
Criticality-Aware Front-end

Bhargav Reddy Godala

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor David I. August

September 2024

© Copyright by Bhargav Reddy Godala, 2024.

All rights reserved.

Abstract

Code footprints continue to grow faster than instruction caches, putting additional pres-

sure on existing front-end structures. Even with aggressive front-ends with fetch-directed

instruction prefetching (FDIP), modern processors experience significant front-end stalls.

Due to the end of Moore’s Law, increasing cache sizes raises critical path latency, with mod-

est returns for scaling instruction cache sizes. This dissertation aims to address front-end

bottlenecks by making two key observations. In FDIP-enabled processors, cache misses have

unequal costs, and a small fraction of critical instruction cache lines contribute to most of

the front-end stalls.

EMISSARY, the pioneering cost-aware replacement policy tailored for the L1 Instruction

Cache (L1I), defies conventional wisdom by presenting a groundbreaking approach. Unlike

traditional replacements, EMISSARY demonstrates performance enhancements even amidst

increased instruction cache misses. However, EMISSARY proves to be less effective when

applied to datacenter workloads characterized by large code footprints. This is due to data-

center workloads having more critical lines greater than the capacity of L1I. This dissertation

first presents improved EMISSARY-L2, the first criticality-aware cache replacement family

of policies specifically designed for datacenter workloads. Observing that modern architec-

tures entirely tolerate many instruction cache misses, EMISSARY-L2 resists evicting those

cache lines whose misses cause costly decode starvations from L2. In the context of a modern

FDIP-enabled processor, EMISSARY-L2 delivers an impressive 3.24% geomean speedup (up

to 23.7%) and a geomean energy savings of 2.1% (up to 17.7%) when evaluated on datacenter

workloads. This speedup is 21.6% of the speedup obtained by an unrealizable L2 cache with

a zero-cycle miss latency for all capacity and conflict instruction misses.

This dissertation then proposes Priority Directed Instruction Prefetching (PDIP), a novel

cost-ware instruction prefetching technique that complements FDIP by issuing prefetches for

targets along the resteer path where FDIP stalls occur. PDIP identifies these targets and

associates them with a trigger for future prefetch. When paired with EMISSARY-L2, PDIP
iii

achieves a geomean IPC speedup of 3.7% across a set of datacenter workloads using a budget

of only 43.5KB. PDIP achieves 62% of the ideal prefetching performance.

iv

Acknowledgements

I extend my sincerest gratitude to my advisor, Prof. David I. August, whose unwavering

support and unique problem-solving approach have been instrumental throughout this jour-

ney. His optimism in tackling even the most challenging problems has been truly inspiring,

emphasizing the importance of addressing issues at their core rather than focusing solely on

surface-level solutions.

I am deeply thankful for the guidance and mentorship provided by Gilles A. Pokam. His

dedication to improving the quality of my work and providing timely feedback have been

invaluable. Gilles has not only supported me in my research but has also played a significant

role in expanding my professional network, introducing me to experts both within Intel and

academia.

A heartfelt thanks to my dissertation committee, including Prof. Margaret Martonosi,

Prof. David Wentzlaff, Gilles A. Pokam, and Svilen Kanev, for their valuable insights and

contributions to my research. Special gratitude goes to Prof. Simone Campanoni for his

ongoing support and patience throughout our collaboration.

I am indebted to Svilen Kanev for his invaluable feedback and guidance, which have

helped me navigate through challenging phases of my research. Similarly, Jared Stark’s

contributions to improving the modeling of the CPU front-end have been foundational to

the progress of my thesis.

Prof. Dean Tullsen’s assistance in refining the quality of my writing and research out-

comes for the PDIP paper is deeply appreciated. I am also grateful to Sankara for his

dedication in seeing the PDIP project to completion.

I extend my thanks to Prof. Andre Seznec, Prof. Paul Gratz, Prof. Daniel Jimenez, and

Prof. Ashish Venkat for their collaboration on various projects. Additionally, I am thankful

to Mike Chu and Hassan Muhammad from AMD Research for their support and guidance

during my internship.

v

I would like to acknowledge the members of the Liberty Research Group, particularly

Sotiris, Nayana, Hansen, Greg, and Ziyang, for their camaraderie and support during my

time at Princeton. Special thanks to Susan, Yebin, Ishita, Yucan, and Sophia for their

enthusiasm and energy.

I am grateful to the administrative staff of the Department of Computer Science at

Princeton, especially Nicki Mahler, for their assistance with bureaucratic matters and timely

reminders. I also extend my thanks to the Davis International Center staff for their support

with immigration-related issues.

I express deep gratitude towards my parents for their unwavering love and support, for

the sacrifices they made to ensure my education and opportunities, which paved the way for

my journey, and for the values they imparted to me. Additionally, I extend my appreciation

to my brother for his constant belief in me.

I gratefully acknowledge the generous financial support for my graduate school work by

a variety of sources: the U.S. Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research, under contract numbers DE-SC0022138 and DE-SC0022268;

the National Science Foundation under Grant numbers CCF-2107257, CCF-2118708, CCF-

2107042, and CCF-1908488; Intel; and the National Science Foundation under Grant CCF-

2107257.

vi

To my parents and my brother

vii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xii

List of Figures . xiii

1 Introduction 1

1.1 Increase in the Front-end Pressure due to Growing Instruction Footprints . . 2

1.2 End of Moore’s Law: Need for Algorithm-based Solution instead of Scaling-

based Solutions . 3

1.3 Front-end Bottlenecks in Large Code Footprint Workloads 4

1.4 Dissertation Contributions . 5

1.4.1 State-of-the-art Front-end . 5

1.4.2 Criticality-Aware Replacement Policy for Datacenter Wrokloads . . . 6

1.4.3 Criticality-Aware Instruction Prefetcher 7

1.5 Published Material . 8

2 Current State-of-the-art Product Front-end 9

2.1 Fetch Directed Instruction Prefetching (FDIP) 10

2.1.1 Fetch Target Queue . 11

2.1.2 Prefetch Engine . 12

2.1.3 New Fetch Stage . 13

viii

2.1.4 Branch Target Buffer Design . 14

2.2 Optimizations . 16

2.2.1 Early Prefetch Corrections . 17

2.2.2 Invalidating Bogus BTB Entries . 17

2.3 Impact of Wrong Path in a machine with FDIP 18

2.3.1 Wrong Path Model in ChampSim . 18

2.3.2 Impact of Wrong Path . 20

2.4 Performance of FDIP . 22

2.5 Not all misses are equal . 23

2.6 Impact on Criticality . 26

3 Criticality-Aware Cache Replacement Policy for Datacenter Workloads 27

3.1 Original EMISSARY Policy . 28

3.1.1 Mode Selection . 28

3.1.2 Mode Treatment . 29

3.2 Improved EMISSARY . 30

3.2.1 Impact of Issue Queue Empty signal 32

3.3 Decode Starvation Behavior of Datacenter Workloads 33

3.4 Cache Replacement Policies . 37

3.5 Experimental Exploration . 37

3.5.1 Simulation Infrastructure and Machine Model 38

3.5.2 Decoupled Fetch Engine . 38

3.5.3 Benchmarks . 40

3.5.4 Policy Selection and Parameterization 42

3.5.5 Performance . 43

3.5.6 Contextualizing EMISSARY-L2’s Benefits 46

3.5.7 Persistence, By Itself, Improves Hit Rate 47

3.5.8 Impact on Back-end Stalls . 47
ix

3.5.9 Energy Savings . 48

3.6 Balancing Data Lines . 48

4 Criticality-Aware Instruction Prefetching 51

4.1 Introduction . 51

4.2 Background . 54

4.2.1 Decoupled Front-end . 54

4.2.2 Front-end Critical Cache Replacement 55

4.3 Do We Need Another Prefetcher? . 57

4.4 PDIP . 61

4.4.1 Selecting Prefetch Candidates . 61

4.4.2 Selecting a Trigger Instruction . 62

4.4.3 Synergy between PDIP and FDIP . 64

4.5 Design Implementation . 66

4.5.1 PDIP Table . 66

4.5.2 Optimizing Table Size . 67

4.5.3 Optimizing Table Occupancy . 67

4.5.4 Hardware Storage Overhead . 68

4.6 Simulation Methodology . 68

4.6.1 Simulation Model . 68

4.6.2 Baseline Description . 69

4.6.3 Benchmarks . 70

4.6.4 OS and IO bottlenecks : Full System 71

4.6.5 Policies Evaluated . 71

4.7 Evaluation . 73

4.7.1 Performance Analysis . 73

4.7.2 Prefetch Timeliness And Accuracy 76

4.7.3 Prefetch Effectiveness . 78
x

4.7.4 PDIP Table Sensitivity Analysis . 79

4.7.5 Energy and Area Analysis . 80

4.7.6 BTB Sensitivity Analysis . 80

4.7.7 Prefetch Triggers Analysis . 84

4.8 Related Work . 84

4.8.1 Hardware Instruction Prefetchers . 84

4.8.2 Software Instruction Prefetchers . 88

5 Simulation Infrastructure 89

5.1 Practical Simulation of Multi-threaded Workloads 89

5.1.1 Need for Simulating Kernel (Full System) 90

5.1.2 Fast Mode Not Fast Enough . 91

5.1.3 QPoints . 92

5.1.4 Correctness . 97

5.1.5 Techniques to Reduce Noise from OS and IO Events 97

6 Future Work 101

6.1 Dynamic EMISSARY . 101

6.2 EMISSARY for Uop Cache . 102

6.3 Proritize iTLB miss events . 103

7 Conclusion 104

Bibliography 106

xi

List of Tables

3.1 Mode Selection Options . 29

3.2 Mode Treatment Options . 29

3.3 Cache replacement policies explored . 37

3.4 Processor configurations . 40

3.5 Geomean speedup with respect to a LRU + FDIP baseline (Alderlake model)

across all configurations for various values of r and N when run on a system

with EMISSARY-L2 Policy at L2 Cache . 43

4.1 Processor configurations . 70

4.2 Benchmarks used to evaluate PDIP. 71

4.3 Policies Table . 73

4.4 Average Prefetch per Kilo Instructions (PPKI) and Prefetch Accuracy of all

prefetch policies . 77

4.5 Percentage increase in CPU core Energy consumption and Area over baseline

modeled in McPAT . 80

5.1 Simulation times with Atomic CPU on gem5 compared to native runtime . . 92

xii

List of Figures

1.1 Top-Down analysis of several server workloads 2

1.2 Speedup in % IPC gain w.r.t 32K Instruction Cache system of several server

workloads. 3

1.3 Top-Down analysis of Cassandra benchmark 5

2.1 Generic traditional front-end pipeline . 11

2.2 Generic FDIP front-end pipeline . 11

2.3 FTQ Entries . 12

2.4 Snapshot of a Prefetch Engine State with FTQ Entries and Prefetch Buffer. 13

2.5 A chain of basic blocks showing branches and their targets 15

2.6 BTB Organizations; PC Based BTB on the left and BBL Based design on

the right . 16

2.7 % IPC gain of various workloads with Wrong Path model over Correct Path

model . 20

2.8 Useful Wrong Path lines in Per Kilo Instruction (PKI) at L1, L2 and L3 caches 21

2.9 % change in Instruction Cache MPKI with FDIP and Wrong Path model over

Correct Path Model . 22

2.10 % IPC gain of ARM datecenter workloads with FDIP over No FDIP model . 23

2.11 % IPC gain of x86 datecenter workloads with FDIP over No FDIP model . . 24

2.12 % IPC gain of x86 SPEC’17 workloads with FDIP over No FDIP model . . . 24

xiii

2.13 Pipeline diagram of FTQ processing requests R0 to R4. State of FTQ shown

at the end of each cycle from cycle 0 to cycle 14. 25

3.1 Speedup vs L2 Instruction MPKI, Decode Rate, L2 Data MPKI, and Issue

Rate of various cache replacement policies for tomcat benchmark on a 1M

16-way L2 cache(with true LRU and no prefetchers). 32

3.2 First bar: distribution of Short, Mid, and Long Reuse access lines. Second

Bar: fraction of L2 Instruction Misses by Long Reuse lines. Third Bar: dis-

tribution of starvation cycles caused by Short, Mid, and Long Reuse lines.

. 36

3.3 Average L1I, L1D, L2 Instruction, and L2 Data Cache MPKI of the bench-

marks on the TPLRU + FDIP baseline. 41

3.4 Instruction footprint of all benchmarks . 41

3.5 Speedup vs. L2 Instruction MPKI and Speedup vs. Change in Decode Star-

vation cycles when issue queue is empty for instructions on the committed

path. P(N) techniques are shown as line segments with points correspond-

ing to values of N from 0 to 14 in increments of 2. Lines connect P(N) to

P(N + 2). TPLRU (N = 0) serves as the baseline. 45

3.6 Reduction in various stall types of P(8):S&E&R(1/32) with respect to the

TPLRU + FDIP baseline policy . 48

3.7 Speedup and Energy Reduction of a range of techniques relative to TPLRU

+ FDIP baseline policy . 49

3.8 Distribution of high-priority lines across all sets when guided by P(8):S&E

and P(8):S&E&R(1/32) policies, averaged across all benchmarks at the end

of simulation. 50

4.1 Top-down issue slots breakdown of cassandra benchmark on Alderlake host

machine. 52

xiv

4.2 Generic decoupled front-end microarchitecture 56

4.3 Performance gain of various prior techniques on all benchmarks 58

4.4 First bar shows the dynamic number of FEC lines as percentage of total lines.

Second bar shows the decode starvation cycles caused by FEC w.r.t total

decode starvation cycles. 60

4.5 An example showing a sequence of instructions. Each box shown represents

one instruction. Dashed boxes are the instructions in the wrong path and

dashed line shows wasted cycles due to resteering along with the cost of a

miss in instruction cache . 61

4.6 An example showing sequence of instructions in the processor pipeline. . . . 63

4.7 PDIP Pipeline showing new components added in gray blocks 65

4.8 A PDIP Table with two targets per entry . 66

4.9 Misses Per Kilo Instructions (MPKI) at L1-I, L2-I and L2-D (instruction

and data misses in the L2 cache, respectively), and L3 caches of benchmarks

presented in this work . 74

4.10 Speedup Comparison . 75

4.11 % of Late Prefetches per Benchmark in PDIP(44) 77

4.12 % reduction FEC stalls per benchmark in PDIP(44) and EIP(46) 78

4.13 PDIP Policies with various PDIP Table configurations 81

4.14 % IPC speedup of prefetch policies at various BTB sizes. 82

4.15 IPC performance gain across different policies at BTB sizes 4K (59KB),

8K (119KB), 16K (237KB), 32K (473KB), and 64K (945KB). PDIP(11),

PDIP(44) and EIP(46) needs 10.875KB, 33.5KB and 46KB additional storage

respectively. 83

4.16 Distribution of prefetches based on Prefetch Trigger scenario 85

5.1 High Level Workflow of QPoints . 94

5.2 Output of a first test after resuming a QPoints checkpoint on gem5 98

xv

5.3 Output of disk read test after resuming a QPoints checkpoint on gem5 . . . 98

5.4 Output of a multi-threaded test program after resuming a QPoints checkpoint

on gem5 . 99

xvi

Chapter 1

Introduction

In the contemporary era marked by the widespread adoption of cloud computing and the

unprecedented explosion of data, the demand for computational resources has reached un-

precedented levels and is only increasing. At the forefront of addressing this insatiable

appetite for compute power are data centers, which play a pivotal role in meeting the esca-

lating requirements of a digital age. However, the conventional trajectory of technological

progress faces a formidable challenge with the end of Moore’s Law, making it increasingly

difficult to keep pace with the surging demand for computational capabilities.

In the face of this challenge, even marginal performance gains in data center processors

carry substantial implications. Each incremental improvement holds the potential to yield

significant savings in operational costs, making the pursuit of enhanced processing efficiency

a strategic imperative.

The code footprints of the datacenter applications have been growing at ≈30% per

year [44] whereas the instruction cache sizes are not growing at the same rate. This puts

enormous pressure on the CPU front-end, which leads to poor performance. A significant

number of issue slots are wasted due to front-end bottlenecks. This is an ever-growing

problem due to growing instruction footprints. This problem is challenging to address as

traditional scaling-based solutions are no longer feasible due to the end of Moore’s Law scal-

1

ing, which only yields diminishing returns. This dissertation studies the criticality aspect of

instruction cache lines to drive the performance of datacenter workloads.

1.1 Increase in the Front-end Pressure due to Growing

Instruction Footprints

Modern processors implement a decoupled front-end, aka fetch-directed instruction prefetch-

ing (FDIP) [66], as an attempt to reduce front-end bottlenecks [62, 37, 72, 20]. With FDIP,

the L1I fill is disassociated from its demand access, thus allowing the front-end to aggressively

prefetch along the predicted path with very little sensitivity to decode and backend back

pressure. This allows the FDIP prefetcher to hide most or all of the latency of L1I misses.

Despite FDIP in modern processors several server applications spend significant time in the

front-end. Figure 1.1 shows top down [78] analysis of several server workloads. It shows

that out of all issue slots, only 12% are used in retiring useful instruction. A staggering 48%

(≈50%) of issue, slots are wasted due to front-end, and 32% of issue slots are lost due to

backend. This shows that front-end is still a big problem due to the large code footprints of

modern datacenter workloads. Since instruction footprints are growing at much higher rates

than the size of caches, this issue is becoming more pronounced over time.

0
0.1

0.2
0.3
0.4

0.5
0.6
0.7

0.8
0.9

1

bigbench

ca
ssa

ndra

ch
i-s

quare

ecli
pse

fin
agle

-ch
irp

er

fin
agle

-http h2o

jetst
ream2

ka
fka

movie
-le

ns

reacto
rs

redis

sp
eedometer2

sys
mark

tomca
t

webxp
rt3

Ave
rage

Frontend Bad Spec Backend Retire

Figure 1.1: Top-Down analysis of several server workloads

2

1.2 End of Moore’s Law: Need for Algorithm-based

Solution instead of Scaling-based Solutions

Moore’s Law states that transistors in a given area doubles about every two years. In

Moore’s Law era, the size of the cache could be doubled at the same access latency. Due to

the end of Moore’s Law, increasing cache sizes comes at the cost of increased latency. The

Instruction Cache sits in the critical path of the front-end. An increase in the latency of

the Instruction Cache would lead to lower performance. Figure 1.2 shows performance gain

of datacenter workloads when the Instruction Cache is scaled, and the access latency is the

same as the baseline 32KB Instruction Cache. Interestingly, the results show that scaling

the Instruction Cache by sixteen times only yields a performance gain of 4.5%, which is

significantly lower than expected given the size of the cache. This suggests that traditional

scaling-based solutions are not effectively addressing the significant front-end bottlenecks

faced by datacenter workloads.

%
 IP

C
 G

ai
n

w.
r.t

 3
2K

B
L1

 B
as

el
in

e

0%

1.25%

2.5%

3.75%

5%

32K 64K 128K 256K 512K

Figure 1.2: Speedup in % IPC gain w.r.t 32K Instruction Cache system of several server
workloads.

3

In light of these challenges, it becomes increasingly essential to explore algorithm-based

solutions to improve performance in the post-Moore’s Law era. These solutions may involve

optimizing instruction fetching algorithms, improving prefetching strategies, or implementing

more efficient instruction cache management techniques to mitigate front-end bottlenecks

and enhance overall performance.

1.3 Front-end Bottlenecks in Large Code Footprint

Workloads

As scaling-based solutions are showing diminishing returns, a deeper understanding of front-

end bottlenecks becomes imperative to identify the root cause. Figure 1.3 provides a top-

down analysis of a well-known database application Cassandra [1], a datacenter workload,

revealing significant front-end limitations. On the left side of Figure 1.3, it is evident that

more than half of the issue slots are wasted due to front-end bound events.

The right side of Figure 1.3 offers a further breakdown of various front-end events. It

highlights that branch resteers and Instruction Cache misses contribute to 33% and 31%

of lost issue slots, respectively. Together, they account for 64% of all front-bound events.

Instruction Cache size emerges as one of the major bottlenecks. However, simply increasing

cache size does not significantly improve performance. While a larger cache could help reduce

cache misses, it would not necessarily address the cache misses that are critical for perfor-

mance improvement. In an aggressive FDIP pipeline, the latency of an instruction cache

miss can be fully tolerated without causing front-end stalls. Consequently, a conventional

replacement policy focused on reducing misses may retain cache lines with minimal impact

on performance when provided with a larger capacity. In the presence of an aggressive FDIP

front-end, it becomes crucial to allocate limited front-end resources to cache lines critical for

performance.

4

Figure 1.3: Top-Down analysis of Cassandra benchmark

1.4 Dissertation Contributions

This dissertation aims to address the growing instruction footprint problem using an

algorithm-based approach to improve the performance of the CPU front-end of the data-

center applications. This dissertation studies the root cause of the front-end bottlenecks in

datacenter workloads. The first step in studying front-end bottlenecks is to model state-of-

the-art front-end (FDIP). The FDIP model is implemented in the gem5 simulator. Which

is the first execution-driven model of the decoupled front-end. Observing that only a small

fraction of critical cache lines are responsible for the majority of stalls in the CPU. This

dissertation also proposes a novel criticality-aware replacement policy called EMISSARY-

L2, the first such policy designed for datacenter workloads and a novel criticality-aware

instruction prefetcher called PDIP, which complements FDIP.

1.4.1 State-of-the-art Front-end

The Fetch Directed Instruction Prefetching [67] technique was introduced in 1999 but no

execution-driven simulators for superscalar processors have been implemented. Ishii et

al. [41] shows that instruction prefetchers used in the first instruction prefetching cham-

5

pionship do not show any significant performance gains when used with an FDIP-enabled

processor model. This shows that front-end studies need to use the FDIP model.

Prior works used the FDIP model in a trace-driven simulator, which ignores instructions

executed in the mispredicted path. Trace-driven simulation models often lack accuracy in

capturing this phenomenon due to the trade-off between speed and accuracy, leading to

oversimplified representations of the CPU behavior. Previous research [70, 31] has typically

focused on either the positive or negative consequences of wrong paths, but not both simul-

taneously. This dissertation introduces a novel approach to modeling the wrong path in

the trace-driven simulator. Detailed design is described in Chapter 5. Using this model,

we empirically show that FDIP with the wrong path model shows a 32.8% increase in the

Instruction Cache Misses Per Kilo Instructions (MPKI) compared to the model that ignores

the wrong path. This underscores the necessity for front-end optimizations to account for

FDIP with wrong path modeling to achieve accurate simulation results. Thus, our work

implemented FDIP in an execution-driven Out-of-Order CPU of a widely used gem5 [27]

simulator. Detailed design with several novel optimizations is described in Chapter 2. We

show that FDIP design shows up to 30% speedup compared to baseline without FDIP. This

design helps in realizing a key observation that ”not all misses are equal.”

1.4.2 Criticality-Aware Replacement Policy for Datacenter Wrokloads

For decades, architects have designed cache replacement policies to reduce cache misses.

Since not all cache misses affect processor performance equally, researchers have also pro-

posed cache replacement policies focused on reducing the total miss cost rather than the total

miss count. Prior cost-aware replacement policy EMISSARY [57] works at L1 Instruction

Cache, which is ineffective for datacenter workloads with large code footprints. This is due to

datacenter workloads have a higher volume of critical lines, and long reuse distances cannot

be preserved in the Instruction Cache before they can be used. This dissertation presents

an improved EMISSARY-L2 , the first criticality-aware cache replacement family of policies

6

specifically designed for datacenter workloads. Observing that modern architectures entirely

tolerate many Instruction Cache misses, EMISSARY-L2 resists evicting those cache lines

whose misses cause costly decode starvations when the backend is idle. In the context of a

modern processor with fetch-directed instruction prefetching and other aggressive front-end

features, EMISSARY-L2 delivers an impressive 3.24% geomean speedup (up to 23.7%) and a

geomean energy savings of 2.1% (up to 17.7%) when evaluated on widely used server applica-

tions with large code footprints. This speedup is 21.6% of the total speedup obtained by an

unrealizable L2 cache with a zero-cycle miss latency for all capacity and conflict instruction

misses.

