE; ID; EX; MEM; WB}

The decode stage for arithmetic instructions looks as follows:

1 OPERATION arithmetic IN pipe.ID {

2 DECLARE {

3 GROUP opcode=(ADD || ADDU || SUB || SUBU)

4 GROUP rs1, rs2, rd = {fix_register};

5 }

6 CODING {opcode rs1 rs2 rd}

7 SYNTAX {opcode rd "," rs1 "," rs2}

8 BEHAVIOR {

9 reg_a = rs1;

10 reg_b = rs2;

11 cond = 0;

12 }

13 ACTIVATION {opcode, EX}

14 }

Lines 1-5 declare the operation description and define some useful groupings,opcode ,

rs1 , rs2 , andrd . Line 6 describes the instruction coding and line 7 the assembler syntax
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(for compiler construction). Lines 8-12 describe the decode behavior for arithmetic instruc-

tions, which is to read the registers and stash their values inreg a andreg b. Notice the

activation record at the end of the listing. This line tells LISA that upon execution of this

operation, the operation for theEXstage of the opcode corresponding to the arithmetic in-

struction being decoded should be activated next. Ifopcode wasADDthen an operation

declared as follows would be activated.

1 OPERATION ADD IN pipe.EX

2 {

3 CODING {0b001000}

4 SYNTAX {"ADD"}

5 BEHAVIOR {alu = reg_a + reg_b; }

6 }

Notice that this description style is well suited to simple, single issue, in-order machines.

The level of abstraction is excellent and specification rapid, as reported in the literature.

Unfortunately, the language is only well suited for these architectures. If a design has

many operations that execute concurrently with the pipeline, but are only loosely coupled

to instruction execution, the user must encode most of such behavior in the main operation.

Since the code within an operation specification is simply sequential code in a C-like lan-

guage, this approach suffers from all the issues related to the mapping problem discussed

in the previous chapter, precluding rapid construction of accurate models for these designs.

Furthermore, it is not clear if LISA can be used to model all processors, especially those

with multiple issue or out-of-order execution, limiting the applicability of the language.

3.2.3 The MADL Architecture Description Language

The MADL µADL is an approach developed at Princeton University [45]. Once again,

MADL is designed to allow the rapid specification of models (for both architecture and mi-

croarchitecture), construction of efficient simulators, and automated construction of com-

pilers. The MADL language has users build a model by specifying, for each operation,
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Figure 3.1: An Operation State Machine (OSM) for an add instruction in a five stage
pipeline.

what is called an operation state machine (OSM). Each state in the OSM can specify com-

putation that is to occur in each state. In simple designs, each instruction corresponds to

a single operation. For example, in a five stage pipeline, the add instruction could be a

single operation with the OSM shown in Figure 3.1. Each state corresponds to a stage in

the pipeline, with the start state being the idle state.

Each of the OSMs (one for each dynamic operation in flight) executes in parallel. Be-

fore transitioning to a new state, an OSM will attempt to procure machine resources. These

resources are modeled as tokens and allocation of tokens is controlled by a set oftoken

managers. For each token request, the token managers must decide if this request will be

granted. When the instruction is finished with the resource, the OSM will release the token

back to the appropriate token manager. Each resource typically has a token manager, but

token managers may coordinate across cycles via global state.

As an example, consider a model of a five stage pipeline RISC machine. In this model,

the add instruction shown in Figure 3.1 would request the token manager managing the

decode stage resources for a token corresponding to the decoder. The token manager would

be implemented to only have a single token thus allowing only one instruction in the decode

stage at any given time.

The MADL approach is quite elegant because it partitions instruction execution concur-

rency and microarchitectural concurrency. Instruction concurrency is modeled using OSMs

and microarchitecture concurrency is encapsulated in the token managers. This separation

allows MADL to model a larger variety of machines when compared to LISA. MADL can
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model superscalar and VLIW machines, though out-of-order execution may pose problems.

Unfortunately, the token managers are typically specified using sequential code with no

hardware-block like encapsulation of microarchitecture structure and computation. Thus

the specification of microarchitectural concurrency, such as prefetchers, caches, and other

units, looks much the same as the examples in the previous chapter. Thus, these specifica-

tions suffer from the mapping problem and its consequences. Furthermore, as described,

each token manager must respond to a token request without examining the other requests

that will occur in a given cycle, precluding any form of request based arbitration within a

cycle. This latter point is easily remedied by changing the token manager interface. The

former point is more difficult to address without substantial additions to MADL. Many

of these additions would likely be along the lines of those proposed in this dissertation.

In fact, integrating a MADL like language for specification of control designed to enforce

instruction dataflow semantics with a system like the one proposed in this dissertation is a

promising area for future work.

3.3 Pseudo-structural ADLs

Instruction-centricµADLs suffer shortcomings because they attempt to partition microar-

chitecture behavior around instructions rather than hardware structure. Pseudo-structural

µADLs, on the other hand, have designers specify microarchitectures by partitioning com-

putation in a fashion similar to that of hardware. Blocks of computation are encapsulated

in components and are then interconnected via the components’ ports, just like hardware

blocks. On the surface, these systems have all the properties needed to address the mapping

problem and seem to provide a platform for reuse. Unfortunately, each of these systems

imposes restrictions on the type of concurrency and communication permitted. These re-

strictions cause the mapping problem to resurface, precluding wide ranging reuse.
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3.3.1 The UPFast ADL

Of the Pseudo-structuralµADLs, UPFast [37] is perhaps the most limited. Users specify

a machine by declaring a set of pipelines along which instructions will execute, much like

in LISA. For each of these pipeline stages, the user defines a set of time annotated proce-

dures (TAPs) which describe the behavior of the stage. The UPFAST framework ensures

that control information stored in piperegisters and a variety of other needed information

is transmitted to each TAP. Each TAP may directly specify instruction behavior or rely on

portions of an ISA description specification within the UPFAST ADL. Typically, opera-

tions common to all instructions, such as writing back to the register file, are handled in the

TAPs directly. Instruction specific behavior is handled by the ISA behavior specification.

To model portions of the microarchitecture not directly in the main pipeline, or accessed

by multiple pipeline stages, the system provides the ability to instantiateartifacts. Each

artifact is instantiated with a keyword in the system (thus limiting the type of artifacts

supported). Artifacts include register files, caches, and main memory. The TAPs, which

define pipeline behavior, communicate with the artifacts via port-like interconnections. The

artifact will respond to the data on these ports in some number of cycles determined by the

artifact itself and its instantiation parameters.

The TAPs themselves must be manually ordered by the user to ensure that they are ex-

ecuted in an order such that the artifacts are able to respond to requests in the same cycle if

needed. Unfortunately, TAPs may execute only once per cycle, and thus this requirement

causes many of the issues in the mapping problem to resurface. In particular, TAP parti-

tioning becomes a serious problem. It is not clear whether artifacts can be partitioned to

deal with any inter-artifact communication issues. These mapping issues, along with the

limited flexibility arising from the lack of user-defined artifacts makes UPFAST’s utility

limited to a narrow range of architectures.
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3.3.2 The EXPRESSION ADL

The EXPRESSION ADL [23] is a pseudo-structuralµADL because users specify a mi-

croarchitecture by interconnecting user-defined and predefined components to describe the

processor pipeline. The system operates much like a concurrent-structural modeling envi-

ronment, as described in the first section of the next chapter.

The toolset is flexible; it provides tools that assume standard pipeline semantics to infer

control. Users may also forgo the tool and explicitly specify the control interface and logic.

If specifications have a certain standard structure and rely on the framework to infer the

control, the system can also generate a compiler for the specified machine.2

Unfortunately, EXPRESSION requires that each component only be invoked once per

clock cycle. This means that if a component has an input which is combinationally depen-

dent on one of its outputs the component must be partitioned (as with sequential simula-

tors) in order to manage this connection pattern. Experience with reuse in true concurrent-

structural systems indicates that this paradigm can be common, especially with a control

abstraction mechanism described in Chapter 5. For example, a common paradigm in this

control abstraction works as follows:

1. Component A sends data to Component B for processing.

2. Component B examines this data and determines that processing cannot proceed this

cycle and signals this fact to Component A by sending data to one of A’s inputs.

3. Component A then updates its internal state based on this message to retry the oper-

ation next cycle.

In this example, the input of Component A that receives B’s cannot-proceed signal is com-

binationally dependent on the data sent to B by A. Thus, this back and forth exchange is

not possible without partitioning a component in EXPRESSION.

2This mode of operation is similar to MIMOLA [31, 64] and UDL/I [2], though EXPRESSION does not
infer the instructions themselves as done in UDL/I and MIMOLA)

36



From this discussion, we can see that EXPRESSION suffers from portions of the map-

ping problem. In particular, component’s must be partitioned due to intra-component com-

munication patterns specified in the design. Note that relying on EXPRESSION’s control

inference does not address this issue since doing so restricts EXPRESSION to modeling

in-order processors with standardized pipelines.

3.3.3 The Asim Framework

Asim [17] was originally developed at Digital Equipment Corporation and is now in use at

Intel corporation for modeling a variety of processors. The tool was designed specifically to

prevent users from “cheating” by using computation results before they would be available

in real hardware.

Asim models are C++ programs that utilize a variety of classes to interface with instruc-

tion traces and instruction set emulators. Components in Asim are objects, derived from

the appropriate base class. Each component in Asim can declare a set of ports and a user

specifies a machine model by interconnecting these ports.

To prevent the “cheating” described above, each port in Asim is annotated with a delay

indicating the number of cycles that a component must wait before using the value on a

port. For example, the output port of a cache component may be labeled with a delay

of 5 cycles. This means that users must wait 5 cycles after the cache produces a value

before reading it. The framework enforces this rule by not making data available until the

annotated number of cycles have elapsed.

Asim is a powerful framework and supports some degrees of reuse. In particular, virtual

functions and inheritance can be used to extend base components to employ new function-

ality. Furthermore, different implementations that conform to a particular interface can be

interchanged. This allows designers to try a number of implementations to identify the best

design for a component [17].

Unfortunately, Asim requires that all ports have at least a unit delay for automatic
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scheduling of concurrency to work. Any computation that must occur within a clock cy-

cle must occur through sequential function invocation, once again leading to the mapping

problem and limited reusability of components. It is possible to connect a port with zero

delay, however, in this case the user is forced to schedule and partition the code manu-

ally for each specification, which once again leads to the mapping problem. This lack of

scheduling with zero delay ports and the lack of a control abstraction limits reuse and ease

of model construction.

3.4 Summary and Prognosis

This section evaluated three ADL classes (behavioral ADLs, instruction-centricµADLs,

and pseudo-structuralµADLs) in terms of generality, flexibility, and how well they avoid

the mapping problem. In summary, each ADL provides significant advantages over the

sequential simulator approach though none completely address all the issues. Behavioral

ADLs allow rapid specification of instruction set semantics. Unfortunately, these ADLs do

not allow microarchitecture specification and thus are not useful for microarchitecture level

modeling or design-space exploration.

Instruction-centricµADLs allow rapid modeling of some architectures. Some of these

ADLs even support extraction of information for automated compiler construction. Un-

fortunately, these ADLs also have limitations. Many trade-off flexibility for their rapid

modeling times. Of course, for a general design-space exploration this is undesirable since

a reasonable exploration could easily lead outside the domain supported by these tools. Fur-

thermore, many of these tools suffer from the mapping problem when modeling hardware

not tightly coupled to the main pipeline.

Pseudo-structuralµADLs are the most promising of all the tools for general purpose

modeling in design-space exploration. The best of them support encapsulation of compu-

tation that ismostlyorthogonal to the communication interface. Unfortunately commu-
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nication is not completely orthogonal to communication since these systems restrict the

concurrency and connection patterns in such a way that certain interconnection patterns re-

quire partitioning of the computation within a component. This precludes wide scale reuse

due to the mapping problem.

Note that while none of the presented ADLs provides a general platform that completely

avoids the mapping problem, the closer the ADL constructs match concurrently executing

hardware components with port-like communication, the fewer problems we encounter.

This clearly points the way to a solution to the mapping problem, true concurrent-structural

modeling systems. These systems are the focus of the Chapter 4.
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Chapter 4

True Concurrent-structural Approaches

From previous chapters, it is clear that a simulation system that avoids the mapping problem

must be fully concurrent and support structural composition. These systems are known as

concurrent-structural modeling systems. This chapter begins with an overview of concurrent-

structural systems, discusses reuse in existing concurrent-structural systems, and finishes

with a discussion on reusing and modeling timing-control in these systems.

4.1 Overview of Concurrent-structural Modeling Systems

Concurrent-structural modeling systems are those systems in which computation is en-

capsulated in concurrently executing system components that communicate values to one

another by sending and receiving data on a predefined communication network. Typically,

each component defines a set of input and output ports and continuously computes its out-

puts given the current values of its inputs and internal state. Components whose input ports

are connected to a particular output port receive the value sent on it and accordingly update

their internal state and outputs. Synchronous digital hardware, where state update is syn-

chronized to a global clock, is an example of a concurrent-structural system. Concurrent-

structural modeling systems are the most natural way to model such hardware and are often

used for this purpose. Figure 4.1(a) shows a structural model that adds two numbers to-
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gether. Figure 4.1(b) shows a possible textual description of the structural model.

In high-levelconcurrent-structural models, the focus of this work, the primitive com-

ponents’ port I/O relation (e.g., the function an arithmetic logic unit (ALU) will com-

pute) is specified using normal function-invocation based code. Contrast this to low-level

concurrent-structural systems (such as Verilog [53]) in which components’ port I/O relation

is specify via interconnections of low-level primitives such as transistors, gates, or a static

sequence of basic logical operations.

In high-level models, despite the use of function-invocation codewithin a particu-

lar component, communicationbetweencomponents occurs structurally. This distinction

clearly separates functionality and communication, a hallmark of concurrent-structural sys-

tems. Continuing the earlier example, Figure 4.1(c) shows a possible description of the

adder component’s behavior.

4.2 Reuse in Concurrent Structural Models

Concurrent-structural modeling fully addresses the mapping problem since it provides the

same encapsulation as provided in hardware. As a result, the complexity of the simulator

can be managed using the same divide and conquer strategy used in other parts of the

design process (thus avoiding the time-consuming and error prone re-divide and re-conquer

required in sequential simulators).

Concurrent structural modeling itself does notprevent the construction and use of

reusable components. In practice, however, simply not preventing component-based reuse

is insufficient. Hardware designs feature much common functionality. However, each de-

sign contains customizations of these common behaviors. In many hardware designs, this

customization is practical since much of the hardware must be custom built anyway due to

changing process technology. In order to allow component reuse across models of these

designs, high-level concurrent-structural modeling systems need to possess certain capa-
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(a) Structural Addition

...
/* Instantiate adder */
instance addblock:adder;

/* Connect ports */
block1.x -> addblock.input1;
block2.y -> addblock.input2;
addblock.output -> block3.z;

(b) Structural Code

component adder {
...
void compute() {

int x, y, z;
x = receive(input1);
y = receive(input2);
z = add(x,y);
send(output, z);

}
}

(c) Behavioral Code

Figure 4.1: A Generic Structural Specification.
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bilities whichenablecomponent-based reuse [52]. These capabilities include:

Parameterizable Components -the ability to customize component properties with pa-

rameters. Example: a cache component whose replacement policy can be selected from

an enumerated set of predefined policies.

Structural Customization - the ability to customize hierarchical structure with param-

eters. This allows existing components to be reused hierarchically to create aflexible

component. Example: customizing the mix of functional units and bypass connec-

tion specification in a structurally specified reusable CPU core.

Algorithmic Customization - the ability to inherit and augment the behavior of an ex-

isting component with an algorithm. Example: customizing arbitration logic inside

a bus arbiter component.

Polymorphism - the ability to support reuse across types.

Parametric Polymorphism - the ability to create and use component models in a data-

type independent fashion. Examples: queues, memories, and crossbar switches that

support all types.

Component Overloading -the ability for a component’s implementation to be auto-

matically selected from a family of implementations that support different datatypes.

Note that function overloading, in whichargumenttypes select a function’s imple-

mentation, differs from component overloading, whereport and connectiontypes

select a component’s implementation. Example: An ALU with an implementation

family that operates on integer and floating point numbers.

Instrumentation - the ability to insert probes into a model without modifying the internals

of any component. This allows models to be reused to satisfy different data collec-

tion needs. Examples: instrumentation for performance measurement, debugging, or

visualization.

