
An Adaptive OpenMP Loop Scheduler for Hyperthreaded SMPs

Yun Zhang, Mihai Burcea, Victor Cheng, Ron Ho and Michael Voss

Department of Electrical and Computer Engineering, University of Toronto

10 King’s College Road, Toronto, ON, M5S 3G4, Canada

Abstract

Hyperthreaded(HT) and simultaneous multi-
threaded (SMT) processors are now available in
commodity workstations and servers. This technology
is designed to increase throughput by executing
multiple concurrent threads on a single physical pro-
cessor. These multiple threads share the processor’s
functional units and on-chip memory hierarchy in
an attempt to make better use of idle resources.
This work focuses on tuning the behavior of OpenMP
applications executing on SMPs with SMT processors.
We propose a self-tuning OpenMP loop scheduler
designed to react to behavior caused by inter-thread
data locality, instruction mix and SMT-related load
imbalance. This adaptive loop scheduler automati-
cally selects the number of threads that should be
used for each parallel loop and a good scheduling
policy for the iterations. It is shown that this
scheduler outperforms all other OpenMP schedulers,
and because it can dynamically select the number of
threads to use for each region, it even outperforms
the best combination of runtime schedulers for any
fixed number of threads.

1 Introduction

Hyperthreaded (HT) [6] and simultaneous multi-
threaded (SMT) [11] processors are now available in
commodity systems1. SMTs allow multiple threads
to execute concurrently on a single physical proces-
sor. Intel states that HT yields performance gains as
large as 25 - 40% for a less than a 5% increase in die
size [6]. The cost is minimal because most resources
are shared by the threads on an SMT, including the
functional units and the on-chip memory hierarchy.

In this work, we focus on tuning the behavior
of OpenMP applications executing on Hyperthreaded
SMPs. OpenMP has emerged over the last few years
as the dominant programming interface for express-
ing loop-level parallelism for shared-memory systems.

1We shall use SMT and HT interchangeably in this paper

It is designed to allow incremental parallelization of
sequential applications using straightforward parallel
pragmas. OpenMP is supported by a growing number
of hardware and software vendors, and has a number
of benchmark suites available for performance evalu-
ation [1, 4]. OpenMP and SMT processors represent
emerging entry-points for new parallel programmers.
It is therefore important for the success of both tech-
nologies that they work well together.

Unfortunately, understanding and controlling the
performance of OpenMP applications on SMT pro-
cessors is non-trivial. To understand their combined
performance, three application characteristics must be
considered: (1) inter-thread data locality, (2) instruc-
tion mix and (3) SMT-related load imbalance.

The choice of threads to be co-located on a proces-
sor is important to exploit inter-thread data locality.
When an SMP contains SMT processors, the shared
caches in each physical processor cause the overall
system to behave like a non-uniform memory access
(NUMA) machine. Data that has been recently ac-
cessed by a thread can be accessed more quickly by
a co-located thread (a thread executing on the same
physical processor) than by a non-co-located thread.

Likewise, the instruction mix of each thread affects
combined performance, since they compete for func-
tional units. If co-located threads share non-idle re-
sources, throughput may suffer.

Finally, most OpenMP applications, such as those
found in the SPEC OpenMP Benchmark Suite, have
been written assuming an SMP model. Given the
unique interaction of data locality and instruction mix
on program performance, codes executing on a Hy-
perthreaded SMP may show load imbalances for loops
that are well balanced on a true SMP.

To address these issues, we propose a self-tuning
OpenMP loop scheduler. Our scheduler is designed to
react to behavior caused by the three important ap-
plication characteristics outlined above, automatically
selecting the number of threads that should be used
for each parallel loop and a good scheduling policy for
the iterations.

#pragma omp parallel for shared(a,b)\

private(i,j) schedule(runtime)

for (i = 0; i < 100; i++) {

for (j = 0; j < 100; j++) {

a[i][j] = a[i][j] + b[i][j];

}

}

Figure 1: An example of a parallel loop in C. The
shared clause lists variables for which all threads
should directly access the original copy of the variable.
The private clause lists variables for which a local,
private copy should be made for each thread. The
schedule(runtime) clause specifies that the sched-
uler will be selected by the user at runtime through
an environment variable.