1.4.3 Criticality-Aware Instruction Prefetcher

Modern server workloads have large code footprints that are prone to front-end bottlenecks

due to instruction cache capacity misses. Even with the aggressive fetch-directed instruction

prefetching (FDIP) implemented in modern processors, there are still significant front-end

stalls due to I-Cache misses. A major portion of misses that occur on a BPU-predicted path

are tolerated by FDIP without causing stalls. Prior work on instruction prefetching, however,

has not been designed to work with FDIP processors. Their singular goal is to reduce I-Cache

misses, whereas FDIP processors are designed to tolerate them. Designing an instruction

prefetcher that works in conjunction with FDIP requires identifying the fraction of cache

misses that impact front-end performance (that are not fully hidden by FDIP) and only

targeting them.

In this dissertation, we propose a Priority Directed Instruction Prefetching (PDIP), a

novel criticality-aware instruction prefetching technique that complements FDIP by issu-

ing prefetches for only targets where FDIP struggles – along the resteer path of front-end

stall-causing events. PDIP identifies these targets and associates them with a trigger for

future prefetch. At a 43.5KB budget, PDIP achieves up to 5.1% IPC speedup on important

workloads such as cassandra and a geomean IPC speedup of 3.2% across 16 benchmarks.

7

1.5 Published Material

Criticality-Aware Cache Replacement Policy for datacenter workloads is the improvement

over prior work EMISSARY [57]. The improved version is co-authored with Nayana is

published in [58]. Published version [58] contains results and analysis obtained on datacenter

workloads, which are new contributions. Chapter 3 describes an improved technique called

EMISSARY-L2 by referring to the original technique as EMISSARY-L1. Chapter 3 borrows

content from [58], which is either shown in footnotes or at the beginning of the section.

Criticality-Aware Instruction Prefetching (Chapter 4) has been published in [36].

8

Chapter 2

Current State-of-the-art Product

Front-end

Modern processors employ decoupled front-end design where the The Branch Predictor Unit

(BPU) is decoupled from the Instruction Fetch Unit (IFU) which allows the front-end to

prefetch instructions along the predicted path. The decoupled front-end is also known as

Fetch Directed Instruction Prefetching (FDIP). FDIP is a structural change to the front-end

pipeline of the processor and has been a key feature in the industry for over a decade [40,

41, 62]. Thus, FDIP is the stat-of-the-art front-end that should be used as a baseline for any

front-end related work.

A key contribution and distinguisher of this dissertation is the fact that we faithfully

model a very aggressive processor front-end and used it as a baseline, extending gem5’s

O3CPU model to implement Fetch Directed Instruction Prefetching (FDIP), thus support-

ing a decoupled front-end. A detailed design of FDIP with several novel optimizations is

presented in this chapter. As gem5 is execution-driven, the wrong path effects of such

resteers are also accurately modeled. An aggressive front-end can cause increased pollution

of instruction when a predicted path is wrong. The effect of wrong path pollution in the

presence of FDIP is studied using a trace-driven ChampSim simulator.

9

An important component of a decoupled front-end is the depth of decoupling, which

determines how many cache lines are prefetched in the predicted path. A sufficiently deep

decoupled front-end can hide the latency of an Instruction Cache (I-Cache) miss. Thus, in

the presence of an aggressive decoupled front-end, a small subset of I-Cache misses expose

front-end latency, which is critical for improving performance. This chapter concludes with

a discussion on criticality, which is used in the rest of the dissertation.

2.1 Fetch Directed Instruction Prefetching (FDIP)

A traditional CPU front-end features a coupled design where the Instruction The Fetch Unit

(IFU) is coupled with the Branch Predictor Unit (BPU). When the fetch engine encounters

a branch instruction, it queries BPU to know whether the branch is taken. If the branch

is taken, then BPU also provides the target of the branch so that the fetch engine can

fetch those cache lines. The state-of-the-art front-end employs a branch predictor decoupled

design. This design helps prefetch cache lines in the predicted path.

As the branch predictors keep getting better, it is intuitive to prefetch lines along the

predicted path. The BPU keeps going ahead even when the fetch is stalling. This can

be efficiently achieved by decoupling BPU from IFU. However, decoupling BPU from IFU

requires several changes to the front-end stages. The BPU sends its prediction outcomes

through the Fetch Target Queue to Fetch (FTQ). Fetch stage needs to be modified to operate

on Fetch Target Queue entries. A Prefetch Engine reads entries from FTQ, and issues

prefetch requests. One key advantage of this design is that the prefetch engine can continue

issuing prefetch requests even when the fetch is stalling. Thus, FTQ helps in hiding latencies

of later entries in the shadow of the prior miss. A sufficiently large FTQ can hide I-Cache

miss latency even when there are no prior misses when it occurs at the tail end of the FTQ.

Figure 2.1 shows a generic traditional front-end pipeline. The BPU is within the IFU.

Fetch Engine accesses the I-Cache when a new line is needed. Figure 2.2 shows a generic

10

Demand
Fetch

BPU

N
IP Fetch

Engine Decode Back-
end

Branch Resteer Address

Front-end

IAG
ICache

IFU

Figure 2.1: Generic traditional front-end pipeline

Demand
Fetch

BPU

N
IP Fetch

Engine

FTQ

Decode Back-
end

Branch Resteer Address

Front-end

IAG
ICachePrefetch Req

IFU

Figure 2.2: Generic FDIP front-end pipeline

front-end with an FDIP pipeline. BPU is decoupled from IFU, an FTQ is inserted between

the Instruction Address Generation (IAG) unit and IFU.

Operations performed by various key components used to enable FDIP are described in

detail in the following sections. Several optimizations were implemented to improve further

the performance of FDIP, which are discussed in Section 2.2.

2.1.1 Fetch Target Queue

The Fetch Target Queue (FTQ) serves as a pivotal component, enabling the effective decou-

pling of the Branch Prediction Unit (BPU) and the Fetch Unit. The depth of the FTQ plays

11

a crucial role in determining the extent of this decoupling. Prior works [40] have determined

that an FTQ depth of 24 entries gives optimal performance. We have used 24-entry depth

FTQ in all experiments presented in this dissertation. En-queuing an entry in FTQ is a

serial process. Each entry of FTQ contains a begin address, branch address, and target of

the branch. Each entry starts the target of the previous branch and terminates at the new

branch, which BPU has predicted taken. The FTQ resembles a linked list data structure.

Each entry of FTQ represents a basic block. Each element’s taken target is the begin address

of the next entry. Figure 2.3 shows three entries of FTQ as implemented in gem5. Note

that a new element can be inserted only when the target of the current branch is known.

Thus, en-queuing FTQ is a serial process. Each entry could span one or more I-Cache lines.

A prefetch engine would prefetch cache lines reading FTQ entries, and a new fetch unit is

responsible for de-queuing FTQ.

Entry 2

Begin: T1
Branch: B2
Target: T2
BrSeq: 3

Entry 1

Begin: T0
Branch: B1
Target: T1
BrSeq: 2

Entry 0

Begin: S0
Branch: B0
Target: T0
BrSeq:1

Figure 2.3: FTQ Entries

2.1.2 Prefetch Engine

The prefetch engine reads entries from FTQ, and issues prefetch requests. It is the key

component in realizing the performance benefit of a decoupled front-end. Since the FTQ

entry spans more than one cache line, the FTQ entry needs to be converted to its respective

cache lines before a prefetch request can be issued. The cache lines created using an FTQ

entry are inserted into another structure called Prefetch Buffer. Prefetch Engine issues

prefetch requests corresponding to the entries in Prefetch Buffer each cycle. The I-Cache is

probed before issuing each prefetch request, Thereby avoiding prefetching entries that are
12

already present. Fetch Buffer is used to track cache lines for which prefetch requests are

issued.

Figure 2.4: Snapshot of a Prefetch Engine State with FTQ Entries and Prefetch Buffer.

Figure 2.4 shows a sample prefetch engine state. The FTQ contains three entries F0, F1,

F2. The Prefetch Buffer contains cache lines corresponding to entries in FTQ. The cache

lines L0 and L1 correspond to FTQ head entry F0. The Fetch Buffer shows that prefetch

requests for cache lines L0, L1, L2, and L3 are issued. Cache lines L1 and L3 are ready, and

L0 and L2 are pending.

2.1.3 New Fetch Stage

The enhanced fetch stage now operates on entries within the Fetch Target Queue (FTQ)

rather than cache lines. As part of its responsibilities, the fetch unit is tasked with dequeuing

the head of the FTQ once the corresponding element has been processed. Additionally, the

fetch engine is equipped to flush the FTQ in the event of a branch misprediction in the

pipeline. Algorithm 1 outlines the modifications made to the fetch processing algorithm to

incorporate the FTQ. In Line 1, the algorithm checks whether the current Program Counter

(PC) falls within the range of the head element in the FTQ. If the PC is outside this range,

indicating a mismatch in the FTQ state, both the FTQ and branch predictor states are

flushed and corrected accordingly. Conversely, if the PC is within the FTQ head’s range,

the algorithm verifies whether the current PC matches the branch address of the FTQ
13

head. A match signifies the completion of processing for the FTQ entry; hence, the entry is

dequeued, and the respective pointers are updated. The fetch engine seamlessly transitions

to processing a new element in the subsequent cycle. This integration of the FTQ enhances

the fetch processing algorithm, providing a a more versatile and efficient mechanism for

handling branch predictions and fetch operations.

Algorithm 1 Modified Fetch Engine
1: if FTQ.empty() then
2: PC + = instruction.size()
3: else
4: if PC in FTQ.head().range() then
5: if PC = FTQ.head().branchPC then
6: PC ← FTQ.head().target()
7: FTQ.pop()
8: else
9: PC + = instruction.size()

10: end if
11: else
12: FTQ.flush()
13: end if
14: end if

2.1.4 Branch Target Buffer Design

The Branch Target Buffer (BTB) plays a crucial role in predicting whether a given address

corresponds to a branch instruction, along with providing information about the predicted

branch’s target address and type. Branches can be categorized as direct or indirect, with

direct branches having their targets encoded as offsets in the instruction, while indirect

branches retrieve their targets from register operands or the program stack. Direct branches

further subdivide into conditional and unconditional types, where unconditional branches

are always taken, and conditional branches are taken based on evaluated conditions.

As an integral component of the Branch Prediction Unit (BPU), the organization of the

BTB significantly impacts BPU performance. A BTB miss triggers a pipeline flush and

14

resteer operation, incurring substantial energy and performance costs. The BTB undergoes

a lookup for every Program Counter (PC) to ascertain if it corresponds to a branch.

In a decoupled front-end design, a new Fetch Queue (FTQ) entry is generated each cycle.

Given a PC, the BTB is queried for all subsequent addresses until a branch is encountered.

This process is resource-intensive due to the multitude of lookups required each cycle.

Consider a chain of basic blocks depicted in Figure 2.5, where each block terminates at

a taken target, leading to another basic block. Figure 2.6 illustrates two BTB organization

variants for this chain. In the PC-based BTB design (left), targets are inserted at the index

of the branch PC, while in the Basic Block Based (BBL) BTB design (right), branch targets

are inserted at the beginning address of each basic block. For instance, the basic block

BB1 contains branch br1 with target target1 (beginning address of BB2). In the PC-based

design, target1 is inserted at index br1. In the BBL-based design, target2 is inserted at

index target1 (beginning address of BB2), and similarly, target3 at index target2. As the

FTQ requires the branch’s address, the BBL-based BTB also stores the PC of the branch.

The primary advantage of the BBL-based BTB is that it requires only one lookup per cycle.

Moreover, if the same branch is reached from different entry points, it is stored as distinct

entries in the table.

br target1br1 br target2 br target3br2 br3

BB1 BB2 BB3

Figure 2.5: A chain of basic blocks showing branches and their targets

15

TragetIndex
target1br1
target2br2
Target3br3

PC based BTB

BranchTargetIndex
br2target2target1
br3target3target2

BBL based BTB

Figure 2.6: BTB Organizations; PC Based BTB on the left and BBL Based design on the
right

2.2 Optimizations

Implementing the decoupled pipeline incurs the cost of making the processor pipeline even

deeper. In cases of incorrect branch prediction, entries prefetched along the mispredicted

path may lead to cache pollution. These prefetched entries may either remain unused later

in the program or displace useful lines from the I-Cache. Branch resolution can occur at

various stages within the pipeline. The decode stage corrects unconditional branches and

directly jumps where the target is known. On the other hand, the execute stage corrects

branches affected by code execution, altering either their direction or target.

The time taken to issue the correction or resteering signal varies depending on where the

signal is generated, either from the decode or execute stage. As the time to resolve a branch

increases, the potential for cache pollution also rises. Enhancing the branch predictor’s

accuracy is crucial to improving overall front-end performance. Consequently, additional op-

timizations are necessary to maximize the performance potential of state-of-the-art pipelines

like FDIP. We propose two novel optimizations to reduce the overall cost of misprediction

redirection. To address this, we propose two innovative optimizations aimed at reducing the

overall cost of misprediction redirection.

The first optimization is to introduce early prefetch correction, which identifies mispre-

dictions in the fetch stage. This allows for prompt detection and correction of mispredictions,

minimizing their impact on subsequent pipeline stages.

16

The second optimization is that we implement bogus invalidation of BTB entries when

mispredictions are identified at the fetch stage. By invalidating these entries early in the

pipeline, we prevent unnecessary lookups and fetches based on incorrect predictions, thus

reducing wasted computational resources and mitigating cache pollution.

2.2.1 Early Prefetch Corrections

In the fetch stage, bytes corresponding to instructions are readily available. These bytes can

be examined to detect any branches that have missed in the BTB. Specifically, only direct

unconditional branches are considered, as they unconditionally alter the control flow. Con-

ditional branches, on the other hand, necessitate invoking a conditional branch predictor

to determine whether the branch is taken or not. Once an unconditional branch is iden-

tified, the Branch Prediction Unit (BPU) is corrected in the appropriate direction. This

optimization strategy is termed Early Prefetch Correction.

However, the feasibility of this optimization depends on the ability to determine in-

struction lengths. In architectures with variable-length instruction encoding, such as x86,

instruction lengths are determined in the decode stage. Therefore, this optimization cannot

be executed in such architectures. Conversely, in architectures like ARM, where instruction

lengths are fixed, this optimization can be effectively implemented.

2.2.2 Invalidating Bogus BTB Entries

In the x86 architecture, the Early Prefetch Correction optimization cannot be executed due

to the unavailability of instruction lengths during the fetch stage. However, in the FDIP

design, the Fetch Queue (FTQ) entry encompasses information about the start and end

of a basic block, where the end address corresponds to a branch’s Program Counter (PC).

Leveraging this knowledge, the branch PC address can be utilized to verify the opcode. If the

actual opcode does not correspond to a branch opcode, it indicates a bogus branch within

the FTQ.
17

Identifying and invalidating these bogus branches from the Branch Target Buffer (BTB)

can mitigate potential issues, particularly when such bogus branches occur within the loop

body. This optimization ensures the accuracy of branch prediction and helps improve per-

formance, particularly in scenarios where incorrect branch predictions could adversely affect

program execution, such as within loop structures.

2.3 Impact of Wrong Path in a machine with FDIP

The core concept of FDIP is to prefetch instructions along the predicted path. These

prefetched instructions can land either on the correct path or on the wrong path (mispre-

dicted path). Prior work [31] shows that when the effects of the wrong path are ignored, the

performance projection errors could be as high as 22%. An aggressive FDIP front-end can

further impact performance projection errors. In the current landscape of front-end works

where performance gains are less than 5%, which falls well within the error range of ignoring

the wrong path, there is a need to investigate the impact of wrong.

In order to study the effects of the wrong path in the presence of a modern FDIP front-

end, we use a ChampSim trace-driven simulator. ChampSim features FDIP front-end but

lacks wrong path support. We modified ChampSim to model wrong path instructions and

generated traces using an execution-driven gem5 simulator. Detailed modifications are de-

scribed in the following section.

2.3.1 Wrong Path Model in ChampSim

ChampSim was originally designed to model a stream of instructions using the correct path.

When a branch instruction is observed, the branch prediction unit (BPU) is queried regarding

the branch direction and target. Since the trace contains the correct target of the branch, it

is checked against the predicted target to check for misprediction. The front-end is stalled

till the branch is resolved. Once the branch is resolved a constant penalty is paid to account

18

for pipeline repair costs and then fetch is resumed again to process the stream of instructions

in the correct path. Since wrong-path instructions are not seen in the pipeline; there is no

need to squash or repair any structures in the pipeline.

In order to model instructions in the wrong path, all stages in the pipeline need to be

modified. The fetch stage is modified to continue streaming instructions from the trace

after a misprediction. The fetch stops streaming from the trace once the instructions from

the correct path are observed. The fetch stage can continue after the signal to resteer is

received. This signal could come either from the decode for direct unconditional branches

or the execute stage for any other mispredictions.

In the decode stage, unconditional direct branches that are mispredicted can be identi-

fied. Once the mispredicting branch is found, all newer (younger) instructions following the

mispredicted branch need to be squashed. The resteer signal to the fetch stage is sent, and

the FTQ, decode buffer, and fetch buffer are flushed.

The execute stage handles any other mispredictions. At the execute stage, instructions

are executed out of order from the Reorder Buffer (ROB). The ROB contains instructions in

the program order (in-order). Instructions in the ROB following a mis-speculating instruction

are on the wrong path. Once the miss-speculation is resolved, all following instructions

in the ROB are flushed. All pipeline structures leading to the execute stage are flushed.

Instructions in the wrong path are renamed, so the rename maps are repaired to remove

stale dependencies introduced by the wrong path instructions.

Mispredictions observed on the wrong path are ignored to keep the design simple. How-

ever, wrong-path traces include corrected mispredictions in the wrong path as they are

collected from the execution of another execute-driven simulator. Any effect of these correc-

tions is already captured by wrong path traces. Thus, they are approximated using a single

correction in ChampSim.

19

2.3.2 Impact of Wrong Path

Instructions executed in the wrong path can indeed pollute both data and instruction caches,

potentially leading to pollution in higher-level caches as well. The degree of pollution is

influenced by the number of instructions executed in the wrong path, which is constrained

by the size of the ReOrder Buffer (ROB). This pollution is exacerbated by the aggressive

nature of the FDIP pipeline, where prefetches for cache lines in the Fetch Target Queue

(FTQ) could be serviced for wrong path entries while the head of the FTQ is still waiting.

%
 IP

C
 g

ai
n

of
 W

P
 m

od
el

 o
ve

r C
P

 m
od

el

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

40
1.b

zip
2

42
9.m

cf

50
0.p

erl
be

nc
h

51
4.l

ee
la

52
0.o

mne
tpp

52
3.x

ala
nc

bm
k

52
5.x

26
4

53
1.d

ee
ps

jen
g

55
7.x

z
tpc

c

ca
ss

an
dra

da
ta-

se
rvi

ng

fin
ag

le-
ch

irp
er

fin
ag

le-
htt

p
ka

fka

med
ia-

str
ea

m

sp
ee

do
mete

r2.
0

sp
ec

jbb
xa

pia
n

tom
ca

t

ve
rila

tor

web
-se

arc
h

Geo
mea

n

Figure 2.7: % IPC gain of various workloads with Wrong Path model over Correct Path
model

20

0

2

4

6

8

10

12

14

16

18

20

401.bzip2

429.m
cf

500.perlb
ench

514.le
ela

520.omnetpp

523.xalancbmk

525.x264

531.deepsjeng
557.xz

tpcc

cassandra

data-serving

fin
agle-chirp

er

fin
agle-http

kafka

media-stre
am

speedometer2.0

specjbb
xapian

tomcat

verila
tor

web-search

Average

CA
CH

E
W

ro
ng

 p
at

h
PK

I

L1I FILL L1I USEFUL L1D FILL L1D USEFUL L2C FILL L2C USEFUL LLC FILL LLC USEFUL

Figure 2.8: Useful Wrong Path lines in Per Kilo Instruction (PKI) at L1, L2 and L3 caches

Cache lines brought in during the wrong path execution may either prove useful or

useless. Wrong path lines that are eventually utilized in the correct path later contribute

positively to performance improvement, whereas those evicted without being used may lead

to performance degradation, particularly if useful cache lines are displaced.

Figure 2.7 illustrates the percent performance gain of the wrong path model over the

correct path model for various SPEC17 and datacenter workloads. Most benchmarks ex-

hibit performance improvements attributed to the subsequent utility of wrong path lines.

Performance gains range from -1.7% (e.g., xapian) to as high as 22.4% (e.g., 557.xz). This

performance variation falls within the range of EMISSARY-L2 and PDIP, highlighting the

necessity of employing execution-driven models for evaluating front-end enhancement tech-

niques.

Cache lines brought in during the wrong path may prove useful later in the program’s

correct path execution, thereby potentially enhancing overall performance. Figure 2.8 il-

lustrates the total useful lines and fills at various cache levels attributable to wrong path

execution, expressed as per kilo instructions (PKI). The ratio of useful lines to fill lines indi-

cates the usefulness of wrong path lines. Benchmarks with higher useful PKI tend to exhibit

21

greater performance improvement. On average, approximately 60% and 68% of wrong path

fills in the instruction cache and data cache, respectively, are deemed useful. Consequently,

the overall net impact of wrong path instructions tends to be positive.

Figure 2.9 illustrates the percentage increase in I-Cache MPKI when the Wrong Path is

enabled, compared to the Correct Path model with FDIP, across various SPEC and datacen-

ter workloads. Notably, benchmarks like tomcat and web-search exhibit MPKI increases

of over 100%. On average, there is a 32.8% increase in I-Cache MPKI. This highlights

the imperative for front-end optimizations to incorporate FDIP with wrong path model-

ing to ensure accurate simulation results. Consequently, we implemented FDIP within the

execution-driven Out-of-Order CPU model of the gem5 simulator, which models wrong path

effects.

 %
 In

cr
ea

se
 in

 In
st

ru
ct

io
n

C
ac

he
 M

P
K

I o
ve

r C
or

re
ct

 P
at

h

0.00%

25.00%

50.00%

75.00%

100.00%

125.00%

40
1.b

zip
2

42
9.m

cf

50
0.p

erl
be

nc
h

51
4.l

ee
la

52
0.o

mne
tpp

52
3.x

ala
nc

bm
k

52
5.x

26
4

53
1.d

ee
ps

jen
g

55
7.x

z
tpc

c

wiki
pe

dia

ca
ss

an
dra

da
ta-

se
rvi

ng

fin
ag

le-
ch

irp
er

fin
ag

le-
htt

p
ka

fka

med
ia_

str
ea

sp
ee

do
mete

r2.
0

sp
ec

jbb
xa

pia
n

tom
ca

t

ve
rila

tor

web
-se

arc
h

Ave
rag

e

Figure 2.9: % change in Instruction Cache MPKI with FDIP and Wrong Path model over
Correct Path Model

2.4 Performance of FDIP

FDIP model described in Section 2.1 is faithfully modeled execution-driven Out-of-Order

(OOO) CPU model of the gem5 simulator. Figures 2.10, 2.11 and 2.12 show percent im-

22

provement in the IPC of ARM, x86, and SEPC x86 workloads over baseline without FDIP.

The ARM workloads show higher improvement in performance compared to x86 workloads

due to high front-end pressure. Additionally, some optimizations like Early Prefetch cor-

rection were enabled only for the ARM ISA model. Overall geomean IPC gains are 35.8%,

19.6%, and 14.7%, respectively. This shows that our FDIP model is very aggressive, and our

performance gains corroborate with Ishii et al. [41]. The FDIP model is used as the baseline

in the dissertation unless stated otherwise.

