
 Static Interprocedural Slicing of Shared Memory Parallel Programs*

 Dixie M. Hisley Matthew J. Bridges Lori L. Pollock
U.S. Army Research Lab Computer & Information Sciences Computer & Information Sciences
 APG, MD 21005 University of Delaware University of Delaware

 hisley@arl.mil Newark, DE 19716 Newark, DE 19716
 bridges@cis.udel.edu pollock@cis.udel.edu

* This work was supported in part by NSF EIA-9703088
and CCR-0105540.

Abstract

Software tools for program debugging, software
testing, software maintenance, and program
understanding have all effectively utilized static program
slicing techniques. In this paper, we present an approach
to extend this capability to explicitly parallel shared
memory programs written using the OpenMP standard.
In particular, interprocedural static program slicing of
OpenMP programs is enabled by extending standard
program representations for control flow and program
dependences to support OpenMP parallel, data, and
synchronization constructs. The slicing algorithm builds
on the algorithms for interprocedural slicing of sequential
programs and an algorithm for intraprocedural slicing of
parallel programs.

Keywords – shared memory parallel programming,
program slicing, dependence graphs, compilers, software
tools

1. Introduction

Static interprocedural slicing for sequential codes is
well understood and used in a variety of applications [10,
2]. A static program slice is defined as follows: let P be a
program, p be a point in P, and v be a variable that is
defined or used at point p. Then, a static slice relative to
the slicing criterion <p,v> is the set of all statements in the
program P that might affect the value of v defined or used
at point p. Slicing is used for software development and
maintenance activities such as program understanding,
software testing, and debugging. To the authors’
knowledge, this is the first research that addresses static
interprocedural slicing for shared memory parallel

programs, written using OpenMP [8] explicitly parallel
constructs. OpenMP is the standard for developing
efficient, portable parallel programs for shared memory
multiprocessors.

Few sophisticated tools exist to aid the programmer in
debugging and optimizing shared memory parallel codes.
Midkiff and Padua [6] demonstrated that straightforward
application of sequential optimization techniques within
compilers for explicitly parallel shared memory
programming fail to maintain correctness. Potential data
races and synchronization of shared variables must be
taken into account.

Algorithms for slicing shared memory parallel
programs must address the possible interactions between
shared variables among threads that potentially execute in
parallel. In this paper, an intermediate representation for
the program, a threaded system dependence graph (tSDG)
is developed, and the possible interactions between shared
variables are analyzed as part of the slicing algorithm.

The concepts of a parallel region and worksharing that
are introduced by OpenMP are handled as well as
potential subroutine calls within these constructs.
Although Krinke [3] and Cheng [1] have previously
investigated slicing parallel codes, Krinke’s approach was
limited to intraprocedural slicing, and Cheng concentrated
on slicing for object-oriented parallel codes.

 In the following sections, we describe background
and related work, the targeted parallel programming
environment, challenges of interprocedural slicing, the
threaded system dependence graph (tSDG), an algorithm
to slice on this representation, and finally conclusions.

2. Background and related work

For sequential programs, techniques for the static
slicing of Fortran and Simple-D programs were first

introduced by Weiser [11]. His techniques were based on
control flow graph intermediate representations, but did
not take into account the calling context of called
subroutines. Intraprocedural slicing based on operations
performed on a program dependence graph (PDG)
representation was first introduced by Ottenstein and
Ottenstein [9].

Horwitz [2] introduced algorithms to compute
interprocedural slices by extending the PDG to a system
of PDGs called the system dependence graph (SDG).
Calling context of the procedures, lacking in Weiser’s
methods, was captured through the use of an attribute
grammar and calculation of sets of variables that might be
modified (GMOD), or referenced (GREF) by a procedure.
Livadas [5] developed an algorithm to perform
interprocedural slicing, also based on the SDG, but using
a simple approach to address calling context. Tip surveys
slicing techniques for imperative programs [10].