2 Related Work

The OpenMP API The OpenMP API has become
the industry standard for loop-level shared-memory
parallel programming [9, 8] and has strong support
from vendors, including IBM, Intel and Sun Microsys-
tems. The standard bindings of OpenMP for C/C++
[9] and Fortran [8] are currently implemented in a wide
range of commercial and research compilers. In this
work, we extend the Omni OpenMP research com-
piler [7]. The OpenMP API supports general parallel
regions, parallel sections and parallel loops. Figure 1
shows an example of a parallel OpenMP loop in both
C and Fortran. A detailed description of OpenMP is
beyond the scope of this paper.

Adaptive Loop Scheduling Properly selecting the
scheduling policy for parallel loops can result in large
performance gains. A number of groups have investi-
gated runtime techniques for selecting loop schedules
to improve performance. In [2], an adaptive scheduler
is designed for the IBM XLF OpenMP compiler that
derives the best scheduling policy for each parallel loop
at runtime. In [2], the target system is an SMP and
no decisions are made to reduce the number of threads
used by the loops. In [3], a system is proposed that
adaptively adjusts the number of threads assigned to
applications to increase the throughput of a multipro-
gram workload on an SMP. In contrast to [3], our work
focuses on the speed of applications on a dedicated sys-
tem. In [13], parallel loops are dynamically serialized
to avoid overheads that cannot be amortized by paral-
lel execution. Unlike our work, the work in [13] finds
loops that have sufficient work to amortize paralleliza-
tion overheads. The work presented here proposes a
general self-tuning loop scheduler.

_ompc_runtime_sched_init (_p_i0, _p_i1, _p_i2);

while (_ompc_runtime_sched_next (&_p_i0,

&_p_i1)) {

for (i = _p_i0; i < _p_i1; i += _p_i2) {

for (j = 0; j < (100; j++) {

a[i][j] = a[i][j] + b[i][j];

}

}

}

Figure 2: A loop with a schedule(runtime)
pragma as transformed by the Omni compiler:
the call to ompc runtime sched init initializes
the runtime-selected scheduler and each call to
ompc runtime sched next returns a chunk of itera-
tions for the thread to work on.

3 Overview of Scheduling Methods

The OpenMP API supports parallel regions, paral-
lel sections and parallel loops. While a full description
of the OpenMP API is beyond the scope of this paper,
a brief overview of parallel loops is presented here. A
parallel loop can be specified using an omp for con-
struct in a C/C++ program and an omp do directive
in a Fortran program. Figure 1 shows an example of a
parallel loop written in C using the OpenMP API. The
OpenMP compiler converts these loops into thread-
based code with calls to the OpenMP runtime library
to perform synchronization and scheduling, as shown
in Figure 2.

The loop shown in Figure 2 has been outlined into
a subroutine by the Omni compiler. At the location in
the code where the loop is to be executed, a call to the
Omni scheduler (ompc do parallel) is made with a
pointer to the outlined function as an argument. The
runtime system creates a team of threads to execute
the loop and passes each of them a copy of the function
pointer. As each thread executes the loop, they make
a call to ompc runtime sched init which initializes
the user-selected scheduler. In each iteration of the
while loop, the call to ompc runtime sched next re-
turns a chunk of iterations for the thread to perform.
Each thread continues to execute the while loop until
ompc runtime sched next returns zero.

In this paper, we evaluate different scheduling
methods and their effect on the performance of appli-
cations executed on a Hyperthreaded SMP. Table 1 de-
scribes the schedulers we evaluate, including the stan-
dard OpenMP loop schedulers (static, dynamic and
guided), as well as two advanced schedulers from the
literature (affinity and trapezoidal self-scheduling).

Table 1: A description of the runtime schedulers studied.
Algorithm Description

Static The static OpenMP scheduler divides the iterations of a loop among the threads by
handing out chunks of N iterations in a round-robin fashion. By default, the iterations
are divided into P evenly sized contiguous chunks, where P is the number of processors.
Since the schedule can be statically determined, this method has the least runtime overhead.

Dynamic The dynamic scheduler divides the iterations among the threads by handing out chunks of
n iterations on a first-come, first-served basis. If no chunk size is specified, a single
iteration is provided.