%
 IP

C
 Im

pr
ov

em
en

t

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

sp
ec

jbb
xa

pia
n

fin
ag

le-
htt

p

fin
ag

le-
ch

irp
er

tom
ca

t
ka

fka tpc
c

wiki
pe

dia

med
ia-

str
ea

m

web
-se

arc
h

da
ta-

se
rvi

ng

ve
rila

tor

sp
ee

do
mete

r2.
0

Geo
mea

n

Figure 2.10: % IPC gain of ARM datecenter workloads with FDIP over No FDIP model

2.5 Not all misses are equal

The design goal of FDIP is to tolerate I-Cache misses. Similar to the Out-of-Order execution

to hide latencies of data cache misses in the backend, FDIP hides latencies of I-Cache misses.

To demonstrate misses have unequal costs, consider the example shown in Figure 2.13. In

this example, a four-entry FTQ is used. The latency of the I-Cache hit is two cycles, and

the L2 hit is a minimum of eight cycles. The state of FTQ is shown at the end of each

cycle. There are two operations happening every cycle. FTQ is fed a new entry every cycle

by the BPU, and the prefetch engine issues one prefetch request for every cycle. Assume
23

%
 IP

C
 Im

pr
ov

em
en

t

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

ca
ss

an
dra ka

fka
xa

lan zx
ing

fin
ag

le-
ch

irp
er

fin
ag

le-
htt

p

rea
cto

rs tpc
c

ve
rila

tor

mov
ie-

len
s

sp
ee

do
mete

r2.
0

Geo
mea

n

Figure 2.11: % IPC gain of x86 datecenter workloads with FDIP over No FDIP model

%
 IP

C
 Im

pr
ov

em
en

t

0.00%

10.00%

20.00%

30.00%

40.00%

xa
lan

cb
mk

gc
c xz mcf

de
ep

sje
ng

pe
rlb

en
ch

lee
la

Geo
mea

n

Figure 2.12: % IPC gain of x86 SPEC’17 workloads with FDIP over No FDIP model

that FTQ has one entry R0 at the beginning of cycle 0 and no prefetch requests have been

issued yet. In cycle 0, the prefetch engine issues a prefetch request to I-Cache for R0. In

the same cycle, BPU feeds FTQ with entry R1. Similarly, in cycle 1, a prefetch request for

24

cache line R1 is issued, and a new entry R2 is inserted. At the beginning of cycle 2, the R0

is found to miss in the I-Cache so the request is forwarded to L2, and a prefetch request for

R2 is issued. FTQ is also populated by R3 in cycle 2. Similar operations are repeated till

the end. In cycle 5, request R3 is found to miss in I-Cache, so the request is forwarded to

L2. R0 and R3 both have missed in I-Cache, but the effective miss cost is ten cycles and

one cycle, respectively. The FTQ effectively hid the latency of R3 under the shadow of R0

miss, thereby tolerates I-Cache miss latency. Thus, not all misses are equal. A sufficiently

large FTQ can hide I-Cache miss latency completely without any prior miss in the FTQ.

Figure 2.13: Pipeline diagram of FTQ processing requests R0 to R4. State of FTQ shown
at the end of each cycle from cycle 0 to cycle 14.

25

2.6 Impact on Criticality

An important component in a decoupled front-end machine is the depth of the FTQ, which

determines how far the predicted instruction stream (which drives the prefetching) can get

ahead of the actual fetch demand. A sufficiently large FTQ offers a deep enough instruction

prefetching window such that a full L1I miss, and possibly even an L2 miss, can be tolerated

without stalling the IFU. This assumes the FTQ is full, given that the BPU nearly always

sustains a higher throughput than the backend, the FTQ is generally full in the absence

of FTQ resetting events (e.g., branch mispredicts). Modern decoupled front-end processors,

therefore, implement deep FTQs to get the most benefit from prefetching and tolerate cache

miss latency. The importance of FTQ in the context of instruction prefetching was amply

discussed in [40]. The authors show that most of the performance benefits obtained with

recent instruction prefetching proposals [69] vanish with a decoupled front-end machine im-

plementing a modest 24-entry FTQ. The key insight here is that in the presence of FDIP,

which has the potential to hide the full latency of the majority of misses, we see high variance

in the performance-criticality of L1I misses. Some misses have no impact on front-end (or,

naturally, backend) performance, while others still do. Thus, increasing I-Cache size does

not always lead to a significant increase in performance, even though I-Cache misses are the

major source of stalls. This dissertation aims to improve front-end performance by focusing

on critical instruction cache misses instead of all cache misses. A line is considered critical

when it meets the following conditions: (1) the line must have retired an instruction, (2) the

line must have missed the instruction cache, and (3) the line must have produced front-end

stalls as a result of the miss.

26

Chapter 3

Criticality-Aware Cache Replacement

Policy for Datacenter Workloads

Observing that FDIP-enabled front-end can tolerate instruction cache (L1I) misses prior work

introduced first criticality-aware instruction policy EMISSARY (Enhanced MISS-Awareness

Replacement Policy) [57] to preserve instruction lines in L1I. EMISSARY prioritizes lines

that caused decode to starve in the L1I cache. This policy works well for workloads that

have high L1I MPKI but low L2 Instruction MPKI. Since EMISSARY works at L1I, it is

referred to as EMISSARY-L1. Datacenter workloads have code footprints much larger than

the size of the L3 cache. EMISSARY-L1 policy is ineffective when applied to the L1 cache

due to the high volume of criticality lines in datacenter workloads. An aggressive front-end

fails to completely hide latencies of L2 cache misses. Datacenter workloads have very high

L2 cache instruction misses. The L2 cache is shared between data and instruction lines,

due to which the EMISSARY-L1 [57] is not directly applicable to the L2 cache. Prioritizing

instruction lines in a unified cache like L2 requires carefully balancing instruction and data

lines. In order to address these challenges, a new, improved EMISSARY-L2 is proposed

in this chapter. EMISSARY-L2 makes two key improvements over EMISSARY-L1. First,

it proposes an improved criticality filter, which helps in identifying cache lines that also

27

impact the backend of the processor. Two, improved management of critical cache lines in

the L2 cache. This chapter first introduces the original EMISSARY-L1 and then proposes

new improvements.

3.1 Original EMISSARY Policy

This section describes the prior EMISSARY-L1 [57] policy, which was proposed for cache

priority lines in the L1I cache1. The key idea is that only lines that caused starvations

will likely cause more starvations in the future. An EMISSARY-L1 cache leverages this

by holding on to starvation-causing lines for longer, even if they have been less recently

accessed than other starvation-free lines. Thus, EMISSARY-L1 cache replacement policies

are bimodal. Bimodal techniques have two orthogonal aspects: mode selection and mode

treatment. These aspects are discussed in this section.

3.1.1 Mode Selection

The two modes of a bimodal cache replacement policy are referred to as high and low pri-

ority, respectively. Table 3.1 shows the mode selection options for the space of realizable

cache replacement algorithms referenced in this chapter. These mode selection options are

combined in Boolean equations. For example, S&R(1/32) requires a missed line to have

caused starvation (S) during the miss AND to have been the lucky one of 32 chosen by

pseudo-random selection (R(1/32)). EMISSARY policies all contain S in their mode selec-

tion equations. For all policies in this chapter, the mode selection is determined once during

cache line insertion. LRU can be thought of as a bimodal predictor degenerated to treat all

inserted lines as high-priority by MRU position placement.
1Much of this content is common with [58], a work with co-authors

28

Notation Description
1 Always High-Priority
0 Never High-Priority

R(r) High-Priority with random probability r
S High-Priority, line miss causes decode starvation

Table 3.1: Mode Selection Options

Notation Description
M Insert High-Priority lines in MRU position, otherwise LRU

P(N) Protect up to N MRU High-Priority lines/set from eviction

Table 3.2: Mode Treatment Options

3.1.2 Mode Treatment

A meaningful bimodal cache replacement policy must treat lines differently based on the se-

lected mode. Thus, the next aspect determines how high-priority lines are treated differently

from low-priority lines. All realizable cache replacement policies discussed here use one of

the two bimodal behaviors shown in Table 3.2.

In the first, M, bimodality comes from inserting high-priority lines into the cache’s MRU

position while placing low-priority lines into the cache’s LRU position [65]. In the second,

P(N) is the EMISSARY-L2 behavior. It is described by Algorithm 2. P(N) techniques

do not act on priority at insertion. Instead, the priority is recorded as a priority bit (P)

associated with each line that impacts eviction. High-priority lines have P = 1, while low-

priority lines have P = 0. When inserting a line L into a P(N) cache, if the number of

high-priority lines in the set is less than or equal to the maximum N if it is then the line

L to be inserted (regardless of priority) replaces the LRU of the low-priority lines. Thus,

the step in line 2 may increase the number of high-priority lines in the cache but cannot

reduce it. For insertions where the number of high-priority lines in the set is greater than

the maximum N , the cache evicts the LRU among the high-priority lines. Note that the

29

number of high-priority lines are not reduced to less than N at any point without a separate

reset mechanism.

Algorithm 2 The EMISSARY-L2 Eviction Policy
1: if number of high-priority (P = 1) lines <= N then
2: Evict the LRU among the low-priority (P = 0) lines
3: else
4: Evict the LRU among all lines
5: end if

The EMISSARY-L1 treatment option is orthogonal to the specific LRU algorithm used.

For lines 2 and 4 of Algorithm 2, finding the LRU among the low-priority or the high-

priority lines can be calculated precisely from a true LRU algorithm. With a pseudo-LRU

(PLRU) algorithm, however, keeping separate PLRU’s for low- and high-priority lines limits

the imprecision. The PLRU-based EMISSARY-L1 uses the Tree Pseudo-LRU (TPLRU)

algorithms with separate trees for low- and high-priority lines. When a high-priority line is

accessed, only the high-priority tree is updated. Likewise, for a low-priority line and tree.

For eviction, the appropriate tree is used to find the line to replace, skipping any lines that

do not match the priority criteria. TPLRU requires ways− 1 bits per tree. The evaluations

use the TPLRU implementation.

3.2 Improved EMISSARY

The EMISSARY-L1 considers a cache line to be critical only when the decode stage is

starved (S). This criterion is further combined with random probability (R) to reduce single

or low-reuse critical lines. However, EMISSARY-L1 is susceptible to prioritizing cache lines

in the wrong path as it updates priority entries speculatively. Workloads with high branch

misprediction rates could eventually prioritize cache lines that are in the wrong path, thereby

reducing effectiveness.

To address this issue, the improved EMISSARY considers cache lines that are retired. A

front-end critical line may not always improve performance, especially if the backend has suf-
30

ficient work or is waiting for long-latency data cache misses. Improved EMISSARY-L2 takes

into account cache lines that would genuinely contribute to improving overall performance.

This is achieved by considering lines only when the Issue Queue is empty (E).

Overall, a line is considered critical when the following conditions are met:

• An instruction cache line has retired at least one instruction.

• A cache line that missed in the Instruction Cache.

• It caused decode starvation cycles when the backend is idle.

The EMISSARY-L2 follows a new eviction policy as described in Algorithm 3. When

the number of priority lines has not reached its limit (N), the eviction policy is the same

as EMISSARY-L1. However, when the number of high-priority lines reaches the limit N,

EMISSARY-L2 demotes one of the high-priority lines instead of retaining priority lines longer

to make room for the new line being promoted.

Since L2 is shared between data cache lines and instruction cache lines, preserving high-

priority lines when there is contention for data cache lines is detrimental. Additionally, as

the access rates of L2 are much lower than that of L1, priority lines that stay for a very long

time need to be evicted. Evicting stale priority lines to make room for new priority lines

alleviates the problem of priority lines becoming stale to some extent but not completely.

To further address this concern, the priority bits of all cache lines must be reset after a

certain duration. Empirically, we found that resetting the priority of all cache lines after

100M instructions strikes a good balance in preserving priority lines long enough to be reused

before they become stale.

Algorithm 3 The EMISSARY-L2 Eviction Policy
1: if number of high-priority (P = 1) lines <= N then
2: Evict the LRU among the low-priority (P = 0) lines
3: else
4: Evict the LRU among high-priority lines
5: end if

31

11 12 13 14
L2 Instruction MPKI

-0.2%

0.0%

0.2%

0.5%

0.8%

1.0%

1.2%

1.5%

Sp
ee

du
p

c

b

a

MRU Insert:Always
(LRU; Baseline; M:1)
MRU Insert:Starvation Decode Only
(M:S)

1.58 1.60 1.62
Decode Rate

-0.2%

0.0%

0.2%

0.5%

0.8%

1.0%

1.2%

1.5%

5.5 6.0 6.5
L2 Data MPKI

-0.2%

0.0%

0.2%

0.5%

0.8%

1.0%

1.2%

1.5%

1.27 1.28 1.29
Issue Rate

-0.2%

0.0%

0.2%

0.5%

0.8%

1.0%

1.2%

1.5%

c

b

a

c

b

a

c

b

a

Persistent:Starvation (Decode + IQ Empty)
Random (EMISSARY-L2; P(8):S&E&R(1/32)

Persistent:Starvation Decode Only
(EMISSARY-L2; P(8):S

Persistent:Starvation (Decode + IQ Empty)
(EMISSARY-L2; P(8):S&E

Figure 3.1: Speedup vs L2 Instruction MPKI, Decode Rate, L2 Data MPKI, and Issue Rate
of various cache replacement policies for tomcat benchmark on a 1M 16-way L2 cache(with
true LRU and no prefetchers).

3.2.1 Impact of Issue Queue Empty signal

The EMISSARY-L2 policy is applied to the L2 cache instead of the L1 cache proposed by

EMISSARY-L1. Datacenter workloads typically exhibit much larger code footprints than

the size of the L2 cache, resulting in very high L2 MPKI (misses per kilo-instructions).

On average, the L2 MPKI exceeds 10. Given that the L2 cache has orders of magnitude

higher capacity than that of an L1 cache, EMISSARY-L1 would be ineffective on datacenter

workloads because the L1’s capacity is not sufficient to hold onto priority lines long enough

before they are reused. (A more detailed analysis of datacenter workloads, including reuse

distance, is presented in section 3.3). Therefore, EMISSARY-L2 is applied to the L2 cache.

The L2 cache serves both data and instruction lines, unlike L1I, which is exclusively

for instruction cache lines. Preserving cache lines in the L2 for instruction lines could be

detrimental when workloads have higher data footprints. Therefore, it is crucial to consider

cache lines that not only experienced decode starvations but also have an impact on the

backend of the processor. Figure 3.1 illustrates the performance of various bimodal policies,

along with their impact on L2 MPKI (Instruction and Data), decode rate, and issue rate.

In Figure 3.1, policies with increasing levels of criticality filtering are connected by trend

lines labeled a, b, and c. The EMISSARY-L2 policy effectively allocates a portion of the L2

32

cache for instruction cache lines, which impacts data misses. It is evident across all policies

that L2 Data MPKI is higher than the baseline.

The EMISSARY-L2 with decode starvation-only policy, serving as a proxy for

EMISSARY-L1, demonstrates improvement over the baseline when applied to L2. The

additional benefit of the Issue Queue Empty signal is evidenced by higher performance.

However, the L2 data cache MPKI is higher with the Decoder and Issue Queue Empty

policy, primarily due to low-frequency lines being prioritized.

When the Issue Queue Empty signal is further combined with randomness, improved

performance is observed, attributed to preventing low-reuse lines from being promoted. This

can be observed by the reduction in L2 data MPKI. Thus, the Issue Queue Empty signal

emerges as a key factor in demonstrating the improved performance of EMISSARY-L2.

3.3 Decode Starvation Behavior of Datacenter Work-

loads

Discussion in this section is borrowed from shared co-authored work EMISSARY.Instruction

fetch is responsible for keeping the decode stage fed. If the processor could perfectly predict

the target of every control-flow instruction, instruction fetch could issue all of its memory

requests early enough to tolerate the latency to main memory without starving decode.

Unfortunately, even the best branch predictors are not perfect. They are, however, quite

good. Modern processor front-ends incorporate decoupled, aggressive fetch engines guided by

excellent branch predictors, large BTBs, and pre-decoders [40]. Such front-ends accurately

fetch several tens or even hundreds of instructions early. Instruction decode queues filled this

way can often tolerate L1I misses before emptying and leading to decode starvation; this is

especially true when an L1I miss leads to an L2 hit. From the perspective of cost-aware cache

replacement policies, keeping lines with tolerated L1I misses in the cache has less utility than

33

keeping lines whose misses cause decode starvation. The key to making this work involves

differentiating tolerated L1I misses from those that cause starvation.

Branch mispredictions invalidate early fetch work, requiring a flush of the processor

pipeline. Re-steering the front-end takes time, and more time is necessary for fetch to

run far enough ahead of decode to fill the instruction decode queue enough to tolerate L1I

misses. This concept suggests a cache replacement policy based on proximity to poorly

predicted branch targets. The authors’ early explorations in this direction considered cache

replacement policies that were either too complex, ineffective, or both. Partially, this was

because not all branch mispredictions lead to decode starvation. Often, the lines necessary

after re-steer are in L1I despite the branch mispredict. For example, this is the case for near-

target branches in which the mispredicted path and the committed path share the same L1I

cache lines. The mispredicted path fetch (or prefetch) acts as a prefetch in such a scenario.

Beyond branch prediction, many factors interact to determine whether or not an L1I

miss will cause decode starvation. For example, a stalled decode cannot starve. Decode

stalls occur when the processor back-end cannot accept more instructions. When decode

stalls, it does not attempt to pull from the instruction queue, a necessary condition for

starvation.

While predicting starvation by its component factors is hard, observing starvation during

execution is easy. Existing signals assert when starvation occurs (likewise when the issue

queue is empty). Furthermore, when decode starvation occurs, the address for which the

decode is waiting is also known. All of this information is known many cycles before the line

that missed under these circumstances is inserted into the cache. Knowing this information

in advance does not mean that it is necessarily of value to a cost-aware cache replacement

policy.

An instruction fetch that causes starvation must be a miss in the L1I cache. These L1I

misses could be served either from L2 cache, L3 cache, or main memory. Lines served from

the L2 cache introduce fewer starvation cycles than the ones served from more remote levels.

34

The first bar in Figure 3.2 depicts the distribution of reuse distance based on observed cache

line accesses in the committed path across the datacenter workloads used in this study. Reuse

distance is measured as the number of unique lines accessed between two access to the same

line. The same line accessed consecutively is not counted. Reuse distances are categorized

into three buckets - Short [0-100), Mid [100-5000), and Long [>5000) Reuse. Short Reuse

lines are likely to hit in L1I, Mid Reuse lines are likely to miss in L1I and hit in L2, and

Long Reuse lines are likely to miss in L2. This predicted behavior is confirmed in the second

bar showing the % of Long Reuse accesses that miss in L2. Overall, more than 90% of L2

misses are from Long Reuse lines.

The third bar in Figure 3.2 shows the interplay between these different categories of reuse

lines and decode starvation. Interestingly, more than 90% of the starvation cycles are caused

by Long Reuse lines, which account for less than 20% of all accesses. Thus, a small number

of accesses contribute to the majority of starvation cycles – a property that can be utilized by

a replacement policy. Consequently, EMISSARY-L1 at the L1I cache may have little value

as the lines that cause the majority of starvations are Long Reuse lines, lines which the L1I

cannot realistically preserve. Since the majority of starvations are caused by L2 miss lines, in

this work, EMISSARY policies are applied only to instructions cached in the L2 cache. The

L1I does play a role in that only L1I misses causing starvation are treated as high-priority. A

line’s priority is only communicated to L2 cache once it is evicted from the L1I

cache. Instruction lines cached in L2 are then guided by the EMISSARY-L2 replacement

policy. In this way, Long Reuse lines that have caused starvations are now cached in the

L2 cache for longer. EMISSARY-L2 uses 2 bits per line to record priority and for TPLRU

access in the L1I and L2 caches. It is 1024 bits in L1I (32kB cache with 64B line size) and

32,768 bits in L2 (1MB cache with 64B line size), a little over 4kB total.

35

sp
ec

jb
b

xa
pi
an

fin
ag

le
-h

ttp

fin
ag

le
-c
hi
rp

er

to
m

ca
t

ka
fk
a

tp
cc

wi
ki
pe

di
a

m
ed

ia
-s
tre

am

we
b-

se
ar

ch

da
ta

-s
er

vi
ng

ve
ril

at
or

sp
ee

do
m

et
er

2.
0

av
er

ag
e

0%20
%

40
%

60
%

80
%

10
0%

S
ho

rt
 R

eu
se

 [
0-

10
0)

M
id

 R
eu

se
 [

10
0-

50
00

)
Lo

ng
 R

eu
se

 [
>

50
00

)

%
 o

f
ot

he
r

lin
es

 m
is

si
ng

 in
 L

2
%

 o
f
Lo

ng
 R

eu
se

 li
ne

s
m

is
si

ng
 in

 L
2

%
 o

f
st

ar
va

ti
on

 c
yc

le
s

ca
us

ed
 b

y
Sh

or
t

Re
us

e
lin

es
%

 o
f
st

ar
va

ti
on

 c
yc

le
s

ca
us

ed
 b

y
M

id
 R

eu
se

 li
ne

s
%

 o
f
st

ar
va

ti
on

 c
yc

le
s

ca
us

ed
 b

y
Lo

ng
 R

eu
se

 li
ne

s

Fi
gu

re
3.
2:

Fi
rs
t
ba

r:
di
st
rib

ut
io
n
of

Sh
or
t,

M
id
,a

nd
Lo

ng
R
eu
se

ac
ce
ss

lin
es
.
Se
co
nd

Ba
r:

fra
ct
io
n
of

L2
In
st
ru
ct
io
n
M
iss

es
by

Lo
ng

R
eu
se

lin
es
.
T
hi
rd

Ba
r:

di
st
rib

ut
io
n
of

st
ar
va
tio

n
cy
cl
es

ca
us
ed

by
Sh

or
t,
M
id
,a

nd
Lo

ng
R
eu
se

lin
es
.

36

Notation Description
M:1 Always insert as MRU; Classic LRU; Baseline
M:0 Never insert as MRU (only as LRU); LRU Insertion Policy (LIP) [65]

M:R(r) MRU insert with probability r; Bimodal Insertion Policy (BIP) [65]
M:S&E MRU insert when starvation occurs and issue queue is empty

M:S&E&R(r) MRU insert when starvation occurs, issue queue is empty and with
probability r

P(N):R(r) EMISSARY-L1 bimodal behavior only; high-priority lines selected
with probability r

P(N):S EMISSARY-L1 [57]: high-priority on starvation
P(N):S&E Improved EMISSARY-L2 : high-priority on starvation and empty issue

queue
P(N):S&E&R(r) Improved EMISSARY-L2 : high-priority on starvation, empty issue

queue, and with probability r
SRRIP Static re-referrence interval prediction [43]
BRRIP Bimodal re-referrence interval prediction with probability (1/32)[43]
DRRIP Dynamic re-referrence interval prediction [43]
PDP Static protective distance policy [30]

DCLIP Dynamic Code Line Preservation [42]

Table 3.3: Cache replacement policies explored

3.4 Cache Replacement Policies

The top of Table 3.3 shows the prior work and proposed bimodal cache replacement policies

used in this work. Each policy is a combination of a mode selection option (individually or

by combination with a Boolean expression) and a mode treatment option described earlier.

The rest of Table 3.3 lists other advanced policies used in the experimental comparison.