Static Model Analysis -the ability to analyze the model for optimization and user conve-

nience. Example: type inference to resolve polymorphic port types.
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Concurrent-structural
Static Structural OOP

Capability Theory Practice Theory Practice
Parameters yes yes yes yes
–Structural yes yes
–Algorithmic yes yes yes yes
Polymorphism yes yes yes yes
–Parametric yes yes yes
–Overloading yes yes
Instrumentation yes yes
Static Analysis yes yes

Table 4.1: Capabilities of existing methods and systems.

These capabilities fall into two categories, the first category contains capabilities that

allow components to attain enough flexibility so that they can adapt to variations across

designs and thus be reused. The second category of features include those that are needed to

reduce the overhead of building and using flexible components. These features are needed

because the degree of reuse achieved by a component in practice in dramatically affected

by how easily it is configured to match the needs of a design model [44]. In the list shown

in Table 4.1, all items but static analysis are there to enable sufficient component flexibility.

Static analysis is needed to reduce the overhead associated with using the other features.

The following two sections relate the above abilities the two most common struc-

tural modeling methodologies: static structural modeling and modeling with a concurrent-

structural library in an object-oriented programming (OOP) language. These systems are

true concurrent-structural systems and thusdo notsuffer from the mapping problem. The

analysis in this chapter will identify which of the above capabilities are supported in each of

these methods and also highlight potential pitfalls present in these methods. Chapter 5 will

use the insight gained to describe how to build a concurrent-structural modeling system (in

particular, the Liberty Simulation Environment) that overcomes the pitfalls in both these

systems while retaining almost all the advantages. Table 4.1 can be used as a reference

during the discussion.
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(b) Block diagram of a flexiblen-stage delay component.

Figure 4.2: Block diagrams of chained delay components.

4.2.1 Static Structural Modeling

Static structural modeling systems are concurrent-structural modeling systems that stati-

cally describe a model’s overall structure. Models in these systems often resemble netlists

of interconnected components, and typically these tools have drag-and-drop graphical user

interfaces to construct models. Examples of such tools are Ptolemy II with the Vergil inter-

face [28], HASE [12], MIMOLA [64], and UDL/I [2].

These systems support many of the features described above. Components typically

export parameters so that they can be customized. Depending on the underlying language

used to implement the components, a mechanism may exist to support algorithmic pa-

rameters via inheritance. Some systems support polymorphism [28] and type inference

to resolve the polymorphic types [61]. Models could even be instrumented using aspect-

oriented programming (AOP) [30] to weave instrumentation code into the structure of the

described model.

Unfortunately, the fact that these specifications are static implies a fundamental limita-

tion of static structural modeling systems. Consider the structure shown in Figure 4.2(a).
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(b) Block diagram for the grid topology.

Figure 4.3: Block diagrams of a multi-processor component supporting grid and ring
topologies and a variable number of processors.

In static structural systems, one would explicitly instantiate the three blocks within the

dotted box in the figure. However, this chain of blocks could not be wrapped into a flexi-

ble hierarchical component, as shown in Figure 4.2(b), where the length of the chain is a

parameter since static structural systems provide no mechanism to iteratively connect the

output of one block to the input of the next a parametric number of times. As a result, to

permit flexibility, this simple hierarchical design would have to be discarded in favor of a

more complex implementation of a primitive component implemented using a sequential

programming language.
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Implementing the primitive component for this simple example may not be difficult,

but consider the implementation of a parameterized component capable of modeling the

class of multiprocessor configurations shown in Figure 4.3. This component would need

a parameter to control the topology of the processor interconnection (to select between a

grid or a ring) as well as parameters to control the number of processors in the ring and

parameters to control the height and width of the grid in the grid topology. This flexible

component would also have to be modeled as a primitive component since parameters

cannot control a hierarchical component’s sub-structure, just as in the previous example.

However, building a primitive component is tantamount to writing an entire multiprocessor

simulator in a sequential programming language. As shown in Chapter 2, building a single

processor model in this fashion is difficult. A multiprocessor model simply compounds the

problems further.

Note that some static structural modeling systems may provide idioms for common

patterns, such as chained connections, grids, or rings. However, the fundamental lack of

general mechanisms to parametrically control model structure through any algorithms a

user may choose still remains. This deficiency ultimately restricts the flexibility of compo-

nents built hierarchically and forces users to build large primitive components.

4.2.2 Modeling with Concurrent-structural Libraries in OOP

A promising concurrent-structural modeling approach which allows flexible primitiveand

hierarchical components, is to augment an existing OOP language with concurrency and

a class library to support structural entities such as ports and connections (e.g., the Sys-

temC [38] approach). Objects take the place of components, and simulator structure is

created at run-time by code that instantiates and connects these objects.

The basic features of object-oriented languages provide many of the capabilities de-

scribed above. Object behavior can be customized via instantiation parameters passed to

class constructors. Algorithmic parameters are supported via class inheritance. If the par-
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1 class delayn {
2 public InPort in;
3 public OutPort out;
4
5 Delay[] delays;
6 delayn(int n) {
7 int i;
8
9 in=new InPort();

10 out=new OutPort();
11
12 delays=new Delay[n];
13 for(i=0;i<n;i++) {
14 delays[i]=new Delay();
15 }
16
17 in.connect(delays[0].in);
18 for(i=0;i<n-1;i++) {
19 delays[i+1]=new Delay();
20 delays[i].out.connect(delays[i+1].in);
21 }
22 delays[n-1].out.connect(out);
23 }
24 };

Figure 4.4: Concurrent-structural OOP pseudo-code for an n-stage delay chain.

ticular OOP language and the added structural entities support parametric polymorphism,

then type-neutral components can be modeled as well.

Since component instantiation and connection occur at run-time, the OOP language’s

basic control flow primitives (i.e., loops, if statements, etc.) can be used toalgorithmi-

cally build the structure of the system. This code can be encapsulated into an object and

the internal structure can be easily controlled by structural parameters thus producingflex-

ible hierarchical components. For example, then-cycle delay component (Figure 4.2(b))

seen in the last section could be built by composingn single-cycle delay components as

shown in the pseudo-code in Figure 4.4. The complex multiprocessor component shown in

Figure 4.3 could be built by composing processor and memory controller components as

shown in Figure 4.5.

Unfortunately, run-time composition of structure provides component flexibility by pre-

cluding static analysis of model structure. This makes using these flexible components
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1 class MultiProcessor {
2 public InPort responseIn;
3 public OutPort requestOut;
4
5 Processor[] procs;
6 MemoryControllor memctrl;
7
8 MultiProcessor(int numProcs, int height, int width,
9 enum {ring, grid} topology ) {

10 procs = new Processor[numprocs];
11
12 memctrl.requestOut.connect(requestOut);
13 responseIn.connect(memctrl.responseIn);
14
15 if(topology == ring) {
16 for(int i = 0; i < numprocs - 1; i++) {
17 procs[i].dataOut[0].connect(procs[i+1].dataIn[0]);
18 }
19 memctrl.dataOut.connect(procs[0].dataIn);
20 procs[numProcs-1].dataOut[0].connect(memctrl.dataIn[0]);
21 } else if(topology == grid) {
22 memctrl.dataOut[0].connect(procs[0].dataIn[0]);
23 procs[0].dataOut[0].connect(memctrl.dataIn[0]);
24 memctrl.dataOut[1].connect(procs[x.width-1].dataIn[2]);
25 procs[x.width-1].dataOut[2].connect(memctrl.dataIn[1]);
26
27 for(int x = 0; x < width; x++) {
28 for(int y = 0; y < height; y++) {
29 if(x != 0 || y != 0) {
30 if((x - 1 >= 0) && (x - 1 != 0 || y != 0)) {
31 procs[y*width+x-1].dataOut[0].connect(
32 procs[y*width+x-2].dataIn[1]);
33 procs[y*width+x-2].dataOut[1].connect(
34 procs[y*width+x-1].dataIn[0]);
35 }
36 /* Repeat above for x+1, y-1, and y+1 */
37 }
38 }
39 }
40 }
41 }
42 };

Figure 4.5: Concurrent-structural OOP pseudo-code for a multi-processor component.

49



cumbersome. For example, any parametric polymorphism must be resolved via explicit

type instantiation by the user, since the constraints used in type inference are obtained from

the model’s structure, which is unavailable at compile time. Ideally, connecting the output

of a floating point register file to an overloaded ALU should automatically select the ALU

implementation that handles floating point data. However, this component overloading is

not possible since the user must codify the particular ALU implementation in the instanti-

ation statement rather than the compiler automatically determining this based on connec-

tivity. Additionally, all component parameters, particularly those that control structure,

must be explicitly specified by the user since the compiler is unable to infer these values

by analyzing the structure of the machine. Finally, implementing instrumentation that is

orthogonal to machine specification is at best cumbersome. Powerful techniques such as

aspect-oriented programming cannot be used since the desired join points (locations where

instrumentation code should be inserted) are often parts of the model structure that is not

known until run time. In addition to burdening the user, this lack of static analysis prevents

certain key optimizations that can increase simulator performance. These optimizations

can provide as much as a 40% increase in simulator performance [41], eliminating perfor-

mance loss due to reuse. In practice, simulator performance penalties combined with these

reuse burdens encourage users to build design-specific components that are fast and easy

to use but enjoy little to no reuse due to their inflexibility.

4.2.3 Mixed approaches

A few approaches share some features of static structural models and some features of

concurrent-structural OOP-based modeling. For example, VHDL allows limited algorith-

mic specification of structure via itsgenerate statements and supports static analysis but

does not support any of the other needed capabilities such as polymorphism and algorith-

mic parameters. The Balboa [14] modeling environment supports algorithmic specification

and component overloading by running type inference at run-time. However, Balboa and
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its type inference algorithm do not support parametric polymorphism [15]. The remain-

ing chapters in this dissertation use the Liberty Simulation Environment (a new concurrent

structural modeling tool) as a vehicle to describe how to gain the full benefits of both static

structural modeling and concurrent-structural OOP modeling in practice.

4.3 Control Abstraction

Up to this point, this chapter has focused on identifying the reuse-enabling features present

in existing systems. However, facilitating rapid accurate modeling requires that a system

also provide mechanisms for simplifying parts of a design that do not benefit from reuse.

Timing control (i.e., the portion of the control logic that detects stall conditions and

distributes stall signals in a hardware designs) is a complex, and thus difficult to specify,

portion of designs because the timing control logic of a design depends on global system

knowledge. This global knowledge makes it unlikely that a timing controller for one de-

sign will work for a even a slightly different design; even small local design changes can

drastically affect what computation and signals a controller must generate.

To see this, consider the two similar datapaths shown in Figure 4.6. The first datapath

is shown Figure 4.6(a). Suppose that thesource component generates a message on

each cycle (neglecting stalls). Also, suppose that, within the same clock cycle,block

1 performs computation on this data and passes on the results toblock 2 , which in

turn passes its results to the block labeledcomp. Also, suppose that thecomp block

then examines this data and determines whether it can process the data this cycle. Finally

suppose that thesource , block 1 , block 2 , andcomp components update their state

using their inputs at the clock edge1 (again neglecting any stalls).

Now, suppose that the semantics of the computation performed by the depicted datapath

preventscomp from proceeding with its computation when it receives certain inputs when

1The common clock signal feeding all components in the diagram is not shown.
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Figure 4.6: A pair of slightly different datapaths.
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in certain states. When this condition occurs,comp will assert the “cannot proceed” signal,

shown in the figure. When this signal is asserted, we would like all previous blocks in the

data path to stall so that the operation can be retried next cycle. (This back-pressure type

of stall is very common in processor designs.) The logic to accomplish this is shown in

the flowchart in the figure. The controller shown will generate a stall signal whenever the

“cannot proceed” signal is high (i.e., the controller will detect that a stall is needed) and

then distribute this stall signal to the appropriate components, in this casesource , block

1, andblock 2 . This distribution is achieved via the stall network shown in Figure 4.6(a).

Now consider the similar datapath shown in Figure 4.6(b). This datapath is identical

to the previous one, except thatblock 1 has been replaced by a 3-slot buffer. In this

datapath, whencomp cannot proceed,block 2 should be stalled, butsource and the

buffer should only be stalled when the buffer is full. The logic to handle this variant of

back-pressure stalling is shown in the flow chart in the oval Figure 4.6(b).

Notice that both the stall distribution network and the timing controller are significantly

different, despite only a small change in the datapath. In more complex specifications,

with hundreds of components, similar small changes can require even larger changes to the

control logic. From this, it is clear that a monolithic timing controller will be difficult to

reuse. Furthermore, modularizing the controller into smaller reusable components is also

difficult since it uses global knowledge of the datapath and system semantics.

Existing concurrent-structural systems provide no mechanism to simplify specification

of timing control nor a mechanism to modularize it. However, due to the shortcomings

described earlier in this chapter, the majority of components in these systems are not reused

in practice anyway, thus having abstractions to reduce timing control specification overhead

is less critical; reimplementing components from scratch, including the timing controller,

is the norm.

Since this dissertation is focused on systems that will see wide reuse of components in

practice, the need for control abstraction becomes more pressing. Section 5.4 will discuss
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a timing-control abstraction that allows modularization and reuse of a large portion of the

timing-control logic across designs.

4.4 Summary

Concurrent-structural modeling systems are those in which users build models by specify-

ing and interconnecting concurrently executing components, in a similar fashion to when

specifying the actual hardware.High-level concurrent-structural modeling systems are

those in which the behavior of these components are specified via standard function invo-

cation based code; contrast this with low-level systems in which this behavior is specified

via constructs such as bit-wise logical operators.

Concurrent-structural modeling systems eliminate the mapping problem (described in

Chapter 2) because they simply eliminate the manual mapping. As a result, the encapsula-

tion provided by components is identical to that of hardware blocks.

With the mapping problem eliminated, reusing components across a range of designs

(i.e., component-based reuse) to amortize component construction costs is attractive. How-

ever, even similar hardware designs often have minor variations in the behavior of similar

components. Thus, to be reusable, components must be parameterized so that their behav-

ior can be adapted to fit the peculiarities in each design. Unfortunately, the number and

complexity of parameters that are needed for each reusable component can make it too dif-

ficult to understand and use in practice. While static analyses can infer parameter values,

concurrent-structural systems that allow practical construction of flexible components are

designed in a way that precludes these static analyses.

In addition to this unfortunate trade-off, existing concurrent-structural systems do not

provide a means to modularize or simplify the specification of computations that require

global knowledge. Timing control (i.e., the portion of the control logic that detects and

distributes stalls) is a particularly complex portion of a design that falls in this category.
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Chapter 5 describes how to design a language that overcomes both these shortcomings.

The section describes this in the context of the Liberty Simulation Environment, the system

in which these ideas have been first implemented.
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Chapter 5

The Liberty Simulation Environment

Up to this point, this dissertation has focused on analyzing and cataloging the strengths

and weaknesses of existing systems. This analysis culminated in Chapter 4 with a list

of features needed for low-overhead reuse in concurrent-structural systems and a detailed

explanation of why building a system that incorporates these features is challenging.

This chapter presents design elements that allow a concurrent-structural system to si-

multaneously provideall the capabilities described in Chapter 4. While some of these

design elements are interesting in isolation, many of the major ones are interesting only

when the system is considered as a whole because many challenges arise due to design

elementinteractions. Additionally, each design element is easier to understand in a con-

crete setting. Thus this chapter presents the aforementioned design elements as a whole,

in the context of the Liberty Simulation Environment (LSE) and its structural specification

language, the Liberty Structural Specification language (LSS). During the discussion of

this system and language, the chapter highlights the novel design elements and the prob-

lems they address. This chapter will also highlightimplementationchallenges created by

the design choices made. These challenges will be addressed in subsequent chapters. In

addition to major design elements, this chapter will also cover minor design elements that

cumulatively make life easier for both users and builders of flexible components.
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Figure 5.1: Overview of the simulator generation process in LSE.

5.1 Specification and Compilation of Components

A user models a machine in LSE by writing a machine description in the Liberty Structural

Specification (LSS) language. This description specifies the instantiation of components,

the customization of the flexible reusable components, and the interconnection of compo-

nent ports. LSE includes a simulator generator that transforms this concurrent-structural

machine description into an executable simulator and additional tool chains for other pur-

poses, such as model visualization.