Guided The guided scheduler works in a fashion similar to the dynamic scheduler, except that the
size of the assigned chunks decreases exponentially (to n, if one is specified, and to 1
otherwise). Each time a new chunk is assigned, its size is approximately the number of
remaining (i.e., unassigned) iterations divided by the number of threads. The chunk
sizes in guided scheduling begin large and slowly decrease in size, resulting in fewer
synchronizations than with dynamic scheduling, while still providing load balancing.

Affinity The affinity-based scheduler [5] addresses the communication overhead incurred by
addressing non-local data on shared-memory multiprocessors. It uses work queues for each
processor, to which it statically distributes the iterations of the loop. Each processor
retrieves only a small fraction of these iterations at a time; when a processor’s queue is empty,
it removes a fraction of the iterations from the most loaded processor’s queue.

Trapezoidal Trapezoid self-scheduling[12], like both dynamic and guided scheduling, is designed
to distribute work more evenly to threads by doing runtime load balancing. TSS provides a
linearly decreasing number of iterations per request.

3.1 A Self-Tuning Loop Scheduler

As will be demonstrated in Section 4, none of the
loop schedulers described in the previous section ef-
fectively reacts to OpenMP applications executing on
SMPs with SMT nodes. We therefore propose an ad-
vanced self-tuning scheduler tailored specifically for
this domain. As shown in Table 2, most execution
time is spent on the parallel loops that are executed
more than 50 times. If we could decide which sched-
uler we should use for one particular loop in its first
several runs, we can gain significant performance im-
provement 2. A pseudo-code description of our algo-
rithm is found in Figure 3 and is described in detail in
this section.

Table 2: Number of invocations of parallel loops and
their percentage of total program time

Benchmark < 10 times 10-50 times > 50 times

ammp 0% 0% 84.20%
apsi 0% 0% 82.55%
art 100% 0% 0%
equake 0.05% 0% 98.23%
mgrid 0% 0.11% 95.95%
swim 0.09% 0% 99.25%
wupwise 0.12% 0% 99.49%

2Our system targets SMPs. For NUMA machines, changing
the scheduling policy of initialization loops may negatively affect
first-touch data distribution policies. Such systems are beyond
the scope of our current work.

BEGIN Upper-level search phase

deactivate lower-level sched

activate only 1 thread per SMT node

FOR all sched s

IF workload varies THEN bailout ENDIF

sample performance using sched s

ENDFOR

SET upper-level to best performing sched

SET T1 to execution time with best sched

END Upper-level search phase

BEGIN Lower-level search phase

activate 2 threads per SMT node

activate the lower-level sched

SET lower-level sched to static

sample two-level best-upper-alg/static sched

IF per-thread times show imbalance across siblings

FOR all sched s

sample performance of best-upper-alg/s sched

if per-thread times are now balanced, end loop

ENDFOR

ENDIF

SET T2 to execution time with best two-level sched

SET lower-level sched to best two-level sched

IF T1 < T2

deactivate lower-level sched

activate only 1 thread per SMT node

ENDIF

END Lower-level search phase

Figure 3: The Self-Tuning Loop Scheduler Algorithm

First, to account for the NUMA-like structure of
SMPs built from SMT-nodes, we propose a two-level
hierarchical scheduler as shown in Figure 4. Two-level
scheduling is based on the observation that not all
processors in a Hyperthreaded SMP are equal: the
virtual processors and their physical siblings share the
same cache and functional resources. The hierarchical
scheduler attempts to exploit this aspect by group-
ing the processors in nodes (e.g., on our 2-way Hy-
perthreaded 4-processor system, we have 4 nodes of 2
processors each). The scheduler will assign iterations
to nodes by using what we will hereafter refer to as
“the upper algorithm”, and then at each node the it-
erations will be further distributed between the two
siblings using a “lower algorithm” 3.

Loop Iterations

Iterations for Processor 0

Iterations for
sibling 1

Iterations for
sibling 0

Lower Level
Scheduler

Upper Level
Scheduler

Iterations for Processor 1

Iterations for
sibling 1

Iterations for
sibling 0

Lower Level
Scheduler

O O O Iterations for Processor P

Iterations for
sibling 1

Iterations for
sibling 0

Lower Level
Scheduler

Figure 4: The structure of the hierarchical scheduler.

The additional scheduling overhead from the hier-
archical structure should be compensated for by in-
creased data locality among co-located threads. We
also expect that the greater flexibility offered by this
algorithm will help improve performance of applica-
tions by combining an upper-level scheduling algo-
rithm with few synchronizations (and low overhead)
with a lower-level algorithm that will at most imply
synchronizations between the two siblings.

