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Abstract—
Computational scientists are typically not expert program-

mers, and thus work in easy to use dynamic languages.
However, they have very high performance requirements,
due to their large datasets and experimental setups. Thus,
the performance required for computational science must be
extracted from dynamic languages in a manner that is trans-
parent to the programmer. Current approaches to optimize and
parallelize dynamic languages, such as just-in-time compilation
and highly optimized interpreters, require a huge amount
of implementation effort and are typically only effective for
a single language. However, scientists in different fields use
different languages, depending upon their needs.

This paper presents techniques to enable automatic extrac-
tion of parallelism within scripts that are universally applicable
across multiple different dynamic scripting languages. The
key insight is that combining a script with its interpreter,
through program specialization techniques, will embed any
parallelism within the script into the combined program that
can then be extracted via automatic parallelization techniques.
Additionally, this paper presents several enhancements to
existing speculative automatic parallelization techniques to
handle the dependence patterns created by the specialization
process. A prototype of the proposed technique, called Partial
Evaluation with Parallelization (PEP), is evaluated against two
open-source script interpreters with 6 input linear algebra
kernal scripts each. The resulting geomean speedup of 5.10×
on a 24-core machine shows the potential of the generalized
approach in automatic extraction of parallelism in dynamic
scripting languages.
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I. INTRODUCTION

The rise of computational science has put computational
efficiency on the critical path for many scientific fields. This
is true even for scientists who are not strong programmers
and who would rather focus on theory and experiments in
their field of study than on programming [40]. This has
lead to the widespread use of dynamic scripting languages,
including domain specific languages (DSL), in the scientific
community, as such languages are typically easier for non-
expert programmers to use. Unfortunately, these languages
have typically sacrificed performance in exchange for their
productivity. Thus, there is a conflict between the com-
putational scientists need for high performance and their
language choice.
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Given the parallel nature of today’s computational re-
sources (from multicore architectures, to GPUs, to clusters),
parallelism is essentially a requirement for creating high
performance programs. This is even more true for scientific
programs, as many scientific computations are amenable to
parallelization. However, manually parallelizing programs is
known to be a time consuming and error-prone task, even
for skilled programmers. Considering that ease of use is
the primary reason behind the use of scripting languages
in scientific computing, requiring manual parallelization in
these languages does not make sense.

Automatic parallelization techniques have had success
in parallelizing both scientific [6], [48], [12] and general
purpose applications [8], [19], [47], [63]. However, most
efforts to improve scripting language performance have not
been focused on extracting parallelism. Many performance
optimizations on script interpreters or just-in-time (JIT)
compilers have been proposed [16], [1], [3], [2], [43], but
there has been little work done on automatically extracting
parallelism via JIT compilers [27]. Some have investigated
reimplementing the interpreter to take advantage of the
parallelism within the input script [25], [31], [55]. However,
the implementation of JIT and interpreter optimizations are
typically only effective for a single language. There cur-
rently does not exist a single dominant scripting language.
Different domains rely on different languages, with new
DSLs constantly appearing to meet the needs of scientists
and researchers in specialized fields. Advances in modern
compilers proved that a significant amount of engineering
work can be amortized by having one tool common to many
languages (e.g. C, C++, Swift, etc. in LLVM) rather than
many tools for many languages.

This paper presents a novel solution to extract the
parallelism within scientific programs written in dynamic
scripting languages, in working towards restoring the one-
tool-many-languages paradigm. Script interpreters are, in
some sense, incomplete and unpredictable programs. This
nature causes standard compiler analysis and speculation
techniques to fail when applied to the interpreter alone. The
key insight of this work is that combining a script and its in-
terpreter using program specialization techniques [33] causes
the resulting program to become predictable and amenable to
compiler optimization; what’s more, any parallelism within
the script is embedded into the combined program and



is thus exposed to the compiler’s automatic parallelization
techniques. With this approach, multiple scripting languages
can be handled with a single system.

The structure of interpreters that have been specialized
against a script are too complex to be handled by existing
automatic parallelization techniques. This paper additionally
presents two enhancements to existing automatic paral-
lelization techniques to deal with the complex structure
of specialized interpreters. The first technique is context-
sensitive speculation. Although the specialization process
folds parallelism into the specialized program, it generates
aggressively unrolled loops that are difficult for analysis and
speculation techniques to reason about. Context-sensitive
speculation overcomes this limitation by improving the
precision of speculative dependence analysis. Second, this
paper presents performance optimizations to the speculative
run-time system. Extensive use of speculation is unavoidable
to automatically parallelize complex programs. However,
existing run-time systems add significant overhead for each
speculated memory operation and can only tolerate a few
speculated operations per loop before the overhead com-
pletely eclipses the benefit of parallelization. By resolving
this performance issue, the optimized system proposed in
this paper is able to handle several thousand speculated
instructions, whereas previous systems could handle only
a few.

This paper additionally presents a prototype of the pro-
posed technique called Partial Evaluation with Paralleliza-
tion (PEP), the first fully automatic system that extracts par-
allelism within scripts and is applicable to multiple dynamic
scripting languages. PEP was evaluated using open-source
Lua [24] and Perl [37] script interpreters. PEP specialized
both interpreters against 6 sequential scripts that describe
linear algebra kernels containing latent parallelism, auto-
matically parallelized the resulting specialized programs,
and achieved a geomean speedup of 5.10× on a 24-core
machine. Results from the first prototype implementation
demonstrate the promising potential of the proposed tech-
nique.