3.5 Experimental Exploration

This section describes the simulation infrastructure, machine model, and benchmarks used

to evaluate EMISSARY-L2 in various ways2.
2Much of this content is common with [58], a work with co-authors

37

3.5.1 Simulation Infrastructure and Machine Model

This study uses gem5, a popular cycle-accurate simulator [27], running a detailed CPU

model in FS (Full System) mode with a full Operating System (OS). Gem5 supports a

checkpointing mechanism that creates reusable snapshots for later restarts. For datacenter

workloads, collecting gem5 checkpoints itself can be a significant bottleneck in evaluating

microarchitectural changes. To reduce this, we used the QEMU [26] emulator and built a tool,

QPoints (see 5.1.3), to create gem5-compatible snapshots. Snapshots consist of a dump of

the physical memory, disk image, device state, CPU architectural state, and a checkpoint file

compatible with gem5. Typically, checkpoint files can only be ported to another environment

with the same system board configuration. We extended gem5 to support a hardware board

configuration called virt_machine for snapshots created with QEMU. This enables the use

of QEMU fast emulation features, like hardware acceleration with KVM [39]. We used an

ARM64 system running Ubuntu 18.04 with Linux kernel 4.15 and an Apple M1 Mac mini

to accelerate QEMU emulation.

As shown in Table 3.4, we used Intel’s Alderlake-like model for all experiments with the

TPLRU config. The next line prefetcher (NLP) is enabled in the Adlerlake-like model for

the L1D, L2, and L3 caches. The baseline for all experiments has FDIP enabled. L3 is an

exclusive cache with DRRIP. L2 uses an SFL (Served From Last-level) bit to track each

line’s origin (i.e., L3 or memory). When a line with its SFL bit set is evicted from L2, it

is placed at the MRU position in the L3. Each simulation includes a warm-up period of 5

million instructions from the resumed state, followed by a measurement period of 100 million

instructions in the detailed simulation model.

3.5.2 Decoupled Fetch Engine

We extended the fetch engine of the gem5 simulator to model the aggressive front-end found

in modern processors with state-of-the-art FDIP prefetchers [67]. FDIP includes a Fetch

Target Queue (FTQ) to decouple the fetch pipeline from the rest of the processor, enabling
38

the fetch pipeline to run ahead of the rest of the processor pipeline [40, 68, 67]. The fetch

pipeline, including the BTB and FTQ, has been modified to operate at the dynamic basic

block granularity.

We modified the BTB so that each entry corresponds to a basic block. In addition to

the target, entries contain details pertaining to the basic block - starting address, size, and

the type of control-flow instruction that ends the basic block. This enabled the BTB to be

indexed based on the branch target or the basic block’s starting address instead of the branch

PC. We used ARM binaries in this work. ARM’s fixed-length encoding made it easier to

model the BTB. Specifically, given the starting address and size of the basic block in terms

of the number of instructions, it is straightforward to find the address of the control-transfer

instruction that ends the respective block. This flexibility helped in reducing the otherwise

necessary changes to the branch predictor. Variable-width instructions can be supported

with additional hardware.

The branch predictor and BTB enqueue up to one basic block prediction per cycle to

the FTQ. As in the BTB, each entry in the FTQ contains the starting address and size of

the dynamic basic block. Naturally, enqueuing stalls on BTB misses. The next two fall-

through lines are prefetched in the event of a BTB miss. As an enhancement, the modeled

front-end also includes a pre-decoder to update the BTB and minimize such enqueue stalls

proactively. Branch re-steers flush the FTQ before resuming predictions on the corrected

path. The FTQ along with basic-block level fetch enabled the front-end to run-ahead from

the processor pipeline soon after every flush operation.

The FTQ enhancements allowed memory requests to be issued early. This work includes

an FTQ size of 24 entries with a 192-instruction buffer. This offered the right balance by

having sufficient starvation tolerance for hiding many L1I misses (see §3.3) while keeping

the front-end from becoming overly aggressive in the presence of branch mispredictions. The

extended run-ahead front-end requires the instruction buffer to be able to receive memory

39

Field \ Model Alderlake-like
ISA Aarch64 (64-bit ARM)

Private L1I, L2D 32kB (I), 64kB (D) NLP, 8-way
Caches 64B line size, 2 cycle hit TPLRU

Unified L2 Cache 1MB, 16-way, 64B line size
12 cycle hit, Inclusive NLP

Shared L3 Cache 2MB, 16-way, 64B line size 32 cycle hit latency Exclusive Vic-
tim Cache NLP DRRIP + SFL

Branch Predictor TAGE, ITTAGE
BTB size 16K entries

Fetch Target Queue 24 entry 192-instruction
Fetch/Decode/ 8 wide
Issue/Commit
ROB Entries 512

Issue/Load/Store Queue 240 / 128/ 72
Int/FP Registers 280 / 224

Table 3.4: Processor configurations

responses out-of-order. Overall, our optimized FDIP provides a geomean speedup of 33.1%

over a no FDIP model for the 13 datacenter benchmarks as described in Section 3.5.3.

3.5.3 Benchmarks

To evaluate EMISSARY-L2 , we used 13 popular server applications with large code foot-

prints from various benchmark suites: tomcat (Apache’s implementation of Jakarta Servlet,

Jakarta Expression Language, and WebSocket [4], from Dacapo benchmark suite [28]); kafka

(Apache’s distributed event streaming application used by companies like LinkedIn [2], from

Dacapo benchmark suite); tpcc (On-Line Transaction Processing workload [14], from OLTP-

Bench suite [29]); wikipedia (MediaWiki application on Wikipedia dataset [8], from OLTP-

Bench suite); data-serving (Cassandra NoSQL database application [1], from Cloudsuite

V4 [32]); media-streaming (Simulates video traffic, from Cloudsuite V4); web-search

(Apache Solr search engine application [3], from Cloudsuite V4); xapian (a web-search

application, Tailbench suite [46]); specjbb (A SPEC benchmark to test Java application

features [12], from Tailbench); finagle-http (Twitter’s HTTP server [15], from Renais-
40

sp
ec

jbb

xa
pia

n

fin
ag

le-
ht

tp

fin
ag

le-
ch

irp
er

tom
ca

t
ka

fka tp
cc

wiki
pe

dia

med
ia-

str
ea

m

web
-se

arc
h

da
ta-

se
rvi

ng

ve
rila

tor

sp
ee

do
mete

r2
.0

Av
er

ag
e

0

20

40

60

80
M

PK
I

174.28 133.85 99.14 L1I MPKI
L1D MPKI
L2 Inst MPKI
L2 Data MPKI

Figure 3.3: Average L1I, L1D, L2 Instruction, and L2 Data Cache MPKI of the benchmarks
on the TPLRU + FDIP baseline.

sp
ec

jb
b

xa
pi

an
fin

ag
le

-h
ttp

fin
ag

le
-c

hi
rp

er
to

m
ca

t
ka

fk
a

tp
cc

w
ik
ip

ed
ia

m
ed

ia
-s

tre
am

w
eb

-s
ea

rc
h

da
ta

-s
er

vi
ng

ve
ril

at
or

sp
ee

do
m

et
er

2.
0

Av
er

ag
e

0

1

2

3

In
st

ru
ct

io
n

Fo
ot

pr
in

t
(M

B
)

Figure 3.4: Instruction footprint of all benchmarks

sance [64]); finagle-chirper (A microblogging service by Twitter, from Renaissance);

verilator [16] (simulates the RTL design of Rocket Chip [24] simulating quick sort code);

and speedometer2.0 (a Java Script benchmark runs on a web browser benchmark which

tests for the number of threads spawned in a minute [13]).

Benchmarks from the Tailbench suite are compiled using the default flags provided by the

suite. verilator benchmark was built from the code provided and also optimized further

using Facebook’s BOLT [61] binary optimization tool. All benchmarks were built on the

emulated environment described in Section 3.5.1. speedometer2.0 benchmark is simulated

on a Chromium web browser.

41

Since all benchmarks except verilator are multithreaded, we scaled them to a single

core (N = 1) for the evaluation on the simulator. To ensure that this simulation of a

multithreaded workload is meaningful, we looked for performance trend differences between

single core (N = 1) and multicore (N > 1) thread scalings on a real x86 Linux host machine

using hardware performance monitoring counters. We examined the data at the feature

level (e.g., branch misprediction rate), at the overall performance level, and according to the

methodology outlined in [79]. We determined with confidence that the single-core scaling of

these applications had the same workload characteristics as the N = 4 and N = 8 scalings.

Software thread scheduling during simulation is handled by the Linux thread scheduler in

Full System mode.

The benchmarks used exhibit various characteristics, as shown in Figure 3.3. specjbb,

kafka, and media-stream have very high L1D MPKI when compared to L1I MPKI. The

average L1D MPKI is higher than the average L1I MPKI. media-stream and kafka bench-

marks additionally have a higher L2 Data MPKI than L2 Instruction MPKI. However, the

average L2 Instruction MPKI (9.63) is much larger than the Data counterpart (2.69). Fig-

ure 3.4 shows the instruction footprints of all benchmarks. Instruction footprints are mea-

sured based on the total number of unique cache lines accessed by the application during

the simulation times the cache line size. tomcat has the highest footprint of 2.57 MB and

xapian has the lowest footprint of 0.29 MB. The average footprint of the selected workloads

is 1.05 MB. The chosen workloads were selected over the more traditional SPEC CPU work-

loads because they have larger code footprints and do not easily fit into the larger L2 caches

of modern processors. Also, these benchmarks have been used in many related works as

well [51, 49].

3.5.4 Policy Selection and Parameterization

Section 3.1 outlines a large space of possible cache replacement policies. To narrow the

design space to a small and meaningful set of policies, using an initial exploration, we first

42

P(N) S&E R(1/2) R(1/8) R(1/16) R(1/32) R(1/64) S&E&R(1/2) S&E&R(1/8) S&E&R(1/16) S&E&R(1/32) S&E&R(1/64) # Best
2 -0.350 -1.511 -0.460 0.216 0.053 0.166 0.116 0.947 0.969 1.245 1.548 0
4 1.946 -0.433 0.736 1.337 1.171 0.897 1.621 1.767 2.025 2.379 1.634 0
6 1.995 0.7 1.406 1.571 2.023 1.813 1.656 2.261 2.486 2.546 1.906 5
8 1.294 0.579 0.906 1.112 1.354 1.193 2.576 2.301 2.419 2.490 2.005 2
10 -0.020 -0.995 -0.247 -0.287 -0.173 -0.066 0.125 1.47 2.507 3.15 2.018 1
12 -3.275 -4.926 -4.072 -3.751 -2.927 -1.834 -2.378 2.07 2.153 3.063 2.235 0
14 -7.698 -10.941 -8.710 -7.269 -5.472 -3.628 -5.039 -0.087 1.878 3.241 2.385 2

Best - 0 0 2 2 3 1 0 1 4 1 -

Table 3.5: Geomean speedup with respect to a LRU + FDIP baseline (Alderlake model)
across all configurations for various values of r andN when run on a system with EMISSARY-
L2 Policy at L2 Cache

select a small set of desirable policy types and then find a reasonable set of configuration

parameters for these policy types. The useful representative policy types chosen are the ones

listed in Table 3.3. Ideally, we would like to find a single value of r and N that works well

across all policies. Based on prior work, we expect the best r to be from 1/2 to 1/64 [65].

For a 16-way cache, useful values of N are from 2 to 14.

Table 3.5 shows the geometric mean speedup across all programs for a ranch of r and

N values. The “#Best” row (or column) indicates the number of best configurations found

in each column (or row). An r value of 1/32 consistently gives the best results in many

cases. Prior work (M:R(r), BIP [65]) also suggests 1/32 or 1/64 as the value for r. Generally,

benchmarks reach peak performance when N is 8, except verilator, which continues to

improve as N goes to 14. Hence, we set N = 8 and r =1/32 for the evaluation.

3.5.5 Performance

Figure 3.5 shows the speedup versus MPKI (odd rows) and speedup versus change in starva-

tion cycles (Decode + IQ Empty) for committed instructions (even rows). For space reasons,

tpcc is omitted as its L2 instruction MPKI is quite low. Values of N shown range from 0 to

14 by 2. An N of 0 is equivalent to the baseline. Lines connect P(N) to P(N + 2) for each

N from 0 to 12.

Generally, when MPKI is greater than 1.0, performance increases, and starvations reduce

as N increases to 8 (i.e., half of the 16-way cache is preserved for high-priority instruction

lines). As N increases further, the performance gains decrease despite the consistent star-

43

vation reduction. This is because the L2 cache is shared by instructions and data. As

more ways get used by high-priority instruction lines, resources are constrained to data lines,

leading to more back-end stalls. See §3.5.8.

The results show that higher performance can come without much change in MPKI.

This is the central observation of all cost-aware cache replacement policy proposals, and

this observation is confirmed for the EMISSARY-L2 techniques. Not all cache misses in

modern out-of-order processors have the same cost. A significant portion of the misses can

be tolerated without degrading processor performance. Similarly, a significant portion of the

addresses that are latency-sensitive and cause decode starvations do so every time they are

accessed. EMISSARY-L2 handles both of these categories very efficiently. It assigns higher

priority to starvation-prone addresses, keeping them in the cache longer even if they are not

accessed frequently. EMISSARY-L2 gives lower priority to latency-tolerant addresses, but it

does cache them long enough to capture as much of their (belated) temporal locality.

The speedup and energy reduction of EMISSARY-L2 compared to other techniques over

the TPLRU baseline is shown in Figure 3.7. Overall, P(8):S&E&R(1/32), the preferred

EMISSARY-L2 configuration, yields a geomean speedup of 2.49% on all benchmarks, with

gains as high as 11.7% (verilator) and as low as -1% (finagle-chirper). Unlike others,

EMISSARY-L2 does not show any significant slowdowns.

Figure 3.7 also shows that EMISSARY-L2 policies outperform all of the others in terms

of speedup and energy savings. The preferred configuration, P(8):S&E&R(1/32), performs

consistently better than P(8):S&E. This is because the random filter tends to require lines

to prove themselves with multiple starvations before being marked high-priority. This filters

single reference lines very effectively, but it also filters single decode starvation lines just

as well. This is important because high-priority reservations should be allocated to lines

that starve with high probability and frequency, especially since an early single starvation is

possible due to branch mispredictions and warm-up as new regions of code are executed.

44

M:1 (LRU) M:R(1/32) (BIP)

Prior Techniques EMISSARY-L2Partial EMISSARY-L2

P(N):R(1/32) P(N):S&E P(N):S&E&R(1/32)M:0 (LIP) M:S&E M:S&E&R(1/32)

2 4 6

0%

5%

MPKI

(a) specjbb

0.15 0.2 0.25 0.3 0.35

−1%

0%

1%

MPKI

(b) xapian

10 15 20
−15%
−10%
−5%
0%
5%

MPKI

(c) finagle-http

10 15

−20%

−10%

0%

10%

MPKI

(d) finagle-chirper

−100% −50% 0% 50%

0%

5%

Change in Starvation w/
 Empty IQ on Commit Path

−40% −20% 0% 20%

−1%

0%

1%

Change in Starvation w/
 Empty IQ on Commit Path

−50% 0% 50%

−10%

0%

Change in Starvation w/
 Empty IQ on Commit Path

−50% 0% 50%

−20%
−10%

0%
10%

Change in Starvation w/
 Empty IQ on Commit Path

11 12 13 14 15

−10%

0%

MPKI

(e) tomcat

0.8 1 1.2

−2%

0%

2%

4%

MPKI

(f) kafka

2 2.5 3 3.5 4

−4%

−2%

0%

MPKI

(g) wikipedia

0.6 0.8 1 1.2 1.4

0%

1%

2%

3%

MPKI

(h) media-stream

−50% 0% 50%
−20%

−10%

0%

Change in Starvation w/
 Empty IQ on Commit Path

−40% −20% 0%

−2%
0%
2%
4%

Change in Starvation w/
 Empty IQ on Commit Path

−40% −20% 0% 20% 40%

−4%
−2%

0%

Change in Starvation w/
 Empty IQ on Commit Path

−40% −20% 0%

0%
1%
2%
3%

Change in Starvation w/
 Empty IQ on Commit Path

0.225 0.23 0.235
−0.1%

−0.05%

0%

0.05%

MPKI

(i) web-search

4 6 8

−5%

0%

MPKI

(j) data-serving

35 40 45

0%

10%

20%

MPKI

(k) verilator

0.7 0.75 0.8 0.85

−1%

−0.5%

0%

MPKI

(l) speedometer2.0

−2% 0% 2%
−0.1%

−0.05%
0%

0.05%

Change in Starvation w/
 Empty IQ on Commit Path

−50% 0% 50%
−10%

−5%

0%

Change in Starvation w/
 Empty IQ on Commit Path

−10% −5% 0% 5%

0%

10%

20%

Change in Starvation w/
 Empty IQ on Commit Path

−20% −10% 0% 10%

−1%
−0.5%

0%

Change in Starvation w/
 Empty IQ on Commit Path

Figure 3.5: Speedup vs. L2 Instruction MPKI and Speedup vs. Change in Decode Star-
vation cycles when issue queue is empty for instructions on the committed path. P(N)
techniques are shown as line segments with points corresponding to values of N from 0 to 14
in increments of 2. Lines connect P(N) to P(N+2). TPLRU (N = 0) serves as the baseline.

45

Replacement policies such as SRRIP [43], BRRIP [43], and DRRIP [43] are designed to

keep reused lines longer in the cache than the ones that are either used less frequently or

have no reuse. Figure 3.3 shows that the hit rate at L2 is very high compared to the miss

rate. In such a scenario, reused lines reach the highest priority state very quickly, and very

often, this is the case at L2 in the datacenter workloads studied. When all ways in a cache

set reach a high priority state, then the state of all lines is reset to a low priority state. In

SRRIP policy, a newly inserted line would stay in the cache longer than in BRRIP policy,

where only 3% of lines stay longer. BRRIP policy is detrimental when the newly inserted are

evicted before they can be promoted to a higher priority state. A dynamic policy DRRIP is

designed to reduce the negative effects of BRRIP and SRRIP. A dynamic policy dedicates

a small sample (32 sets) to each policy and decides the winning policy based on the policy

that contributes to fewer misses. Since the hit rate is much higher than the miss rate at

L2, deciding the winner based on the miss rate is detrimental in the datacenter workloads

studied. In a scenario where the L2 capacity is limited, the EMISSARY-L2 identifies a small

fraction of long reuse instruction lines that caused starvations in the processor pipeline and

preserves them in the L2 cache longer.

3.5.6 Contextualizing EMISSARY-L2’s Benefits

EMISSARY-L2’s impact is significant given how often the modeled architectures tolerate

L1I misses [40]. Prior work suggests that increasing the front-end performance of a modern

processor with a properly tuned FDIP front-end is extremely difficult [40, 41]. These works

show that FDIP alone outperforms the latest stand-alone prefetching policies such as EIP

(one of the top prefetchers in IPC-1) by 2.2% [41]. The authors further claim that a non-

realizable Perfect prefetcher provides just 5.4% of the performance gains [40, 41, 69]. The

EIP-128KB prefetcher improves FDIP performance by 4.3% [40, 41, 69]. It does this with

a significant hardware storage cost of 128KB. In contrast, EMISSARY-L2 provides up to

3.24% with only 4KB of additional storage.

46

To further contextualize EMISSARY’s performance, we compare EMISSARY-L2 to a

perfect and unattainable model with zero cycle miss latency for all capacity and conflict in-

struction cache misses in the L2. The aforementioned zero cycle miss latency model achieves

a geomean speedup of 15% over the FDIP baseline. EMISSARY-L2 achieves 21.6% of this

unrealizable gain with only 4KB of additional state.

Finally, we also compare EMISSARY-L2 to DCLIP, DRRIP, and PDP. These techniques

achieve geomean speedups of −2.48%, −2.9%, and −3.36%, respectively, when implemented

on top of the FDIP baseline for the workloads studied in this work.

3.5.7 Persistence, By Itself, Improves Hit Rate

Figure 3.5 shows that, in a majority of the programs, to a point, as N increases, L2 Instruc-

tion MPKI proportionately reduces. In other words, EMISSARY-L2 techniques not only

reduce starvation but MPKI as well. Even as the number of ways available to a signifi-

cant fraction of low-priority addresses is reduced, misses decline as well. This was observed

previously with the BIP technique [65] as well. With the prevalence of single reference (or

extremely long time between reference) addresses, dedicating fewer cache resources to such

lines makes way for lines that would otherwise miss. In this aspect, starvation acts as a filter,

increasing the probability of isolating such lines by assigning them low-priority. Put another

way, it helps reduce the extent to which these types of single reference lines can pollute the

cache.

3.5.8 Impact on Back-end Stalls

EMISSARY-L2’s impact on commit path front-end and back-end stall cycles is shown

in Figure 3.6. Specifically, it depicts the reduction in stall cycles of the preferred

P(8):S&E&R(1/32) policy when compared to the TPLRU baseline. Across benchmarks,

EMISSARY-L2’s impact on front-end stalls is more evident than its impact on back-end

stalls. This is expected as EMISSARY-L2 is applied specifically to instruction lines. Inter-
47

sp
ec

jbb

xa
pia

n

fin
ag

le-
ht

tp

fin
ag

le-
ch

irp
er

tom
ca

t
ka

fka tp
cc

wiki
pe

dia

med
ia-

str
ea

m

web
-se

arc
h

da
ta-

se
rvi

ng

ve
rila

tor

sp
ee

do
mete

r2
.0

Av
er

ag
e

-5%

0%

5%

10%
%

 r
ed

uc
ti
on

 in
 s

ta
ll

cy
cl

es

Commit Path FE Stalls
Commit Path BE Stalls
Total Stalls

11.5 14.75 13.55

Figure 3.6: Reduction in various stall types of P(8):S&E&R(1/32) with respect to the
TPLRU + FDIP baseline policy

estingly, many benchmarks show an increase in back-end stalls, but there is still an overall

reduction in total stalls.

3.5.9 Energy Savings

We used McPAT [55] to model the energy consumption of different cache replacement policies

explored. Fig. 3.7 shows energy savings for each benchmark and configuration. The energy

savings are strongly correlated with the speedups achieved because of the relatively small

amount of hardware added. In EMISSARY-L2 , there are only two bits added per cache line,

one to mark the priority set once on insert and an additional one for TPLRU set on access.

The EMISSARY-L2 P(8):S&E&R(1/32) configuration achieves a geomean reduction in the

overall energy of 2.12% (up to 17.67%).

3.6 Balancing Data Lines

The EMISSARY-L2 policy advocated for in this work has N = 8 maximum ways reserved

for high-priority instruction lines3. In a 16-way L2 cache, this policy reserves up to half

of the ways for instructions. As mentioned in §3.1, once a cache with an EMISSARY-L2

policy reaches N high-priority lines in a set, the number of high-priority lines can never be

reduced. In this section, we study the number of sets in the L2 cache that get saturated by
3Much of this content is common with [58], a work with co-authors

48

−
18
%

−
16
%

−
14
%

−
12
%

−
10
%

−
8%
−
6%
−
4%
−
2%0%2%4%6%8%

Speedup

M
:0

D
C
LI
P

S
R
R
IP

B
R
R
IP

D
R
R
IP

P
D
P

M
:R
(1
/3
2)

M
:S
&
E

M
:S
&
E
&
R
(1
/3
2)

P
(8
):
R
(1
/3
2)

P
(8
):
S
&
E

P
(8
):
S
&
E
&
R
(1
/3
2)

-2
3.

9

 -
22

.0
4

11
.6

7

sp
ec

jb
b

xa
pi

an

fin
ag

le
-h

ttp fin
ag

le
-c

hi
rp

er

to
m

ca
t

ka
fk

a
tp

cc

wiki
pe

di
a m

ed
ia

-s
tre

am

web
-s

ea
rc

h

da
ta

-s
er

vin
g

ve
ril

at
or sp
ee

do
m

et
er

2.
0

G
eo

m
ea

n
−

18
%

−
16

%
−

14
%

−
12

%
−

10
%

−
8%
−

6%
−

4%
−

2%0%2%4%6%8%

Reduction in Energy

8.
8

-2
0

 -

18
.4

Fi
gu

re
3.
7:

Sp
ee
du

p
an

d
En

er
gy

R
ed
uc
tio

n
of

a
ra
ng

e
of

te
ch
ni
qu

es
re
la
tiv

e
to

T
PL

RU
+

FD
IP

ba
se
lin

e
po

lic
y

49

P(8):S&E P(8):S&E&R(1/32)
0%

20%

40%

60%
%

 o
f

to
ta

l s
et

s 0
1
2
3
4

5
6
7
8

Figure 3.8: Distribution of high-priority lines across all sets when guided by P(8):S&E and
P(8):S&E&R(1/32) policies, averaged across all benchmarks at the end of simulation.
high-priority instruction lines (i.e., 8 lines in a set are dedicated to instructions) and propose

methods to minimize their impact on caching data lines.