The various schedulers described in Table 1 each
have applications and systems for which they will out-
perform all other schedulers. It is difficult, however,
to make an a priori decision about which scheduler to
use for any given loop since the choice of best sched-
uler may depend on characteristics of the system and
input data set that is not known at compile-time.

Therefore, our proposed two-level scheduler is also
adaptive. It samples the performance of a number
of scheduling method at runtime to determine which
scheduler performs the best for each loop. We sample
all of the schedulers described in Table 1. Our sched-

3While our system provides only 2 threads per physical pro-
cessor, this scheme can easily be generalized for nodes with T
threads

uler begins by searching for a best upper-level algo-
rithm. Only 1 thread is used per physical processor
during this Upper-level search phase. At each invo-
cation of each parallel region, a different scheduling
method is used and the execution time is monitored.
After all scheduling methods have been sampled for
a given region, the algorithm that gave the smallest
execution time is selected as best.

At each invocation, the complexity of the loop nest,
as calculated from the loop bounds, is also passed to
the runtime system. If the work varies between invo-
cations, our sampling will be inaccurate and therefore
the system bails out, using affinity scheduling with 4
threads for all subsequent invocations of the region.

As discussed in Section 1, if two co-located threads
compete for the same shared resources on an SMT
processor, conflicts may degrade overall performance.
To react to this situation, our adaptive scheduler de-
termines (a) whether to use 1 or 2 threads per SMT
node and (b) if it is decided to use 2 threads, what
lower-level algorithm should be employed.

After the Upper-level search phase is complete, our
scheduler has selected a upper-level algorithm that
has the best performance, which means it can balance
work-loads well while minimizing scheduling overhead
in the upper level. This choice will be fixed as the up-
per algorithm. The scheduler will then enter a Lower-
level search phase (see Figure 3). During this phase it
will use 2 threads per SMT processor to execute the
loop under consideration.

It begins by sampling the per-thread execution
times for this loop when using the static scheduler
as the lower algorithm. If per-thread timings indicate
that no load imbalance is seen between sibling threads,
there is no need to examine other schedulers, and
static will be asserted as the best lower-level choice.
If during the Lower-level search phase, per-thread ex-
ecution times exhibited by the static scheduler show an
imbalance, other load balancing scheduling algorithms
must be sampled.

The execution time obtained by the best perform-
ing two-level algorithm (using 2 threads per node) will
be compared against the execution time of the best
upper-only execution time (using 1 thread per node).
If the 1-thread-per-SMT version performs better, the
second thread on each SMT will be disabled for subse-
quent executions of this loop, and the previously deter-
mined best upper-algorithm will be used to schedule
iterations across the physical processors only. Other-
wise, the best two-level scheduler will be used.

It should be noted that 8 threads will be used to
executed all code that falls outside of parallel loops

but within parallel regions, ensuring correct execution.
Since the default loop scheduler used by an OpenMP
runtime library is implementation dependent [9, 8],
loops that do not include a schedule pragma cannot
assume that any particular thread will execute any
of its iterations. However, all threads must (and will)
execute code not found within work-sharing constructs
(such as parallel loops).

4 Experimental Evaluation

We evaluate the performance of our scheduling
methods using a Hyperthreaded Xeon server with four
2.8 GHz Xeon processors and a 16 GB main mem-
ory. Each processor has a 512 KB L2 and a 1 MB L3
data cache. The system runs Redhat Linux 7.3 with
a slightly modified version of the 2.4.18-smp kernel 4.
In all of our experiments, we use explicit binding to
ensure that threads are evenly distributed among the
physical processors. We investigate the performance
of the 7 benchmark programs described in Table 3.

Table 3: Benchmark Characteristics

Name Lines Parallel Modified Time on
Loops Loops 1 CPU (s)

ammp 14688 10 9 364
apsi 7744 24 24 378
art 1917 3 2 214
equake 1622 11 10 231
mgrid 683 11 11 740
swim 462 8 8 514
wupwise 2506 10 10 1189

4.1 Benchmark Scaling

Figure 5 shows the speedup of each of the original
unmodified applications when executed on 1 through
8 threads (compiled with the Omni research compiler
version 1.4a). It is important to note that when
only the physical processors are used, performance
increases with the number of threads. However, for
many benchmarks, using only the physical processors
leads to better performance. The average speedup is
2.3 on 4 processors and 2.0 on all 8 virtual processors.