The program dependence graph has been extended
for the analysis of parallel programs [1,3]. Two
approaches for static slicing of parallel programs are by
Krinke [3] and Cheng [1]. Krinke introduced the threaded
PDG (tPDG) as the base for his intraprocedural slicing
algorithm. Cheng proposed an intermediate representation
called the Process Dependence Net (PDN) which was
later extended to a System Dependence Net (SDN). We
have exploited Krinke’s techniques as a basis for
developing our techniques for interprocedural slicing of
OpenMP programs.

3. Challenges in interprocedural slicing of
shared memory parallel programs

A unique challenge in slicing of shared memory
parallel programs is how to handle shared variables
between threads that might potentially execute in parallel.
The analysis of programs where some statements may
execute in parallel can be handled by modeling every
possible execution order of statements, but this will be too
memory intensive, and is not a practical solution.
Therefore, representations of parallel programs must be
developed to capture the new intraprocedural and
interprocedural data dependences introduced by shared
memory parallelism.

There has been a lack of convention for representing
the control flow of parallel programs. Current
representations of parallel programs for program analysis
and optimization are defined for generic parallel
constructs, as opposed to an implementation of a complete
parallel library/language (like OpenMP). OpenMP

introduces new parallel constructs, in particular, parallel
regions and worksharing constructs, that have not been
previously represented in intermediate representations for
parallel programs. In section 4, we present descriptions

and examples of our representations to capture both the
new intraprocedural and interprocedural data dependences
introduced by OpenMP. In addition to declarations of
local, global, and static data, we also need to support
private, threadprivate and shared variables in a
representation for OpenMP programs.

4. Modeling OpenMP parallel programs

In this section, the intermediate representations we use
for intraprocedural parallel slicing and interprocedural
parallel slicing, the threaded procedure dependence graph
(tPDG) and the threaded system dependence graph
(tSDG), respectively are described. We discuss how they
are related to their sequential counterparts and the
modifications required in order to generate threaded
versions for representing OpenMP programs.

A commonly used intermediate representation for
sequential programs is the control flow graph (CFG). The
concurrent control flow graph, CCFG, as defined by Lee
and Novillo [4, 7], was developed to represent the control
structure of a generic shared memory parallel program (no
particular language) that uses the parallel constructs

cobegin/coend and parloop/parend, and the

synchronization constructs set, wait, barrier, lock and
unlock.

A CCFG is similar to its sequential counterpart, the
CFG. A separate CCFG is generated for each procedure.

The CCFG is a directed graph G = 〈N, E, EntryG, ExitG〉
such that N is the set of nodes, E is the set of control flow
edges, conflict edges, and synchronization edges, and
EntryG , ExitG are the unique entry and exit points of the
program. A concurrent basic block (node) is essentially a
sequential basic block, with the following additional
constraints: a) contains at most one shared variable

access, b) contains at most one wait statement at the start

of the block and at most one set statement at the end of

the block c) synchronization operations lock, unlock, and

barrier and parallel control instructions cobegin, coend,
parloop, parend are placed in their own block.

A conflict edge is a bidirectional edge in the CCFG
that joins any two concurrent basic blocks that can be
executed in parallel and reference the same shared
variable (with one of the references being a write). In
addition, a CCFG contains synchronization edges between
concurrent basic blocks that contain explicit
synchronization operations.

In order to limit the modifications to the CCFG
representation, we provide a mapping from OpenMP
constructs to these constructs whenever possible. The
combined parallel worksharing OpenMP constructs

parallel sections and parallel for have direct one-to-one
correspondence with the semantics of the CCFG’s

representation of cobegin/coend and parloop/parend

constructs, respectively. The OpenMP worksharing
constructs for, sections, and single can all be embedded
within a parallel region. We chose to represent the
OpenMP parallel regions construct as a cobegin/coend
with two or more threads, where each thread gets a copy
of the statement block associated with the parallel region