Figure 3.8 shows the distribution of the number of cache lines occupied by high-priority

lines when using the P(8):S&E and P(8):S&E&R (1/32) policies among all sets in the

L2 cache at the end of the simulation averaged over all programs. With P(8):S&E,

finagle-chirper, tomcat, tpcc, and verilator saturate (reaches N) for all sets. Less

than 25% of all sets observe saturation with the highly selective (and more desirable)

P(8):S&E&R(1/32) policy. In simulations of 1B instructions, resetting all P = 1 bits every

128M instructions has a negligible impact on performance.

50

Chapter 4

Criticality-Aware Instruction

Prefetching

4.1 Introduction

Modern data center and cloud applications are becoming increasingly complex, featuring

a code stack that spans several layers of software. As a result, these applications often

exhibit instruction footprints much larger than the instruction cache, often even the L2

cache. Moreover, the trend is continuing toward even larger instruction footprints [45, 25].

Applications with such large code footprints are typically dominated by front-end bottlenecks,

as shown in Figure 4.1, which analyzes one important, representative workload (top-down

analysis [78] obtained on Alderlake desktop CPU using Intel’s VTune profiler [7]). This shows

three times as many issue slots lost to front-end bottlenecks than slots used for instructions

that actually commit. Large code footprints put enormous strain on the instruction cache

(L1I), with capacity misses inducing a large number of stalls [45] in the instruction fetch unit.

This limits the number of useful instructions flowing into the pipeline backend. Increasing

the cache size can address this problem, but at a large area and power cost, and creates

implementation challenges related to meeting strict timing constraints, as the L1I sits on

51

16.9%

53.6%

10.6%

18.9%

Retiring Front-End Bound Bad Speculation
Back-End Bound

Figure 4.1: Top-down issue slots breakdown of cassandra benchmark on Alderlake host
machine.

the critical path. Prefetching has the potential to address this bottleneck at a lower cost [33,

34, 25, 50, 56, 47, 73]. However, these techniques have been less effective for datacenter

and cloud workloads that exhibit instruction footprints several orders of magnitude larger

than traditional server applications [53, 48, 54]. Modern processors implement a decoupled

front-end, aka fetch directed instruction prefetching (FDIP) [66], as an attempt to remedy

this problem [62, 37, 72, 20]. With FDIP, the L1I fill is disassociated from its demand access,

thus allowing the front-end to aggressively prefetch along the predicted path with very little

sensitivity to decode and back-end back-pressure. This allows the FDIP prefetcher to hide

most or all of the latency of L1I misses.

FDIP dramatically changes both the access/miss pattern seen by the L1I, and the criti-

cality of misses (some misses are completely hidden by FDIP, others are not). Recent work

on instruction prefetching [69, 38, 22, 59, 52, 35, 75, 23] have shown they can be effective in

52

reducing misses, but either fail to account for the existence of FDIP or the variance in the

criticality of those misses. This work, in contrast, seeks to augment FDIP with a new in-

struction prefetcher that focuses on only those misses whose latency is not already tolerated

by FDIP. The defining characteristic of those misses is often their distance from a branch

mispredict (or other front-end mispredict/hazard). Misses far removed from a mispredict are

typically fully covered by the FDIP prefetch with its ability to run far ahead. Misses that

occur shortly after mispredicted branches are typically not hidden. This chapter presents

Priority Directed Instruction Prefetching (PDIP), a novel instruction prefetching technique

that complements FDIP, only issuing prefetches for targets known to be front-end critical,

or FEC ; that is, misses that in the past have truly resulted in front-end stalls because they

were insufficiently hidden by FDIP. Prior work (EMISSARY-L2 [58]) showed that front-end

criticality could be used to design a more effective instruction cache replacement algorithm.

In this work, we also show that even in the presence of a FEC-based replacement policy,

many FEC misses remain. Thus, an FEC-based prefetch mechanism can augment, and even

be synergistic with, an FEC-based cache. In PDIP, cache lines are marked FEC if a prior

miss occurred along a resteered (i.e., after branch misprediction) predicted path, and exposed

the front-end to one or more stalls. PDIP only considers those lines as prefetch candidates.

In addition, we need a trigger to initiate prefetches. This work shows that we can

associate FEC cache lines with an instruction that caused a disruption of the front-end

(since it requires a disruption to empty or stall the Fetch Target Queue, preventing FDIP

from hiding the latency). Thus, PDIP achieves timely prefetch by triggering the prefetch of

FEC cache lines when it sees the associated instruction. In summary, this work makes the

following contributions:

• We describe the design of PDIP and show how it addresses two key issues imped-

ing instruction prefetching today, namely low prefetch effectiveness and high storage

requirements.

53

• We present an evaluation of PDIP alongside a best-effort evaluation of EIP (Entangled

Instruction Prefetcher) [69]. To the best of our knowledge, EIP is the first instruction

prefetching work to consider FDIP. Using a series of 16 large footprint workloads on a

detailed processor simulator modeled after a Golden Cove machine [17], we demonstrate

a geomean IPC gain of 3.2% across all benchmarks for only 43.5 KB storage cost for

PDIP, against a gain of 1.5% for EIP at similar hardware budget.

• We show that even in the presence of a front-end criticality based cache replacement al-

gorithm such as EMISSARY-L2 [58], PDIP is still able to provide great value, realizing

a geomean IPC of 3.7% across all benchmarks.

4.2 Background

This section provides background knowledge of decoupled front-end microarchitectures and

their implications on instruction prefetching techniques. It also describes prior work [58] on

front-end criticality-aware cache replacement.

4.2.1 Decoupled Front-end

Figure 4.2 shows a decoupled front-end machine where the instruction fetch unit (IFU) is

decoupled from the instruction address generator (IAG) via the Fetch Target Queue (FTQ).

The branch prediction unit (BPU), a part of the IAG, includes the conditional branch pre-

dictor, the direct jump address predictor (aka BTB), the indirect jump predictor, and a

return address stack, all feeding the IAG to speculatively compute the address of the next

instruction block to be fetched. The FTQ is a FIFO queue that is filled with the targets

computed by the IAG along the predicted path. The cache lines en-queued in the FTQ are

prefetched into the L1I. Thus, non-resident instruction blocks can be prefetched into the L1I

when the address enters the FTQ rather than on demand when the address reaches the IFU.

54

It is common for the IAG to exceed the throughput of the backend, keeping the FTQ full in

the absence of squashes in the pipeline.

An important component in a decoupled front-end machine is the depth of the FTQ,

which determines how far the predicted instruction stream (which drives the prefetching)

can get ahead of the actual fetch demand. A sufficiently large FTQ offers a deep enough

instruction prefetching window such that a full L1I miss, and possibly even an L2 miss, can

be tolerated without stalling the IFU. This assumes the FTQ is full, given that the BPU

nearly always sustains a higher throughput than the backend, the FTQ is generally full in

the absence of FTQ resetting events (e.g., branch mispredicts). Modern decoupled front-

end processors, therefore, implement deep FTQs to get the most benefit from prefetching

and tolerate cache miss latency. The importance of FTQ in the context of instruction

prefetching was amply discussed in [40]. The authors show that most of the performance

benefits obtained with recent instruction prefetching proposals [69] vanish with a decoupled

front-end machine implementing a modest 24-entry FTQ. The key insight here is that in

the presence of FDIP, which has the potential to hide the full latency of the majority of

misses, we see high variance in the performance-criticality of L1I misses. Some misses have

no impact on front-end (or, naturally, backend) performance, while others still do. In this

work, therefore, we show that limited prefetching resources should be focused on only the

latter, the front-end critical (FEC) misses. A line is considered as FEC when it meets the

following conditions: (1) the line must have retired an instruction, (2) the line must have

missed the instruction cache, and (3) the line must have produced front-end stalls as a result

of the miss.

4.2.2 Front-end Critical Cache Replacement

While this work is the first to consider front-end criticality in the prefetcher, in this section,

we describe work that accounts for FEC misses in the cache itself.

55

D
em

an
d

Fe
tc

h

BP
U

NIP

Fe
tc

h
En

gi
ne

FT
Q

D
ec

od
e

Ba
ck

-
en

d

Br
an

ch
 R

es
te

er
 A

dd
re

ss

Fr
on

t-e
nd

IA
G

IC
ac

he
Pr

ef
et

ch
 R

eq

IF
U

Fi
gu

re
4.
2:

G
en
er
ic

de
co
up

le
d
fro

nt
-e
nd

m
ic
ro
ar
ch
ite

ct
ur
e

56

The EMISSARY-L2 [58] cache replacement policy identifies lines as front-end critical,

and gives such lines priority in the replacement policy.

The main idea behind EMISSARY-L2 is to preserve the FEC instruction lines in the L2

cache. Lines identified as priority L2 cache lines in that work (which we call FEC lines in

this chapter) are given higher priority for retention at eviction over the lines that are not

preserved (non-priority lines). Each cache block has an additional status bit called P-bit

(Priority).

Information pertaining to front-end stall exposure and cache miss are collected at decode

time and cache access time, respectively, and then propagated to the retirement stage. Then,

when a line retires an instruction, these conditions are checked, and the decision to label the

line is made.

The EMISSARY-L2 policy shields up to n ways per set. They show that protecting up to

8 ways shows the best performance, which is also confirmed by our exploration. FEC lines

are promoted in an EMISSARY-L2 cache by setting their corresponding P-bit. To avoid

over-promotion of FEC lines, only 3.125% of all FEC lines are promoted. This helps it avoid

over-reacting to single-instance FEC lines.

In this paper, we show that PDIP is synergistic with EMISSARY-L2 in two ways. First,

there is a physical synergy – we only need one mechanism to identify FEC misses, and we

can exploit it either in the cache [58] or the prefetcher (this work), or both. Second, the

two techniques do not redundantly attack the same problem, but rather are complementary

– PDIP provides higher gains in a system with FEC-aware caches than in a system without.

4.3 Do We Need Another Prefetcher?

EMISSARY-L2 seeks to remove the most damaging (i.e., front-end critical) misses from the

front-end, and improves overall performance as a result. Figure 4.3 shows improved front-end

performance with an EMISSARY-L2 cache on top of FDIP, which exceeds the gains from

57

ca
ss

an
dr

a

to
m

ca
tka

fk
a

xa
la

n
fin

ag
le

-h
tt

p

do
tt

y
tp

cc
yc

sb
tw

itt
er

vo
te

r
sm

al
lb

an
k

ta
tp

si
be

nc
hno

op
ve

ri
la

to
rsp

ee
do

m
et

er
2.

0

G
eo

m
ea

n

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

2
X

 I
L1

E
M

IS
S

A
R
Y-

L2
E
IP

-A
n
a
ly

ti
ca

l
E
IP

+
E
M

IS
S

A
R
Y-

L2
FE

C
-I

d
e
a
l

Speedup wrt FDIP

9
.9

2
2

.9

Fi
gu

re
4.
3:

Pe
rfo

rm
an

ce
ga

in
of

va
rio

us
pr
io
r
te
ch
ni
qu

es
on

al
lb

en
ch
m
ar
ks

58

doubling the size of the L1I. However, this performance still falls far short of FEC-Ideal,

which represents a front-end where every FEC line (as defined in the previous section) is

fully hidden. This argues that there is still much to be gained by better handling these

misses, and there is likely a role for an additional prefetch engine.

Also included in Figure 4.3 is the current state-of-the-art front-end prefetcher, EIP. In this

figure, EIP-Analytical represents the performance-oriented version of the Entangling Instruc-

tion Prefetcher (EIP [69]) with a very large entanglement table (>200KB) that consumes six

times the resources of the L1-I. FEC-Ideal refers to a system with an EMISSARY-L2 cache

at L2, but where EMISSARY-marked FEC lines are always delivered with the fast latency

of the L1I cache. EMISSARY-L2 policy is the EMISSARY-L2 cache at L2 with 8 protected

ways per set and 2X IL1 is the configuration with L1I twice (64KB) the size of the baseline

configuration (32KB). As shown in the figure, EIP-Analytical outperforms EMISSARY-L2

but still falls short of FEC-Ideal. Furthermore, when EIP and EMISSARY-L2 are combined,

they can end up hurting performance if they are not designed to complement each other.

This not only underscores the need for a better prefetcher but one that works in conjunction

with a FEC cache replacement policy such as EMISSARY-L2 .

Figure 4.4 shows FEC lines of each benchmark as a percentage of all instruction lines

accessed in the retired path (first bar) and decode starvation cycles caused by FEC lines

compared to total decode starvation cycles (second bar). It shows that only 10% of lines

(the FEC lines) are causing 62% of decode starvation cycles. FEC lines that cause more

than ten cycles of decode starvation we call high-cost FEC lines, which constitute 5.08%

of all lines. Most of those (4.26% of the total) also result in an issue queue empty signal,

which means the back-end is also stalling. High-cost FEC lines contribute to 56.15% of all

decode starvation cycles. High-cost FEC lines with back-end stalling contributes to 46.83%

of decode starvation cycles. This demonstrates we can focus our prefetcher on a very small

subset of fetched lines but still achieve most of the available gain.

59

ca
ss

an
dr

ato
mca

tka
fka

xa
lan

fin
ag

le-
ht

tp

do
tty

tp
cc

yc
sb

tw
itt

er
vo

te
r

sm
all

ba
nkta
tp

sib
en

chno
op

ve
rila

to
rsp

ee
do

met
er

2.0

Av
er

ag
e

0.
0

20
.0

40
.0

60
.0

80
.0

10
0.

0

%
 N

on
 F

EC
 li

ne
s

%
 F

EC
 li

ne
s

%
 N

on
 F

EC
 li

ne
 d

ec
od

e
st

ar
va

tio
n

cy
cle

s
%

 F
EC

 li
ne

 d
ec

od
e

st
ar

va
tio

n
cy

cle
s

Fi
gu

re
4.
4:

Fi
rs
t
ba

r
sh
ow

s
th
e
dy

na
m
ic

nu
m
be

r
of

FE
C

lin
es

as
pe

rc
en
ta
ge

of
to
ta
l
lin

es
.

Se
co
nd

ba
r
sh
ow

s
th
e
de
co
de

st
ar
va
tio

n
cy
cl
es

ca
us
ed

by
FE

C
w
.r.
t
to
ta
ld

ec
od

e
st
ar
va
tio

n
cy
cl
es
.

60

4.4 PDIP

In designing a prefetcher for an FDIP-equipped processor, it is important to understand

that FDIP already represents a highly effective prefetcher. Thus, any new prefetcher must

be carefully designed to complement FDIP rather than run independently. This section de-

scribes PDIP, our Priority Directed Instruction Prefetcher, which identifies specific instances

where FDIP’s effectiveness at prefetching instructions is impaired, such as on the recovery

path of a mispredicted branch, as illustrated in Figure 4.5.

Re-steer

Cost

a b p q

Mispred

c d

Wrong path
execution

r

L1I Miss

Figure 4.5: An example showing a sequence of instructions. Each box shown represents one
instruction. Dashed boxes are the instructions in the wrong path and dashed line shows
wasted cycles due to resteering along with the cost of a miss in instruction cache

In the case of a mispredicted branch, the front-end pipeline is flushed, including the FTQ;

thus, the latency of cache misses on the resteer path of a branch is exposed and cannot be

tolerated by FDIP because they appear in the empty or near-empty FTQ with insufficient

lead time to prefetch them effectively. PDIP attempts to select both the right prefetch

candidate, e.g., block r in the figure, and identify the appropriate trigger instruction for the

prefetch candidate, e.g., block b in the figure. In this way, PDIP essentially jump-starts the

FTQ, prefetching instruction blocks before their addresses appear in the FTQ, but only for

those blocks whose addresses will appear in the FTQ; it is too late to prefetch effectively.

4.4.1 Selecting Prefetch Candidates

Drawing from the insight that the performance criticality of the instruction cache misses

is highly variable, PDIP only considers prefetch candidates among lines identified as high-

cost FEC line, which also experienced back-end stalls. This serves two purposes. First,
61

because most instruction cache lines never reach FEC status, the number of unique prefetch

candidates to track is, in most cases, limited, heavily reducing storage cost requirements

compared to prior works [69, 22, 23, 75]. Second, by considering prefetch candidates only

among FEC lines, PDIP filters out a significant number of unnecessary prefetches, improving

its effectiveness.

4.4.2 Selecting a Trigger Instruction

We will use the example in Figure 4.6 to illustrate how PDIP finds a trigger and associates

it with a prefetch candidate.

As discussed in the previous section, PDIP selects its prefetch candidate exclusively

among FEC lines. Based on the conditions for promoting a line to FEC status (same as [58]),

the line must have met three conditions. It is exposed to front-end stalls after missing in

the instruction cache and the line must have retired at least one instruction (the line was

not fetched on the wrong path). In the figure, for example, when the block labeled r retires

the first time (see Retire column in First Instance), it has missed in the cache after it has

been exposed to pipeline bubbles. Block r is therefore considered by PDIP as a prefetch

candidate.

Because FDIP-fetched lines should be fully hidden in a full, large FTQ, and because the

FTQ should be full when execution is sufficiently removed from a resteer event (a resteer

event is one that resets and redirects the front-end, emptying the FTQ), this implies that

a miss that incurs front-end stalls has been fetched in the wake of a resteer event. In our

example, block r in the figure sits on the resteer path of the instruction that caused the FTQ

to be flushed – block b, which was mispredicted and caused a pipeline flush.

PDIP, therefore, associates the trigger instruction of the prefetch candidate, i.e., block r

in the figure, to the front-end resteering instruction, i.e., block b. PDIP picks the front-end

resteering instruction according to the type of front-end stall event. There are a couple of

categories of events that can expose L1I misses to front-end stalls. The first are those that

62

a

p

q

c

d

a

b

b

Fetch
Decode IEW Retire

a

b

c

dp

q

p

q

Pr
om

ot
e

r t
o

FE
Cr

b r

In
se

rt
(b

,r)
 in

PD
IP

 T
ab

le

Ti
m

e

a

p

q

c

d

r

b

b

a

b

c

dp

q

p

q

r

r

pr
ef

et
ch

 r

a

r
r

Lookup b

r

hi
t

Fetch
Decode IEW Retire

First Instance Second Instance

PDIP Table
Update and Access

Retiring Instruction

Mispredicting Branch

Wrong path Instruction

Cache Miss InstructionPipeline bubble

Action

Figure 4.6: An example showing sequence of instructions in the processor pipeline.

cause a resteer (flush) of the front-end. These include branch mispredicts (including BTB

target mispredicts) and BTB misses. These each expose the front-end to stalls because when

the FTQ is empty, the interval between prefetch (FTQ entry) and demand fetch will be too

short. The other category is latencies that exceed the ability of the FTQ to hide. This

includes L1I misses that miss in both the L1I and the L2 (and possibly L3 as well). These

will also be marked as FEC because they incur front-end stalls even in the presence of a

full FTQ. It should be noted that we also experimented with instruction TLB misses as a

63

trackable event that can also expose the front-end to cache-miss-related stalls, but saw no

performance gain in doing so, so these results are not included. But it is possible that other

workloads would be sensitive to those.

For front-end stalls due to control flow mispredicts, PDIP identifies the trigger instruction

as the mispredicting branch instruction, e.g., block b in the figure, or the instruction missing

in the BTB. For front-end stalls in the absence of a resteer event (i.e., long-latency misses)

PDIP identifies the trigger instruction as the last taken branch instruction that was retired.

The trigger instruction (block b in our running example) and its prefetch candidate (block

r) are tracked by means of a PDIP table. The table is accessed once per new FTQ entry

since an FTQ entry represents a basic block (see block b under the Fetch column in Second

Instance). On a match, a prefetch to the associated target address is issued, e.g., prefetch r

in the figure, which eliminates the bubble observed previously, as shown in the figure with

the block r retiring without encountering a bubble in the Second Instance.

4.4.3 Synergy between PDIP and FDIP

FDIP hinges on the ability of the BPU to predict a stream of instruction addresses that the

IFU can then prefetch into the instruction cache. The control flow prediction structures in a

BPU, namely the BTB and the various history tables, are therefore critical to FDIP efficiency

since they all contribute in some form to the BPU accuracy. The BTB keeps track of taken

branches and provides a target prediction, while the history tables are used to produce

a direction prediction for these branches. FDIP outperforms other prefetch mechanisms

because the stream of predicted instruction addresses is the highest quality prediction of

future L1I accesses available.

Data center and cloud workloads put enormous strain on these control flow prediction

structures that are not sufficiently provisioned to handle their large code footprints. The

BTB, for instance, is not large enough to track all taken branches, and the history tables

are not big enough to capture enough state to produce a prediction for each such branch

64

with high confidence. For FDIP, this translates to reduced opportunities to prefetch down

the BPU predicted path since these branch mispredicts cause a pipeline flush of front-end

structures.

Worse, these large-footprint applications also place tremendous pressure on the L1I. Thus,

as FDIP loses effectiveness due to the increased pressure on the branch predictor, the problem

that FDIP is trying to solve (L1I misses) is also exacerbated. Put another way, with FDIP,

the cost of a mispredict is threefold – the traditional two costs (the cost of squashing the

wrong path and the cost of refilling the pipeline) plus a new one, the exposure to front-end

L1I misses that FDIP can no longer tolerate. And as the code footprint continues to increase,

the third cost can begin to dominate.

BPU

ICache

FTQ

PQ

L2

PDIP

PDIP
Table

NIP

Frontend Backend

Decode
IFU

Figure 4.7: PDIP Pipeline showing new components added in gray blocks

65

4.5 Design Implementation

Figure 4.7 shows the main PDIP building blocks and how they integrate into a decoupled

front-end processor. The BPU feeds the PDIP controller with the block address of a branch

on a BTB hit or the block address of the Next Instruction Pointer (NIP) on a miss. The PDIP

controller uses this address to index the PDIP Table to retrieve the address of a prefetch

candidate. This address is expanded to a full physical address and sent to a Prefetch Queue

(PQ). PQ enqueues the address only if there is a free entry and enough MSHR registers to

handle demand requests; otherwise, the address is dropped. This is done to ensure demand

requests are not penalized by aggressive prefetching. PQ probes the instruction cache with

each entry and only sends a prefetch request to the next level cache on a probe miss and if

there are still enough MSHR registers available; otherwise, the request is also dropped. A

threshold of 2 entries is used to ensure demand accesses are not penalized. We empirically

determined this value works best for our workloads.

4.5.1 PDIP Table

The PDIP table associates a prefetch candidate with a front-end stall-causing instruction,

i.e., the trigger instruction. When the front-end stall-causing event is caused by a control

flow hazard, the trigger is always a branch instruction. In the case of a long-latency miss, we

choose the last taken branch as the trigger. In practice, however, we associate the prefetch

candidate with the block address of the trigger instruction instead of the PC address of the

trigger. Table insertion or look-up, therefore, uses a block address. This allows the PDIP

Table to still be able to retrieve entries that miss in the BTB.