The primary contributions of this work are:

• The first fully-automatic technique to harness paral-
lelism within programs written in dynamic scripting
languages by combining program specialization with
automatic parallelization;

• A set of context-sensitive speculation techniques to
extract parallelism out of complex programs (such as
specialized script interpreters);

• Performance optimizations to the run-time system sup-
porting speculative parallelization, which enables scal-
able speedup of extensively speculated parallel pro-
grams; and,

• Implementation and evaluation on two real-world inter-
preters.

II. BACKGROUND AND MOTIVATION

A. Program Specialization

Program specialization, sometimes referred to as partial
evaluation, optimizes a program for the values that remain
invariant across program execution. These invariant values
include known, fixed program inputs. Constant propagation
can be considered a simple form of program specialization.
Specialized programs can be generated either at compile-
time [11], [26] or at run-time [5], [17], [52]. Many prior
specialization techniques rely on user annotations to find
invariants or generate efficient code [4], [11], [17], [26].
Recent work proposes fully-automatic run-time [5], [52] and
compile-time [33] program specialization techniques that do
not require user annotations.

Invariant-induced Pattern based Loop Specialization
(IPLS) [33] is a fully-automatic, compile-time program
specialization technique. A key feature of IPLS is that it
generates a program specialized for the predictable patterns
of values induced by program invariants across loop itera-
tions. IPLS traces the values of instructions in hot loops that
depend solely on program invariants and discovers repeating
patterns from the traces. IPLS generates a specialized loop
by unrolling the original loop for the length of the detected
pattern and specializes each unrolled iteration with respect
to the value in the pattern.

B. Automatic Speculative Parallelization

The ideal method of harnessing loop-level parallelism
is DOALL parallelization. Iterations of DOALL loops run
completely independent of other iterations, thus resulting in
scalable parallel speedup. However, DOALL parallelization
can only be applied to loops with no loop-carried depen-
dences, often referred to as embarrassingly parallel loops.

Decoupled Software Pipelining (DSWP) [35] overcomes
the limited applicability of DOALL parallelization and is ap-
plicable even when loop-carried dependences exist. DSWP
divides the loop body into multiple stages and assigns each
stage to different threads to create a pipeline, where data
does not flow from later stages to earlier stages. DSWP
first builds a DAGSCC of the Program Dependence Graph
(PDG) [15] of the target loop by coalescing each strongly
connected component (SCCs) in the PDG into a single node,
then assigns those nodes to stages to identify a pipeline
schedule. If there is a parallel stage, a stage with no
loop-carried dependences, the stage can run independently
of different iterations of the same stage to achieve better
scalability [47]. DSWP is more tolerant than DOACROSS,
another parallelization scheme that is applicable to loops
with loop-carried dependences, to high communication la-
tency between threads [61].

The performance improvement of parallel transformations
is limited by the amount of parallelism extracted from
the program. Extracting parallelism is often prevented by



# script takes an input
1: size = argv[1]
2: a = []
   # line 3 breaks to opcode  
   # FOR and FORWRAP
3: for i=0 to size {
     # line 4 breaks to opcode
     # GETVALUE and SETARRAY
4:   a[i] = i
   }
…

address	   opcode	   operands	  

… … …

p FOR [‘i’, ‘size’, p+4]

p+1 GETVALUE [‘i’]

p+2 SETARRAY [‘a’, ‘i’]

p+3 FORWRAP [‘i’, p]

… … …

// pc==p, b.opcode==FOR
f  = isLT(get(‘i’), get(‘size’));
pc = 1 ? p+1 : p+4;

// pc==p+1, b.opcode==GETVALUE
push(get(‘i’));
pc = p+2;

// pc==p+2, b.opcode==SETARRAY
setArr(get(‘a’), get(‘i’), pop());
pc = p+3;

// pc==p+3, b.opcode==FORWRAP
inc(get(‘i’));
pc = p;

// pc==p, b.opcode==FOR
f  = isLT(get(‘i’), get(‘size’));
pc = 1 ? p+1 : p+4;

// pc==p+1, b.opcode==GETVALUE
push(get(‘i’);
pc = p+2;

// pc==p+2, b.opcode==SETARRAY
setArr(get(‘a’), get(‘i’), pop());
pc = p+3;

// pc==p+3, b.opcode==FORWRAP
inc(get(‘i’));
pc = p;

// pc==p, b.opcode==FOR
f  = isLT(get(‘i’), get(‘size’));
pc = 0 ? p+1 : p+4;

…
	  

Input	  Script	  

Bytecode	  Representa4on	  

Known Input 

for (;;) {
  b = BYTECODES[pc];
  switch (b.opcode) {
    case FOR: {
      f = isLT(get(b.op0), 
               get(b.op1));
      pc = f ? pc+1 : get(b.op2);
      break;
    }
    case GETVALUE: {
      push(get(b.op0));
      pc++; break;
    }
    case SETARRAY: {
      setArr(get(b.op0), 
             get(b.op1), 
             pop());
      pc++; break;
    }
    case FORWRAP: {
      inc(b.op0);
      pc = get(b.op1); break;
    }
    …
  }
}