as shown in Figure 1a. The possibility of more than two
threads occurs when a sections construct with more than
two section bodies is embedded within the parallel
construct. There must be one thread for each unique
section. For the cases where no sections are embedded in
the parallel region, we simply replicate the body of the
original parallel region as shown in Figure 1b. In the case
of a for, we represent the parallel loop by replicating the
original body of the loop and considering it to be like a
cobegin/coend structure with two threads as shown in
Figure 1c. The for and parallel representations have the
drawback of potentially increasing memory requirements,
but it is easier to analyze and support than self-referencing
conflict edges through this representation. Each statement
in the copy of a for or parallel body corresponds to a dual
statement in the original body. For a compiler
optimization to be applied, it must be applied to both dual
statements. If this is not possible, we do not perform the
optimization. The single and master constructs are
represented as a cobegin/coend with one thread. With the
available synchronization constructs in the CCFG, we can
simulate the semantics of OpenMP’s barrier, flush, and

critical synchronization constructs.
 Figure 2 presents an example intraprocedural CCFG

with conflict edges for the sample code shown in Figure 3.
The solid edges in the CCFG are control flow edges,
while conflict edges are represented by dashed edges. For
example, there is a def-def edge linking the two
assignments to variable B in the two different threads. A
def-use edge for variable Z indicates the relationship
between the two threads created by the statements
involving variable Z.

The PDG [9] consists of nodes for each statement and
each predicate and edges to indicate control and data
dependences. The tPDG was developed by Krinke [3] as
a threaded counterpart of the PDG for sequential
programs. It serves as the basis for his algorithm that

S1: T=…, B=…,C=…,D=…,E=…,Z=, Y=…
S2: !$OMP PARALLEL SECTIONS
S3: !$OMP SHARED (T,B,C,D,E, Z,Y)
S4: IF (T > 0) THEN
S5: T = -T
S6: B = C+ D
S7: Z = D
S8: ELSE
S9: B = C + D
S10: ENDIF
S11: !$OMP SECTION
S12: DO Y = 1,4
S13: B = C + D
S14: C = Z
S15: ENDO
S16: !$OMP END PARALLEL SECTIONS

Figure 3. Example OpenMPFigure 2. Example CCFG with Conflict Edges

if (T > 0)

B = C + D

B = C + D

B = C + D

DO Y,1,4,1

DD(B)

control flow

conflict edges

control flow

EXIT

B = C + DDD(B)

DU(Z) E = Z

T=..., B=1, C=..., D=..., E=..., Z=..., Y=...

END DO

SECTIONS

DD(B)
T = -T

ENDIF

Z = D

ENTRY

PARALLEL SECTIONS

END PARALLEL

...

coend

end

Original Copy

stmtsstmts

begin

body body

cobegin/parloop
Original Copy

begin

stmts

cobegin/section

beginbegin

stmts

coend

cobegin/parallel

begin

coend

end

stmts

for-loop

 {stmts;}
{
#pragma omp parallel

}
 {stmts;}
 #pragma omp section

}

 {for-loop body;}}
}

 {for-loop
 #pragma omp for
{
#pragma omp parallel

 .

Figure 1. OpenMP (a) Sections (b) Parallel (c) For Modeled as Cobegin/Coend

(c)

(b)

(a)

end

for-loop

#pragma omp sections

 :
 {stmts;}
 #pragma omp section
 {stmts;}
 #pragma omp section
{

performs static intraprocedural slicing of threaded
programs.

To construct the tPDG, Krinke introduces the concept
of a threaded CFG (tCFG). His tCFG is similar to our
CCFG for OpenMP programs except he uses
costart/coexit nodes to represent cobegin/coend
statements for parallel sections. He does not describe how
to handle for loops, parallel regions or synchronization.
In his tPDG representation, control dependence edges and
data dependence edges are added to the existing
control/parallel flow edges and conflict edges in his tCFG
using standard algorithms. Krinke’s interference
dependence edges are identical to the def-use conflict
edges we described as part of the CCFG representation.
Thus, we use the CCFG representation in place of
Krinke’s tCFG representation as a basis, but otherwise
follow his algorithms for building our version of his tPDG
and subsequently performing slicing using the tPDG.