TAG FEC Line 1

b r

LRU

1

Mask

1 1 0 0

FEC Line 2 Mask

0 0 0 0

Figure 4.8: A PDIP Table with two targets per entry

66

Because a block may contain more than one branch, it is possible that more than one

prefetch candidate also maps to the same entry in the table. Thus, each entry in the table

contains multiple prefetch targets. Each target can also indicate any of the following four

cache blocks in the address space for prefetching via a 4-bit mask when they share the same

trigger. This provides compaction and nicely handles basic blocks that span multiple cache

lines. We show the design of the PDIP Table in Figure 4.8. A set associative table design

is used to reduce conflict misses. All configurations of the PDIP table we evaluate use fixed

512 sets, and we vary the associativity appropriately. We validated that using a 10-bit tag

reduces aliasing considerably.

The FEC line address field stores the physical address of a prefetch candidate. Mask bits

in the example represent the third and fourth following blocks; thus, when triggered, block

r, r+3*blocksize, and r+4*blocksize would be prefetched.

4.5.2 Optimizing Table Size

An indirect branch could potentially lead to a different target each time it executes. Similarly,

a return instruction could jump to a different address each time the same function is invoked

in a different calling context. We choose to ignore return jumps to reduce pollution in the

table, but other indirect branches are inserted.

To improve prefetch accuracy, in addition to the tag, we also experimented with aug-

menting the table with path information of the last three branches leading to the trigger. A

prefetch candidate is fed to the PQ only if both the TAG and path information match. The

performance gains obtained (not reproduced here) were not significant enough to justify the

added complexity of the design.

4.5.3 Optimizing Table Occupancy

Even focusing the prefetcher only on FEC lines, we still found some cases with significant

cache pollution. Thus, we examined two mechanisms to reduce pollution with minimal
67

impact on the most effective prefetches, and both work by inserting lines more selectively

into the PDIP table. First, we insert only high-cost FEC lines that cause back-end stalls

in the table. Second, we insert into the table with a reduced probability – in this way, a

line marked FEC once is less likely to be inserted, but any line repeatedly marked will be

inserted. We examined probabilities from 1 to .03 and found .25 to provide the best overall

gains.

4.5.4 Hardware Storage Overhead

The Metadata of PDIP involves two components: an augmented cache to track FEC lines

and the PDIP table, which stores the triggers and targets. The storage overhead of the bit

to identify FEC lines (included in EMISSARY-L2 , but also used by PDIP) in both the L1I

and L2 would be about 4 KB for our configuration. Our default PDIP table configuration

has 512 sets, an 8-way set associativity with two physical address targets, and a 4-bit offset

mask per entry. Table sizes are scaled by increasing associativity. Each target requires 34

bits of physical address, each tag is 10 bits, one LRU bit is used for each way, and 4 bits of

mask per target, which results in 356352 bits (43.5KB) of storage for a table with 512 sets

and eight ways.

4.6 Simulation Methodology

This section provides a description of the simulation infrastructure, the large code footprint

workloads, and policies used to evaluate PDIP.

4.6.1 Simulation Model

Our baseline CPU configuration is modeled after a Golden Cove [17] (commercially known

as Alder Lake) CPU core microarchitecture using the gem5 [27] simulator. Table 4.1 shows

some of the key parameters modeled in this study. Workloads are simulated using an out-

68

of-order, execution-driven CPU model (O3CPU) in Full system simulation, which models

a full operating system (Ubuntu) and are running multi-threaded JAVA applications. The

O3CPU models the wrong path execution.

The workloads are first warmed up for approximately 10 million instructions, during

which time the caches, branch predictor, and other structures are also warmed up. After

this warm-up period, the simulation switches to detail mode (O3CPU) and runs for a further

100 million instructions.

4.6.2 Baseline Description

A key contribution and distinguisher of this work is the fact that we faithfully model a very

aggressive processor front-end, extending gem5’s O3CPU model to implement Fetch Directed

Instruction Prefetching (FDIP), thus supporting a decoupled front-end. Since performance

of FDIP directly correlates with the accuracy of the branch predictor, we made improvements

to the BPU of gem5 by adding an ITTAGE indirect predictor [44], using a large BTB (8K

Entries) and fixed several bugs. We have added support to the BPU indirect predictor and

the BTB to enqueue the predicted cache lines into the FTQ. The FTQ can directly issue

prefetches in the L1I. We also model a prefetch queue (PQ) alongside the FTQ to support

various prefetch policies explored in this paper. To ensure we don’t have duplicate prefetches,

targets are checked against the FTQ before issuing a prefetch. Control flow resteers would

flush the FTQ before resuming fetch from the correct path. As gem5 is execution-driven,

the wrong path effects of such resteers are also accurately modeled. We have also added an

early correction feature in the front-end where a branch PC is pre-decoded at the time of

fetch to identify bogus branches in the BTB and resteer the FDIP pipeline. Our updated

FDIP model provides a 27.1% improvement over the standard O3CPU model without FDIP.

We use a 24-entry FTQ in our baseline (each entry represents a basic block), which strikes

a balance between being deep enough to tolerate miss latency while preventing the front-

end from being overly aggressive and introducing negative effects. FDIP is a structural

69

change to the front-end pipeline of the processor and has been a key feature in the industry

for over a decade. Thus, we believe any front-end CPU microarchitecture work has little

relevance without FDIP and should build upon this baseline with FDIP. We utilized our

FDIP-supported gem5 as the baseline for all experiments presented in this study – thus

addressing the concerns raised by Ishii et al. [40] on the need for a representative baseline

in academia.

Field \ Model Alderlake like
ISA X86
Private L1-I Cache 32kB (8-way, 64B)

2 cycle hit, 16 MSHR
Private L1-D Cache 64kB (16-way, 64B)

2 cycle hit, 16 MSHR
Private L2 Cache 1MB (16-way, 64B)

10 cycle hit, 32 MSHR
Shared L3 Cache 2MB (16-way, 64B)

20 cycle hit, 64 MSHR
Branch Predictor TAGE (64KB)[76]/

ITTAGE(64KB)[74]
BTB size 8K entries (119.01 KB)
FTQ 24 entry [40]
Prefetch Queue 40 cachelines
Decode/Retire 12 wide
ROB Entries 512
Issue/Load/Store 194/ 144 / 112
Queue
Int/Vec Registers 448 / 400

Table 4.1: Processor configurations

4.6.3 Benchmarks

We use 16 widely used client-side and server-side multi-threaded workloads with large code

footprints to evaluate PDIP. Table 4.2 contains all front-end heavy benchmarks used from

various benchmark suites [28, 64, 29, 21, 5]. Benchmarks with an L1I MPKI of over 20 are

used in this work. We validated characteristics of these workloads by Top Down analysis

using Intel’s VTune on a Linux System with Alderlake CPU.
70

Benchmark Suite Benchmarks
DaCapo [28] cassandra [1], tomcat [4],

kafka [2], xalan
Renaissance [64] finagle-http [15] , dotty [6]
OLTB Bench [29] tpcc [14] , ycsb [18], twitter,
(PostgreSQL [9]) voter, smallbank, tatp,

sibench, noop
Chipyard [21] verilator [16]
Browser Bench [5] speedometer2.0 [13]

Table 4.2: Benchmarks used to evaluate PDIP.

4.6.4 OS and IO bottlenecks : Full System

In a Full System simulation, OS and IO bottlenecks could impact the overall performance.

Thus, we spent significant time minimizing noise from OS (scheduler interrupt) and IO (disk

interrupts) to ensure negligible (on average less than 0.2%) divergence in OS effects between

runs. For example, one trick we deploy is to use “retired instruction counts” rather than

cycle counts to drive the OS scheduler quantum, thus producing far more repeatable runs

even when the optimizations produced different timing characteristics. The OS scheduler

decides which process thread to schedule on available CPUs. To reduce noise, we use a real-

time scheduling policy for the benchmarks with 100% of CPU time dedicated to real-time

processes. Another cause of divergence is due to IO events. A process waiting on IO is

usually switched out to allow other processes to use CPU resources. In order to reduce the

variability introduced by IO events, we used very low latency for disk IO operations so that

a process would not need to switch out while waiting for the disk. Even after using these

and a few other tricks, we still observe negligible divergence caused by pending instructions

in the CPU pipeline from the time an interrupt is received.

4.6.5 Policies Evaluated

EMISSARY-L2 offers two main configuration knobs, namely the number of FEC ways per

set and a random probability to actually promote lines identified as FEC. We empirically

71

found promoting FEC-qualified lines at retirement with a random probability of 1/32 and

reserving eight ways in the L2 provides the best performance across our benchmark suite.

Unless otherwise stated, then, we assume that FEC-qualified lines are promoted at retirement

with a 3.125% probability, and the L2 cache preserves eight ways for FEC lines.

We evaluate PDIP alongside two other configurations. The first one, 2X IL1, is similar to

our baseline but with twice the size of the L1I. The main idea with 2X IL1 is understanding

the tradeoffs between increasing cache size vs. investment in new approaches. The second

configuration is EIP [69], a recent instruction prefetching mechanism. That work evaluated

EIP using the ChampSim [19] simulator. In this work, we model 2 versions of EIP in

gem5, which enables a more faithful model of FDIP and, unlike ChampSim, accurately

models wrong path execution. EIP-analytical is an analytical model that relaxes practical

considerations. For instance, we assume accessing the entangling table and prefetching the

entire basic block for each dst_entangled entry is done in one cycle. We model a history

buffer with 40 entries and an unlimited entangling table. A history buffer size of 1024 was

considered, but it did not provide any improvement over 40 entries. Thus, we used a 40-entry

history buffer for all configurations of EIP. The entangling table is updated in the commit

stage of the pipeline to avoid wrong path accesses polluting the table. The history buffer

is implemented in the commit stage to contain only those entries in the correct path. L1I

miss latencies are captured at fetch but used at commit to compute entangling distances.

To avoid misses in the instruction TLB, the full physical address is stored in the entangling

table. Similar to the PDIP pipeline, if the PQ is full, then any new prefetch request will be

dropped. We also implement other prefetchers, EIP(S), that have stricter storage budgets

(i.e., S KB).

The different policies evaluated are summarized in Table 4.3. We measure performance

relative to baseline in Instructions Per Cycle (IPC), and we use Geometric Mean for the

mean IPC speedup.

72

Policy Name Description
Baseline Golden Cove like core
EMISSARY-L2 Priority Ways{L2(8-ways)}
PDIP(S) PDIP with S KB PDIP Table
EIP-Analytical Analytical model of EIP [69] with

large storage budget for performance
EIP(S) EIP prefetcher with S KB storage
2X IL1 64KB Instruction Cache

Table 4.3: Policies Table

4.7 Evaluation

We evaluated the benchmarks discussed in Section 4.6.3 on the policies described in Table 4.3

using the following metrics: IPC, prefetch accuracy, prefetch coverage, and prefetch rate per

kilo instructions. We examine multiple PDIP Table sizes.

Figure 4.9 provides data on our benchmark set, showing absolute MPKI when running

on our baseline configuration. Average MPKI on the instruction cache, L2 instruction-side

and L3 are very high, about 85.9, 12.4 and 3.06, respectively.

4.7.1 Performance Analysis

Figure 4.10 shows relative IPC gains across our benchmarks for the policies in Table 4.3. A

PDIP Table of 512 sets and 8-way associativity is used in PDIP(44). In most benchmarks,

PDIP(44) matches or outperforms EIP-Analytical while maintaining practical implementa-

tion considerations and utilizing five times less storage. The PDIP(44) shows a geomean

speedup of 3.15% over the FDIP baseline as compared to a 1.5% speedup of EIP(46) at a

similar storage budget.

As shown in Figure 4.3, EIP suffers when paired with EMISSARY-L2 , lacking synergy

with the state-of-the-art replacement algorithm. Conversely, PDIP is carefully designed

to complement both FDIP and EMISSARY-L2 and provides additional gains over each,

73

c
a
s
s
a
n
d
rato
m
c
a
t

k
a
fk
a

x
a
la
n

fi
n
a
g
le
-h
tt
p

d
o
tt
y

tp
c
c

y
c
s
b

tw
it
te
r

v
o
te
r

s
m
a
ll
b
a
n
k

ta
tp

s
ib
e
n
c
h

n
o
o
p

v
e
ri
la
to
rs
p
e
e
d
o
m
e
te
r2
.0

A
v
e
ra
g
e

0

5
0

1
0
0

1
5
0

L
1
I

L
2
I

L
2
D

L
3

MPKI

Fi
gu

re
4.
9:

M
iss

es
Pe

r
K
ilo

In
st
ru
ct
io
ns

(M
PK

I)
at

L1
-I,

L2
-I

an
d
L2

-D
(in

st
ru
ct
io
n
an

d
da

ta
m
iss

es
in

th
e
L2

ca
ch
e,

re
sp
ec
-

tiv
el
y)
,a

nd
L3

ca
ch
es

of
be

nc
hm

ar
ks

pr
es
en
te
d
in

th
is

wo
rk

74

ca
ss

an
dr

a

to
m

ca
tka

fk
a

xa
la

n
fin

ag
le

-h
tt
p

do
tt
y

tp
cc

yc
sb

tw
itt

er
vo

te
r

sm
al

lb
an

k

ta
tp

si
be

nc
hno

op
ve

ril
at

orsp
ee

do
m

et
er

2.
0

G
eo

m
ea

n

−
1%0%1%2%3%4%5%6%7%

EI
P(

46
)

EI
P-

A
na

ly
ti
ca

l
EM

IS
S
A
RY

-L
2

PD
IP

(4
4)

PD
IP

(4
4)

+
EM

IS
S
A
R
Y-

L2

SpeedupwrtFDIP

7.
1

9.
9

14
.5

PD
IP

(4
4)

 Z
er

o
co

st

Fi
gu

re
4.
10

:
Sp

ee
du

p
C
om

pa
ris

on

75

resulting in a geomean speedup of 3.7%. The combination of PDIP(44)+EMISSARY-L2

thus captures 72.5% of FEC-Ideal, described in Section 4.3.

Since EMISSARY-L2 preserves instructions in L2, one drawback is that it causes con-

tention for L2 data accesses. For example, the dotty, tatp, and smallbank benchmarks all

show a considerable increase in L2 data MPKI with EMISSARY-L2 enabled. Thus, FEC

lines stored in L2 can reduce the amount of space available for L2 data, resulting in per-

formance degradation. Therefore, benchmarks with higher L2 data pressure could cause an

increase in L2 data MPKI with EMISSARY-L2 enabled. This results in PDIP+EMISSARY-

L2 having slightly lower performance than PDIP only in such scenarios. On the other hand,

benchmarks like verilator with very low L2 data pressure are more complementary.

We also evaluated PDIP on SPEC17 [11] workloads. PDIP(44) shows a geomean speedup

of 0.17%. It shows that PDIP, when used with traditional workloads that are not front-end

heavy do not show any slowdown.

4.7.2 Prefetch Timeliness And Accuracy

To understand the timeliness of PDIP prefetches, we implement and compare with a zero-

cost prefetch policy, where each prefetch request is served with zero cycle penalty and placed

in L1I. A no-cost prefetch of PDIP(44) shows a geomean 4.11% gain over baseline. PDIP(44)

achieves 76.58% of a zero-cost policy at the same hardware budget, which places a ceiling on

lost performance due to partial misses. PDIP achieves at least 75% of zero cost policy even

at larger table sizes. Further, Figure 4.11 shows the number of late prefetches (partial hits)

issued by PDIP. On average, 12.6% of prefetches requests issued by PDIP are late, indicating

that the heavy majority of prefetches are timely and contribute to the performance gain.

Table 4.4 captures the Mean Prefetch per kilo instructions (PPKI) of all policies and

demonstrates the accuracy of prefetches of different PDIP configurations in comparison to

EIP(46) and EIP-Analytical. Accuracy is defined as the % of prefetches that were accessed

by a demand fetch before eviction. Thus, the prefetches must be useful and timely for high

76

csndra
tm
ct

kfka
xln
fngl
dtty
tpcc
ycsb
tw
tr

vtr
sbnk
tatp
sib
np vrltr
spm

2
gm
ean

0%
5%
10%
15%
20% PDIP(44) EIP(46)

%
La
te
Pr
ef
et
ch

Figure 4.11: % of Late Prefetches per Benchmark in PDIP(44)

Metric EIP EIP PDIP PDIP
(46) Analytical (11) (44)

PPKI 22 40 21 32
Accuracy 44% 45% 55% 54%

Table 4.4: Average Prefetch per Kilo Instructions (PPKI) and Prefetch Accuracy of all
prefetch policies

accuracy. With large code footprints, too many inaccurate prefetches may evict useful lines

in the L1I, leading to contention. Any discussion of prefetch effectiveness must also account

for the rate of prefetches issued by the policy.

Across our benchmarks, PDIP prefetches, on average, show an accuracy of 55%, while

the EIP policies show an accuracy of 45%. The preferred PDIP policy PDIP(44) has a PPKI

of 32 and thus issues 45% more prefetches, yet is more accurate than EIP(46) at a similar

storage budget. A storage-limited version, PDIP(11), issues the same number of prefetches

as EIP(46) while being four times smaller and still maintaining higher accuracy. Thus,

the PDIP configurations store more relevant metadata more efficiently. EIP-Analytical and

EIP(46) have similar prefetch accuracy, but EIP-Analytical issues nearly two times more

prefetch requests, putting more pressure on the L1I with more inaccurate prefetches.

77

c
s
n
d
r
a

t
m

c
t

k
a
fk

a

x
ln

fn
g
l

d
t
t
y

t
p
c
c

y
c
s
b

t
w

t
r

v
t
r

s
b
n
k

t
a
t
p

s
ib

n
p

v
r
lt

r

s
p
m

2

g
m

e
a
n

0%

10%

20%

30%

40%

50%

60%

70%

PDIP(44) EIP(46)

%
 r

e
d
u
c
t
io

n
 F

E
C

 S
t
a
ll
s

Figure 4.12: % reduction FEC stalls per benchmark in PDIP(44) and EIP(46)

4.7.3 Prefetch Effectiveness

As discussed in Section 4.3, L1I misses have a high variance in performance criticality, de-

pending on whether or not they are exposed to the FDIP front-end. It was also found that

a small number of lines contribute to the majority of front-end stalls. Thus, coverage of crit-

ical stalls is a better metric of comparative prefetch effectiveness than coverage of prefetch

lines. For example, by prioritizing the criticality of lines, PDIP reduces FEC stalls by an

average of 42%, compared to 19% with EIP for a similar hardware budget. In addition,

Figure 4.12 shows that PDIP reduces FEC stalls by 50% or more in over nine benchmarks

with high FEC line coverage. This translates to a reduction in total stalls of 16% for PDIP

and 8% for EIP. Benchmarks with lower L1I pressure and fewer FEC lines (such as kafka

and speedometer2.0 as shown in Figures 4.9 & 4.4) show similar reductions in FEC stalls

with PDIP and EIP. However, because PDIP maintains higher performance by focusing on

fewer lines, it generates fewer prefetches and consequently half as many useless prefetches

78

(prefetches evicted without hits) as EIP. Thus, PDIP self-adjusts better in such benchmarks

and causes less cache pollution than other methods. In contrast, in benchmarks with very

high FEC pressure (such as verilator), PDIP aggressively targets FEC lines, generating

over ten times as many prefetches as EIP, thus reducing FEC stalls by 12% compared to

EIP’s 0.05%. For such benchmarks, complementary techniques like EMISSARY-L2 work in

tandem, reducing FEC stalls by 46% in the PDIP+EMISSARY-L2 configuration. Despite

the focus on criticality, Section 4.7.2 shows that PDIP prefetches are still sufficiently timely,

generating more accurate prefetches while covering more of the critical stalls as compared to

other prefetchers and targeting fewer lines. For criticality-based prefetchers, instead of mea-

suring total prefetch line coverage, we prefer to define coverage over front-end critical misses

(the ones that actually impact performance) rather than all misses. Thus, our definition of

coverage is the percentage of all FEC misses that are targeted by PDIP. On average, PDIP

has over 67% coverage of FEC lines.

Prefetches issued by PDIP can evict cache lines that could potentially be used later. An

aggressive prefetching scheme could evict all useful lines. A prefetcher needs to balance

so that useful lines are not evicted. To measure the impact of PDIP prefetches on useful

lines evicted, we measure them using a victim cache, which is the same size as the L1I. The

victim cache is populated when the PDIP prefetch fill evicts a cache line that is not a PDIP

prefetched cache line. The victim cache is used to measure the hits, not to serve any data.

The ratio of hits in the victim cache to the total number of prefetches shows the impact of

PDIP prefetches on useful cache lines. On average 30% of cache lines evicted by PDIP(44)

are needed again later. It shows that the evicted cache lines are of lower priority; thus, they

do not hurt performance when PDIP is enabled.

4.7.4 PDIP Table Sensitivity Analysis

We study the impact of scaling PDIP Table size on performance by varying the number of

ways. We model PDIP tables from 11KB to 87KB by having fixed 512 sets and varying the

79

associativity from 2 to 16. Figure 4.13 shows performance gain with respect to the FDIP

baseline. We store up to two targets and four consecutive offsets per entry for all PDIP

policies, as empirical analysis showed 95% of targets are stored with two targets per entry.

PDIP shows strong scaling for the majority of benchmarks up to 43.5KB but then shows

diminishing returns thereafter.

All benchmarks except verilator show either improved or the same performance with

an increase in PDIP Table size. We used optimized (using Facebook’s BOLT [61]) binary,

which has unusually long basic blocks which don’t fit in the PDIP Table well. In the case

of verilator, increasing mask bits per entry shows better scaling than increasing the total

number of entries.

4.7.5 Energy and Area Analysis

We modified McPAT [55] to model the PDIP structures to generate energy and area over-

heads. Table 4.5 shows the % increases in energy consumption and area overhead of the

CPU core. As we can see, all the configurations provide sufficient speedups in relation to

their energy and area overheads. PDIP(44) provides the right balance of resource usage and

performance.

Metric PDIP(11) PDIP(22) PDIP(44) PDIP(87)
Energy 0.25% 0.55% 0.62% 0.64%
Area 0.31% 0.52% 0.96% 2.84%

Table 4.5: Percentage increase in CPU core Energy consumption and Area over baseline
modeled in McPAT

4.7.6 BTB Sensitivity Analysis

The performance of the FDIP front-end depends critically on the accuracy of the BPU.

Thus, PDIP should also be compared with alternative approaches to improve the front-end

with more BPU resources. For large code footprints, BTB budget is the main bottleneck of

80

c
a
s
s
a
n
d
rato
m

c
a
t

k
a
fk

a

x
a
la

n

fi
n
a
g
le

-h
tt

p

d
o
tt

y

tp
c
c

y
c
s
b

tw
it
te

r

v
o
te

r

s
m

a
ll
b
a
n
k

ta
tp

s
ib

e
n
c
h

n
o
o
p

v
e
ri
la

to
rs
p
e
e
d
o
m

e
te

r2
.0

G
e
o
m

e
a
n

0
%

1
%

2
%

3
%

4
%

5
%

6
%

P
D

IP
(
1

1
)

P
D

IP
(
2

2
)

P
D

IP
(
4

4
)

P
D

IP
(
8

7
)

Speedup wrt FDIP

Fi
gu

re
4.
13

:
PD

IP
Po

lic
ie
s
w
ith

va
rio

us
PD

IP
Ta

bl
e
co
nfi

gu
ra
tio

ns

81

Number of BTB entries%
 IP

C
 g

ai
n

at
 r

es
pe

ct
iv

e
B

T
B

 b
as

el
in

e

-1%

%

1%

2%

3%

4%

5%

4K 8K 16K 32K 64K 128K

EIP(46) PDIP(11) PDIP(44) PDIP(44) + EMISSARY-L2

Figure 4.14: % IPC speedup of prefetch policies at various BTB sizes.

performance over BPU table sizes. Our experiments confirm this trend that the size of the

BTB is a more important factor in scaling than the size of the BPU tables. When we model

a large, highly accurate BPU that matches industry standards, we observe that scaling to

larger BPU table sizes gives very little variation in results. In this section, we examine

the effect of larger BTBs, both to (1) show the efficacy of PDIP even in the presence of

future, aggressive BTBs and (2) to demonstrate that PDIP provides speedup in a much

more area-efficient manner than BTB resizing alone. We are examining BTB sizes of <

8k entries, representative of efficiency cores, 8K-32K entries, representative of current and

upcoming high-performance cores, and >32k entries, which correspond to future cores, and

an extended examination for comprehensive insights. Figure 4.14 shows that at smaller BTB

sizes, FDIP’s poorer performance allows additional headroom for a prefetcher, and PDIP(44)

captures most of this, showing 4.32% speedup at 4K-entry BTB (59KB) and 3.15% speedup

at 8K-entry BTB (119KB) over FDIP at their respective BTB sizes. For larger BTB sizes,

there is limited headroom available, so PDIP(11) and PDIP(44) converge. Also, since PDIP

82

0 200 400 600 800 1000
0%

5%

10%

15%

20%

25%

30%

35%

40%

Legend
4K
8K
16K
32K
64K
FDIP
PDIP(11)
PDIP(44)
EIP(46)

Storage Budget of BTB + Prefetch Table in KB

%
 IP

C
ga

in
 o

ve
r

FD
IP

 w
ith

 4
k

En
tr

y
BT

B

Figure 4.15: IPC performance gain across different policies at BTB sizes 4K (59KB), 8K
(119KB), 16K (237KB), 32K (473KB), and 64K (945KB). PDIP(11), PDIP(44) and EIP(46)
needs 10.875KB, 33.5KB and 46KB additional storage respectively.

uses the same tracking hardware as EMISSARY-L2 , PDIP paired with EMISSARY-L2

provides the most storage-efficient solution at any BTB size, but for brevity, it is omitted

from the following discussion.