LSE avoids the mapping problem by allowing components to communicate structurally

(like other pure concurrent structural systems), but this structure, along with component

customizations, can be specified algorithmically via imperative programming constructs.

Using these constructs, a model’s structure can be built using code similar to the concurrent-

structural OOP code in Figure 4.4. However, unlike modeling in concurrent-structural

OOP, the LSS code only describes the model’s structure andnot its run-time behavior.

Run-time behavior is specified in a separate description language.

This separation is a key design element that allows model structure to be used for

compile-time static analysis. Since behavior code is separate from LSS code, LSS code
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can be evaluated as shown in in Figure 5.1, thus generating the system’s static structure

at compile time. Currently, LSE analyzes this structure to reduce specification overhead

(described in Chapters 6 and 7) and to optimize the built simulator performance [41].

Each component in a model built using LSE is instantiated from a component template,

called amodule, that is analogous to a class in a concurrent-structural OOP system. The

body of an LSS module specifies a component’s parameterization interface, communication

interface, and constructor (but not its behavior). There are two types of modules in LSS.

The first,leaf modules, are simple modules defined without composing behavior from other

modules. The other style,hierarchical modules, are more complex modules obtaining their

behavior through the composition and customization of existing modules. The next two

sections will describe leaf and hierarchical modules and their parameterization. During this

discussion, take note of how leaf modules separate specification of interface from behavior.

5.1.1 Leaf Modules

Leaf modules are simple modules whose behavior is externally specified. The module

declaration is responsible for declaring the parameterization and communication interface

of the module and for specifying where the module’s behavior can be found. Figure 5.2(a)

shows the declaration of a leaf module nameddelay . Line 2 in the figure declares a

module parameter namedinitial state with type int and assigns the parameter a

default value of0. Lines 4 and 5 illustrate defining the communication interface of the

module. These two lines define an input port namedin and an output port namedout ,

respectively, both with typeint . Line 7 specifies where the code defining the run-time

behavior of instances of this module can be found.

The leaf module behavior code is separated from the structural specification for two rea-

sons. First, by separating behavioral code, a leaf module’s code can be written in a purpose

built behavior specification language (BSL)1, optimized for specifying how values arriving

1At the time of this writing, LSE uses a stylized version of C as the BSL, but the LSS language and the
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1 module delay {
2 parameter initial_state = 0:int;
3
4 inport in:int;
5 outport out:int;
6
7 tar_file="corelib/delay.tar";
8
9 // BSL specific parameters here

10 };

(a) LSS module declaration for a leaf delay element.

1 instance d1:delay;
2 instance d2:delay;
3 ...
4 d1.initial_state = 1;
5 d1.out -> d2.in;
6 ...

(b) Sample use of thedelay module.

Figure 5.2: Delay element declaration and use in LSS.

on input ports are combined with internal state to produce values on the instance’s out-

put ports (instead of LSS which is optimized for specifying structure and customization).

Second, since the BSL code is evaluated separately, the BSL code can use the module pa-

rameter values specified by the user in LSS and the parameter values that were inferred by

LSS, to customize the behavior of a particular instance.

Figure 5.2(b) shows an example of instantiating and parameterizing thedelay module.

Lines 1 and 2 each instantiate thedelay module to create module instances namedd1 and

d2 respectively. Line 4 gives theinitial state parameter on instanced1 the value

1. Line 5 connects the output ofd1 to the input ofd2 . Notice that theinitial state

parameter on instanced2 is not set. When such assignments are omitted, the parameter

takes on its default value as defined in the module body (line 2 of Figure 5.2(a)).

Notice from the example that parameters in LSS are referenced nominally and can be

specifiedafter the instantiation statement (e.g.initial state is referenced on line 4 of

techniques presented in this dissertation are not dependent on the specific BSL used.
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Figure 5.3: Hierarchical component composition in LSS.

Figure 5.2(b)) rather than in an a positional argument list as part of the instantiation state-

ment. These choices were made because flexible modules typically have many parameters.

Nominal parameter references clarify models since parameter names describe the param-

eter’s purpose better than position in an argument list. Similarly, flexible placement of

parameter assignment allows groups of related parameter assignments for different module

instances to be co-located rather than scattered based on where modules are instantiated.

Both features make using flexible components (i.e., those with many parameters) easier,

encouraging their construction and use.

5.1.2 Hierarchical Modules

In addition to leaf modules, LSS supports the creation of complex modules by composing

the behavior of existing modules into newhierarchical modules. Hierarchical modules,

just like leaf modules, define a parameterization and communication interface by declaring

ports and parameters. However, unlike leaf modules, the behavior of the module is specified

by instantiating modules and connecting these sub-instances to the new module’s input and

output ports (see Figure 5.3). These module sub-instances executeconcurrentlyand define

the hierarchical module’s behavior.
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5.2 Low-overhead Reuse in LSE

This section describes LSE’s features that allow for easy reuse of flexible components.

When discussing LSE features, the text highlights challenges in the features’ implemen-

tation. Later chapters will discuss the details of technology developed to address these

challenges. During the discussion, notice how many of these challenges arise because of

the inclusion of two or more existing well-known language features.

5.2.1 Structural Parameters

Recall from Chapter 4 that to fully enable reuse, a modeling system needs to support pa-

rameters that control the structure of hierarchical modules. LSS allows the use of imper-

ative control flow constructs to guide the sub-component instantiation, parameterization,

and connection.Anyparameter can be used to control these constructs; therefore all LSS

parameters can be used as structural parameters.

To see how a parameter can be used to control structure, consider the LSS code shown

in Figure 5.4(a). This code defines a module that models an arbitrary depth delay pipeline

(Figure 4.2(b)) built using single-cycle delay modules. The moduledelayn declares a

single parametern (line 2) which controls the number of stages in the pipeline. Anywhere

after this declaration, the body of the module can read this parameter to guide how sub-

instances will be created, connected, or parameterized.

Lines 7 and 8 create an array of instances of thedelay module that will be named

delays in the BSL. Notice that the length of the array (the value enclosed in brackets on

Line 8 of the figure) is controlled by the parametern.

Lines 12 through 16 connect thedelay instances in a chain as shown in Figure 4.2(b).

Notice how the general purpose C-like for-loop causes the length of the connection chain

to vary with the parametern.

Figure 5.4(b) shows how thedelayn module can be used to create a 3-stage delay
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1 module delayn {
2 parameter n:int;
3
4 inport in:int;
5 outport out:int;
6
7 var delays:instance ref[];
8 delays=new instance[n](delay,"delays");
9

10 var i:int;
11
12 in -> delays[0].in;
13 for(i=1;i<n;i++) {
14 delays[i-1].out -> delays[i].in;
15 }
16 delays[n-1].out -> out;
17 };

(a) The LSS module declaration.

1 instance gen:source;
2 instance hole:sink;
3 instance delay3:delayn;
4
5 delay3.n=3;
6
7 gen.out -> delay3.in;
8 delay3.out -> hole.in;

(b) Use ofdelayn , n = 3

Figure 5.4:n-stage delay chain declaration and use in LSS.
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pipeline. The module is instantiated on line 3, itsn parameter is set on line 5, and finally

the instance is connected on lines 7 and 8. The block diagram of the resulting system is the

same as in Figure 4.2(a).

5.2.2 Extending Component Behavior

Chapter 4 also stated that a system that supports reuse must support algorithmic param-

eters to allow an existing component’s behavior to be extended or augmented. In LSE,

these algorithmic parameters are calleduserpoints. Userpoints accept string values whose

content is BSL code that forms the body of a function invoked by a module’s behavioral

specification to accomplish some computation or state-update task. The function signature,

the arguments it receives and the return type it must produce, is defined by the data type

of the userpoint. Just like other parameters, userpoint parameters can have default values,

thus allowing the module to define default behavior which can be overridden by the user.

In concurrent-structural OOP systems, inheritance takes the place of algorithmic pa-

rameters. Just like algorithmic parameters, inheritance allows a component’s behavior to

be modified or extended. However, a single userpoint parameter assignment on a module

instance is the concurrent-structural OOP equivalent of inheriting a class, overriding a vir-

tual member function, and then instantiating the inherited class. Thus userpoints reduce the

overhead of one-off inheritance (i.e., inheriting a module and instantiating it once). Since

one-off inheritance is common in structural modeling, using userpoints rather than inher-

itance reduces specification overhead. More formal styles of inheritance can be achieved

via userpoint assignment and hierarchical module construction.

To allow userpoints to maintain state across multiple invocations of the same instance,

LSS also allows the state of a module instance to be extended. State is added by declaring

run-time variables(i.e., variables available during simulation rather than during model

compilation). To allow this state to be initialized andsynchronouslyupdated, LSE provides

on every instance the predefined userpointsinit and end of timestep , which are
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invoked at the beginning of simulation and the end of each clock cycle respectively. Note

that run-time variables and this userpoint are unique features of LSS, needed because of

the separate behavior and structure compilation phases.

5.2.3 Flexible Interface Definition

To maximize the flexibility of components, LSS extends parametric control of structure to

include parametric control of interfaces as well. A common use of this facility is parametric

control of interface size, such as the number of read ports on a register file. However, as

will be seen, this customization can control any portion of the module’s interface.

Flexible Interface Size

To facilitate scalable interfaces such as a register file with a customizable number of read

ports, each port in LSS is actually a variable length array ofport instances. Since scalable

interfaces are the common case for flexible components, having every port behave in this

fashion reduces the overhead of specifying components.

Rather than connecting two ports together to have two instances communicate, one con-

nects two port instances together. For each port in a module, the port’s width (the number

of connections made to the port) is available as a parameter for use in a module’s body.

These width parameters are automatically set by counting the number of connections ac-

tually made to a particular port. This automatic inference of port width greatly simplifies

specifications. Without this inference, users would have to manually keep the width pa-

rameters consistent with the connections. This process would be prone to error, and fixing

the errors would be tedious, time-consuming, and unnecessary.

Figure 5.5 illustrates how one would use these scalable interfaces to build a hierarchical

module, and it also demonstrates how a port’s width parameter is automatically set. Re-

call thedelayn module presented in Figure 5.4. While thedelay module (which was

used to build thedelayn module) supports multiple connections to itsin andout ports,
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1 module delayn {
2 parameter n:int;
3
4 inport in:’a;
5 outport out:’a;
6
7 if(in.width != out.width)
8 punt("in.width must match out.width");
9

10 var delays:instance ref[];
11 delays=new instance[n](delay,"delays");
12 var i:int;
13
14 /* The LSS_connect_bus(x,y,z)
15 * built-in does:
16 *
17 * for(i=0; i<z; i++) { x[i]->y[i]; }
18 */
19 LSS_connect_bus(in,delays[0].in,in.width);
20 in -> delays[0].in;
21 for(i=1;i<n;i++) {
22 LSS_connect_bus(delays[i-1],
23 delays[i].in,in.width);
24 }
25 LSS_connect_bus(delays[n-1],out,in.width);
26 };

(a) Modifieddelayn module that supports multiple port connections.

1 instance gen:source;
2 instance hole:sink;
3 instance delay3:delayn;
4
5 delay3.n=3;
6
7 LSS_connect_bus(gen.out,
8 delay3.in, 5);
9 LSS_connect_bus(delay3.out,

10 hole.in, 5);

(b) Use of the modifieddelayn module.

Figure 5.5: Modifieddelayn module and a sample use.
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the delayn module internally connects only one port instance to the chain ofdelay

modules. If a connection were made to more than one port instance of either port on the

delayn module, it would be ignored since it is internally unconnected.

Figure 5.5(a) shows thedelayn module extended to support connections to multiple

port instances, and Figure 5.5(b) shows a sample use of the module. Notice that many

connections are now made from thein port to the head of the delay chain (line 19 of

Figure 5.5(a)), between delay elements in the chain (lines 22-23), and finally from the tail

of the chain to theout port (line 25). Further, notice that the number of connections made

is controlled by the parameterin.width , yet this parameter has no explicit default value

or user assignment. Instead, its value is inferred by the system based on the number of

connections made. In this example, since five connections are made to thein port (lines

7-8 of Figure 5.5(b)), the parameter would have the value5.

LSS also supports leaving ports unconnected (a port interface with zero size). A module

can detect whether or not a port is connected and customize its behavior accordingly. These

unconnected port semanticsallow modules to have rich communication interfaces without

burdening a user with the responsibility of connecting all the ports. Without such a feature,

it may be tempting to replicate simple functionality rather than reusing a complex module

with many ports that are unnecessary for a given situation.

Parameterized Interface Definition

The inference of the width parameter described above is an example of a novel feature

calleduse-based specialization. This feature allows a module’s context (its parametricity

and connectivity) to alter its behavior and its interface. In the above LSS example, only

the widths of ports were varied, but use-based specialization can be used to alteranypiece

of a module’s interface. For example, by detecting whether abranch target port is

connected, a branch prediction module can infer whether or not it should also implement

BTB (branch target buffer) functionality. If BTB functionality is necessary, the component
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1 module ... {
2 inport in:’a;
3 outport out:’a’
4
5 if(out.width < in.width) {
6 parameter arbitration_policy:
7 userpoint( /* args */ =>
8 /* ret */);
9 instance arb:arbiter;

10 arb.policy = arbitration_policy;
11 ...
12 } else { ... }
13 ...
14 };

Figure 5.6: Use-based specialization exporting additional parameters

can export additional parameters and ports to further customize this behavior.

To see how use-based specialization can affect a hierarchical component’s interface

and structure, consider the code in Figure 5.6. Here the module infers whether an internal

arbiter is necessary by comparing the width of its input port to that of its output port. If the

input port is wider than the output port, an arbiter is instantiated, and a userpoint parameter

is exported so that the arbitration policy can be parametrically specified.

Notice that the module’s interface can changeafter it has been instantiated and used.

In the example, the module’s connectivity, which is determined after instantiation, controls

whether the module will have a certain parameter. Without use-based specialization, the

module’s interface would be fixed at instantiation, and thearbitration policy pa-

rameter would always exist. If the parameter has no default value, then the user would be

forced to set it, even when no arbitration is necessary. Alternatively, the parameter could

be assigned a default value. However, since there are many possible default arbitration

policies, having the module quietly make this important design decision when widths are

changed is undesirable. While this is less severe than the problem illustrated in Figure 2.3

since the arbiter is explicitly created and its behavior determined only by microarchitectural

state, a design decision is nonetheless being made without user knowledge. Use-based spe-

cialization makes deciding whether the parameter ought to have a default value unnecessary
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by providing the best of both worlds; the user must provide the policy when it is necessary

and is not forced to provide it when it is not.

While use-based specialization reduces the overhead of using flexible components by

automatically tailoring components to their environment, it introduces complications into

the execution of LSS. Since a module’s parameterization and connectivity can affect its

interface, the module’s interface is not known until after its parameters have been set and

its ports connected. However, this parameterization and connection relies on the interface

being known. To resolve this apparent circularity, LSS uses novel evaluation semantics that

will be presented in Chapter 6.

5.2.4 Polymorphic Interfaces

In addition to flexible interface definitions, LSE also supports modules with polymorphic

interfaces. To support a robust set of flexible components, a system should support two

types of polymorphism (as described in Chapter 4): parametric polymorphism and compo-

nent overloading. Accordingly, LSS supports both forms of polymorphism.

Parametric Polymorphism

Parametric polymorphism allows for the creation of data type independent components.

This feature is particularly useful for reusable communication primitives like routers, ar-

biters, and filters, and for reusable state elements like buffers, queues, and memories.

As an example, recall thedelayn module shown in Figure 5.4(a). As shown, the

delayn module can only handle theint data type since the ports are created with type

int (lines 4 and 5 in Figure 5.4(a)). However, the behavior of the module, creating a delay

pipeline that isn stages deep, is independent of data type. Consequently, thedelayn

module is an ideal candidate for using parametric polymorphism. To make the module

parametrically polymorphic, rather than making thein andout ports have the data type

int , one would declare the ports’ types using type variables as shown below:
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1 module ALU {
2 inport in1:(int | float)
3 inport in2:(int | float)
4
5 outport result: (int | float)
6
7 constrain ’’in1 == ’’in2;
8 constrain ’’in1 == ’’result;
9 ...

10 };

Figure 5.7: An overloaded ALU module interface.