A tPDG is used to represent the main driver procedure
and each of the other procedures in a whole program. To
perform interprocedural analysis, we extend the concept
of a tPDG to a tSDG for the purpose of performing
interprocedural static slicing of parallel programs.

We develop the tSDG as a threaded counterpart of the
SDG for sequential programs [2,5]. It serves as the basis
for our algorithm that performs static slicing of
interprocedural threaded programs. In order to build our
tSDG, we start with our CCFGs for the main program and
each procedure, and build the tSDG. We briefly
summarize these techniques in Figure 4.

To properly handle return statements with or without
return values, we use edges defined by Livadas [5]: a) the
affect-return edge b) return-control edge and c) return-link
edge. The summary information at a call site is the union
of transitive dependences, affect-return dependences, and
return-link dependences. A transitive dependence edge
exists from an actual-in node to an actual-out node if the
formal-out node that corresponds to the actual-out node is
intraslice-path reachable from the formal-in node that
corresponds to the actual-in node. We say that there
exists an intraslice-path from the formal-out node to the
formal-in node in a tSDG if there is a backwards path
from the latter to the former consisting of the following
types of edges; control dependence, data dependence,
declaration dependence, affect-return, and return-control,
and interference dependence. Determination of the
transitive dependences of a procedure is equivalent to
determining for each formal-out node, all the formal-in
nodes from which the formal-out node is intraslice-path

reachable. If a slice on the formal-out node is never
affected by the formal-in node, then the actual-out node
can be deleted.

The algorithm described in Figure 4 for building our
tSDG from our CCFGs is similar to building a SDG from
PDGs with some modifications to account for the threaded

nature of our representations. We treat shared variables
(including threadprivate) similar to the treatment
suggested in previous work [2] for global and static
variables. Shared variables are handled by introducing
them as additional pass-by-reference parameters to the
procedures that use or define them. Furthermore, we have
to modify the definition of transitive dependences to
include those introduced by shared variable dependences.
In order to do this, we have to include interference
dependence edges in our definition of intraslice-paths,
which leads to summary information at a call site that
captures the shared memory parallel dependences in a

tSDG. To compute transitive dependence edges, we apply
Krinke’s static intraprocedural threaded slicing algorithm

[3].

Algorithm Construct_tSDG

Input: CCFG for each procedure in the program P.
Output: threaded System Dependence Graph for P

1: Initialize call sequence graph (CSG), a linked list of call sites to
main
2: Begin partial solution of main CCFG by initiating computations of
control/parallel flow, data, and interference dependences
3: Upon finding a call to a new procedure, calculation of the
dependences of calling procedure is suspended (partial solution
preserved); called procedure is pushed onto top of CSG;
4: if called procedure is already solved, reflect summary information

of called procedure back onto callee site, pop top of CSG, resume
calculation of dependences in calling procedure.

5: else call site, entry nodes are created,
6: for each passed by reference actual parameter, an actual-in

node is created and an actual-out node is created, also the
corresponding formal-in nodes and formal-out nodes are
built.

7: introduce a call edge from the call site vertex to the
corresponding procedure-entry vertex

8: for each actual-in node at a call site, introduce a parameter-
in edge from the actual-in to its corresponding formal-in
node

9: for each formal-out node, introduce a parameter-out edge
from each formal-out node to its corresponding actual-out
node.

10: new dependence calculation is initiated at called procedure,
compute control, data, and interference dependences in
called procedure, if formal-out node is never modified, mark
it.

11: compute transitive dependence edges (edges from actual-in
nodes to actual-out nodes) by determining for formal-out
nodes, if it is intraslice-path reachable from formal-in nodes
using Krinke’s static intraprocedural slicing algorithm [3].
If formal-out node is not modified, delete actual-out node.

12: reflect summary information (transitive dependences,
affect-return dependences and return-link dependences) of
called procedure back onto callee site; pop the top of CSG.