Program 

header:
  1: f = isLT(get(‘i’), 
              get(‘size’));
  2: if (!f) goto exit

body:
  3: push(get(‘i’));
  4: setArr(‘a’, 
            get(‘i’), 
            pop());
  5: inc(‘i’);
  6: pc = p
  7: goto header

exit:
  pc = p+4;
goto org

for (;;) {
org: 
  if (pc == p) goto header;
  // original loop body
  …
}

Specialized Loop 

(a) (b) (c)
Figure 1: Example of interpreter specialization. (a) An input script, its bytecode representation, and a snippet of the main interpreter loop.
(b) Execution trace of the interpreter running the script. The grey boxes represent four iterations of the interpreter loop, which is one
iteration of the loop in the input script. Note that isLT evaluates to 1 in the first two iterations and 0 in the last. (c) Resulting specialized
loop from IPLS.

imprecise analysis, especially for general purpose programs
with irregular data structures and complex control-flows.
However, these programs have many statically unresolvable
dependences that may not manifest at runtime.

Speculative parallelization [22], [28], [45], [54], [65]
can overcome the limits of static analysis by speculatively
removing dependences that are unlikely to occur in practice,
thereby giving the compiler increased freedom to apply
parallelizing transforms. To ensure that the dependences that
were speculatively removed do not actually manifest during
the program’s execution, the compiler inserts validation
checks. If the speculative assumptions are violated, the
speculative run-time system signals misspeculation and then
recovers the program to non-speculative state. Recovery
is typically handled through a checkpoint and rollback
mechanism. To support speculation in conjunction with
pipelined parallelization, a run-time system called Multi-
Threaded Transactions (MTXs) [60] has been proposed.
As the original MTX proposal requires extensive hard-
ware modifications, a software-only implementation of MTX
(SMTX [46]) was developed as well.

C. Motivating Example

Figure 1(a) describes the high level algorithm of an
interpreter and input script. The script takes an input from
the command line to set the value of a variable size, and
runs a loop that iterates with induction variable i from zero

to size to initialize the index i of array a with i. The loop
in the input script is described with four different instructions
at the bytecode level: FOR, GETVALUE, SETARRAY,
and FORWRAP. There are no loop carried dependences, thus
the loop contains DOALL parallelism.

Due to the loop in the script, the main loop of the in-
terpreter program experiences a recurring control- and data-
flow pattern during execution. As shown in Figure 1(b), the
same code blocks and values are repeated across iterations
of the interpreter’s main loop. IPLS captures these repeating
patterns and generates a specialized loop, as depicted in Fig-
ure 1(c). Some bookkeeping instructions, like an instruction
that increases pc, are optimized out during the specialization
process.

IPLS was invented to optimize the performance by spe-
cializing target loops in this way. However, we found
that there is another important consequence of IPLS; with
IPLS, parallelism expressed by the fixed input (the input
script in this example) is expressed by the specialized
loop. The variability in the potential dynamic behaviors of
the interpreter in Figure 1(a) makes it a poor choice for
automatic parallelization. In contrast, the specialized loop
in Figure 1(c) reflects the structure of the loop in the input
script, as well as the parallelism within the loop.

Figure 2(a) shows the PDG of the specialized loop.
Dashed boxes in Figure 2(a) represent basic blocks. Static
analysis may not be able to prove that there is no data
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Figure 2: (a) PDG of the specialized loop from Figure 1(c). Note
that the control dependence from node 2 applies to both sets of
nodes 1-2 and 3-7. (b) DAGSCC of PDG from (a). (c) Parallel
execution plan using DSWP.

dependence between the calls of setArr across multiple
iterations; however, data-dependence profiling can determine
that the dependence is unlikely to manifest and can be spec-
ulatively removed. Figure 2(b) is a DAGSCC of Figure 2(a).
The strongly-connected component formulated around nodes
1, 2, and 5 is merged into a single node in the graph.

The loop-carried dependences in SCC125 prevent the
DOALL parallelism in the input script from appearing in the
specialized loop. Conceptually, this is because simple values
from the original script become complex, and thus hard to
analyze, data structures stored in memory in the specialized
interpreter; i and size change from being simple integers
to data structures containing values and meta-data. Thus,
standard techniques for dealing with common dependence
patterns, such as loop induction variables, are no longer
applicable. However, instructions 3, 4, 6, and 7 do not
contain loop-carried dependences, so each invocation of
these instructions for different loop iterations can run in
parallel. Applying DSWP results in a two stage pipeline
where SCC125 is in a sequential stage, to respect its loop-
carried dependence, and instructions 3, 4, 6, and 7 are
in a parallel stage. Figure 2(c) shows that exploiting the
parallelism within the specialized loop can deliver speedup
on multi-core machines, assuming that the parallel stage
dominates execution time of the specialized loop.