4 inport in:’a;

5 outport out:’a;

The type’a is a type variable (all type variables in LSS begin with a’ ) which can

be instantiated with any LSS type. This flexibility makes the modifieddelayn module

datatype independent.2 Since thein andout ports use the same type variable, both ports

must have the same concrete type. This guarantees that the type of data entering the delay

pipeline is consistent with the type of data that comes out. While this example demon-

strates parametric polymorphism on a hierarchical component, it can also be used on leaf

components. In such cases, the BSL code for the leaf component is specialized based on

the concrete type given to all type variables.

Component Overloading

Component overloading is useful when defining a component that supports more than one

data type on a particular port, but needs to be customized based on which type is actually

used. Component overloading is supported withdisjunctive types. A disjunctive type,

denoted astype1 | type2 in LSS, specifies that the entity with this type may statically

have typetype1 or type2 , but not both simultaneously.3 Depending on which type is

actually selected, a different module implementation will be selected.

2This modification todelayn assumes that thedelay module also uses parametric polymorphism. The
delay module defined in the LSE core module library does, in fact, support this.

3Note that the disjunctive type isdifferentfrom union types in other programming languages. Union types
dynamically store data ofanyof the enumerated types rather than data of a single, statically-selected type.
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As an example of component overloading, consider trying to build an ALU component

that could be used as either an integer ALU or a floating-point ALU depending on how it is

instantiated. The interface for such an overloaded ALU component is shown in Figure 5.7.

Each port of the ALU is defined using the disjunctive typeint | float (lines 2,3, and

5 of Figure 5.7). Lines 7 and 8 in this example force all the ports of the component to have

the same type.4 Depending on the type selected, the appropriate ALU behavior (integer or

floating point) will be used when this ALU is instantiated.

Since modules may define multiple ports with disjunctive types, and not all ports with

disjunctive types will be constrained to be equal, a naı̈ve implementation of component

overloading would require implementing the full cross-product of allowable overloaded

configurations for a particular overloaded module. Creating all these implementations for

a module with many overloaded ports may be extremely cumbersome. However, since in

LSE the types are resolved statically, rather than implementing multipleentire behaviors

for a given component, the BSL can specify type-dependent code fragments. The code

generator can customize this code using the statically resolved type information, and then

combine it with a module’s type-independent code.

Type Inference

In order to reduce the designer’s overhead in using polymorphic components, polymor-

phism can be resolved via type inference based on the structure of the model, as is done in

LSS. For example, if thein port of the polymorphicdelayn module constructed above

were connected to a module which outputs values of typeint , the type variable′a would

be resolved to have typeint . Due to the presence of disjunctive types, however, imple-

menting this inference is not straightforward. Algorithms found in the literature are not

appropriate to solve the type inference problem in the presence of disjunctive constraints.

The problem is also NP-complete which suggests that it may be prohibitively expensive

4note that′′portnameis a type variable that is constrained to be the type of the corresponding port. The
double-tick is used to avoid name-space conflicts with user-defined type variables.
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to implement. Fortunately, a heuristic inference algorithm can keep compile times reason-

able. Details regarding the LSS type inference problem, a proof of its NP-completeness,

and details of the heuristic type-inference algorithm will be provided in Chapter 7.

5.2.5 Instrumentation

To separate model specification from model instrumentation, as was possible in static struc-

tural modeling, LSE supports an aspect-oriented data collection scheme. Each module can

declare that its instances emit certaineventsat run-time. These events behave like join

points in aspect-oriented programming (AOP) [30]. Each time a certain state is reached or

a certain value computed, the instance will emit the corresponding event. User-definedcol-

lectorsfill these join points and collect information for statistics calculation and reporting.

BSL code may be specified for the collector that processes the data sent with the event to

accumulate statistics, to allow model debugging, and to drive visualization.

In addition to defined events, LSS automatically adds an event for each port. This event

is emitted each time a value is sent to the port. Since many important hardware events are

synchronized with communication, many useful statistics can be gathered using just these

port firing events.

5.3 A Comprehensive LSE Example Specification

Figure 5.8 shows a sample LSS description of the writeback stage of the machine shown

in Figure 2.3(c) with an additional connection directly from the ALU to the load-store

unit (LSU). The primary module in the writeback stage is the common data bus arbiter,

instantiated on line 5 in the figure. For reasons discussed in Chapter 5.4, connections in

LSE are always point-to-point. Thus, twotee modules need to be instantiated (lines 6 and

7) to handle the common data bus net and the ALU output net because these nets must fan

out. Lines 17-30 connect the various ports on the modules to the appropriate ports on other
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1 module Pipeline {
2 /* Other pipeline stages */
3 ...
4 /* Writeback stage */
5 instance bus_arbiter:arbiter;
6 instance cdb_fanout:tee;
7 instance ALU_fanout:tee;
8
9 bus_arbiter.comparison_func =

10 <<< if(instr_priority(data1) >=
11 instr_priority(data2))
12 return 0;
13 return 1;
14 >>>;
15
16 /* ALU to LSU bypass */
17 ALU.out -> ALU_fanout.in;
18 ALU_fanout.out[0] -> LSU.store_operand;
19
20 ALU_fanout.out[1] -> bus_arbiter.in[0];
21 FPU.out -> bus_arbiter.in[1];
22 LSU.out -> bus_arbiter.in[2];
23
24 bus_arbiter.out -> cdb_fanout.in;
25 /* Fan out to the reorder buffer */
26 cdb_fanout.out[0] -> rob.instr_wb;
27 /* Fan out to reservation stations */
28 for(i=0;i<n;i++) {
29 cdb_fanout.out[i+1] -> res_station[i].instr_wb;
30 }
31 ...
32 }

Figure 5.8: An LSE specification of the writeback stage of the machine shown in Figure 2.3,
with an additional connection from the ALU to the LSU.
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Figure 5.9: Screenshot of the LSE Visualizer showing the model from Figure 5.8.

modules. Notice how the variable sizing of the port interface is used to allow thearbiter

module instance to accept an arbitrary number of inputs and thetee instances to fan out

an arbitrary number of signals. Internal widths for the arbiter’s ports are inferred based on

these connections by LSE.

LSE’s userpoint parameters are used in the above example to set the arbitration strategy

that thebus arbiter instance will use to arbitrate the common data bus. The standard

arbiter module in the library does pairwise arbitration, and thus we need only provide a

function to arbitrate between a pair of inputs (lines 9-14). Note that the standardarbiter

and tee module will work with any type, since they are polymorphic. The types are

resolved automatically based on the types of the ALUs and other connected components.

Clearly, this LSE description directly corresponds to the structure of the hardware in

terms of hardware blocks and interconnections. Since the LSS language is evaluated at

73



1 instance bus_arbiter:arbiter;
2 var index:runtime_var ref;
3
4 index = new runtime_var("index",int);
5
6 bus_arbiter.init = <<< ${index} = 0; >>>;
7
8 bus_arbiter.end_of_timestep = <<<
9 ${index} = (${index}+1)%LSE_port_width(in);

10 >>>;
11
12 bus_arbiter.comparison_func = <<<
13 int dist1,dist2;
14 int WIDTH = LSE_port_width(in);
15 dist1 =(port1 + WIDTH - ${index}) % WIDTH;
16 dist2 =(port2 + WIDTH - ${index}) % WIDTH;
17 return (dist2 < dist1);
18 >>>;

Figure 5.10: Customization of anarbiter module for round-robin arbitration

compile time, the structure of the described machine can be visualized in a graphical tool,

as shown in Figure 5.9, and can be analyzed so that the generated simulators may be opti-

mized [41]. Note that this description is constructed using only components from the LSE

standard module library, highlighting the utility and reusability of the standard components.

Figure 5.10 illustrates module extension mechanisms with modifications to this model.

Suppose that a round-robin arbitration policy was needed in the example instead of the

shown priority arbitration scheme. A round-robin arbitration policy requires that the arbiter

alternate which input has the highest priority. To store which input currently has highest

priority, thebus arbiter instance needs to be augmented with additional state.

On line 1 of Figure 5.10, a general arbitration module is instantiated. To customize this

instance with a round-robin arbitration policy, the instance will need to have state indicating

which input has the highest priority. The state is added to the instance by creating a run-

time variable. Line 2 declares an LSS variable to hold a reference to this run-time variable

and line 4 instantiates a new integer run-time variable whose BSL name isindex .

Line 6 sets the value of theinit userpoint so that theindex run-time variable will

be initialized to 0. The${index } notation allows a reference to the run-time variable to
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1 collector out.resolved on bus_arbiter {
2 ...
3 record = <<<
4 ...
5 printf(LSE_time_print_args(SIM_time_now));
6 printf(": Message:\n")
7 print_cdb_data(*datap)
8 printf("Won arbitration this cycle");
9 >>>

10 }

Figure 5.11: Collector to monitor bus arbiter output

be embedded into the code quoted with the<<<...>>> characters. Similarly, lines 8-10

set the value of theend of timestep userpoint so thatindex will be incremented at

the end of each clock cycle, wrapping around to 0 when it reaches the maximum number

of inputs (which is the width of the arbiter’sin port). Finally, the code that implements the

arbitration policy is assigned to thecomparison func userpoint on lines 12-18. The

function computes the distance of requested ports from eachindex , and selects the input

which is closest.

The instrumentation features of LSS can be used to emit the data transmitted by the

arbiter in each cycle to check if the round-robin arbitration code is correct. A sample data

collector for the output of the bus arbiter is shown in Figure 5.11. The first line states that

this collector should be activated any time a signal on theout port of thebus arbiter

instance is resolved. Lines 3-9 specify a fragment of code that executes each time the event

occurs. Here, the code simply prints out the current cycle number (line 5), followed by the

actual data (lines 6-8). The code to print the common data bus (CDB) data is in the function

print cdb data . This is arbitrary code provided by the author of the model.

More information on the details of collectors, the syntax and semantics of the LSS

language, and the BSL can be found in the LSE release documentation [32].
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5.4 Timing Control Abstraction

The previous part of this chapter describes how to enable easy construction and use of flex-

ible reusable components in concurrent-structural descriptions. However, even with ideal

component-based reuse, several daunting challenges still remain for designers building and

modifying hardware models. In particular, component-based reuse does little to assist in

building the components that implement timing and stalling control logic in complex sys-

tems. The timing controller’s correct operation is based on a global understanding of the

datapath and the way that different events in the system are correlated. For example, the

pipeline stall logic in a microprocessor is aware of structural hazards, and it stalls various

parts of the pipeline when there are insufficient resources for computation to proceed. If

any part of the datapath is changed, the controller must be altered to take those changes into

consideration. In general, the precise details of why, when, and what to stall are heavily de-

pendent on the particular design, and even minor variations can radically affect control. The

controller is connected to many parts of the system, and these connections and interfaces

must be managed explicitly. This tight intertwining of control and datapath makes creating

a single, easily customized, and flexible stock component impractical if not impossible. A

concrete example of this phenomenon was shown in Chapter 4.

Although the controller cannot be broken up into components, control can still be sep-

arated into two parts. First, there is the portion of control that determines when to stall.

Second, there is the portion of the controller that distributes the stall signal to all system

components affected by a certain stall condition. The generation of stalls can be further

subdivided into structural stalls and semantic stalls. A buffer running out of space is an

example of a structural stall. In this example, it is likely that all operations that require

sending data to the buffer in the present cycle will need to stall. Semantic stalls, on the

other hand, require understanding the overall function of the system. For example, to gen-

erate stalls due to data hazards in a processor pipeline, it is necessary to understand the

detailed semantics of the instruction set architecture.
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Figure 5.12: Connection with standard control flow semantics.

Since LSE is designed as a microarchitecture-level rather than ISA-level tool, LSE

does not provide a mechanism to specify a semantic description of the system. Therefore,

little can be done to avoid specification of semantic stalls, though additional tools can be

layered on top of LSE to provide this functionality. On the other hand, the portions of

the controller that generate structural stalls can be handled by integrating this functionality

into the components themselves. For example, buffers are aware of when they are full, and

therefore can generate stall signals autonomously. Since the components themselves are

reusable, the portion of the control logic that generates these structural stall signals does

not need to be specified by the user of these components.

To distribute stall information, regardless of whether it is structural or semantic, LSE

exploits the connectivity of the components in the system. Components that generate stalls

can communicate this information to their upstream neighbors. Those that do not need

or do not generate stall information pass the downstream information to their upstream

neighbors. Asynchronous hardware is a class of design that exploits this exact principle.

Since there is no global clock on which a global controller can synchronize in asynchronous

designs, stall information and stall signals are generated locally and then transmitted back

to previous stages of a pipeline. By employing a similar strategy, the portion of global

control that distributes stall information can be simplified.

Analogous to asynchronous hardware, each connection in an LSE description actually

specifies three subconnections as shown in Figure 5.12: aDATAand anENABLEsignal in
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the forward direction and anACKsignal in the reverse direction. As its name implies, the

DATAsubconnection carries the data from the sending module (Module A in the figure) to

the receiving module (Module B). TheENABLEsignal, when asserted, indicates that the

transmitted data should be used to perform state update. Finally, theACKsignal indicates

that the receiving component is able to accept and process the sent data.

A typical communication, which all takes place in a single clock cycle, is shown in

Figure 5.12. In this communication, the sending module (Module A) will send data on its

output port. The receiving module (Module B) will determine whether or not it can accept

the data and generate the correspondingACKmessage. If the receiving module indicates

that the data has been accepted then the sending module will indicate that the receiver

should use the data for state update by raising theENABLEsignal. Otherwise the sending

module will indicate that the data should not be used by lowering theENABLEsignal.

In this way, modules that cannot process a request can send a negative acknowledgment,

creating a stall. Other components in the system will propagate this stall back along the

datapath until the module that generated the request determines how to proceed, usually by

sending a disable signal and retrying the request in the next cycle.

The 3-way handshake described above can also be used to coordinate stalls between

more than just a linear chain of modules. Thetee module, for example, uses the hand-

shake mechanism to coordinate theACKsignal of all the downstream recipients. Thetee

module forwards its incomingDATAandENABLEsignals to all its output ports, as shown

in Figure 5.13(a). By default, it takes the incomingACKsignal from all of its outputs, com-

putes the logical AND of these values, and passes that result out through theACKwire on

the input port. With these semantics, a module connected to the input of atee will only

get an affirmativeACKsignal if all modules downstream of thetee can accept the data.

By modifying a parameter, thetee module’s behavior can be changed so that it computes

the logical OR of the incomingACKsignals to generate the outgoingACKsignal. This be-

havior is shown in Figure 5.13(b). With these new semantics, the sending module will see
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Figure 5.13: Thetee module’s control semantics options.
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1 LSU.store_operand =
2 <<< return LSE_signal_extract_data(istatus) |
3 LSE_signal_ack2enable(ostatus) |
4 LSE_signal_extract_ack(ostatus);
5 >>>;

Figure 5.14: Control function overriding standard control.

an affirmativeACKif anymodule downstream can accept the data. Thus, using the 3-way

handshake, we are able to implement useful control semantics for fan-out without difficulty.

Since control can be handled in a variety of ways during fan-out, all LSE connections are

point-to-point with explicit fan-out modules.

To automatically propagate stalls and automatically generate structural stalls, modules

had to make assumptions about when stalls should be generated and how they should be

propagated. While these defaults are normally correct, this is not always the case. LSE

provides two mechanisms to allow these defaults to be modified and to allow semantic

stalls to be injected.

The most obvious mechanism to inject a semanitc stall is to insert a new module which

modifies the control signals to effect a stall. A custom module can be written from scratch,

however, the LSE standard library provides several modules that can be used to help inject

semantic stalls. These library modules accept input from components designed to detect

semantic stall conditions, and they manipulate the control signals so that the stalls can prop-

agate normally. While this mechanism is the most general, many common situations that

require only slightly modified control can be handled bycontrol points, the other mecha-

nism provided by LSE.
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Each port in LSE defines acontrol point that can optionally be filled with acontrol

functionthat modifies the behavior of the signals on the corresponding ports. As illustrated

in Figure 5.14, one may think of the control function as a filter situated between a module

instance and the instance’s port.

To understand how control functions can be used in practice, recall the example from

Figure 5.8. Assume the designers wish to use the ALU-to-LSU connection to forward

store operands to the LSU before the ALU wins arbitration for the common data bus. By

default, if the ALU fails to obtain the common data bus, the arbiter will send a negative

ACKto theALU fanout tee causing the LSU’sstore operand port to receive a low

ENABLEsignal. This lowENABLEwill inform the LSU to ignore any data sent to its

store operand port. We will use a control function to change the behavior so that

the LSU receives a highENABLEsignal on thestore operand port any time the LSU

asserts the correspondingACKsignal.