4.2 Evaluation of OpenMP Schedulers

To perform our experiments, runtime scheduling di-
rectives were added to all of the major parallel loops

4We added a system call to allow threads to be bound to
processors

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 3 4 5 6 7 8

Number of Threads

S
pe

ed
up

ammp
apsi
art
equake
mgrid
swim
wupwise

Using At Most 1 Thread Per Physical Processor Using At Most 2 Threads Per Physical Processor

Figure 5: The speedup on 1 through 8 processors using
the Omni research compiler with the original parallel
applications.

in the benchmark suite (see Table 3). Loops that ex-
plicitly specified schedulers were not modified. The
Omni compiler uses static scheduling by default for
loops without scheduling clauses.

The speedups for the original applications are poor
as shown in Figure 5. To investigate the effect of
more advanced schedulers on this performance, we ex-
ecuted the benchmarks with 4 and 8 threads using sev-
eral runtime scheduling algorithms: static, dynamic,
guided, affinity and trapezoidal self-scheduling (tss).
Since affinity and tss are not available in standard
OpenMP compilers, these were added to the Omni
research compiler. Figure 6 shows the results of these
scheduling methods applied to these benchmarks when
executed on 4 and 8 processors.

As shown in Figure 6(a), static shows a speedup of
2.27 on average across the benchmarks. The dynamic
scheduler, which has the highest overhead, performed
very poorly on several applications, resulting in an av-
erage speedup of only 1.4. Guided, which still per-
forms runtime load balancing but with a lower over-
head than dynamic, had an average speedup of 2.24.
Guided shows significant improvements over static on
both ammp and wupwise. The affinity scheduler
(afs) shows large improvements in most benchmarks
and has an average speedup of 2.45. Affinity also per-
forms load balancing, but uses local work queues to
reduce synchronizations and maximize locality.

When 8 threads are used, as shown in Figure 6(b),
significant decreases in speedups can be seen for a
number of benchmarks. The method with the high-
est average performance is affinity with an improve-
ment of 15% over the next best scheduling method on
8 processors (guided). However all schedulers, includ-
ing afs, show a better average performance when using
only 4 threads.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

ammp apsi art equake mgrid swim wupwise Overall

Benchmarks

S
p

ee
d

u
p

static
dynamic
guided
afs
tss

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

ammp apsi art equake mgrid swim wupwise Overall

Benchmark

S
p

ee
d

u
p

static
dynamic
guided
afs
tss

(a) (b)

Figure 6: The speedup of applications using different schedulers when (a) only the 4 physical processors are used
and (b) when all 8 virtual processors are used.

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

ammp apsi art equake mgrid swim wupwise Overall

Benchmarks

S
pe

ed
up

static
dynamic
guided
afs
tss
adaptive

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

ammp apsi art equake mgrid swim wupwise Overall

Benchmark

S
pe

ed
up

static
dynamic
guided
afs
tss
adaptive

(a) (b)

Figure 7: The improvement of the runtime schedulers over the original parallel applications when using (a) 4
threads and (b) 8 threads.

4.3 Evaluation of the Adaptive Scheduler

The results in Figure 7 show that the adaptive
scheduler on average outperforms all other schedulers
when using either 4 or 8 threads. On 4 threads, the
adaptive scheduler selects the best single-level sched-
uler to use for each parallel region, and is therefore
able to outperform even the affinity scheduler, which
is far better than the other schedulers in Figure 6. On
8 threads, the adaptive scheduler uses the full algo-
rithm presented in Figure 3. The average improve-
ment gained by using the adaptive scheduler over any
other scheduler on 8 threads is greater than 20%.

The adaptive scheduler provides significant im-
provements because (1) it makes independent deci-
sions for each parallel region and (2) on 8 threads it is
able to switch between 4 and 8 threads as needed. In
Figure 8(a), the improvement of the adaptive sched-
uler over the best runtime scheduler, and the original
application, is shown for each benchmark. The adap-

tive scheduler provides the best performance for all
cases except mgrid, where the best 4-thread runtime
scheduler (afs) slightly outperforms it. In mgrid, our
adaptive scheduler bails out on several important re-
gions, and therefore cannot amortize its overhead (see
Figure 3).