Existing automatic parallelization techniques work nicely
for such simple examples. Unfortunately, the loops that
result from specializing real interpreters and scripts are
much more complex and beyond the capabilities of existing
parallelization techniques. First, previous speculative anal-
yses have limited precision and thus do not identify many

Sequential	Program

Parallelized	Program

IPLS

Loop	PeelerLoop	PeelerProfilers

seq.ipls.peel.bcseq.ipls.peel.bcProfile	ResultsParallelization	Planner

Spec-PDG

Speculation	Applicator

Multi-Threaded	Code	Generator

seq.bc

seq.ipls.bc

seq.ipls.spec.bc

par.bc

Training	
Inputs

Fixed
Inputs

User	Inputs

seq.c

frontend

Linker

par.exe

runtime.bc

Figure 3: The PEP workflow. A sequential program, fixed inputs,
and training inputs are inputs to the system. After undergoing spe-
cialization, PEP profiles the program and then performs speculative
parallelization. Note that .bc files are intermediate files containing
LLVM bitcode.

dependences that do not manifest at run-time. As a result,
existing techniques fail to find parallelism obfuscated by
these dependences. Second, the existing design of SMTX
incurs significant performance overheads, and is therefore
applicable only when a small number of dependences are
speculatively removed. However, aggressive speculation is
required to discover parallelism in complex programs. Sec-
tion IV and V describe how the techniques proposed in this
paper overcome these problems.

III. PEP WORKFLOW

Figure 3 depicts the PEP workflow. The workflow is fully
automatic; once the user provides a C or C++ program (e.g.
a script interpreter), a fixed input (e.g. an input script), and
a representative training input (e.g. an input to the script),
no more user intervention is required. Currently, PEP is
evaluated on harnessing DOALL parallelism within the fixed
input, which becomes pipeline parallelism in the specialized
code.

IPLS: PEP compiles a sequential version of the input
program to an Intermediate Representation (IR) and spe-
cializes it with respect to fixed inputs using IPLS [33]. IPLS
employes a profiler to record traces of the values computed
by expressions that depend solely on program invariants,
including fixed inputs. After profiling, IPLS codifies long
and frequent traces of execution by recognizing recurring
patterns in those traces. IPLS unrolls and specializes loops



against these patterns to optimize for the expected case.
Profiling: PEP further enables parallelization using

high-confidence, profile-guided speculation of biased con-
ditional branches, predictable values, and memory depen-
dences. PEP profiles the specialized program on a represen-
tative input to estimate its expected-case behavior. Whereas
a Program Dependence Graph (PDG) [15] represents a
program’s worst-case behavior, the speculation phase builds
a speculative PDG representing the program’s expected-case
behavior. Only loop-carried dependences are speculatively
removed, as intra-iteration dependences have minimal effect
on the applicability of parallel transformations.

A control-flow edge profiler (LLVM’s
-insert-edgeprofiling [21]) identifies heavily
biased branches. By speculating that heavily biased
branches are unconditional branches, unlikely instructions
become dead code and some control dependences are
removed from the speculative PDG. A linear value
prediction profiler discovers load instructions whose value
can be predicted as a linear function of the loop’s canonical
induction variable. The profiler drives value prediction
speculation to eliminate loop-carried data dependences
from the speculative PDG. Finally, a memory dependence
profiler records the memory dependences observed during
a training run. PEP speculates that memory dependences
not observed during profiling do not exist and removes
them from the speculative PDG.

Profiling results are context-sensitive for linear value
prediction and memory dependence profiles. Section IV
describes how PEP leverages context-sensitivity.

Parallelization Planner: The parallelization planner
formulates a concrete plan to achieve parallel execution
based upon the speculative PDG. The planner considers
the parallelizability of the speculative PDG of each hot
loop [47].

The planner rejects any parallelization that it does not
expect to yield a performance improvement beyond a certain
threshold. Expected speedup is computed based on the
weight of the target loop, weight of the instructions in
each pipeline stage, and the number of cores in the target
system. The weight of each loop/instruction is provided by
the control-flow edge profiler, while the number of cores is
provided as a compiler option.

Speculation Applicator and Multi-Threaded Code Gen-
erator: Once the parallelization planner has selected a par-
allelization plan, PEP proceeds to the transformation phase.
First, it transforms the sequential IR into a speculative-
sequential IR. The speculation applicator inserts new instruc-
tions for speculation and to validate that all speculative as-
sumptions hold true at run-time. If any speculative assump-
tion fails, these validation instructions signal misspeculation
to initiate the recovery mechanism.

After applying speculation, PEP parallelizes the
speculative-sequential IR. The Multi-Threaded Code

L:
Object* o_i = getObj(“i”); (1)
ArrayObject* o_arr = getArrObj(“arr”);  (2)
Object* o_elem = getObj(o_arr, o_i);    (3)
add1(o_i, o_i);                         (4)
add1(o_elem, o_elem);                   (5)
if (isLT(o_i, getObj(“size”))) goto L;  (6)

…

void add1(Object* dst, Object* src) {
FLAG flag = src->flag;     (7)   
if (flag == INT) {         (8)

dst->flag = INT;         (9)
dst->value.i += 1;      (10)

} else {
dst->flag = FLOAT;      (11)
dst->value.f += 1.0;    (12)

}
}

(a)

(b)

(c) (d)

data 
dependence

control 
dependence
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4 5

Figure 4: Benefits of context sensitivity. (a) Specialized interpreter
code example. (b) Source code for the add1 function. (c) PDG
of profiling results with no context sensitivity resulting in no
opportunity for parallelism where the grey region represents an
SCC. (d) PDG of profiling results with context sensitivity. The
self edge on node 5, and the mutual edge between nodes 4 and
5 has been removed, which makes the SCC smaller and enables
parallelism.