The code shown in Figure 5.14 fills the control point on the LSU’sstore operand

port. The control function receives the status of all signals on the input side of the control

function (to the left in the figure) in theistatus variable, and the status of all signals

on the output side in theostatus variable. The function’s return value will be used to

set theDATA, ACK, andENABLEstatus on all the outgoing wires (DATAandENABLE

on the right andACKon left side of the control function in the figure). These statuses

indicate whether or not data is present and whether or not theENABLEand ACK sig-

nals are asserted. The status for each of the three signals is stored using several bits in

a status word. This particular control function passes the incomingDATAandACKsig-

nals straight through without modification by using theLSE signal extract data

and theLSE signal extract ack API calls, thus preserving the signals’ original be-

havior. It moves the incomingACKsignal to the outgoingENABLEwire by using the

LSE signal ack2enable API call, thus attaining the desired behavior. From this ex-

ample, we see that the control function is able to alter machine control semantics without
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requiring modules to be rewritten or new modules to be inserted.

Note that these control semantics were subsequently re-developed by the MicroLib

project, an effort to build reusable component libraries for SystemC [42]. The fact that

they independently came to exactly the same control signaling protocol suggests that it is

indeed a robust, yet manageable, mechanism for abstracting the timing controller.

5.5 Experience with LSE

This section provides evidence to support the thesis that the described techniques, embod-

ied in the Liberty Simulation Environment (LSE), do indeed yield a system that allows

users to rapidly construct high quality models. To do this, the section first describes the

short model development times experienced by LSE users and the accuracy of a some val-

idated models. Second, the section briefly describes some of the benefits of the static ana-

lyzability of LSE models. Third, the section highlights the quality of models produced by

presents some general experiences with LSE. Finally, the section presents data that quanti-

fies the amount of component-based reuse observed across LSE models. Later chapters in

this dissertation will evaluate the effectiveness of particular LSE features in isolation.

5.5.1 Modeling Speed and Accuracy

To date, LSE has been used to model a variety of microarchitectures in a number of research

groups. Within the Liberty Research Group, it has been used to model several machines

including an IA-64 processor core, a chip multiprocessor model that utilizes that core, two

Tomasulo-style machines that execute the DLX instruction set, and a model that is cycle-

equivalent to the popular SimpleScalar [4]sim-outorder.c sequential simulator.

Each model was built by a single student, and each model took under 5 weeks to de-

velop. Some models took far less time to build. For example, once one version of the

Tomasulo-style machine was built the second model could be constructed in under a day.
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Figure 5.15: Performance of actual Itanium 2 hardware versus model predictions.

The chip multiprocessor version of the IA-64 model also took only a day or two to produce

once the core model was complete. These development times are short. By comparison,

SimpleScalar represents at least 2.5 developer-years of effort [3]. For each of the mod-

els described, LSE’s control abstraction and reuse features were critical in achieving these

development times, as will be seen in later sections.

A model of particular interest is a validated Itanium 2 simulator built by a single student

in only 11 weeks. Figure 5.15 shows the performance predictions of this model versus the

actual hardware for a range of benchmarks.5 As can be seen from the figure, not only

was the model built rapidly, but it is quite accurate, predicting the performance to within

3% on average. The CPI of hardware was measured using the Itanium 2’s performance

counters while running the SPEC benchmark on the reference input. The simulator CPI was

computed by running benchmarks to completion using the SMARTS sampling system [60].

The sample size was 1000 instructions with 4000 instructions of warmup per sample; The

period of the sampling was set to achieve at least 10,000 samples. Note that the output of

each run was checked against the reference outputs to ensure correct execution.

5The Itanium 2 model and the corresponding data presented in Figure 5.15 were provided courtesy David
A. Penry
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While these models and development times provide compelling evidence in support

of LSE’s efficacy and this thesis, the models described were constructed by users directly

involved in the development of LSE. The true test is how well external users fare. Fortu-

nately, external users have fared well with LSE. For example, students at Rice University

used LSE in the SPINACH project to construct a validated model of 3COM’s TIGON-2 net-

work interface controller. This model is also accurate to within a few percent in predicting

packet throughput and was constructed by two students in approximately 1.5 months [59].

The students were also able to rapidly construct a model of a future high-performance 10

Gigabit ethernet NIC containing a variable number of processors and complex interconnect

networks [59].

The model development times for all of these models is significantly shorter than those

reported for similarly detailed models with similarly sized modeling teams. The validated

models are also accurate. Prior efforts to build validated models have more time and not

achieved the same level of accuracy [13].

5.5.2 Benefits of Static Analyzability

To allow high-quality models, one of the major goals in the design of LSE was to ensure that

model structure was still analyzable at compile-time. As we have seen, the structure of the

model can be used to reduce the designer effort required to instantiate reusable components

by inferring parameter values based on structure. There are many other benefits, two of

which are discussed below.

Visualization

Since the model structure (i.e., the interconnection of components) is one of the most im-

portant aspects of a structural model, ideally, this structure should be easy to specify and

understand. While a textual format often works best for specification, a visualization is bet-

ter for understanding structure. Static analyzability enables a separate tool, such as LSE’s

84



visualizer developed by the Liberty Research Group, to automatically produce such a visu-

alization. We have already seen one such visualization in Figure 5.9. Blome et al. present

many other visualizations and discuss how the visualizer can be used to improve student

understanding of architectural concepts via LSE models [6].

Simulator Optimization

A common drawback of concurrent-structural models constructed with large numbers of

reusable components is that simulators built from these models often execute too slowly

to be useful. LSE’s static analyzability, however, allows its simulator generator to build

an optimized simulator from a model. During simulator generation, the generator is aware

of each module’s parameters and interconnection patterns. The generator uses this infor-

mation to optimize leaf module BSL code specializing the modules based on how they

are used. For example, in the BSL code, counted loops whose bounds are parameter val-

ues may be fully unrolled, optimized, and then scheduled for increased instruction-level

parallelism (ILP).

To further improve performance, LSE’s simulator constructor also exploits the structure

of the model to produce an optimal execution schedule for the concurrency in a model. Ed-

wards presents an algorithm to produce schedules that minimize the worst-case execution

time of systems, such as LSE, that use the heterogeneous synchronous reactive model of

computation [16]. This algorithm relies on compile-time knowledge of the interconnection

of components to understand the possible data flow among components. The algorithm

operates by first partitioning a model’s signal data-dependence graph into a set of strongly-

connected components (SCCs). SCCs are scheduled in topological order and each SCC is

then partitioned into a head and tail sub-graph. The head is given an arbitrary schedule;

the tail is scheduled by a recursive application of the algorithm. If an optimal partitioning

is performed in each recursive application, the schedule contains the minimum number of

component invocations in the worst case. Unfortunately, finding such an optimal parti-
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tioning leads to unreasonably large run-times (the problem is NP-complete) and does not

optimize the metric of interest for simulators: average-case execution time.

LSE employs a variant of this algorithm, developed by Penry and August, that maxi-

mizes average case execution time and avoids exponential run-time [41]. In this variant, if

finding an optimal partitioning for a graph proves too costly, the scheduler inserts a dynamic

sub-schedule corresponding to this tail graph in the overall static schedule. This avoids the

exponential scheduling times. Furthermore, the graphs that are difficult to partition also

lead to the most pessimistic schedules in the original algorithm; everypotentialdata depen-

dence in the graph must be satisfied. In Penry and August’s approach, since the embedded

sub-schedule is dynamic it can detect when all data dependences have been satisfied at run-

time. The embedded dynamic schedule uses this knowledge to invoke components only as

many times as needed to satisfytruedata dependences. This usually resolves signal values

in fewer invocations than the worst-case schedule for difficult to partition sub-graphs.

With its optimizing simulator generator and scheduler, LSE is currently able to provide

performance on par with existing concurrent-structural systems, despite aggressive reuse

of flexible components.

5.5.3 General Experiences

While the primary impetus for LSS and LSE was a desire to build a practical platform

a rapidly constructing accurate models, the tools have proved capable of improving the

quality of models in other ways as well. In particular, the structural modeling methodology

informs researchers and designers about unanticipated design issues. The following few

paragraphs will relate a few experiences where LSE allowed users to gain interesting insight

into the architectures being modeled.
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Renaming with Predication

When building the first out-of-order Itanium models using LSE, a student working on the

model had an interesting question about how renaming and predication6 interact. The out-

of-order Itanium machine being modeled was to perform register renaming at an early stage

in the pipeline. The student working on the model was curious as to how unknown predicate

values should be handled in the early rename stage. Traditional renaming schemes assume

that the producer of a particular register value in a dynamic instruction stream is uniquely

known early in the pipeline (neglecting any potential branch mispredictions). Predication

violates this assumption since an instruction only defines the value of its destination register

if the predicate register has the value1. Mechanisms to address this problem have been

explored in the literature [11, 33, 58, 63] but there is still no widely accepted solution.

From this example, we see that the structural model highlighted a critical design con-

cern that had been overlooked. Not all models give this benefit. In previous, non-structural

models, this issue had been masked because the predicate value was produced early, stashed

in a global data structure, and then used assuming the value would be ready in the final

hardware. In the structural model, it was clear that there were cases where the instruction

producing the predicate value was still in flight at the rename stage and thus no predicate

value would be available.

Mysterious Performance Counters

During the construction of the Itanium 2 model (Model F described earlier), one of the

strategies used to validate the simulator was to implement virtual hardware performance

counters in the simulator and compare the values of these performance counters with the

6A predicated instruction set architecture allows each instruction to source a one bit register, called a
predicate register, that indicates whether or not an instruction should execute. For example, an add instruction
rd ← rs1 + rs2 would also take a third predicate source operand,ps, denotedrd ← rs1 + rs2 < ps >.
If the value in the register denoted byps is 0 when the instruction executes, then the execution of the add
instruction is suppressed andrd keeps its old value, otherwise,rd gets updated as it would in a non-predicated
instruction set architecture.

87



performance counters in the hardware. This process proved quite effective in building a

validated model, as seen from Figure 5.15.

During the initial study of the architecture’s memory subsystem, some performance

counters frustrated all efforts to decipher their precise meaning; the documentation from

Intel also appeared to be in error. However, late in the development of the model, the

student working on the model came to understand the role of these mysterious performance

counters. Based on this understanding, the model was made to match the values of some

of these counters.

The counters were actually documented correctly, however, the stalls they were count-

ing were present to ensure correctness due to obscure corner cases. The details of the stall

condition are difficult to understand without a detailed understanding of both the IA-64

ISA and the Itanium 2 microarchitecture. Building the structural model provided this level

of understanding. Reading documents about the microarchitecture did not.

It is unlikely that building a sequential simulator would have illuminated the meaning of

these counters because the details would likely have been approximated away; the counters

monitor a condition that arises due to complex concurrent behavior that is extremely tedious

to map to a sequential language. This “approximation without understanding” can lead to

serious oversights when designing a microarchitecture. Structural models seem to naturally

highlight difficult to implement areas of a design and the modeler is made aware of any

blind approximations.

5.5.4 Quantity of Component-based Reuse

Table 5.1 quantifies the reuse in each of the models discussed above. There is a good

amount of reuse within each specification with each module being used 3-10 times on av-

erage. Furthermore, a significant percentage (73-89%) of instances come from modules in

the LSE module library. Notice also, that these numbers are over-conservative. To improve

code clarity, some models in the table contain a large number of trivial modules that exist
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Table 5.1: Quantity of Component-based Reuse
Model Hierarchical Leaf Instance % Instances Modules
Name Instances Modules Modules per Module from Library from Library

A 277 46 (10) 18 4.33 (8.61) 73% 13
B 281 46 (11) 18 4.39 (8.48) 73% 13
C 62 1 18 3.37 73% 10
D 192 4 25 6.62 86% 22
E 329 4 26 10.97 89% 22
F 183 18 (3) 19 4.95 (8.32) 82% 18

Total 1324 69 (19) 39 12.26 (22.83) 80% 22
A A Tomasulo Style machine for the DLX instruction set.
B Same as A, but with a single issue window.
C A model equivalent to the SimpleScalar simulator [4].
D An out-of-order processor core for IA-64.
E Two of the cores from D sharing a cache hierarchy.
F A validated Itanium 2 simulator

solely to wrap other components. Since these modules are quick to write, usually taking

less than 5 minutes per module, models that use large numbers of them are unnecessarily

penalized. The numbers in parentheses in the table show reuse statistics when these mod-

ules are ignored. Notice that ignoring these modules greatly improves Model A’s, Model

B’s, and Model F’s reuse statistics.

Reuse across specifications is even more dramatic. Over all specifications, each module

is used 12.68 times with 80% of instances coming from the module library. Neglecting the

trivial wrapping modules, each module is used about 23 times, indicating considerable

reuse.

The significant reuse described in the table is largely a result of LSE’s features to reduce

specification overhead. The SimpleScalar model, which was built before many of the LSS

features were available, contains the largest number of non-trivial custom modules relative

to the total size of the specification. All the other models, which were built after the LSS

features described in this dissertation were added, have far fewer non-trivial custom mod-

ules relative to their size. This indicates that these LSS features are important for realizing

reuse in practice.
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The next few chapters will describe the novel techniques needed to implement LSE

and its features for low-overhead reuse. In these chapters, the features discussed will be

evaluated on the above models to determine each feature’s contribution to the reduction of

specification overhead.

5.6 Summary

Designing a concurrent-structural system that supports static analysis of models while also

allowing the construction of flexible hierarchical components is non-trivial. However, by

selecting the appropriate features and managing their interactions, it is possible to construct

such a system.

Compile-time (i.e., static) knowledge of model structure is possible, even when allow-

ing use of arbitrary code to build that structure. This is accomplished by separating code

that specifies component behavior (i.e., the port I/O relation) from code that specifies model

structure (i.e., component instantiations, interfaces, and interconnections). This separation

permits a two-phase compilation process. In the first phase, the structure specification code

is evaluated to produce the model netlist. In the second phase, the compiler uses this infor-

mation to infer parameter values and other model properties. This information is then used

to parameterize and compile the model’s behavior code and produce the final simulator.

One way to use the static information to parameterize a component is to automatically

instantiate concrete types for polymorphic components. This type inference is based on the

simple observation that two connected ports must have the same data type. Unfortunately,

in the presence of component overloading, this kind of type inference is non-trivial. In

fact, Chapter 7 will show that the type inference problem is NP-complete and requires a

specially designed heuristic algorithm to make type inference practical.

Another way to use the static information is to allow a component to customize itself

based on how it is connected and used in the system. For example, the system can automat-
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ically discover the number of read ports a register file component should have by observing

the number of connections the user makes to the read register interface of of the compo-

nent. The hierarchical register file component can then customize its sub-structure based

on the number of connections the system reports. Unfortunately, this type ofuse-based

specializationpresents a dilemma if a hierarchical component’s constructor uses arbitrary

code to specifying its sub-structure. This issue is addressed in Chapter 6.

In addition to use-based specialization and type inference, knowledge of static struc-

ture enables other useful features. These include automatic visualization of said structure,

the ability to insert probes into the model by referencing its structure, and the ability to

optimize generated simulators based on parameter values and connection patterns. The

compiler-directed optimizations are the most important because they are needed to ensure

that simulators built from models are efficient [41].

In addition to requiring low-overhead use and construction of flexible components,

modularizing timing control (i.e., the portion of control logic that detects and distributes

stalls), despite its global nature, is a critical design element in a system that enables reuse

in practice. Fortunately, by observing that timing control can be partitioned into stall distri-

bution, semantic stall detection, and structural stall detection, it is possible to reuse a good

portion of the logic. Structural stall detection code can be rolled into pre-existing reusable

components, and knowledge of the model datapath can be exploited to automatically gen-

erate the stall distribution logic. To avoid artificial restrictions, users should be allowed to

override any inferred control behavior. Automatically generating semantic stall detection

logic in a general way is left to future work. However, once detected, these stalls can be

injected into the automatically constructed distribution network.

All the features described above (the contributions of this dissertation) drove the design

of and are incorporated in the Liberty Simulation Environment (LSE) and its structure

specification language, the Liberty Structural Specification language (LSS). Users of this

system have experienced rapid model development times, improved model accuracy, and
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revelations about their designs. For example, a single student was able to construct a model

of Intel’s Itanium 2 processor in only 11 weeks; the model predicts hardware CPI to within

3%. This and other results presented in this chapter show that LSE gains the benefits

desired; the tool is general (i.e., not limited to a particular class of processors), permits

substantial reuse of components, yields models that are easier to validate, and permits users

to gain insight into their design by building the model.