13: endif
14: resume calculation of dependences in calling procedure (current

top of CSG), until CSG becomes empty.

Figure 4. Algorithm for constructing tSDG

5. Interprocedural slicing with the tSDG

Given the construction of the tSDG as described in
Figure 4, we can perform interprocedural slicing of the
tSDG based on the algorithm suggested by Livadas [5] for
sequential programs. The presence of summary edges that
represent transitive data dependences, including shared
variable data dependences, due to procedure calls permits
interprocedural slices to be computed in two passes, each
of which is a simple reachability problem.
Interprocedural slicing uses summary edges to move
across a call without descending into it. This prevents
descending into a procedure and returning by way of some
unrealizable execution path (sidesteps the call context
problem). In pass 1, the backwards traversal starts at node
x, the statement where the slice initiated in P, and follows
the following types of edges: control dependence, data
dependence, declaration dependence, return-control,
parameter-in, transitive dependence, affect-return, and/or
call. Thus, traversal does not descend into procedures
called by P.

In pass 2 of the algorithm, nodes are identified that can
reach node x from procedures called by P, or from
procedures that call P transitively. The backwards
traversal follows the following types of edges: control
dependence, data dependence, declaration dependence,
return-control, parameter-out, transitive dependence,
affect-return, and/or return-link. Thus, traversal does not
ascend into procedures that called P. The transitive flow
dependence edges from actual-in to actual-out nodes make
ascents unnecessary. When either pass is traversing a
return-control edge, the node at the end of the return-
control edge (a return statement) is marked as being in the
slice and the slicing follows the control dependence edge
to its origin, where slicing continues. Finally, the nodes
of the interprocedural slice are the union of the nodes
from both passes. Slicing can be performed even if a
program contains calls to unknown or system procedures,
as long as transitive dependences are known.

In Figure 6, we illustrate interprocedural slicing on a
tSDG representation for the simple multi-procedure
OpenMP program shown in Figure 5. Control, data,
interference, parameter in/out, call, and transitive
dependence edges are all shown. Note that this program
is written in OpenMP C, so all parameters are assumed to
be passed by value, except the parameter c which is
passed by reference. Thus, there is no data dependence
from c=12 to the printf because the pass by reference
parameter c is assumed to be killed by the execution of
work. Also, the a=u_out, b=V_out, and d=x_out are all
missing because they are passed by value. At statement
14 in Figure 5, variable v is designated as a shared
variable. Thus, an interference dependence potentially
exists between statements 17 and 23, and between

statements 20 and 23. As shown in Figure 6, interference
dependence edges are inserted between the corresponding
nodes in the tSDG. A key difference between a tSDG and
an SDG representation is the inclusion of interference
dependence edges in the tSDG. The definition of “intra-
slice path reachable” is modified to include interference
dependence edges.

Consider a slice starting at statement 8. We are
interested in identifying which nodes in the tSDG can
potentially impact the value of b at this point in the
program. Thus, our slicing criterion is <S8, b>. The
shaded nodes in Figure 6 represent the result of
performing the two-pass slicing algorithm described in
this section. The statement 8 is data dependent on the
formal-out vertex for parameter w. The formal-out vertex
for parameter w is intra-slice path reachable from the
formal-in vertices for u,v, and w. If interference
dependence edges had not been included in the definition

1: int main () {
2: int a, b, c, d;
3: a =10;
4: b = 6;
5: c=12;
6: d=23;
7: work(a, b, &c, d);
8: b = c / 2;
9: printf(“%d : %d : %d : %d“, a, b, c, d);
10: return 0;
11: }
12:
13: void work (int u, int *v, int w, int x) {
14: #pragma omp parallel sections shared (v)
15: #pragma omp section
16: if (u > v) {
17: v = u + v;
18: }
19: else {
20: v = v * v;
21: }
22: #pragma omp section
23: *w = v + *w;
24: x = x + *w;
25: #pragma omp end parallel
26: }

Figure 5. Example Multi-Procedure OpenMP

of intra-slice path reachable, then only the formal-in
vertices for parameters v and w would have been found.
Thus, the inclusion of interference dependence edges for
shared variables allows the correct propagation of
summary information for procedure work with respect to
slicing on variable b at statement 8.