Generation (MTCG) algorithm automatically transforms
the speculative-sequential IR into a DSWP execution
schedule [34]. Instructions assigned to each stage of the
pipeline are copied into new functions representing each
pipeline stage. MTCG additionally inserts produce/consume
communication primitives to preserve data dependences that
span pipeline stages and duplicates control flow instructions
to preserve control dependences that span pipeline stages.

IV. CONTEXT-SENSITIVE SPECULATION

PEP’s value and memory dependence profilers provide
context-sensitive information. Figure 4 illustrates the impor-
tance of context-sensitivity in profiling results.

Figure 4(a) is a code snippet of an interpreter program
specialized for a script arr[i]+=1, where i is the loop
induction variable. Lines (1) to (3) load the memory
object for variables i, arr, and arr[i], respectively. The
function add1 in Figure 4(b) is called twice in the loop.
Once at line (4) to increment the induction variable i,
which does have a loop carried data dependence across
iterations of the loop L, and once at line (5) to increment



the value of arr[i], which has no loop carried data
dependence across iterations of the loop L. Note that these
were the same callsite in the non-specialized version of the
interpreter.

If profiling results ignore the calling context and only
report that there are loop-carried dependences 9→7 and
10→10 in the add1 function, the compiler will conser-
vatively assume that those dependences exist across every
callsite of add1. Figure 4(c) is the speculative PDG of
loop L for such a case.1 Ignoring context information
adds dependence edges 4→5 and 5→4, as well as self-
dependence edges 4→4 and 5→5. These edges create a
single SCC in the PDG, which means that there is no
chance for parallelization. However, if context information
is provided by the profiling results, the compiler can apply
speculation further to remove edges 4→5, 5→4, and 5→5.
The resulting PDG (Figure 4(d)) shows that only nodes 1,
4 and 6 form an SCC, thus parallel transformation can be
applied.

The following subsections describe how PEP imple-
ments, in a context sensitive environment, linear value-
prediction/memory dependence speculation, which are crit-
ical to unlock the parallelism out of complex programs.

A. Linear Value Prediction Speculation

Linear value prediction speculation enables optimization
by removing dependences incident on load instructions that
meet the following criterion:

Linear Value Prediction Criterion: Let LD be a load
instruction in loop L, and let V (I) be the value which LD
reads from memory during iteration I of loop L. LD is
speculatively linear in L under context C iff throughout the
profile run, V (I) = m×I+b for some fixed constants m, b.

The context C specifies a position within loop L. If
instruction LD is syntactically contained in loop L, then
LD = C. Alternatively, if instruction LD is buried within
a procedure call, then context C references the call site in
loop L. In the example of Figure 4(a), where the target loop
is L, the execution context allows the system to distinguish
between the execution of the add1 function for o_i from
the execution for o_elem. In the former case the execution
context is (4), while in the latter case it is (5).

The linear value prediction profiler determines coefficients
m, b to characterize each speculatively linear load. The
profiler finds m and b by computing the linear interpolant
from the sample points computed by first two iterations,
then checks the consistency of the linear interpolant with
additional samples from following iterations. m = 0, b = C
is for the case when an instruction loads the same value C
throughout the entire loop execution.

For the speculative run-time system to support linear value
prediction speculation, the loaded address A must be known.

1MTX memory versioning removes all false dependences [46] and thus
they are not displayed.

In many cases, A is computed by a complicated expression
that cannot be evaluated at compile time. PEP overcomes
this problem through loop peeling. The first peeled loop
iteration captures the effective address A for each specu-
latively linear load instruction LD and saves it into the data
structure called linear-prediction table alongside coefficients
m, b. Before each iteration I , a worker process runs the
iteration and enforces the prediction by initializing its private
memory to concur with the linear-prediction table: for each
(A,m, b) in the table, it stores m × I + b to address A.
After each iteration I , a worker validates the next iteration’s
prediction: for each (A,m, b) in the table, it loads V ′ from
A and triggers misspeculation if V ′ 6= m× (I + 1) + b.

Figure 5 shows how PEP transforms a sequential program
(5(a)) into a parallel version (5(b)) using context sensitive
speculation. Assuming that the profiler detects that the load
instruction LD1 is speculatively linear in L under context
C1. The profiler can compute m and b of LD1 under C1 as
well, but the loaded address can only be found at run-time.
In the parallel version, the loaded address is updated in the
row corresponding to C1 and LD1 in the linear prediction
table when foo_peeled is called from the peeled loop
under context C1.

When parallel execution of loop L begins, the worker
process for each iteration updates its private memory ac-
cording to the linear prediction table. When LD1 is executed
under context C1, the effective address of LD1 is checked
with the one in the linear prediction table to ensure that
the address remains invariant across the loop execution. At
the end of each iteration, the worker process checks if the
values stored in the effective addresses for the speculated
load instructions match the predicted values for the next
iteration, m× (I + 1) + b.