The remaining chapters in this dissertation will address implementation challenges

highlighted in this chapter, draw conclusions based on the results of this work, and out-

line promising future directions.
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Chapter 6

Implementation of Use-Based

Specialization

As was mentioned in Section 5.2.3, explicitly specifying values of all parameters can be

cumbersome and often unnecessary. For example, the widths of ports can be inferred by

analyzing the connectivity pattern of a hardware model. We call this process of components

customizing themselves according to inferred parameter valuesuse-based specialization.

Use-based specialization can dramatically reduce specification time. However, implement-

ing a modeling language compiler that infers component parameters from structureand

customizes components using these inferred parameters requires novel language evalua-

tion semantics. This chapter describes the implementation challenges raised by use-based

specialization and presents the implementation of use-based specialization in LSE.

6.1 Evaluation Semantics

Use-based specialization requires that the module body has access to values that are defined

by the usage of the module instance (e.g. the number of connections to a port and values

of all explicitly specified parameters). However, use-based specialization also allows the

module’s interface (i.e. the module’s ports and parameters) to depend on the same values.
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Thus, use-based specialization requires deferring module body evaluation until after the

module is instantiated and used, however, conventional evaluation requires that the module

body be evaluated before it can be used so that its interface is known. To remedy this

circularity, LSS uses the novel evaluation semantics described in this section.

Clearly, evaluation of the module body cannot occur as soon as an instance is created

since the module body depends on the values of the module’s parameters. Thus, rather than

invoking the module body when creating a new instance, the name of the newly created

instance and the module from which it was instantiated are pushed onto an instantiation

stack.

Code continues to execute from the current module body, and whenever an assignment

to a subfield of a sub-instance (e.g. Line 5 in Figure 5.4) is encountered, the assignment is

recorded as a potential parameter assignment. In a similar fashion, whenever any connec-

tion is made to a subfield of a sub-instance, the connection is recorded as a potential port

connection.

When the current module body finishes evaluation, the instance at the top of the in-

stantiation stack is popped off and its module body executed. Whenever the module body

declares a parameter, the previously recorded potential parameter assignments are con-

sulted to see if the parameter has a user specified value. If so, the type of the value is

checked against the parameter’s type and if the types match, the parameter is assigned that

value. If no assignments were recorded, the parameter gets its value from default parameter

assignments inside the module body, if they exist. Similarly, when a port is declared, the

recorded list of connections is consulted to see if any attempts to connect to this port have

been made. If so, the port is connected, and its implicit width attribute is set. After evalu-

ation of the module completes, the potential subfield assignment and potential connection

records are checked to make sure no non-existent parameters or ports were referenced for

this instance. Additionally, all the parameters are checked to ensure that they have some

value.
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(a) Instantiation stack.

Evaluation context

width=5 (added in step 6)
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n=3 (added in step 5)

(b) Context for delay3.

Figure 6.1: LSS interpreter state.

The following example will illustrate the execution of the code shown in Figure 5.4.

1. Line 1. The interpreter records that an instance of thesource module namedgen

was created by pushing it onto the instantiation stack.

2. Line 2-3. The same is done for thehole anddelay3 modules.

3. Line 5-6. The interpreter records the assignments to potential parametersn and

width .

4. Line 8-9. The interpreter records the connections made.

At this point, the top-level code has finished and so the module at the top of the instantiation

stack is popped and its constructor evaluated. Figure 6.1a shows the instantiation stack in

the LSS interpreter at this point in the execution. In this case, the next set of code to run is

that for thedelayn module shown in Figure 5.5.

5. Line 2. Check to see thatn has an integer value in the record. If so, add it to the

evaluation context based on the value in the record. The evaluation context is shown

in Figure 6.1b.
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6. Line 3. Do the same for thewidth parameter.

7. Line 5-6. Record the fact that connections to thein andout port are valid, compute

the port widths, and add theportname.width parameters to the context.

8. Line 12-21. Execute the code, recording the instantiations, assignments, and connec-

tions as before.

Once this code is finished, the interpreter ensures that no connections were made to non-

existent ports and no illegal parameter assignments were made. In this example, the code

is correct so evaluation continues. The next instance on the stack, in this case one of the

delay modules pushed onto the stack during the evaluation of the instancedelay3 , is

popped off the stack and evaluated.

Note that these semantics are not the same as lazy evaluation [25]. The semantics above

requirethat the evaluation of a module body be delayed until the instantiating module body

completes. There are no language primitives that allow an instantiator to read the values of

data produced by the instantiated module body. Contrast this with lazy evaluation in which

expression evaluation is delayed until the results of a particular evaluation are requested

(usually implicitly using the the result of the expression).

The above semantics can be specified more formally by describing the execution seman-

tics for the LSS language as an evolution of program states. Execution semantics expressed

in this way are typically calledsmall-step semantics[24]. The complete small-step seman-

tics has numerous state transition rules that closely resemble the semantics for common

imperative programming languages. Therefore, in this chapter, only the state transitions

that relate to the implementation of use-based specialization will be described. This chap-

ter uses the notation and terminology that is used by Harper [24], unless defined differently

below.

The 7-tuple,(M, Is, L, A,B, e, S), will represent the state of an executing LSS pro-

gram. M is the netlist of the design as it is known at the current point in program eval-
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uation. Is is the stack of instances that need to be processed.L is the evaluation context

and maps symbols to values.A is the recorded list of potential parameter assignments and

port connections obtained from the parent instance (the instance in the hierarchy above the

one currently being processed).B is a context that records potential parameter assignments

and port connections for children of the current instance.e is the current expression being

evaluated, andS is the current list of statements being evaluated.

The program starts in the initial state(·, ·, L0, ·, ·, ·, S0), whereL0 defines built-in func-

tions andS0 is the statement list at the top-level of the LSS specification.

The state transition function for LSS program states are expressed using propositional

logic. In the transition rules below, items that appear above the horizontal bar represent

the hypothesis of a logical statement. The items that appear below the bar represent the

conclusions of the statement. The notationq0 → q1 is used to denote thatq0 can transition

to stateq1. The conclusions of all the transition rules identify all the legal transitions.

Since any given state of an LSS program satisfies the hypothesis for at most one transition

rule, the transition rules define the state transition function. More information on using

propositional logic to represent program semantics can be found in the references [24].

The interesting rules for LSS evaluation are used when a new instance is created. The

rule for this statement is shown below. Note that the portion of the rules related to actually

augmentingM is not shown but the extension is straightforward.

c current instance namen /∈ dom(L) m ∈ dom(L) S ′ = body(m) i = (c.n, S ′)

(M, Is, L, A,B, ·, instance n : m;S)→ (M ′, i B Is, {n 7→ (c.n, S ′)} ∪ L, A, B, ·, S)

This rule pushes the constructor for instancei onto the stack of constructorsIs that must be

evaluated and continues evaluating the statements in the current statement list. (Note that

i B Is denotes a stack with the elementi at the top and the stackIs below it. dom(L) is

an operator that returns the domain of L.) Notice that this differs from standard evaluation

which would have immediately begun processingS ′.
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When the current instance is finished (i.e. no statements are left in the current statement

list), the following rule begins evaluating the next instance constructor.

A = ∅ c current instance namei = (c.n, S ′) A∗ = extract(c.n, B) A′ = strip(A∗)

(M, i B Is, L, A,B, ·, ·)→ (M, Is, L0, A
′, B \ A∗, ·, S ′)

The functionextract(c.n, B) extracts fromB all parameter assignments and connec-

tions for the instance namedc.n. The functionstrip(A∗) strips thec. prefix from all the

symbol names,c.n, in the contextA∗. The state for the next instance to be processed is

established by extracting the recorded potential assignments for the about-to-be-processed

instance and making this set of assignments the newA context. TheA = ∅ hypothesis

ensures that no assignments to undefined parameters can occur. The mechanism for this is

explained below.

The remaining small-step inference rules are very similar to other imperative program-

ming languages. The most complex rules not shown are the ones for parameter and port

declarations. The parameter rule removes fromA any assignments to the parameter being

defined and updatesL andM appropriately. The port declaration rule is similar. Since

the records are removed fromA, if A 6= ∅ after a module finishes evaluation, then an

assignment or connection was made to an undeclared parameter or port.

6.2 Evaluation of Use-Based Specialization

Evaluating the utility of use-based specialization is difficult since modules can leverage

this feature in many different ways. However, one common way in which this feature is

used across most modules is the automatic inference of port widths. Therefore, to evaluate

use-based specialization, we count the number of port width parameters that were inferred.

Table 6.1 shows the results from the measurement across five different machine models.

The table shows the number of port width parameters inferred and the total number of
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Model Name Inferred Port Widths Connections
A 816 919
B 823 929
C 147 304
D 611 3975
E 984 4528
F 523 1395

A A Tomasulo Style machine for the DLX instruction set.
B Same as A, but with a single issue window.
C A model equivalent to the SimpleScalar simulator [4].
D An out-of-order processor core for IA-64.
E Two of the cores from D sharing a cache hierarchy.
F A validated Itanium 2 simulator.

Table 6.1: Port width parameters inferred by use-based specialization

connections. In all of the models examined, use-based specialization was used to infer

all the port width parameters. As the results illustrate, the number of parameter values

inferred was quite substantial. Without use-based specialization, in one case, 984 port

width parameters would have to have been kept consistent with 4528 connections. Our

experience with use-based specialization suggests that avoiding this unnecessary manual

specification dramatically reduces the designer effort in using reusable components.

6.3 Summary

Explicitly specifying values for all parameters when using flexible, reusable components,

can be so cumbersome that they are not reused in practice. Fortunately, it is possible to

infer the values of many of these parameters, but doing so in a language that allows cre-

ation of flexible hierarchical components requires novel evaluation semantics. This is be-

cause, in traditional evaluation, a component cannot be used until it is instantiated. Upon

instantiation, a component’s constructor, which depends upon parameter values to create

sub-structure, must be evaluated. However, with use-based specialization, the system must

know how the component has been used before parameter values are known.
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To resolve this circular dependence, this chapter presented novel evaluation semantics

that delay the execution of the constructor from the time a component is instantiated to

until after all information about component usage is known. In the interim, any operations

involving the component are recorded into a table and checked for correctness after the

component constructor has executed. To prevent any circularity in the evaluation order, an

instantiating component may notrequire any values produced in an instantiated compo-

nent’s constructor.

Overall, use-based specialization is able to eliminate many redundant parameter spec-

ifications. In one particular configuration, this saves the user the trouble of keeping 984

interface-size parameters consistent with 4528 connections in the model. This savings re-

duces the overhead of using flexible components and makes them more likely to be reused

in practice.
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Chapter 7

Implementation of Type Inference

Using polymorphic components can burden users by expanding the customization required

to use a component. Not only must the module’s parameters be specified, but all the poly-

morphism must also be resolved. While some of this burden is lifted by the use-based

specialization technique described in the previous chapter, explicit type instantiations can

still be burdensome. As was mentioned in Section 5.2.4, to reduce user burden, the LSS

compiler employs a type inference algorithm that analyzes the structure of a system’s con-

nectivity to infer the types of many ports and connections, thus automatically resolving the

polymorphic types.

In this chapter, the details of the LSS type system and a formalization of the type in-

ference problem will be presented. As was mentioned earlier, the inference problem is

NP-complete and differs from type inference problems found in the literature [56]. This

chapter will prove the problem’s NP-completeness, explore the effect of this complexity

on actual type inference running times, and present a heuristic inference algorithm to auto-

matically resolve polymorphism.

This chapter will conclude with experimental results that illustrate that type inference

dramatically reduces any burden incurred by using polymorphism. Further, the results

indicate that the inference algorithm can resolve polymorphism in complicated systems
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seen in practice in reasonable time. Taken together, these results demonstrate that using

polymorphism in practice significantly enhances reusability while incurring little to no cost.

7.1 The Type System

The types supported in the LSS language are described by the following grammar:

Basic Types τ ::= int | . . . | τ [n] | struct{i1 : τ1; . . . in : τn; }

Type Variables α, β, γ ::= ′identifier

Type Schemes τ ∗ ::= α | (τ ∗
1 | . . . | τ ∗

n) | τ | τ ∗[n] |

struct{i1 : τ ∗
1 ; . . . in : τ ∗

n; }

Here, the basic types are the standard programming language types (τ [n] is the array

type with elements of typeτ ) that would be communicated over ports at model run-time.

The type schemes fall in two classes, recursive and non-recursive. The non-recursive type

schemes are the collection of type variables and basic types. The recursive type schemes

are disjunctive type schemes and aggregate types (such as structures and arrays) built from

type schemes rather than basic types. When building modules and connecting instances,

users are permitted to annotate ports and connections with type schemes rather than directly

using the basic types. These type schemes provide LSE with the polymorphism described

in Section 5.2.4.

While recursive aggregate type schemes complicate type inference, the following exam-

ple will illustrate why these type schemes are important. Consider the memory component

shown in Figure 7.1(a). This component has a request port for accessing it and an output

data port to return the results of read requests. As shown, therequest port’s data type

needs to have some fields with fixed types for addressing and identifying the type of re-

quest and a polymorphic data field, whose type is specified with a type variable, to carry

the data for any write requests. This same type variable is used on thedata out port
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data_out:’a

rt:request_type; // read or write

addr:uint32_t;

write_data:’a;

request:struct {

}

Memory

(a) Port interface for a simple memory.

in:int|boolout:int

Component A Component B

(b) Connected components

Figure 7.1: Components with types annotated.

to ensure that the data written to the memory has the same type as the data that is read

out. If type schemes were not allowed in structure definitions (i.e. recursive type schemes

were forbidden), a polymorphic memory component like this could not be built. Instead,

polymorphism would have to be abandoned, reducing the memory’s reusability or the re-

quest port would have to be broken up into many individual ports, making the memory

cumbersome to use.

7.2 The Type Inference Problem

To automatically resolve the polymorphism for the type system described in Section 7.1, a

type inference algorithm must identify a basic type for all type variables and ensure that a

single type is selected from every disjunctive type scheme. When making such selections,

the algorithm must respect each port’s type scheme and ensure that connected ports share

a common type. For example, consider the two components in Figure 7.1(b). Here, the

in port on component B has the type schemeint | bool . Type inference must assign

it the basic typeint or the basic typebool . The out port on component A has type

schemeint and thus can only be assigned typeint . Furthermore, sincein andout are

103



connected, they must have the same type. This equality constraint forces the type inference

algorithm to assign basic typeint to port in . Sinceint is a basic type that corresponds

to the type schemeint | bool , all conditions are satisfied and a unique valid type

assignment has been found.

If no valid type assignment is possible (e.g., if thein port on component B had type

schemefloat | bool ) then the system is said to beover-constrained. It is also possible

to have a system with multiple valid type assignments (e.g., if theout port on component A

also had the type schemeint | bool ). Such systems are said to beunder-constrained.

Over-constrained and under-constrained systems are considered malformed systems and

the type inference algorithm should report an error if such systems are encountered.

Formally, the type inference problem can be formulated as solving a set of constraints

involving equality of type schemes. First, a type variable is created for every port in the

system. Second, a core set of constraints is formed stating that these new type variables

must be equal to the type scheme for the respective port. Third, the core set of constraints

is extended by adding constraints formed by equating the type variables for any two ports

that are connected. Finally, the type inference engine must resolve all the type schemes to

compatible basic types and assign values to all type variables according to the constraints.

The legal constraints in the type system are given by the following grammar:

Constraints φ ::= > | τ ∗
1 = τ ∗

2 | φ1 ∧ φ2

> is the trivially true constraint,τ ∗
1 = τ ∗

2 is a constraint asserting the equality between two

type schemes, andφ1 ∧ φ2 is the conjunction of the sub-constraintsφ1 andφ2.

To prove NP-completeness of the type inference problem, the following decision prob-

lem is considered.

Problem. Given a constraintφ, is it possible to assign a compatible basic type for each

type scheme inφ such that each term ofφ is simultaneously satisfied?
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Theorem 1. The type inference problem is in NP.