Figure 4.15 compares the storage effectiveness of a prefetcher as compared to scaling

the BTB. It shows that one of the PDIP configurations always makes better use of storage

than scaling the BTB at every stage. Conversely, EIP is always a more inefficient use of

storage than increasing BTB size. At low BTB sizes, corresponding to efficiency cores, the

83

smaller PDIP(11) provides higher-scaled performance. For PDIP(11) with 8k-entry BTB,

FDIP would need 16KB additional BTB scaling as compared to PDIP’s 11KB to match

its performance. At larger BTB sizes, corresponding to high-performance cores, the higher

performance of PDIP(44) is apparent. For PDIP(44) with 32k-entry BTB, FDIP would need

111KB additional BTB scaling as compared to 44KB of additional storage to match the same

performance as PDIP. Thus, PDIP(44) uses 60% lesser additional storage. We see that PDIP

(except in the case of a very small BTB) provides significantly more efficient use of storage

than scaling the BTB, and these gains would improve when paired with EMISSARY-L2

. Furthermore, this also corroborates Ishii et al.’ s[40] observation that prior prefetching

techniques provide little performance improvement over modern FDIP machines with large

BTBs [71, 17] as evidenced in Figure 4.14 with EIP. The criticality-aware nature of PDIP

targets scenarios where FDIP fails and thus shows performance over FDIP regardless of the

BTB size, showing more than 1.0% speedup even with a 64K-entry BTB (945KB).

4.7.7 Prefetch Triggers Analysis

A prefetch trigger in PDIP is always associated with a front-end stall-causing event, such

as a branch mispredict or a full FTQ. In the former case, we use the mispredicted branch

as the prefetch trigger, while in the latter case, we use the last taken branch instead. Here,

we examine the distribution of the types of prefetch triggers that lead to a target being

prefetched. Figure 4.16 shows that, on average, branch mispredictions contribute to 89% of

the issued prefetch targets, while last taken branches contribute to only 11%.

4.8 Related Work

4.8.1 Hardware Instruction Prefetchers

EIP [69] proposed entangling, i.e., associating, of a cache miss causing line of a variable

latency L, with an entry that was accessed L cycles prior. This association should allow it
84

c
s
n
d
r
a

t
m

c
t

k
a
fk

a

x
ln

fn
g
l

d
t
t
y

t
p
c
c

y
c
s
b

t
w

t
r

v
t
r

s
b
n
k

t
a
t
p

s
ib

n
p

v
r
lt

r

s
p
m

2

g
m

e
a
n

0%

20%

40%

60%

80%

100%

Last Taken Target Triggers

Mispredicted Target Triggers

P
r
e
fe

t
c
h
 T

r
ig

g
e
r
 D

is
t
r
ib

u
t
io

n

Figure 4.16: Distribution of prefetches based on Prefetch Trigger scenario

to prefetch it in a timely manner the next time the same line is accessed along the same

execution path. Latency-based entangling could improve cache miss rate by prefetching

lines long before they are used but may end up evicting cache lines, which are critical for

improving performance. Other results [40] agree with ours that EIP does not show heavy

improvement over an aggressive FDIP front-end.

FNL+MMA [75] prefetcher combines two techniques – Footprint Next Line(FNL) and

Multiple Miss Ahead(MMA) prefetcher. FNL predicts the ”worth” of the next five consec-

utive blocks of a block B, which missed in a shadow I-Cache. A shadow I-Cache contains

only tags and acts as a proxy for I-Cache misses. MMA predicts the block that is going to

miss after a fixed number of n misses from the current block. The observation was that the

same block is going to be missed again, and similarly, the next block will be used in the near

future. This observation is similar to that of PDIP in that the same prefetch target and its

associated branch trigger are going to cause bubbles in the pipeline again.

85

Several ”Record and Replay” techniques [33, 22, 47, 73] were proposed to prefetch in-

struction blocks well ahead of time using a history buffer that records the sequence of cache

blocks. MANA [22] and PIF [33] (Proactive Instruction Fetch) were similar to the data

cache prefetching technique [60]. These techniques take advantage of the temporal and spa-

tial locality of the blocks accessed and store them in a table, which is accessed when a new

instruction block is accessed; it then prefetches targets from the table. MANA proposes tech-

niques to store target addresses in a storage-efficient way using High-Order-Bits-Patterns’

Table(HOBPT). blocks which were significant in improving performance. PDIP Table can

be augmented with HOBPT to address out-of-page entries efficiently.

Similarly SN4L+Dis+BTB [23] combines three techniques. SN4L handles contiguous

blocks, Dis handles non-contiguous blocks, and BTB is an improvised Confluence[48] solution.

Contiguous and non-contiguous blocks can be handled by FDIP as long as branch instructions

found don’t miss in BTB. Using a large enough BTB ensures that reused entries don’t miss

frequently in BTB, which leaves cold branch instructions. Our observation was that the

majority of BTB misses are due to cold branch instructions. Jukebox [73] is specifically

designed for serverless functions, which are short but incur high cache miss rates due to

interleaved invocations. It records and replays to prefetch instructions to the L2 cache.

Temporal instruction fetch streaming (TIFS) [34] also works based on record and replay

techniques. TIFS records the streams of blocks that were missed in L1-I and replays it when

the first block in the pattern is seen again later. One of the key observations of TIFS is that

streams of blocks cause misses to repeat. The Temporal Ancestry Prefetcher (TAP) [35]

is another prefetcher that takes advantage of temporal locality. Unlike TIFS, TAP looks

at all accesses instead of misses. A history of the last 14 PCs is maintained in the history

buffer, and when a miss is observed, all the entries corresponding to the history buffer in the

ancestry table are updated. Every time a new block is accessed, it is looked up in the ancestry

table, and all its corresponding entries are prefetched. The hardware cost of implementing

the temporal technique is reduced by tracking only temporal lines that caused misses rather

86

than all lines. The overall cost of implementing TAP is still significant compared to the size

of the instruction cache.

Context signature based prefetching techniques [59, 52] prefetch lines that were missed in

the same context last time. RDIP [52] uses the return address stack(RAS) as the signature.

The key observation is that the misses seen in a given context repeat next time, and the

return address stack or calling context is used to capture the context. D-JOLT [59] is an

improved technique that not only uses RAS as context but also captures the blocks that are

accessed after long range and short range in a given context so as to send timely prefetch

requests. Another key difference between RDIP and D-JOLT is the way the signature is

generated. RDIP uses the whole RAS to compute the hash, whereas D-JOLT uses a FIFO

of return addresses, which includes additional function calls and a number of returns that

happened in reaching a given point in the execution.

Branch predictor based prefetching techniques [53, 38] prefetch instruction blocks fol-

lowing a branch using the predicted target. JIP [38] maintains a hierarchy of tables for a

direct branch with fewer targets and an indirect branch with many targets. These targets

are used to prefetch when a branch PC in the speculative path matches one of the tables.

A confidence value is associated with targets to select only one path when more than one

path is possible. Effectively, JIP mimics run ahead fetching without making changes to the

branch predictor state.

SHIFT [47] is a storage-efficient implementation of history buffers that exploits spatial

locality. It is specifically designed for applications running multiple threads that execute

similar code. The storage space required for a large history buffer is optimized by virtualizing

it (i.e., saving it in LLC). Since the LLC is shared by all cores, they take advantage of the

history buffer stored in it and issue prefetch requests separately per core. Only one core

updates the history buffer in LLC.

Prefetching along the wrong path is proposed in [63]. This can be effective for many

workloads, but prefetching the wrong path for every conditional branch would be less effective

87

(lead to unwanted cache pollution) in large code footprint workloads that put higher pressure

on the L1I.

4.8.2 Software Instruction Prefetchers

Software prefetching techniques [25, 50, 56] typically require changes to the Instruction Set

Architecture (ISA) such that instruction lines are prefetched well ahead of their use. These

techniques involve inserting prefetch instructions in the code. Cooperative Prefetching [56]

technique uses the compiler to automatically identify injection sites using static analysis.

AsmDB [25] uses execution profile information to insert prefetches to improve accuracy.

I-SPY [50] also uses profile information but encodes context information using a special

instruction that issues prefetches only if the context matches, thereby reducing unnecessary

prefetches when not required. It also proposes using coalesced prefetches wherever possible

to reduce code bloat. Software prefetching techniques can be used to address cold misses,

which hardware techniques fail to address. These techniques could be used along with PDIP

to improve overall performance.

88

Chapter 5

Simulation Infrastructure

Datacenter applications, characterized by their server-client model, entail servers awaiting

client requests, processing them, and responding accordingly. These server applications are

designed for continuous operation, utilizing multiple threads to maximize available compute

resources. With deep and intricate software stacks, these inherently multi-threaded appli-

cations require significant time to reach a steady state. However, simulation datacenter

workloads using execution-driven simulators prove excessively time-consuming. To address

this challenge, we’ve developed a robust framework named QPoints. QPoints efficiently ac-

celerate simulation time by capturing the real system’s application state and transferring

its state to gem5 at a steady state. This chapter addresses the challenges associated with

simulating multi-threaded workloads and highlights how QPoints effectively mitigates these

obstacles.

5.1 Practical Simulation of Multi-threaded Workloads

Execution-driven simulators meticulously simulate the execution of each instruction and

update every component affected by these instructions. Consequently, they tend to be slow,

with simulating 100 million instructions in detailed mode in gem5 taking anywhere from 20

to 60 minutes, a stark contrast to the mere milliseconds it would take on a real machine.
89

Modern server workloads, often written in high-level languages like Java, are inherently

multi-threaded. However, simulating such multi-threaded workloads in an execution-driven

model poses three challenges. First, multi-threaded workloads require significantly more time

to simulate meaningful work due to huge startup code. Second, simulator support for running

multi-threaded workloads is often limited. Third, multi-threaded workloads frequently rely

on system calls for inter-thread communication, necessitating the simulation of the system

kernel, further increasing simulation time. To address these challenges, we have developed

a robust framework called QPoints. QPoints takes the state of an application running on

a real machine and generates gem5-compatible checkpoints. These checkpoints enable the

application to be resumed from the same point in its execution, effectively sidestepping the

need for time-consuming simulation and allowing for accurate analysis of multi-threaded

workloads within the gem5 simulator.

5.1.1 Need for Simulating Kernel (Full System)

Simulating any real-world application would require support to execute system calls. The

gem5 simulator has two modes of operation to support system calls. A mode in which the

system calls are emulated is called System Emulation (SE) mode, and a mode in which the

whole kernel is booted is called Full System (FS) mode.

The SE mode in gem5 works by intercepting system calls and simulating the functionality

of a system call by making necessary changes to the state of the system. For example, consider

a brk syscall. It is used to allocate memory on a heap. When this system call is executed

in SE mode, gem5 sets the end of the heap to the location pointed by the brk syscall. The

advantage of this mode is that it is very fast as it trades expensive system call mechanisms

for equivalent emulation. One of the disadvantages of this approach is that every system call

needs to be implemented in gem5. Which is very tedious and challenging when some system

calls need to change the state of the kernel. Another disadvantage is that multi-threaded

applications that use system calls to monitor a certain event in the system to wake them

90

up become challenging to implement. The number of system calls supported by the gem5

community is good enough to simulate SPEC workloads but not multi-threaded workloads,

which need thread synchronization and communication support.

The FS mode in gem5 supports booting a Linux kernel and loads services from a disk

image. In this mode, all system calls are supported. Thus, it can simulate any benchmark.

One disadvantage is that booting a kernel involves executing several trillions of instructions

before actually getting to simulate the workload. This problem becomes worse when the

workload takes several minutes on a native machine to reach the region of interest. Sim-

ulations could take several days to months in a detailed simulation model. The following

section discusses ways to reduce the time spent reaching the region of interest.

5.1.2 Fast Mode Not Fast Enough

Simulating a workload that has several billions of instructions in a detailed mode could take

several days to months. In order to reduce time spent in reaching a region of interest, the

gem5 simulator supports a fast-mode CPU, which simulates instructions atomically at the

rate of one instruction per cycle. This CPU is also known as the Atomic Simple CPU. Once

the region of interest is reached, the simulation can be switched to detail mode CPU. Atomic

Simple CPU is ten times faster than the detailed Out-of-Order (OOO) CPU but is still not

fast enough. Table 5.1 shows simulation times of applications with various instruction counts.

Booting a Linux kernel takes about 24 minutes on gem5 with Atomic CPU. An application

that takes about 1 second on a native machine would take about 20 minutes on the simulator.

In several workloads, the region of interest is after the first few minutes from the start of the

application. Simulating workloads would take more than a day using this method.

The Atomic CPU is fast but not practical for workloads that take several days time to

reach the region of interest. The gem5 simulator has support to execute code on the host

machine directly by using Kernel Based Virtual Machine (KVM) feature of the Linux kernel.

The gem5 CPU model with KVM mode operation is called KVMCPU. The support for KVM

91

CPU is very limited. KVM CPU model can be used only when the simulated system (guest)

and host machine are using the same Instruction Set Architecture (ISA). Simulating ARM

workloads requires building and running gem5 on an ARM host machine.

Application/ Instruction Count Approximate
Host Runtime (Billions) Simulation Time

Linux Boot 2.4 B ∼24 min
1 second 2 B ∼20 min
1 minute 120 B ∼20 hours
10 minutes 1200 B ∼8 days

Table 5.1: Simulation times with Atomic CPU on gem5 compared to native runtime

5.1.3 QPoints

Simulators have adopted robust checkpoint-based solutions in order to avoid re-running the

whole program just to study a small region of interest. Checkpoints contain the architectural

state so that an application can be resumed from the same point. Therefore, studying new

microarchitecture features becomes practical, provided the checkpoints for the applications

are available. The gem5 simulator supports the checkpoint mechanism. However, check-

points need to be collected using the gem5 simulator. This limitation makes it challenging

to collect new checkpoints.

The cost of collecting new checkpoints is prohibitively high when the simulator is involved.

This cost can be eliminated by collecting the state of an application on a real machine.

The Lapidary [77] tool creates a gem5-compatible checkpoint by collecting the state of the

application from a real machine. Lapidary collects the application’s register and memory

state by running the application on gdb (debugger). One of the key limitations is that the

checkpoints collected by Lapidary only work with the SE mode of gem5. The kernel state

cannot be captured, so it is not present in the memory state of the application. Some data

center applications use event polling mechanisms to wake up sleeping threads. This is not

possible in SE mode. Another limitation of this tool is that it was built for X86 workloads.
92

Thus, it cannot be used with ARM workloads. We have created an ARM port of Lapidary.

However, due to the above limitations, it could not be used with datacenter workloads.

We have built a framework called QPoints, which creates a gem5-compatible Full System

checkpoint using the QEMU [26] emulation tool. QPoints is the checkpointing framework

that takes the state of a real machine and converts it into a gem5-compatible checkpoint. The

gem5 simulator can resume the execution of the application from the same point where the

checkpoint is created. QEMU is a cross-platform emulation tool. When the host platform has

the same ISA as the emulated application, QEMU takes advantage of hardware acceleration

using KVM or equivalent kernel features. QEMU does fast binary translation when running

cross-platform applications. QEMU software emulation is much faster than gem5’s Atomic

CPU model. QEMU supports various platforms (x86, ARM, RISC-V). It also supports

booting an operating system from an unmodified disk image. Which is useful when working

with unmodified code bases and operating systems. QPoints works with an unmodified

version of QEMU.

Creating a full system is very challenging compared to a System Emulation checkpoint.

In Full System mode, the emulated system uses input and output devices for interaction and

the disk device for storage. One of the key challenges of creating a portable Full System

checkpoint is keeping the platform configuration and device mapping the same. Once a

kernel boots, the device mapping is stored in the kernel data structures. When the Full

System state is ported to another system with a different platform, it is more likely to fail

due to different device mappings. Physical memory mapping is one example where virtual

to physical memory maps are stored in kernel memory. When the physical address mapping

is different, a page table lookup fails or gives the wrong address. Due to these issues, Full

System checkpoints created in one version of gem5 may not be compatible with another

version of gem5. The platform configuration and device mapping of QEMU and gem5 are

different, so a standard platform configuration is needed to create checkpoints. Thus, we

93

created a new platform configuration in gem5 that is compatible with QEMU to avoid making

changes to QEMU.

A Full System checkpoint constitutes CPU register state, memory dump, device state,

and device controller state. The device state of a storage device is the disk image file, and the

controller state is the virtual PCI state modeled by QEMU. A disk device is needed to load

a RAM disk and various start-up services that data center workloads need. A serial console

is used to interact with the system, i.e., to send commands and get output. A serial console

state does not necessarily need to be preserved in the checkpoint. Therefore, it is omitted

from the checkpoint. Thus, a minimum state requires a CPU register, physical memory

dump, disk image, and controller state. The CPU register state is obtained by using gdb.

The disk controller state and memory dump are obtained using QEMU’s command mode.

The disk state is obtained by making a mere copy of the disk image.

Phase 1

Phase 2 Phase 3

Figure 5.1: High Level Workflow of QPoints

Figure 5.1 shows the high-level workflow of the QPoints framework. The workflow of cre-

ating a checkpoint is divided into three phases. Phase one is In the application startup phase,

the machine state is frozen, the state is extracted in phase two, and the gem5 checkpoint is

generated in phase three.

Startup Phase (Phase One): This is the startup phase where the Linux System

is booted using the QEMU’s Full System emulation mode. When the host and guest use
94

the same ISA, KVM acceleration can get better performance. Once the system is booted,

execute a target benchmark using the console. Once the benchmark reaches the region of

interest, the emulation is frozen, and all pending transactions are completed using QEMU’s

command-mode utility.

State Extraction (Phase Two): In this phase, the system state is extracted, which is

then used to generate a gem5-compatible checkpoint. CPU register state is collected using

the gdb debugging utility. QEMU provides a debugging feature where the emulated CPU

state can be inspected using the gdb utility. The same technique is used to save the CPU

register state. The physical memory dump is obtained using the QEMU’s command mode

utility. Similarly, the disk controller state is obtained using QEMU’s command mode utility.

Since the disk image is in the modified state, a copy of the disk image is created to preserve

the disk state.

Checkpoint Generation (Phase Three): In this final phase, a gem5-compatible

checkpoint is generated. The preceding phase yields a generic machine state, which gem5

cannot directly interpret. Gem5 offers a checkpoint feature for both Full System and System

Emulation modes, typically stored as a single checkpoint file containing file paths to disk

and memory images. The generic state is converted so that gem5’s checkpointing utility

understands it.

In enhancing the gem5 simulator to support the QPoints framework, several pivotal

changes have been implemented. A fundamental aspect is the realization of device mapping

within gem5 through the QEMU Virtual Configuration. This configuration is now exposed

as a new system configuration, enabling more flexible and dynamic setups for simulation.

Notably, GIC v2 has been enabled to specifically accommodate checkpoints collected using

Apple’s M1 hardware, ensuring compatibility with this architecture. Additionally, the disk

is attached as a VirtIO device, providing an efficient and standardized interface for I/O

operations. To maintain consistency and proper integration with gem5, it is crucial to adhere

to a subset of VirtIO features during QEMU emulation. These modifications collectively

95

contribute to a more versatile and robust gem5 simulator, aligning it with the requirements

of the QPoints framework.

The QPoints framework boasts several advantages that significantly enhance its capabili-

ties. It excels in executing intricate software with diverse requirements, effortlessly handling

heavy runtime environments. The comprehensive support for all system calls ensures seam-

less compatibility with a wide range of applications. Notably, QPoints delivers near-native

wait times, offering enhanced efficiency during simulation. One notable advantage is the

elimination of the need to build gem5 on ARM systems. The framework’s support for

ARM-powered M1 Mac and free hardware acceleration beyond KVM further broaden its

applicability. Importantly, these benefits are achieved without requiring any modifications

to the QEMU source code. Additionally, the expanding horizons of hardware acceleration

support, reaching beyond Linux to platforms like Apple’s HVF (an equivalent of KVM), and

the efficiency in handling gem5-compatible multi-core checkpoints are distinctive features

that contribute to the framework’s versatility and effectiveness.

QPoints, while offering valuable advantages, come with certain limitations that neces-

sitate careful consideration. Firstly, its exclusive support for ARM 64-bit platforms may

restrict its utility, particularly in environments with diverse architectures. The absence of

symbol table mapping poses a challenge to debugging, making it difficult to trace and an-

alyze program execution. Debugging complexities are further exacerbated by other factors,

potentially impeding the efficient identification and resolution of issues within the framework.

Moreover, QPoints lacks compatibility with gem5’s COW and QEMU’s QCOW2 image for-

mats, limiting its integration with widely used storage formats. An additional constraint

lies in each checkpoint containing a full disk image, leading to larger checkpoint files and

increased storage requirements.

96

5.1.4 Correctness

The QPoints framework underwent rigorous testing to ensure its robustness and adherence

to expected behaviors. Our comprehensive testing strategy encompassed a diverse range of

unit tests meticulously designed to evaluate correctness and performance. Figure 5.2 shows

the snapshot of the output of the first unit test when resumed on gem5. The output shows

that gem5 can continue execution from the point where the checkpoint was collected. Multi-

thread support was specifically scrutinized by executing a multi-threaded program, where

the simulated program was anticipated to switch software threads seamlessly. Figure 5.4

shows the snapshot of the gem5 output of the multi-threaded test. This demonstrates that

gem5 is able to simulate software context switches. This dynamic test workload included a

disk integrity check, verifying the accurate listing of all files on the attached disk. Figure 5.3

shows the snapshot of the output generated by the gem5 simulation.

Extensive testing was conducted to assess correctness, allowing the program to run to

completion in an Atomic CPU, followed by a meticulous comparison of the respective out-

puts. Furthermore, our evaluation extends to a rich collection of checkpoints sourced from

renowned benchmark suites, including DaCapo, Renaissance, Cloudsuite v4, OLTP bench,

and Speedometer 2.0. We are pleased to make this collection of checkpoints publicly avail-

able, providing a valuable resource for the research community [10]. This rigorous testing

and the availability of diverse checkpoints underscore the reliability and applicability of the

QPoints framework across various workloads and use cases.