B. Memory Dependence Speculation

PEP’s memory dependence profiler employs a shadow-
memory based profiler to trace memory accesses within
the profiler. For each dynamic instruction that writes to
memory, the profiler records the execution context and the
iteration count of the target loop as metadata. Note that
only the execution context is recorded into metadata, the
write instruction itself is not recorded. Since the client of the
profiling result is automatic parallelization, the dependence
relationship between instructions syntactically included in
the target loop is the only interest. In the example of Fig-
ure 4, the dependence from instruction 9 to 7 is formulated
by the execution of instruction 4 in subsequent iterations
of loop L. However, as both 9 and 7 are not syntactically
included in loop L, a dependence between them is not of
concern to the compiler when it is attempting to parallelize
loop L. What the compiler is concerned with is a loop-
carried self-dependence formulated across instruction 4,
which results from the 9 to 7 dependence. This information



L:
…
// context C1
foo();
…

foo() {
…
// load LD1
x = *p;
…

}

// Peeled loop
…
context = C1;
foo_peeled();
…
verify();

L:
// Begin iteration I
for (Row: LinearPredTable)
Row.addr = Row.m*I+Row.b;

…
context = C1;
foo();
…
// End itertion I
verify();

foo_peeled() {
…
if (context == C1)
GETROW(C1, LD1).addr = p;

x = *p;
…

}

foo() {
…
if (context == C1 &&

GETROW(C1, LD1).addr != p)
misspeculation();

x = *p;
…

}

verify() {
for (Row: LinearPredTable)
if (*Row.ptr != 

Row.m*(I+1)+Row.b)
misspeculation();

}

(a)

(b)

Figure 5: Example showing the original code (a) and transformed
code (b) for linear value speculated code. Bold lines represent
instrumentation added to support speculation.

tells the compiler that each invocation of instruction 4 cannot
run in parallel.

Memory dependences are logged at each dynamic exe-
cution of an instruction that reads from memory. If a load
instruction reads a value from the memory address A, the
profiler reads the metadata from the shadow memory cor-
responding to A and computes the dependence information.
Dependences are characterized by the execution context of
the write event, the execution context of the read event,
the instruction that reads the memory, and whether the
dependence is loop-carried or not. Unlike memory write
instructions, memory read instructions are traced along with
execution contexts. The motivation behind this is that if lin-
ear value prediction speculation is applicable to the memory
read instruction, the dependence formulated around the read
instruction can be speculatively removed.

Memory dependence speculation inserts expensive valida-
tion instructions into the parallel region. Context-sensitivity
enables more aggressive speculation and therefore increases
run-time overhead. Recall the example of Figure 4. If
context-sensitive speculation is not supported (Figure 4(c)),
no validation instructions are required simply because paral-
lelization is not applicable. If context-sensitive speculation
is supported (Figure 4(d)), validation instructions need to
be added to all memory operations within the add1 func-
tion, as the dependence between callsites of the function
is speculatively removed. In other words, context-sensitive
memory dependence speculation improves the applicability
of speculative parallelization at the cost of additional run-
time overhead. This motivates the performance optimizations

to the run-time system, which are described in the next
section.

V. OPTIMIZING THE RUN-TIME SYSTEM SUPPORTING
SPECULATIVE PARALLELIZATION

As mentioned in Section II, Multi-threaded transactions
(MTX) have been proposed to enable speculation in con-
junction with pipeline parallelization. MTX is based on
transactional memory systems that observe the order of
memory operations to ensure that they were executed in an
order consistent with sequential execution and can be used
to support memory dependence speculation [28], [65].

A. Multi-threaded Transactions

Typical transactional systems are designed for transactions
that occur within a single thread. This leaves them incom-
patible with pipeline parallelization, which distributes work
from a single loop iteration, and thus a single traditional
transaction, into multiple pipeline stages that are each exe-
cuted in their own thread. A multi-threaded transaction has
one sub-transaction (subTX) per stage, which exists in it’s
own private memory space. Each thread participating in a
multi-threaded transaction opens its own subTX to maintain
speculative state.

An MTX system requires two features to enable pipeline
execution and multi-threaded atomicity. The first is called
uncommitted value forwarding. Uncommitted value forward-
ing ensures that the results of all the stores executed in a
subTX are visible to later subTXs, even if the stores are ex-
ecuted speculatively. The other feature is group transaction
commit. This ensures that speculative work done in different
subTXs inside a single transaction are either committed or
discarded altogether.

To implement uncommitted value forwarding, the existing
software-only implementation of MTX (SMTX [46]) com-
municates the address-value pair of every store operation
executed in a subTX to later subTXs. Additionally, to enable
group transaction commit, SMTX forwards the address-
value pair of every store and speculative load operation
executed in a worker process to a separate commit process,
a process that maintains the committed, non-speculative
state. Once a transaction is closed, the commit process
determines if a conflict has occurred by sequentially re-
executing memory operations within the transaction and
comparing results with the value reported from the worker
process. If there is no conflict, the transaction is committed
to non-speculative memory. Otherwise, the commit unit
flushes any transaction after the transaction with the conflict
and then restarts the flushed transactions with a copy of the
correct, non-speculative memory.

B. PEP’s Optimizations to SMTX

The main problem with the existing SMTX implemen-
tation is that it performs inter-process communication for



every store and every speculative load in the parallelized
loop, which adds substantial run-time overhead that may
outweigh the gains from parallelization. PEP optimizes the
SMTX implementation to reduce the run-time overhead
and enable scalable performance improvements, even with
aggressively speculated programs.