Our adaptive scheduler chooses different schedulers
and numbers of threads for parallel regions, as shown
in Figure 8(b). Although the affinity scheduler with 4
threads dominates in this decision graph, our adaptive
scheduler still chooses other algorithms for some par-
allel regions, resulting in an increase in performance.

Locality, Imbalance and Instruction Mix

To understand why our adaptive scheduler outper-
forms all other scheduling methods, we must inves-
tigate its effect on inter-thread data locality, load im-
balance and instruction mix. Figure 9 shows the effect
of schedule choice on data cache misses and load im-

-5.00%

5.00%

15.00%

25.00%

35.00%

45.00%

55.00%

65.00%

75.00%

ammp apsi art equake mgrid swim wupwise Average

Benchmarks

Im
pr

ov
em

en
t

Best on 4
Best on 8
Original on 4
Original on 8

0%

20%

40%

60%

80%

100%

ammp apsi art equake mgrid swim wupwise

Benchmarks

P
er

ce
n

ta
g

e
o

f
R

eg
io

n
s

tss-guided
tss-static
afs-static
guided-static
static-static
tss/4
afs/4
guided/4
static/4

(a) (b)

Figure 8: The improvement of the adaptive scheduler over the best single-level schedulers: (a) the percent increase
in performance that would be seen by using the adaptive scheduler and (b) the choices made by the adaptive
scheduler for each benchmark. “Best on 4” corresponds to the best single-level scheduler for each benchmark when
using 4 threads. “Best on 8” corresponds to the best single-level scheduler for each benchmark when using 8
threads.

balance. From Figure 9(a), it can be seen that the
adaptive scheduler incurs the least increase in data
cache misses when moving from 4 to 8 threads. This
effect is due to the hierarchical nature of our scheduler
(which promotes locality), as well as the choice to use
only 4 threads in loops that see significant increases in
data cache misses with 8 threads. Figure 9(b) demon-
strates that the adaptive scheduler selects algorithms
that best balance the load among the threads, yielding
significantly improved work distributions.

The effect of instruction mix on the performance
of an application executing on a SMT is difficult to
measure [10]. However, Table 4 shows evidence that
instruction mix plays an important role in determin-
ing the number of threads to use per physical proces-
sor. In Table 4, both parallel regions see increases
in cache misses when 8 threads are used. Region
rectmm 32 sees a 5% increase and quake 54 sees a
9% increase in misses. However, rectmm 32 only ex-
ecutes 172 floating-point operations per microsecond
(µs), while quake 54 executes 543 floating-point oper-
ations per µs. This increased floating-point operation
count provides more opportunities for resource shar-
ing on the SMT. Therefore, quake 54 is able to profit
from the use of the additional thread context, even at
the cost of increased data cache misses.

5 Conclusions

Simultaneous multithreaded (SMT) and Hyper-
threaded (HT) processors allow multiple threads to
execute concurrently on a single physical processor.

Table 4: Example per-region statistics.

Region FP Cache Time Sched
Ops Misses (µs)

rectmm 690 k 46 k 3856 Static
(reg 32) 690 k 47 k 3619 Guided

690 k 46 k 3967 TSS
691 k 47 k 3609 AFS

691 k 49 k 3997 AFS-Static

quake 7397 k 298 k 16846 Static
(reg 54) 7397 k 299 k 16685 Guided

7397 k 298 k 17612 TSS
7399 k 300 k 14979 AFS
7399 k 326 k 13632 AFS-Static

The unique features of SMT processors make it dif-
ficult to determine when to use these extra threads.
Ideally, a user could view the threads on SMT as vir-
tual processors, and execute parallel applications as-
suming that these virtually processors are all equal. In
Section 4.1, we show that it is sometimes better to ex-
ecute OpenMP applications using only a single thread
per physical processor. Using the additional virtual
processors often results in worse performance.

In Section 4.2, we show that using more advanced
schedulers may lead to increased performance on
SMPs of SMTs. It is shown that an affinity-based
runtime scheduler can lead to an almost 10% improve-
ment in the average performance of the benchmarks
compared to the original parallel applications.