5.1.5 Techniques to Reduce Noise from OS and IO Events

Simulating workloads in the Full System mode presents a unique set of challenges, partic-

ularly concerning the context switching of software applications, which is governed by the

simulated kernel. Additionally, the exposure of IO access bottlenecks introduces potential

variability in simulation results, even with minor alterations to simulated hardware param-

eters. This complexity makes it challenging to attribute performance gains or losses specifi-
97

Figure 5.2: Output of a first test after resuming a QPoints checkpoint on gem5

Figure 5.3: Output of disk read test after resuming a QPoints checkpoint on gem5

cally to the evaluated hardware features. To mitigate these challenges, we employed various

98

Figure 5.4: Output of a multi-threaded test program after resuming a QPoints checkpoint
on gem5

techniques to minimize noise and introduced new counters to ensure that any remaining

noise falls within an acceptable error range.

One strategy involved leveraging the Linux kernel’s isolcpu feature to isolate specific

CPUs from consideration by the Linux scheduler. Consequently, no applications are sched-

uled on these isolated CPUs unless explicitly mapped using the taskset utility, which sets

process affinity. This ensures that a process mapped onto an isolated CPU remains uninter-

rupted by the kernel, except for timer interruptions. Although periodic switching still occurs

for multi-threaded applications mapped onto an isolated CPU, the Read Copy Update (RCU)

the feature is not compatible with this method.

99

Another approach to minimize scheduler-induced noise is to assign the application the

highest priority in the scheduling queues. Scheduling priority can be increased using the

nice utility in the Linux system, with a scheduling priority value of -20 providing the highest

priority. By setting the applications’ scheduling priority to be on par with Linux kernel tasks

that use the real-time scheduling policy, interference from lower-priority processes is reduced.

While gem5’s process switching mechanism could introduce variability due to its depen-

dence on the simulated timer circuit, we addressed this issue by implementing an instruction

count-based switching mechanism. The process is switched either upon reaching a fixed in-

struction count or executing an exit system call. These refined techniques effectively kept

the variability in simulation results within a narrow margin of 0.2%, measured as the change

in the number of committed operations.

100

Chapter 6

Future Work

This chapter explores potential methods to extend criticality awareness to various front-end

cache structures. The improved EMISSARY-L2 replacement policy, known for its criticality

awareness, can be extended to structures like the Branch Target Buffer (BTB), Instruction

Translation Lookaside Buffer (iTLB), Uop Cache, and others, as they all utilize replacement

policies.

However, criticality-aware policies may not always lead to performance gains across all

workloads. In such scenarios, dynamically adjusting criticality-aware policies based on work-

load characteristics could yield better results. By dynamically adapting the criticality-aware

policies to the specific needs and behaviors of different workloads, the system can optimize

cache utilization more effectively, ultimately leading to improved overall performance. This

approach allows for flexibility in optimizing front-end cache structures to accommodate a

wide range of workloads and their unique requirements.

6.1 Dynamic EMISSARY

The performance improvement achieved by EMISSARY-L2 can vary based on the maximum

number of ways (N) used to preserve instruction lines and the randomness factor (r). On

average, the best performance is observed when N is set to 8 and r is 1/32. However, individ-
101

ual benchmarks may exhibit peak performance at different values of N and r. Interestingly,

benchmarks that are constrained by the front-end tend to show better performance when N

exceeds eight ways (out of a total of sixteen ways), which suggests that dynamically adjust-

ing the values of N and r based on the characteristics of workloads could lead to optimal

performance gains. Furthermore, when enabling EMISSARY-L2 does not provide significant

benefits, it can be turned off to mitigate its impact on overall performance. By dynamically

adjusting these parameters and selectively enabling or disabling EMISSARY-L2 , the system

can effectively adapt to varying workload demands and maximize performance efficiency.

6.2 EMISSARY for Uop Cache

In the x86 Instruction Set Architecture (ISA), instruction encodings are of variable lengths,

with the actual lengths becoming known only after instruction decoding. Speculative parallel

decode techniques are often employed to increase the decode width, but these methods

consume significant power. To address this issue and simultaneously enhance width, modern

processors from Intel and AMD utilize a Decoded Micro-Operation (Uop) cache.

While the Uop cache exhibits good utilization in SPEC workloads, its effectiveness dimin-

ishes in datacenter workloads due to the presence of large code footprints. The low utilization

of Uop Cache is primarily because the cache replacement policy prioritize frequently used

code over low-reuse code, resulting in low Uop cache utilization in datacenter workloads that

have very large code footprints.

To mitigate this issue and optimize Uop cache usage, one potential approach is to re-

purpose the cache to preserve critical lines rather than prioritize high-frequency lines. By

reallocating Uop cache resources to store and retain critical lines, the processor can better

support the execution of datacenter workloads, where the importance lies more in preserving

critical code segments rather than maximizing cache hits based on frequency alone. This

102

strategy can potentially lead to improved performance and efficiency in datacenter environ-

ments.

6.3 Proritize iTLB miss events

PDIP is currently limited to branch resteer and FTQ full front-end events. However, similar

to branch resteer events, a miss in the Instruction Translation Lookahead Buffer (iTLB)

followed by a miss in the instruction cache is also considered critical.

When an iTLB miss occurs, the front-end stalls, even if the Fetch Queue (FTQ) contains

valid entries. Thus, an iTLB miss has a serializing effect on instruction fetch, impacting

overall performance. Prefetching cache lines that fall along the iTLB miss path could po-

tentially alleviate this performance bottleneck. By proactively prefetching instructions that

are likely to be needed due to the iTLB miss, the front-end can mitigate the stall time and

improve overall performance efficiency.

Incorporating this additional prefetching mechanism into PDIP could further enhance its

effectiveness in optimizing instruction fetch and improving performance in scenarios where

iTLB misses occur frequently.

103

Chapter 7

Conclusion

In conclusion, this dissertation has presented two novel contributions, EMISSARY-L2 and

PDIP, which collectively embody the essence of criticality-aware front-end designs for high-

performance processors.

EMISSARY-L2 is an improved EMISSARY-L1 policy specifically designed for datacen-

ter workloads. Observing that modern architectures completely tolerate many instruction

cache misses, EMISSARY-L2 prioritizes, with persistence, inserted lines whose misses cause

decode starvation over those whose misses did not. Without the need to track history, coor-

dinate with prefetchers, make predictions, or perform complex calculations, EMISSARY-L2

consistently improves performance and saves energy while remaining simple to implement.

EMISSARY-L2 shows a geomean performance gain of 3.24% (up to 23.7%) and a geomean en-

ergy savings of 2.12% (up to 17.7%) over TPLRU on top of a state-of-the-art FDIP prefetcher

to model the aggressive front-ends found in modern processors. This speedup is 21.6% of the

total speedup obtained by an unrealizable model with an ideal L2 instruction cache with a

mere 4KB hardware budget.

A Criticality-Aware Instruction prefetcher, PDIP, is carefully designed to complement a

decoupled front-end, which prefetches FEC lines where FDIP struggles. PDIP recognizes

that most instruction cache lines are effectively fetched by FDIP in time to completely hide

104

any front-end stalls. Thus, PDIP only targets the fraction of Instruction Cache misses that

are not hidden by FDIP. Thus, it provides higher coverage of the performance-critical misses

and higher accuracy than other prefetchers. It functions in synergy with EMISSARY-L2 and

achieves up to 72.5% of FEC-Ideal.

105

Bibliography

[1] Apache cassandra. http://cassandra.apache.org/.

[2] Apache kafka. https://kafka.apache.org/.

[3] Apache Solr. https://solr.apache.org/.

[4] Apache tomcat. https://tomcat.apache.org/.

[5] Browserbench. ”https://browserbench.org”.

[6] Dotty scala compiler. ”https://github.com/lampepfl/dotty”.

[7] Intel VTune. https://www.intel.com/content/www/us/en/developer/tools/
oneapi/vtune-profiler.html.

[8] MediaWiki. https://www.mediawiki.org/wiki/MediaWiki.

[9] Postgresql. ”https://www.postgresql.org/”.

[10] QPoints ARM Worklaods used in EMISSARY. https://drive.google.com/file/d/
1ac60R-nuENQjw-rRBR-0S9rYQEEuCvyp/view?usp=drive_link.

[11] Spec newsletter. ”https://www.spec.org”.

[12] Specjbb 2015. ”https://www.spec.org/jbb2015/”.

[13] Speedometer2.0. ”https://browserbench.org/Speedometer2.0/”.

[14] TPC-C. http://www.tpc.org/tpcc/.

[15] Twitter finagle. https://twitter.github.io/finagle/.

[16] Verilator. https://www.veripool.org/wiki/verilator.

[17] Wikichip. https://en.wikichip.org/wiki/intel/microarchitectures/golden_
cove.

[18] Ycsb. ”https://github.com/brianfrankcooper/YCSB/”.

[19] Champsim Simulator. https://github.com/ChampSim/ChampSim, 2020.

106

http://cassandra.apache.org/
https://kafka.apache.org/
https://solr.apache.org/
https://tomcat.apache.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.mediawiki.org/wiki/MediaWiki
https://drive.google.com/file/d/1ac60R-nuENQjw-rRBR-0S9rYQEEuCvyp/view?usp=drive_link
https://drive.google.com/file/d/1ac60R-nuENQjw-rRBR-0S9rYQEEuCvyp/view?usp=drive_link
http://www.tpc.org/tpcc/
https://twitter.github.io/finagle/
https://www.veripool.org/wiki/verilator
https://en.wikichip.org/wiki/intel/microarchitectures/golden_cove
https://en.wikichip.org/wiki/intel/microarchitectures/golden_cove
https://github.com/ChampSim/ChampSim

[20] Narasimha Adiga, James Bonanno, Adam Collura, Matthias Heizmann, Brian R.
Prasky, and Anthony Saporito. The ibm z15 high frequency mainframe branch pre-
dictor industrial product. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pages 27–39, 2020.

[21] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, Paul
Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste Asanović,
and Borivoje Nikolić. Chipyard: Integrated design, simulation, and implementation
framework for custom socs. IEEE Micro, 40(4):10–21, 2020.

[22] Ali Ansari, Fatemeh Golshan, Rahil Barati, Pejman Lotfi-Kamran, and Hamid Sarbazi-
Azad. Mana: Microarchitecting a temporal instruction prefetcher. IEEE Transactions
on Computers, 72(3):732–743, 2023.

[23] Ali Ansari, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. Divide and conquer fron-
tend bottleneck. In 2020 ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (ISCA), pages 65–78, 2020.

[24] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin,
Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar
Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin
Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson,
Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. The
rocket chip generator. Technical Report UCB/EECS-2016-17, EECS Department, Uni-
versity of California, Berkeley, Apr 2016.

[25] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley, and
Parthasarathy Ranganathan. Asmdb: Understanding and mitigating front-end stalls
in warehouse-scale computers. In International Symposium on Computer Architecture
(ISCA), 2019.

[26] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC ’05, page 41, USA,
2005. USENIX Association.

[27] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,
Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A.
Wood. The gem5 simulator. SIGARCH Comput. Archit. News, 2011.

[28] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and BenWie-
dermann. The dacapo benchmarks: Java benchmarking development and analysis. In

107

Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA ’06, page 169–190, New
York, NY, USA, 2006. Association for Computing Machinery.

[29] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux.
Oltp-bench: An extensible testbed for benchmarking relational databases. Proc. VLDB
Endow., 7(4):277–288, dec 2013.

[30] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and Alexan-
der V Veidenbaum. Improving cache management policies using dynamic reuse distances.
In 2012 45Th annual IEEE/ACM international symposium on microarchitecture, pages
389–400. IEEE, 2012.

[31] Stijn Eyerman, Sam Van Den Steen, Wim Heirman, and Ibrahim Hur. Simulating wrong-
path instructions in decoupled functional-first simulation. In 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages 124–133,
2023.

[32] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the clouds: A study of emerging scale-out workloads on
modern hardware. SIGPLAN Not., 47(4):37–48, mar 2012.

[33] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. Proactive instruction fetch. In
2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 152–162, 2011.

[34] Michael Ferdman, Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and An-
dreas Moshovos. Temporal instruction fetch streaming. In Proceedings of the 41st
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 41, page
1–10, USA, 2008. IEEE Computer Society.

[35] Nathan Gober, Gino Chacon, Daniel A. Jiménez, and Paul V. Gratz. The temporal
ancestry prefetcher. 2020.

[36] Bhargav Reddy Godala, Sankara Prasad Ramesh, Gilles A. Pokam, Jared Stark, An-
dre Seznec, Dean Tullsen, and David I. August. Pdip: Priority directed instruction
prefetching. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2, ASPLOS ’24,
page 846–861, New York, NY, USA, 2024. Association for Computing Machinery.

[37] Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell, Daniel A. Jiménez,
Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas Sinha, and Ankit
Ghiya. Evolution of the samsung exynos cpu microarchitecture. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), pages 40–51,
2020.

108

[38] Vishal Gupta, Neelu Shivprakash Kalani, and Biswabandan Panda. Runjump-run: Bou-
quet of instruction pointer jumpers for high performance instruction prefetching. The
First Instruction Prefetching Championship, 2020.

[39] Irfan Habib. Virtualization with kvm. Linux J., 2008(166), feb 2008.

[40] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo. Rebasing instruction
prefetching: An industry perspective. IEEE Computer Architecture Letters, 19(2):147–
150, 2020.

[41] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo. Re-establishing fetch-
directed instruction prefetching: An industry perspective. In 2021 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages 172–182,
2021.

[42] Aamer Jaleel, Joseph Nuzman, Adrian Moga, Simon C Steely, and Joel Emer. High
performing cache hierarchies for server workloads: Relaxing inclusion to capture the
latency benefits of exclusive caches. In 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), pages 343–353. IEEE, 2015.

[43] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., and Joel Emer. High performance
cache replacement using re-reference interval prediction (rrip). In 37th International
Symposium on Computer Architecture (ISCA), 2010.

[44] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp
Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. In
Computer Architecture (ISCA), 2015.

[45] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp
Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. In
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA), pages 158–169, 2015.

[46] Harshad Kasture and Daniel Sanchez. TailBench: A benchmark suite and evaluation
methodology for latency-critical applications. In Workload Characterization (IISWC),
2016.

[47] Cansu Kaynak, Boris Grot, and Babak Falsafi. Shift: Shared history instruction fetch for
lean-core server processors. In 2013 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 272–283, 2013.

[48] Cansu Kaynak, Boris Grot, and Babak Falsafi. Confluence: Unified instruction supply
for scale-out servers. In Microarchitecture (MICRO), 2015.

[49] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundararajan,
Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A Pokam, Heiner Litz,
and Baris Kasikci. Twig: Profile-guided btb prefetching for data center applications. In
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 816–829, 2021.

109

[50] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner Litz,
and Baris Kasikci. I-spy: Context-driven conditional instruction prefetching with coa-
lescing. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 146–159, 2020.

[51] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti, Gilles Pokam,
Heiner Litz, and Baris Kasikci. Ripple: Profile-guided instruction cache replacement for
data center applications. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), pages 734–747, 2021.

[52] Aasheesh Kolli, Ali Saidi, and Thomas F Wenisch. RDIP: Return-address-stack directed
instruction prefetching. In Microarchitecture (MICRO), 2013.

[53] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. Blasting through the front-end bottle-
neck with shotgun. In Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[54] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan. Boomerang:
A metadata-free architecture for control flow delivery. In High Performance Computer
Architecture (HPCA), 2017.

[55] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
Mcpat: An integrated power, area, and timing modeling framework for multicore and
manycore architectures. In 2009 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 469–480, 2009.

[56] Chi-Keung Luk and Todd C Mowry. Cooperative prefetching: Compiler and hardware
support for effective instruction prefetching in modern processors. In Microarchitecture
(MICRO), 1998.

[57] Nayana Prasad Nagendra. IMPROVING INSTRUCTION CACHE PERFORMANCE
FOR MODERN PROCESSORS WITH GROWING WORKLOADS. PhD thesis, Prince-
ton University, 2021.

[58] Nayana Prasad Nagendra, Bhargav Reddy Godala, Ishita Chaturvedi, Atmn Patel,
Svilen Kanev, Tipp Moseley, Jared Stark, Gilles A. Pokam, Simone Campanoni, and
David I. August. EMISSARY: Enhanced Miss Awareness Replacement Policy for L2
Instruction Caching. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM, 2023.

[59] Tomoki Nakamura, Toru Koizumi, Yuya Degawa, Hidetsugu Irie, Shuichi Sakai, and
Ryota Shioya. D-jolt: Distant jolt prefetcher. The 1st Instruction Prefetching Champi-
onship (IPC1), 2020.

[60] K.J. Nesbit and J.E. Smith. Data cache prefetching using a global history buffer. In
10th International Symposium on High Performance Computer Architecture (HPCA’04),
pages 96–96, 2004.

110

[61] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. Bolt: A practical
binary optimizer for data centers and beyond. In Proceedings of the 2019 IEEE/ACM
International Symposium on Code Generation and Optimization, CGO 2019, page 2–14.
IEEE Press, 2019.

[62] Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph Pusdesris, Ab-
hishek Raja, Chris Abernathy, Jinson Koppanalil, Tushar Ringe, Ashok Tummala,
Jamshed Jalal, Mark Werkheiser, and Anitha Kona. The arm neoverse n1 platform:
Building blocks for the next-gen cloud-to-edge infrastructure soc. IEEE Micro, 40(2):53–
62, 2020.

[63] Jim Pierce and Trevor Mudge. Wrong-path instruction prefetching. In Microarchitecture
(MICRO), 1996.

[64] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma,
Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas
Würthinger, and Walter Binder. Renaissance: Benchmarking suite for parallel applica-
tions on the jvm. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019, page 31–47, New York, NY,
USA, 2019. Association for Computing Machinery.

[65] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely Jr., and Joel
Emer. Adaptive insertion policies for high performance caching. In 34th International
Symposium on Computer Architecture (ISCA), 2007.

[66] G. Reinman, B. Calder, and T. Austin. Fetch directed instruction prefetching. In
MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International Symposium on
Microarchitecture, pages 16–27, 1999.

[67] Glenn Reinman, Brad Calder, and Todd Austin. Fetch directed instruction prefetching.
In Microarchitecture (MICRO), 1999.

[68] Glenn Reinman, Brad Calder, and Todd Austin. Optimizations enabled by a decoupled
front-end architecture. Computers, IEEE Transactions on, 50:338 – 355, 05 2001.

[69] Alberto Ros and Alexandra Jimborean. A cost-effective entangling prefetcher for in-
structions. In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pages 99–111, 2021.

[70] Alberto Ros and Alexandra Jimborean. Wrong-path-aware entangling instruction
prefetcher. IEEE Transactions on Computers, 73(2):548–559, 2024.

[71] J Rupley. Samsung exynos m3 processor. IEEE Hot Chips, 30, 2018.

[72] Jeff Rupley, Brad Burgess, Brian Grayson, and Gerald D Zuraski. Samsung m3 proces-
sor. IEEE Micro, 39(2):37–44, 2019.

111

[73] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sandberg, and Boris Grot.
Lukewarm serverless functions: Characterization and optimization. In Proceedings of
the 49th Annual International Symposium on Computer Architecture, ISCA ’22, page
757–770, New York, NY, USA, 2022. Association for Computing Machinery.

[74] André Seznec. A 64-kbytes ittage indirect branch predictor. In JWAC-2: Championship
Branch Prediction, 2011.

[75] André Seznec. The fnl+mma instruction cache prefetcher. 2020.

[76] André Seznec and Pierre Michaud. A case for (partially) tagged geometric history length
branch prediction. Journal of Instruction-level Parallelism - JILP, 8, 02 2006.

[77] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris Kasikci. Nda:
Preventing speculative execution attacks at their source. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’52, page
572–586, New York, NY, USA, 2019. Association for Computing Machinery.

[78] Ahmad Yasin. A top-down method for performance analysis and counters architec-
ture. In 2014 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 35–44, 2014.

[79] Ahmad Yasin. A top-down method for performance analysis and counters architec-
ture. In 2014 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 35–44. IEEE, 2014.

112

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Increase in the Front-end Pressure due to Growing Instruction Footprints
	1.2 End of Moore’s Law: Need for Algorithm-based Solution instead of Scaling-based Solutions
	1.3 Front-end Bottlenecks in Large Code Footprint Workloads
	1.4 Dissertation Contributions
	1.4.1 State-of-the-art Front-end
	1.4.2 Criticality-Aware Replacement Policy for Datacenter Wrokloads
	1.4.3 Criticality-Aware Instruction Prefetcher

	1.5 Published Material

	2 Current State-of-the-art Product Front-end
	2.1 Fetch Directed Instruction Prefetching (FDIP)
	2.1.1 Fetch Target Queue
	2.1.2 Prefetch Engine
	2.1.3 New Fetch Stage
	2.1.4 Branch Target Buffer Design

	2.2 Optimizations
	2.2.1 Early Prefetch Corrections
	2.2.2 Invalidating Bogus BTB Entries

	2.3 Impact of Wrong Path in a machine with FDIP
	2.3.1 Wrong Path Model in ChampSim
	2.3.2 Impact of Wrong Path

	2.4 Performance of FDIP
	2.5 Not all misses are equal
	2.6 Impact on Criticality

	3 Criticality-Aware Cache Replacement Policy for Datacenter Workloads
	3.1 Original EMISSARY Policy
	3.1.1 Mode Selection
	3.1.2 Mode Treatment

	3.2 Improved EMISSARY
	3.2.1 Impact of Issue Queue Empty signal

	3.3 Decode Starvation Behavior of Datacenter Workloads
	3.4 Cache Replacement Policies
	3.5 Experimental Exploration
	3.5.1 Simulation Infrastructure and Machine Model
	3.5.2 Decoupled Fetch Engine
	3.5.3 Benchmarks
	3.5.4 Policy Selection and Parameterization
	3.5.5 Performance
	3.5.6 Contextualizing EMISSARY-L2's Benefits
	3.5.7 Persistence, By Itself, Improves Hit Rate
	3.5.8 Impact on Back-end Stalls
	3.5.9 Energy Savings

	3.6 Balancing Data Lines

	4 Criticality-Aware Instruction Prefetching
	4.1 Introduction
	4.2 Background
	4.2.1 Decoupled Front-end
	4.2.2 Front-end Critical Cache Replacement

	4.3 Do We Need Another Prefetcher?
	4.4 PDIP
	4.4.1 Selecting Prefetch Candidates
	4.4.2 Selecting a Trigger Instruction
	4.4.3 Synergy between PDIP and FDIP

	4.5 Design Implementation
	4.5.1 PDIP Table
	4.5.2 Optimizing Table Size
	4.5.3 Optimizing Table Occupancy
	4.5.4 Hardware Storage Overhead

	4.6 Simulation Methodology
	4.6.1 Simulation Model
	4.6.2 Baseline Description
	4.6.3 Benchmarks
	4.6.4 OS and IO bottlenecks : Full System
	4.6.5 Policies Evaluated

	4.7 Evaluation
	4.7.1 Performance Analysis
	4.7.2 Prefetch Timeliness And Accuracy
	4.7.3 Prefetch Effectiveness
	4.7.4 PDIP Table Sensitivity Analysis
	4.7.5 Energy and Area Analysis
	4.7.6 BTB Sensitivity Analysis
	4.7.7 Prefetch Triggers Analysis

	4.8 Related Work
	4.8.1 Hardware Instruction Prefetchers
	4.8.2 Software Instruction Prefetchers

	5 Simulation Infrastructure
	5.1 Practical Simulation of Multi-threaded Workloads
	5.1.1 Need for Simulating Kernel (Full System)
	5.1.2 Fast Mode Not Fast Enough
	5.1.3 QPoints
	5.1.4 Correctness
	5.1.5 Techniques to Reduce Noise from OS and IO Events

	6 Future Work
	6.1 Dynamic EMISSARY
	6.2 EMISSARY for Uop Cache
	6.3 Proritize iTLB miss events

	7 Conclusion
	Bibliography