The optimizations are based on two key insights. First, for
each subTX, it is sufficient to forward its final memory state
to later subTXs to support uncommitted value forwarding.
The same idea applies when subTXs communicate the values
to be committed to the commit process. Second, checking
that the pipeline scheduling, i.e. data does not flow from later
subTXs to earlier subTXs, and parallel stage, i.e. there is no
loop carried dependence in a parallel subTX, assumptions
are not violated is sufficient to validate memory dependence
speculation.

Utilizing these insights, the optimized run-time system
reduces the total number of communications and the total
number of bytes communicated. For each dynamic memory
operation, the optimized run-time simply updates shadow
metadata instead of issuing inter-process communication.
Shadow memory is private to each subTX and cleared at
the beginning of the subTX for each iteration. Each byte of
the program’s memory is associated with 2-bits of metadata
in the shadow memory. These bits, read and write, indicate
the state of the byte during the subTX execution and indicate
to the commit process what actions it must perform. If read
is set, the commit process must perform speculation checks.
If write is set, the new value must be forwarded to later
subTXs and the commit process. Note that if a subTX writes
the byte before reading, it will never set the read bit as the
subTX is then simply reading the value it wrote, which does
not need to be checked.

Supporting Uncommitted Value Forwarding: With the
optimized run-time system, inter-process communication
happens only at subTX boundaries. At the end of the
subTX, all pages that have been accessed during the subTX
execution are forwarded to later subTXs, along with their
shadow pages. When the later subTX receives the pages, it
scans the shadow pages to find the values in the original
pages that have been written by the earlier subTX and
updates its private memory accordingly. Uncommitted value
forwarding is accomplished via this update. Note that if a
page is accessed but not written to, it is not forwarded to
later subTXs as there are no updated values that need to be
updateed.

Supporting Group Transaction Commit: Accessed
pages and their corresponding shadow pages are forwarded
to the commit process from each subTX. The commit
process verifies pages communicated from each subTX in
order and maintains shadow memory that holds the ID of the
subTX that last wrote to each byte of memory. If the read
bit is set in the metadata for a byte, the commit process
checks if misspeculation occurred. Misspeculation occurs

… …
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… …

mtx_read(…)
v1 = LD *p

SubTX1
… …

A x R

… …

Validate &
Update

Validate &
Update
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… …

A y 2

… …

…
… …

A x

… …

… …

A x 0

… …

Begin
Parallel	
Execution

mtx_read(…)
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… …
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… …
…

0 < 1 ?	True
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Worker	1 Worker	2 Commit

Time

L:
…
mtx_read(…);
v1 = LD *p;
…
mtx_communcate();

L:
…
mtx_write(…);
ST v2, *r
…
mtx_communcate();
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subTX2

L:
…
v1 = LD *p;
…
ST v2, *r;
…

x
speculative
parallel	

transformation

p = r = A, v2 = y

(a) (b)

(c)

Figure 6: Example demonstrating how the commit process detects
misspeculation. (a) Parallelization target loop. (b) Multi-threaded
loop using the optimized run-time system. mtx_read takes ar-
guments (address, size) of the value of the corresponding load
instruction, while mtx_write takes arguments (address, size,
value) of the corresponding store instruction. (c) A time line of
parallel execution. Rectangular boxes next to subTXs represents
the memory state of each process at a given time. The shaded
column indicates shadow memory for each byte.

if the last write ID is greater than the reader ID, which
represents a violation of the pipeline scheduling assumption.
Additionally, in the case of a parallel stage, misspeculation
can also occur if the last write ID is equal to the reader ID,
which indicates an illegal loop carried dependence within the
parallel stage. If the write bit is set in the metadata for a byte,
the commit process updates its own memory with the written
value and writes the subTX ID to the shadow memory. If
no misspeculation occurred in the transaction, the commit
process writes its memory state to the global state. This write
represents group transaction commit. Note that if a page is
read but not written to, subTXs send only the address of the
page to the commit process, as an optimization, since the
actual values are not needed.

C. An example of Misspeculation Detection

Figure 6 demonstrates how the optimized run-time system
discovers memory dependence misspeculation. Figure 6(a)
shows a parallelization target loop. With the assumption that
the loop-carried dependence between the store and the load
in Figure 6(a) can be speculatively removed, pipeline paral-
lelization is applicable to the loop. Figure 6(b) is a multi-



threaded loop using the optimized run-time system. As the
dependence between the store and the load is speculatively
removed, mtx_read and mtx_write calls are inserted
before the load and the store. mtx_communicate is called
at the end of iteration to forward accessed and shadow pages
to the later subTXs and the commit process.

Figure 6(c) is a schematic time line of parallel execution
where misspeculation occurs. Pointers p and r both point to
address A throughout the loop execution. For each execution
of SubTX1 from Worker1, mtx_read sets a read bit in
the shadow byte of A. This information is communicated to
the commit process, and the commit process checks if the
byte is not written by the later subTX. For iteration 0, the
commit process verifies that the load in subTX1 is valid; the
shadow memory maintained by the commit process shows
that metadata for address A is 0, indicating the value stored
in A is a live-in. As the commit process handles each
subTX in sequential order, pages forwarded from subTX2
of iteration 0 are processed next. The forwarded information
indicates that address A is written by subTX2, so the commit
process updates its private memory according to the value
written by subTX2. In addition, the commit process sets its
metadata for address A to 2, indicating that subTX2 writes
the address. Next, the commit process evaluates pages from
subTX1 of iteration 1 and detects misspeculation. Address
A is read by subTX1, but metadata indicates that the address
is written by subTX2 if the program follows the sequential
order. This violates the pipeline partitioning assumption, and
accordingly, the commit process flags misspeculation.