In Section 3.1, we propose a self-tuning loop sched-
uler that exploits the two-level structure of SMPs built
from SMT processors. It is shown that this scheduler

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

ammp apsi equake mgird swim wupwise

Benchmark

In
cr

ea
se

 in
 C

ac
h

e
M

is
se

s
(x

)

static
guided
afs
tss
noruntime
adaptive

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Benchmarks

Im
ba

la
nc

e

staic
guided
afs
tss
adaptive

staic 65.44% 5.44% 68.24% 86.54% 1.53% 0.54%

guided 47.23% 4.00% 68.21% 77.59% 0.51% 0.45%

afs 28.36% 5.21% 37.58% 69.20% 0.81% 0.40%

tss 50.58% 4.16% 54.37% 70.87% 20.40% 0.61%

adaptive 30.90% 0.52% 21.15% 26.67% 0.33% 0.26%

ammp apsi equake mgrid swim wupwise

(a) (b)

Figure 9: Characterization of the adaptive schedulers effect on (a) data cache misses and (b) load imbalance. In
(a), the increase in data cache misses incurred when moving from 4 to 8 threads is shown for each algorithm. In (b),
the average load imbalance across all regions is shown on 8 threads for each scheduler. Load imbalance is calculated
as the difference between the execution time of the slowest and fastest thread for a given region, normalized to the
execution time of the slowest thread.

outperforms all other approaches, and because it can
dynamically select the number of threads to use for
each region, it even outperforms the best combination
of runtime schedulers for any fixed number of threads.
With our novel adaptive scheduler, users can safely
execute their code with all available threads, and the
runtime system will transparently select the appropri-
ate number of threads for the application.

Acknowledgements: This work was supported in
part by the Canadian National Science and Engineering
Research Council, the Canada Foundation for Innovation,
the Ontario Innovation Trust, the Connaught Foundation
and the University of Toronto.

References

[1] V. Aslot, M. Domeika, R. Eigenmann, G. Gaert-
ner, W. B. Jones, and B. Parady. SPEComp: A
New Benchmark Suite for Measuring Parallel Com-
puter Performance. In Proceedings of the Work-

shop on OpenMP Applications and Tools, pages 1–10,
Lafayette, Indiana, July 2001.

[2] E. Ayguadé, B. Blainey, A. Duran, J. Labarta,
F. Mart́inez, X. Martorell, and R. Silvera. Is the
schedule clause really necessary in OpenMP? Interna-

tional Workshop on OpenMP Applications and Tools,
pages 147–159, June 2003.

[3] M. W. Hall and M. Martonosi. Adaptive Parallelism
in Compiler-Parallelized Code. In Proc. of the 2nd

SUIF Compiler Workshop, August 1997.

[4] H. Jin, M. Frumkin, and J. Yan. The OpenMP Im-
plementation of NAS Parallel Benchmarks and Its

Performance. Technical Report NAS-99-011, NASA
Ames Research Center, October 1999.

[5] E. P. Markatos and T. J. LeBlanc. Using processor
affinity in loop scheduling on shared-memory multi-
processors. Technical Report TR410, 1992.

[6] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Ko-
ufaty, J. A. Miller, and M. Upton. Hyper-Threading
Technology Architecture and Microarchitecture. Intel

Technology Journal, 06(01), February 2002.

[7] RWCP. The Omni OpenMP Compiler.
http://phase.hpcc.jp/Omni/, 2004.

[8] The OpenMP Architecture Review Board. OpenMP

Fortran Application Program Interface, 2.0 edition,
November 2000.

[9] The OpenMP Architecture Review Board. OpenMP C

and C++ Application Program Interface, 2.0 edition,
March 2002.

[10] N. Tuck and D. Tullsen. Initial Observations of a
Simultaneous Multithreading Pentium 4. In Interna-

tional Conference on Parallel Architectures and Com-

pilations Techniques, September 2003.

[11] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In
22nd Annual International Symposium on Computer

Architecture, June 1995.

[12] Ten H. Tzen and Lionel M. Ni. Trapezoid self-
scheduling: A practical scheduling scheme for parallel
compilers. IEEE Transactions on Parallel and Dis-

tributed Systems, 4(1):87–98, January 1993.

[13] M. J. Voss and R. Eigenmann. Reducing Paral-
lel Overheads Through Dynamic Serialization. In
IPPS: 13th International Parallel Processing Sympo-

sium, pages 88–92, San Juan, Puerto Rico, April 1999.