Proof. If we consider an instance of the type inference problem without disjunctive con-

straints, then the instance of the type inference problem is equivalent to an instance of a

unification problem [39]. The mapping between an instance of the type inference problem

and the unification problem is simple. Type schemes are equivalent to terms, type con-

structors are equivalent to functions, type variables are equivalent to term variables, and

concrete types are equivalent to constants. This unification problem can be solved in linear

time and thus is in the complexity class P [39].

For a given instance of the full type inference problem including disjunctive constraints,

a non-deterministic algorithm need only select one type scheme from the disjunction in

each disjunctive type scheme. Once this selection is made, the deterministic polynomial-

time algorithm described above can be applied to verify the existence of a solution. Since

the problem is polynomial-time verifiable, it is in NP.

Theorem 2. The type inference problem is NP-hard.

Proof. To show the problem is NP-hard, we show how to reduce any instance of the mono-

tone 1-in-3 SAT problem, a known NP-complete problem [19], to the type inference prob-

lem. 3-SAT is a SAT problem where one must decide if there exists an assignment of truth

values to a set of boolean variables,B, such that each clause in a set of disjunctive clauses,

C, with exactly 3 literals per clause, is satisfied. Monotone 1-in-3 SAT is a 3-SAT problem

where each member ofB only appears in non-negated form and only one literal in each

clause may have a truth value of ‘1’.

The reduction proceeds as follows. Let the typeint correspond to the truth value ‘1’,

and letbool correspond to ’0’. For each variablebi ∈ B create a type variableαb,i. For

each clause,c ∈ C, create a type variableαc. Each clause has the form(bi, bj, bk) where

bi, bj, bk ∈ B. The only legal satisfying assignments for each clause isS0 = (1, 0, 0),
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S1 = (0, 1, 0), andS2 = (0, 0, 1). Let

′S0 = struct { x:int; y:bool; z:bool; }

′S1 = struct { x:bool; y:int; z:bool; }

′S2 = struct { x:bool; y:bool; z:int; }

For each clause add the constraintαc = ′S0 | ′S1 | ′S2. This constraint ensures that each

clause has a legal satisfying value,S0, S1, or S2. To ensure that boolean variables in the

clause get the appropriate value based on which satisfying assignment is chosen, add the

following constraint for each clause:

αc = struct { x: αb,i; y: αb,j; z: αb,k; }

If the inference problem for this set of constraints has a solution, the corresponding

monotone 1-in-3 SAT problem is satisfiable. If not, the problem is unsatisfiable. Thus,

solving the inference problem solves the corresponding monotone 1-in-3 SAT problem.

Corollary 1. The type inference problem is NP-complete.

Proof. The problem is in NP and is NP-hard, thus by definition it is NP-complete.

The type system and inference problem presented here is similar to other type systems

and inference problems. The type system is, in fact, very similar to that of Haskell. How-

ever, the Haskell problem is undecidable in general [49]. There exist restricted versions of

the type system that are decidable [36, 48]. Unfortunately, of these, the restrictions that

yield acceptable computational complexity [36] are not desirable in a structural modeling

environment since they forbid common port interface typings. For other restricted versions

of the type system, we know of no heuristic algorithms that are appropriate for instances of

the problem that arise in the structural modeling domain.
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The Balboa [14] structural modeling system shares a similar type system and infer-

ence problem but since Balboa only supports component overloading and not parametric

polymorphism, its inference algorithm [15] is also not applicable. On the other hand, the

Ptolemy structural modeling system supports parametric polymorphism, but not compo-

nent overloading, so the type inference algorithm they propose [61] is also not directly

applicable.

The type inference problem also seems like it could be easily mapped to SAT. However,

a straight-forward mapping with a bounded width binary encoding for each type that is

uniform across all problem instances is not possible. This is because one can arbitrarily

neststruct s and arrays leading to an unbounded number of types across all problem

instances. It should be possible to identify a bounded width binary encoding for the set of

types that can occur in a particular problem instance [43], however, this is also non-trivial

and left to future work.

7.3 The Basic Inference Algorithm

Fortunately, the substitution algorithm used for languages such as ML [34] can be extended

for the presented type system by modifying the algorithm to handle the disjunctive type

scheme. The algorithm determines if a satisfying solution for the constraints exists and,

since the actual type assignments need to be known, also generates a typing context that

maps type variables to basic types. This section presents an extension of this algorithm to

handle the disjunctive type scheme and proves the correctness of the approach.

The basic ML-style substitution algorithm works by simplifying each term in the con-

straint,φ, and then eliminating it. As the constraints are simplified, the algorithm will create

a new simpler constraint and then recursively process this new constraint. Simultaneously,

the algorithm builds up a typing context,T , that maps type variables to type schemes. The

recursion occurs based on the structure of the constraint. Therefore, there must be a rule
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Constraint form Operation

(τ ∗ = τ ∗) ∧ φ Tnew ← Told

φnew ← φ
(α = struct { x1: α; . . . xn: τ ∗

n; }) ∧ φ System is unsatisfiable
(α = τ ∗) ∧ φ, Tnew ← [α/τ ∗]Told ∪ (α 7→ τ ∗)
τ ∗ contains no disjunctive type schemes φnew ← [α/τ ∗]φ
(τ ∗

1 [n] = τ ∗
2 [n] ) ∧ φ Tnew ← Told

φnew ← (τ ∗
1 = τ ∗

2 ) ∧ φ
(struct { x1: τ ∗

1,1; . . . ; xn: τ ∗
1,n; } = Tnew ← Told

struct { x1: τ ∗
2,1; . . . ; xn: τ ∗

2,n; }) ∧ φ φnew ← (τ ∗
1,1 = τ ∗

2,1) ∧ . . .∧
(τ ∗

1,n = τ ∗
2,n) ∧ φ

> Constraint satisfiable, Solution inT

Table 7.1: Simple Substitution Algorithm

that handles each production in the grammar defining the constraint. The standard rules are

shown in Table 7.1. If the constraint has the form shown in the left column of the table,

then the action on the right hand column is taken (only the first matching rule, starting from

the top of the table, is applied). Each of these rules operates by simplifying the constraint

based on the definition of equality for the type schemes. Recall thatτ denotes basic types,

τ ∗ denotes type schemes, andα, β, γ, ... denote type variables. The notation[y/x]Z means:

substitute every occurrence ofy in Z with x. Note that the state of the algorithm at any

step can be summarized by the pair(Ti, φi) whereTi is the typing context andφi is the

simplified constraint. The initial state is(∅, φ).

The disjunctive constraint requires a new, non-standard rule and a modification to the

form of constraints, since disjunctive type schemes are forbidden from the rule in the third

row of the table. The rule on the third row of the table forbids disjunctive type schemes

to ensure that the typing context,T , always maps type variables to concrete types, if all

type variables had values. Allowing the disjunctive type scheme in the typing context

would violate this property. We can avoid this difficulty by replacing every disjunctive

type scheme with a type variable and adding a constraint asserting that the type variable

is equal to the disjunctive type scheme. This simplified constraint involving disjunctive

type schemes is handled by the following new rule. If the constraint is of the form(τ ∗ =
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τ ∗
1 | . . . | τ ∗

n) ∧ φ, thenn inference problems are created each starting in the state

(Told, φi ∧ φ), whereφi ≡ (τ ∗ = τ ∗
i ). Each problem is solved by recursively applying the

algorithm. When the algorithm terminates for each subproblem, it reports thatφi ∧ φ was

unsatisfiable or returns a typing contextTi. If, ∀i, j, 1 ≤ i, j ≤ n, φi andφj were satisfiable

andTi 6= Tj, then the system is under-constrained. The algorithm terminates if this occurs

since only unique solutions are acceptable.

For the extended algorithm to be correct, two things must be true. First, the algorithm

must ultimately terminate. Second, each step of the algorithm must be incrementally build-

ing a solution to the type inference problem. These two properties are stated formally in the

next two theorems. Note that these theorems and proofs are extensions of Harper’s proofs

for the corresponding theorems about MinML [24].

Theorem 3. The algorithm’s state sequence is finite.

Proof. To each state(T, φ), we will assign a pair(n, s), wheren is the number of type

variables inφ ands is the sum of the number of type schemes inφ. If (Ti, φi) is satisfiable,

each rule shown in Table 7.1 takes(Ti, φi) and converts it into a state(Ti+1, φi+1), where

ni+1 < ni or bothni+1 = ni andsi+1 < si. Consider each row of the table. The first row,

removes two type schemes fromφi. The third row reduces the number of type variables

by one. The fourth row removes two type schemes fromφi, as does the fifth row. All

rows either decreases (without increasingn) or decreasen. Thus, the sequence of states

form a strictly decreasing sequence of ordered pairs of integers(the pairs(n, s)). Since

the sequence is lower-bounded (n ≥ 0 ands ≥ 0), the sequence will converge in a finite

number of steps.

If some state in the sequence is unsatisfiable, then the algorithm terminates, and thus

the theorem is trivially true.

Upon encountering a disjunctive constraint, the algorithm recursively applies itself to

many subproblems. Each of the subproblems contains one fewer type scheme and thus, by

the metric introduced earlier, is simpler than the current problem. Therefore, inductively,
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none of the subproblems will lead to an infinite sequence of states. Therefore, the algorithm

will not produce an infinite sequence of states for any initial state.

The next theorem will show that the final typing contextT provides a solution to the

initial constraint. However some useful notation will be introduced first. The application of

a typing contextS to a type schemeφ involves recursively substituting all the type variable

to type scheme mappings in the type contextS into the type schemes ofφ. This operation

will be denoted byS(φ). Next, we will writeS |= φ if the typing contextS satisfies the

constraintφ. Formally, this relation is inductively defined as follows:

S |= > always

S |= τ ∗
1 = τ ∗

2 iff S(τ ∗
1 ) ∩ S(τ ∗

2 ) 6= ∅

S |= φ1 ∧ φ2 iff S |= φ1 andS |= φ2

Note that in the second rule we are treating type schemes like sets. The type scheme

τ ∗
1 | . . . | τ ∗

n is considered to be the set{τ ∗
1 , . . . , τ ∗

n}. All other type schemes are

considered to be singleton sets.

Finally, given a state(T, φ), we will call S a solution for that state ifS = T ∪ U and

S |= φ for someU whose domain is disjoint from the domain ofT .

Theorem 4. If the algorithm transitions from state(T, φ) to (T ′, φ′), thenS is a solution

for (T, φ) if and only ifS is a solution for(T ′, φ′).

Proof. We will prove this statement by induction on the structure of the transitions. The

transitions presented in Table 7.1 are almost identical to those for programming languages

such as ML and the truth of this theorem is well known for those transitions [24].

For a transition based on the disjunctive rule, we haveφ = (τ ∗ = τ ∗
1 | . . . | τ ∗

n) ∧ φ′′

andφ′ = >. Assume thatS is a solution to the state(T, (τ ∗ = τ ∗
1 | . . . | τ ∗

n)∧φ′′). Since

S |= (τ ∗ = τ ∗
1 | . . . | τ ∗

n) ∧ φ′′, thenS |= τ ∗ = τ ∗
i ∧ φ′′ for somei by the definition of
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the|= relation. ThereforeS is also a solution to the state(T, τ ∗ = τ ∗
i ∧ φ′′). The algorithm

will transition in many steps from the state(T, τ ∗ = τ ∗
i ∧ φ′′) to (T ′,>). By the inductive

hypothesis,S is also a solution to the state(T ′,>).

Now, assume thatS is a solution to the state(T ′,>). We must show thatS is also a

solution to the state(T, (τ ∗ = τ ∗
1 | . . . | τ ∗

n) ∧ φ′′). Without loss of generality, we will

assume that the algorithm will transition in many steps from the state(T, τ ∗ = τ ∗
1 ∧ φ′′)

to (T ′,>). By the inductive hypothesis, we have thatS is a solution to the state(T, τ ∗ =

τ ∗
1 ∧ φ′′). This implies thatS = U ∪ T for some disjointU and thatS |= (τ ∗ = τ ∗

1 ∧ φ′′).

By the definition of the|= relation, this implies thatS |= (τ ∗ = τ ∗
1 | . . . | τ ∗

n) ∧ φ′′. By

definition, we have thatS is a solution to the state(T, (τ ∗ = τ ∗
1 | . . . | τ ∗

n) ∧ φ′′).

Theorem 3 proves that the algorithm always terminates. Further, Theorem 4 proves

that each step of the algorithm constructs an incremental solution to the inference problem.

Therefore, if the algorithm terminates with the constraint equal to>, then the typing context

forms a solution to the initial state and thus to the initial type inference problem. When the

algorithm terminates with a constraint other than>, the terminating constraint is over-

constrained and thus, by Theorem 4, so too is the initial state. Finally, recall that we also

reject states where we detectmultiple solutions. Theorem 4 tells us that these multiple

solutions are all valid for the initial constraint also. Therefore, the initial constraint system

is under-constrained.

7.4 Type Inference Algorithm Heuristics

As Section 7.5 will demonstrate, the basic algorithm just described has prohibitively large

run times, which is not surprising given that the problem is NP-complete. The exponential

running time is due to the subproblem exploration required by the disjunctive constraints.

This section describes an additional rule and two heuristics, inspired by heuristics used for

pruning the search tree in many other tree-based algorithms, which dramatically reduce the
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number of subproblems that need to be solved, which in turn drastically reduces run-time.

7.4.1 Disjunctive Constraint Simplification

The additional rule involves simplifying disjunctive constraints without actually creating

and solving subproblems. Consider a constraint of the form((τ ∗
1,1 | . . . | τ ∗

1,n) =

(τ ∗
2,1 | . . . | τ ∗

2,n)) ∧ φ. This constraint can obviously be simplified by eliminating type

schemes,τ ∗
1,j, that do not have a compatible type scheme inτ ∗

2,k, and vice versa. To do

this, the algorithm needs to recognize compatible type schemes. While recognizing all

incompatible type schemes is equivalent to the original type inference problem, certain

incompatibilities are easy to verify. For example, any basic typeτ has only two compatible

type schemes,τ and α. Two struct type schemes where the element names do not

match or where the number of elements differ are also incompatible. Similar rules can be

constructed for arrays.

7.4.2 Processing Constraints Out-of-order

The first heuristic to reduce the number of subproblems to be solved delays the creation of

subproblems due to disjunctive constraints as long as possible. This is allows other con-

straints to be simplifiedbeforecreating subproblems to address a disjunctive constraint.

These simplifications may make the disjunctive-constraint-simplification rule applicable,

eliminating the subproblem creation entirely, or significantly reduce the size of the sub-

problems by solving common terms in the constraints only once.

The proposed heuristic to accomplish this causes the algorithm to evaluate the simplifi-

cation rules in multiple phases. In the first phase, the constraint terms are treated as a list,

and each constraint term is simplified in-order. If any constraint has a leading disjunctive

type scheme, the constraint is reordered to delay evaluation of the disjunctive constraint

term. This works because a constraintx ∧ y ∧ φ may be reordered toy ∧ x ∧ φ since

the∧ operator is commutative. This iteration over constraint terms proceeds until no sim-
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plifications can be made without handling a disjunctive constraint term via subproblem

creation. In the second phase, the first disjunctive constraint term remaining is handled via

the subproblem creation used in the simple algorithm.

7.4.3 Partitioning the Constraint

The second heuristic leverages the independence of subproblems in type inference algo-

rithm. Consider the following constraint:

(′a = int|bool) ∧ (′a = int|char) ∧ (7.1)

(′b = int|bool) ∧ (′b = int|char) ∧ (7.2)

(′c = int|bool) ∧ (′c = int|char) (7.3)

In this case there are six disjunctive type schemes with two possible types, thus the basic

algorithm would need to solve26 = 64 subproblems. The heuristics presented thus far

would reduce this to23 = 8 since half of the disjunctive type schemes can be handled

by disjunctive constraint simplification after subproblems are created for the other half of

the disjunctive type schemes. The number of subproblems can be reduced further still by

recognizing that constraint terms given by (7.1), (7.2), and (7.3) each refer to disjoint sets of

type variables and can thus be solved independently. Applying this technique would yield

22+22+22 = 12 subproblems without disjunctive constraint simplification or2+2+2 = 6

subproblems with disjunctive constraint simplification.