6. Conclusions and future work

A major contribution of this paper is the development
of CCFG and tSDG intermediate representations to enable
interprocedural slicing of OpenMP shared memory
parallel programs. We showed how to represent
OpenMP’s parallel and worksharing constructs in
CCFGs. We redefined transitive dependences in the

tSDG to include the interference dependences that can
occur in shared memory parallel programs. The inclusion
of interference dependence edges in our definition of
intraslice-paths for computing transitive dependences
(summary information) at a call site allows us to capture
the shared memory parallelism dependences in the tSDG.
Once the tSDG is built, it can be used as input to perform
interprocedural slicing of OpenMP programs. The
interprocedural slicing algorithm described in this paper is
based on a combination of the algorithms suggested by
Krinke [3], and Livadas [5].

We are implementing our techniques by extending the
Odyssey [7] compiler representation for CCFGs, building
a tSDG phase and slicing tool. We hope to extend our
techniques to handle additional realistic parallel

 Figure 6. tSDG Program Slice of Example Multi-Procedure OpenMP Program

1: Begin−Main

14: Cobegin

13: Begin−Work

26: End

4: b=6

3: a=10

5: c=12
6: d=23 7: work(a, b, &c, d) 8: b= c/2 9: printf(a, b, c, d)

10: return 0

11: End

21: End

16: if(u>0)

24: x=x+*w;

22: Begin
25: Coend

24: End

15: Begin

17: v=u+v;

20: v=v*v;

7: v_in=b;7: u_in=a; 7: w_in=&c; 7: c=w_out;7: x_in=d;

23: *w=v+*w;

Data Dep.
Transitive Dep.
Param−In/Out & Call

Interference Dep.Control Dep.

13: u=u_in;

13: w=w_in; 13: x=x_in;

13: v=v_in; 13: u_out=u;

13: w_out=*w;

13: v_out=v;

13: x_out=x;

programming paradigms like object-oriented concurrency
and combined OpenMP and MPI programs.

7. References

[1] J. Cheng. Dependence analysis of parallel and distributed
programs and its applications. In Intl. Conference on
Advances in Parallel & Distributed Computing, 1997.

[2] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs, ACM TOPLAS, January 1990.

[3] J. Krinke. Static slicing of threaded programs. In Proc. of
ACM SIGPLAN Workshop on Program Analysis for
Software Tools & Engineering, Montreal, CA, June 1998.

[4] J. Lee. Compilation Techniques for Explicitly Parallel
Programs. Ph.D. thesis, Department of Computer Science,
Univ. of Illinois at Urbana-Champaign, 1999.

[5] P. Livadas and S. Croll. A new algorithm for the calculation
of transitive dependences, Journal of Software
Maintenance, vol 6, , pp. 100-127, 1994.

[6] S. Midkiff and D. Padua. Issues in the optimization of
parallel programs. In Proc. Int. Conf. On Parallel
Processing, vol. II, pp. 105-113, 1990.

[7] D. Novillo. Analysis and Optimization of Explicitly
Parallel Programs. Ph.D. thesis, Depart. of Computing
Science, University of Alberta, Edmonton, Canada, 2000.

[8] OpenMP Standard Board. OpenMP Fortran Application
Program Interface, October 1997, Version 1.0,
http://www.openmp.org..

[9] K Ottenstein and L. Ottenstein. The program dependence
graph in a software development environment. In
Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software
Development Environments, ACM SIGPLAN Notices 19,5,
May 1984.

[10] F. Tip. A survey of program slicing techiques. Journal of
Programming Languages, vol 3., no. 3, pp 121-189,
September 1995.

[11] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, vol. 10, pp. 352-357, 1984.