In general, any constraint can be partitioned into multiple constraints by placing terms

of the original constraint into different sets such that if two constraints are in different sets,

they refer to non-overlapping sets of type variables. Each of these problems can be solved

separately since a solution is affected by a mapping for a particular type variable only if the

constraint references that type variable. After performing such a partitioning, if any one

of the subproblems is unsatisfiable, then the whole system is unsatisfiable since no typing
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context which contains mappings for the type variables in the subproblem will satisfy the

sub-constraint. If all the subproblems are satisfiable, the disjoint union of each subprob-

lem’s typing context is the typing context that solves the original constraint. In general

the basic algorithm will need to explorem · n subproblems if it contains a disjunctive type

scheme withm options and a disjunctive type scheme withn options. If these type schemes

are independent, after partitioning, onlym+n subproblems need be explored. Thus, as the

number of independent disjunctive constraints becomes larger, the savings of partitioning

increase exponentially. Partitioning the constraint after reordering but before attempting

to solve any subproblems increases the likelihood of finding independent disjunctive type

schemes and is the best place to perform partitioning.

7.5 Evaluation

This section measures the effectiveness of the algorithm and heuristics presented earlier by

evaluating them on several LSE models. Note that these models were not created for these

experiments but are actual models used for research and instruction.

To evaluate the effectiveness of type inference in easing the use of polymorphism, the

number of explicit type instantiations with type inference is compared to that without type

inference. The results are shown in Table 7.2. As can be seen from the table, far fewer

instantiations are needed with type inference significantly reducing the burden on the user.

In two of the models studied, only 8 out of approximately 100 type instantiations were user-

specified. This shows how type inference can nearly eliminate any overhead associated

with polymorphism while preserving all of its benefits.

To determine if the inference algorithm presented is usable in practice, the run times

of the algorithm with and without the heuristics presented in the previous section were

measured. Table 7.2 also presents these results. The model specification language compiler

and type inference algorithm are implemented in Java. The run times are all measured using
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Table 7.2: Evaluation of Type Inference and the Type Inference Algorithm
Explicit Type Explicit Type
Instantiations Instantiations Basic Algorithm Run Time with

Model Name w/o Type Infer. w/ Type Infer. Run Time Heuristics
A 115 8 > 12 h 6.54s
B 116 8 > 12 h 6.58s
C 38 30 14.9s 0.12s
D 162 71 > 12 h 1.78s
E 147 63 > 12 h 4.72s
F 101 38 > 12 h 2.76s

A A Tomasulo Style machine for the DLX instruction set.
B Same as A, but with a single issue window.
C A model equivalent to the SimpleScalar simulator [4].
D An out-of-order processor core for IA-64.
E Two of the cores from D sharing a cache hierarchy.
F A validated Itanium 2 simulator.

Sun’s Java VM 1.4.102 on an unloaded 3.0GHz Pentium 4 machine with 2 GB of RAM

running RedHat Linux 9 with RedHat kernel version 2.4.20-20.9smp. From the table it is

clear that the type inference times without the heuristics are impractical, often exceeding 12

hours. However, the algorithm with heuristics executes in just a few seconds, thus making

it usable for models seen in practice.

7.6 Summary

Many blocks in a hardware design perform tasks that are independent of the data they

are manipulating. Queues, memories, arbiters, and other routing logic often falls into this

class of component. To enable a single component to be reused across all instantiations of

these blocks, a modeling system should support parametrically polymorphic components.

Unfortunately, each data type parameter in a polymorphic component adds overhead to the

use of the component since the user is forced to specify a type instantiation for each type

parameter. Fortunately, this overhead can be eliminated by utilizing commonly known type

inference algorithms that infer these type instantiations from the component usage [62].
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Other blocks used in hardware often have similar functionality, but can only operate on

a fixed class of data types. For example, a set of ALUs that have the same operations but

with each operating on a different floating point format. A system supporting low-overhead

reuse can allow the user to instantiate anoverloadedALU component and then automat-

ically select the ALU implementation with the correct data types based on the context in

which the ALU is used [15].

Supporting both of these features simultaneously is possible, but non-trivial. This chap-

ter showed that the type inference problem is NP-complete when both overloading and

parametric polymorphism are supported. The chapter then presented a type inference algo-

rithm that can infer types in this scenario. Finally, the chapter provided heuristics that keep

type inference times reasonable for models seen in practice. Overall type inference itself

saves the user considerable effort, For example, in one model evaluated, 108 of 115 type

parameters were inferred. The heuristics reduced the type inference time for this model

from more than 12 hours to 6.54 seconds.
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Chapter 8

Conclusions and Future Directions

This dissertation focused on techniques to enable rapid construction of models through low-

overhead component-based reuse while supporting compilation of the model to an efficient

simulator. This chapter draws conclusions based on the ideas presented in this dissertation

and discusses future work.

8.1 Conclusions

Many previous approaches have attempted to build systems that allow rapid simulator con-

struction. However, some have been constructed with reuse and generality as a secondary

criterion. Other have examined reuse and rapid construction but have focused on one or

two large reuse features and excluded others.

This dissertation, on the other hand, focuses on reuse and rapid model construction

but takes a more holistic approach and identifies a set of features that all work synergisti-

cally. For example, the control abstraction discussed in this dissertation is fairly useless if

users must re-implement components due to the inability to build polymorphic or highly

parameterized components; in this scenario, custom control interfaces are a small burden

compared to the overall cost of reimplementation. Conversely, polymorphic parameteriz-

able components generally fail to adapt to the range of control interfaces needed across a
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range of designs in the absence of an adequate control abstraction. It is only when both the

ideas are taken together that they are truly effective.

To evaluate the quality of these ideas, they were implemented as the Liberty Simulation

Environment (LSE). Results and experience with LSE show that this synergy allows users

to rapidly construct models by exploiting component-based reuse. Users have used LSE to

rapidly construct models and perform design-space exploration. They have reported model

development times for complex models that are well over an order of magnitude shorter

than conventional approaches.

8.2 Future Directions

While the work in presented in this dissertation provides a good foundation for design-

space exploration, it is far from complete. A host of new capabilities, features, and tech-

niques is required to build the ultimate design tool. Some of these simply require imple-

mentation, engineering, and perseverance. Other challenges, some of which are described

below, are much more daunting.

High-speed Simulation

The work presented here and embodied in LSE provide a good foundation for design-space

exploration, but simulation speed of concurrent-structural systems remains a challenge that

has not been fully addressed. Currently, aggressive optimizations and concurrency schedul-

ing allow LSE to provide performance on par with existing concurrent-structural systems,

despite aggressive reuse of flexible components. This is achieved through the use of com-

piler optimizations for module code and by exploiting the static schedulability of the het-

erogeneous synchronous reactive model of computation, for which LSE employs a novel

static scheduler that maximizes average case, instead of worst-case execution [41]. These

compiler optimizations and scheduling rely on the ability of the description compiler to
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transform the generated simulator code based on compile-time knowledge of component

parameters and interconnections. Providing a set of techniques by which a system can

support practical component-based reuse while still permitting this type of compile-time

analysis was a major goal of this work.

Unfortunately, concurrent-structural systems, including LSE, still yield simulators that

are over an order of magnitude slower than many hand coded approaches. It should be

possible to reclaim much of this lost performance through more aggressive structure based

analysis and a more advanced scheduling system. This dissertation, provides the founda-

tions of such work; Penry and August [41] provide a novel scheduling algorithm and apply

a number of existing techniques leveraging this foundation, but much of the research and

engineering required to fully close performance gap remains undone.

Validation

As seen in this work, moving to a concurrent-structural paradigm with validated reusable

components can allow rapid construction of an accurate model. Unfortunately, much work

remains to be done to validate models. There is a body of work on verifying the correct-

ness of processor specifications with regard to instruction set semantics [8, 29]. However,

work that specifically verifies performance properties of the processor is lacking. Worse

still, it is often unclear which design factors truly influence program performance until the

model is built. This is due to the fact that no general analytical models exist to describe

the interaction of various processor components and running programs. Much work is still

needed in this area, especially in the formalisms used to describe processor performance.

With these formalisms in place, work can begin on systematic validation and verification

of design performance criteria. A first step is to develop a method to systematically vali-

date the performance predictions of a high-level model and then ensure that the design is

consistent with the high-level model at each lower level of abstraction.
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High-level Models as a Design Entry Point

Another major challenge is providing an environment that behaves as a design entry point

to later design stages. SystemC provides such an environment for traditional behavioral

modeling without reuse. The SystemC methodology relies on a one-by-one refinement of

each component to lower and lower levels of abstraction until a synthesizable RTL level

description is realized. After each component is refined. This strategy is very similar to the

ones proposed by other EDA researchers, such as those working on System Verilog. This

strategy, however, requires that components have interfaces that support this lowering.

For rapid design-space exploration, this is problematic. The appropriate interfaces for

refinement usually require low-level data types and firm protocols between components so

that the interface remains constant through lowering. In the design methodology described

in this dissertation, high-level design and the interfaces and protocols are an abstraction

of the actual low-level signaling interface. Lowering the data types during refinement is

not an option since the lowered component will then be incompatible with the non-lowered

components. To obtain a full working model designers are forced to globally lower all

components. In addition to data types, the component interface itself is also an abstraction

of the low-level interface in order to extend the reusability of components. In particular,

the control abstraction presented in this dissertation is essential for high degrees of reuse.

Unfortunately, this abstract interface does not resemble the true control interface in the

final hardware. Thus lowering requires massive interface changes, again destroying the

incremental lowering strategy. Some user guided automated lowering or synthesis strategy

is required for a lowering methodology to work.
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Appendix A

Questions Measuring the Clarity of

Simulators

This appendix details the questions asked of subjects to obtain the data presented in Sec-

tion 2.2.

A.1 Background Questionnaire

As discussed in Section 2.2, each subject was given a questionnaire to ascertain their back-

ground. The questionnaire, show, each was given a questionnaire to determine their famil-

iarity with computer architecture, programming languages, and existing simulation envi-

ronments, in particular, SimpleScalar. The questionnaire appears below.

1. How many years of experience do you have in computer architecture or related areas?

2. If you have a PhD, did you do your PhD thesis in computer architecture?

3. Have you ever written a simulator for a processor microarchitecture?

(a) Please list some of the major features of the microprocessor (e.g., out-of-order

issue, speculation, etc.)
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(b) In which language/tool was the simulator built (e.g., C, LSE, Verilog, ...)

4. Have you ever designed your own processor core?

(a) Please list some of the major features of the microprocessor (e.g., out-of-order

issue, speculation, etc.). If more than one, choose the most advanced.

(b) Was the design fabricated or was it part of a course project where the chip was

never laid out and fabricated?

5. Which publicly available/commercial processor simulation tools have you used?

6. How long have you been using the C or C++ programming language?

7. How often do you program/look at C/C++ code?

8. How long have you been using the Liberty Simulation Environment (LSE)?

9. How often do you program/look at LSE code?

10. Which of the given exercises did you complete?

A.2 Exam Questions

Below are the control and experimental questions asked of subjects in the study described

in Section 2.2. Note that the text describing the purpose of each question was not revealed

to the subjects. Also, note that placeholders are used for the line numbers since different

subjects received different machine models, as discussed in Section 2.2.
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Control Questions

A.2.1 Chained Delay

Purpose

This question covers basic LSE syntax and semantics to ensure that the subjects understand

LSE. The specifications are simply delay chains, the first has a delay of 3, the second a

delay of 5.

Question

(a) In the configuration below, if a signal is present on port in of instance delay in cycle

0, on what cycle does the data appear on the port out of instance delay?

module delayelement {

using corelib;

inport in:’a;

outport out:’a;

instance delay1:delay;

instance delay2:delay;

instance delay3:delay;

in -> delay1.in;

delay1.out -> delay2.in;

delay2.out -> delay3.in;

delay3.out -> out;

};

instance delay:delayelement;

(b) If a signal is present on port in of instance delay in cycle 0, on what cycle does the

data appear on the port out of instance delay?
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module delayn {

using corelib;

inport in:’a;

outport out:’a;

var i:int;

parameter n:int;

if(n <= 0) {

punt("Error, parameter n must be greater than or equal to 1");

}

instance delays:instance ref[];

for(i=0;i<n;i++) {

delays[n] = new instance(delay,"delay${i}");

}

in -> delays[0];

for(i=0;i<n-1;i++) {

delays[i].out -> delays[i+1].in;

}

delays[n-1].out->out;

};

instance delay:delayn;

delay.n=5;

A.2.2 Hierarchical Modules

Purpose

This question tests users understanding of hierarchical modules and userpoints in LSE. The

mystery specificationfoo is a hierarchically constructed demultiplexor. Thein1 signal is
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the data input, thein2 signal is the control that selects which output will get the input, and

theout signal is the output of the demux. All subjects had seen this example previously,

if they had completed the exercises designed to help them understand LSE. Note that the

demux used in real specifications is a leaf module in the LSE library.

Question

This question will center around the following module description:

module foo {

using corelib;

inport in1:bool;

inport in2:int;

outport out:bool;

instance fanout1:tee;

instance fanout2:tee;

instance gates:instance ref[];

in1 -> fanout1.in;

in2 -> fanout2.in;

var i:int;

for(i=0;i<3;i++) {

gates[i] = new instance(<<<gates${i}>>>, gate);

fanout1.out -> gates[i].in;

fanout2.out -> gates[i].control;

gates[i].out -> out;

gates[i].gate_control = <<<

if(LSE_signal_extract_data(cstatus[0]) ==

LSE_signal_something) {
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return (*cdata[0]) == ${i};

} else if(LSE_signal_extract_data(cstatus[0]) ==

LSE_signal_nothing) {

return 0;

} else {

return -1;

}

>>>;

}

};

(a) In a few words please describe the input/output behavior of the data signals of this

module. (You don’t need to worry about the enable and ack signals).

(b) In the following configuration that uses the module defined above, what is printed out

by the collector in timestep 0. What is the data status (LSEport something, nothing,

or unknown) of each in port (in[0], in[1], ...) at the end of cycle 0. (Note that the data

collector is only called if data is received on the port).

using corelib;

instance input1:source;

instance input2:source;

instance munger:foo;

instance hole:sink;

input1.create_data=source::create_constant("TRUE");

input2.create_data=source::create_constant("1");

input1.out ->:bool munger.in1;

input2.out ->:int munger.in2;

LSS_connect_bus(munger.out,hole.in,3);
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collector in.resolved:hole {

record = <<<

if(LSE_signal_data_is_known(status) &&

LSE_signal_data_is_present(status) &&

!LSE_signal_data_is_known(prevstatus)) {

printf(LSE_time_print_args(LSE_time_now));

printf(": porti=%d %d\n", porti, *datap);

}

>>>;

};

Experiment Questions

A.2.3 Issue Windows and Reorder Buffers

Purpose

This question is designed to identify how easy it is to identify large machine structures in a

simulator. The answer to this question depends on which version of the specifications the

subjects saw.

Question

(a) In the machine modeled in the configurationquestion3/machine1.xxx, Examine file

question3/machine1.xxx lines nnn through mmm. This is the highest level code that

describes the issue window/reservation stations.

Does the machine described have a unified issue window (excluding the load store

queue), or a distributed set of reservation stations (still ignoring the load store queue).

(b) How many entries does each reservation station/issue window have?

(c) In order to recover from speculation, the machine in this configuration also keeps
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track of the issue order of instructions. Is it possible to have an instruction in the

reorder buffer but not in the issue window? That is to say, can there be more decoded

instructions in flight (not committed) than the cumulative size of the reservations

stations/issue window. (Hint: The code for the commit stage of the machine is in

pipestages.xxx, lines nnn to mmm.)

A.2.4 Branch Resolution Policy

Purpose

This question is designed to measure how easy it is for subjects to identify policy decisions

normally thought of as sequential algorithms, such as what happens when a branch needs to

commit. For this question, the correct answer depends on the version of the configuration

the user saw.

Question

In the machine modeled in the file question5/machine1.xxx, what is the branch resolution

policy of the machine? In particular:

(a) Identify the line or lines of code which identify (detect) mis-speculated branches.

(Hint: Look at lines mmm-nnn of pipestages.xxx)

(b) In what stage of the pipe are mis-speculated branches identified?

(c) Is this the same stage which initiates branch recovery (Recovery is initiated when the

machine stops fetching from the wrong path)?

(d) If not, then what stage initiates branch recovery?

(e) Do instructions reach the pipeline stage where recovery is initiated in-order?

(f) If the answer to question 5 was no, is it possible to begin recovery on a later branch

instruction (later in program order) before initiating recovery on an earlier branch?
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(g) If the answer to question 6 was no, what hardware structure ensures that the branches

are processed in order? How does that structure communicate with the pipeline

stage?
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