VI. EVALUATION

PEP is evaluated on a shared-memory machine with four
6-core Intel Xeon X7460 processors (24 cores total) running
at 2.66 GHz with 24 GB of memory. It runs 64-bit Ubuntu
9.10. The PEP compiler is implemented in the LLVM
compiler framework [21].

PEP is evaluated with two open-source C programs:
the Lua script interpreter version 5.2.3 and the Perl script
interpreter 5.20.1. Although PEP is applicable to any kind
of program, we focused on script interpreters because this
domain demonstrates the usefulness of PEP most clearly.
The PEP compiler specialized each program against 6 input
scripts, then parallelized the specialized interpreter. Neither
interpreter was modified, though Perl was compiled with
non-default configuration options (see Section VI-B). As
we wanted to show that PEP can achieve parallel speedup
with script interpreters if the input script has scalable par-
allelism, we chose 6 programs from Polybench [38] that
are known to be amenable to DOALL parallelism [19] and
reimplemented them as Lua and Perl scripts. Kim et al. [19]
applied speculative automatic parallelization to the C version
of the scripts used in the evaluation, and achieved about
12× geomean speedup across 6 programs on a commodity
machine using 24 threads. The C versions result in better
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Figure 7: Whole-program speedup of the automatically specialized
and parallelized code, compared to the sequential, unspecialized
version compiled with -O3. Number of Processes counts the
number of parallel workers excluding the commit process.

speedup than the specialized interpreter versions as they are
much simpler and easier for a compiler to analyze: no more
than 1 dependence needs to be speculatively removed to
parallelize the C versions of the programs. This number is
much smaller than the number of speculated dependences
presented in Table I. Even with these disadvantages, PEP
manages to be comparable to Kim et al.

Table I describes the six input scripts for the Lua and Perl
interpreters that were used to test PEP. In each case, the main
interpreter loop has been specialized and parallelized. Note
that the main interpreter loop of Perl contains only 8 LLVM
IR instructions due to the use of indirect function calls
indexed by the instruction OP-code. Without specialization,
this loop would be exceedingly difficult to parallelize. By
exploiting fixed inputs, PEP is able to build and then
parallelize a specialized loop for each input.

A. Performance Results

Figure 7 presents whole-program speedup. These
speedups are normalized against the sequential, unspecial-
ized version of the Lua and Perl interpreters compiled with
clang -O3. The majority of the performance improvement
is due to parallelization. Specialization provides up to 24%
and 19% sequential improvement over Lua and Perl per-



Input Script P’loops Coverage(%) Size (LLVMIRs) Context-Insensitive Context-Sensitive Communicated Bytes
Spec.
Deps

Expected
Speedup

Spec.
Deps

Expected
Speedup

w.o. Opti
(MB)

w. Opti
(MB)

Lua-5.2.3 (20,258 LOC, Interpreter main loop: 2,499 LLVMIRs)
2mm 2 96.00% 1,028 / 973 21,884 1.00× 52,805 16.94× 2,772,879.8 36.3
3mm 3 96.61% 973 / 973 / 973 31,442 1.00× 74,769 17.49× 2,773,429.2 38.3
correlation 1 95.17% 1,224 16,650 1.00× 40,512 11.14× 4,978,648.1 172.3
covariance 1 93.14% 1,231 16,650 1.00× 40,220 14.12× 4,986,986.7 144.1
doitgen 1 95.58% 1,337 52,006 1.00× 134,561 13.78× 3,222,117.3 73.4
gemm 1 94.43% 2,229 19,176 1.00× 48,302 16.56× 2,856,902.9 38.2

Perl-5.20.1 (296,166 LOC, Interpreter main loop: 8 LLVMIRs)
2mm 2 96.22% 927 / 1,087 12,507 1.00× 67,216 13.84× 6,503,153.9 288.9
3mm 3 95.17% 1,140 / 1,063 / 927 18,627 1.00× 121,505 12.18× 6,573,151.9 288.5
correlation 1 94.90% 1,427 12,477 1.00× 95,273 5.54× 13,163,604.7 278.1
covariance 1 90.73% 1,562 12,168 1.00× 62,955 10.73× 13,186,003.5 5256.9
doitgen 1 95.28% 1,332 24,464 1.00× 193,938 6.29× 6,439,570.3 426.1
gemm 1 89.44% 2,209 8,450 1.00× 75,646 12.26× 7,668,543.6 258.7

Table I: Execution characteristics of each interpreter and static input: P’loops denotes the number of loops that have been parallelized
after specialization. Coverage denotes the fraction of the runtime spent in the parallelized loops compared to total program execution time.
Size denotes the size of the parallelized loops in the sequential version (i.e. size of IPLS specialized loops that are parallelized), in units
of LLVM IR instructions. Context-Insensitive and Context-Sensitive show the results without/with context-sensitive speculation support,
respectively. Spec. Deps denotes the number of edges that are speculatively removed from the program dependence graph. Expected
Speedup denotes the speedup estimated by the parallelization planner, assuming 24 cores in the target system. Communicated Bytes
denotes the total number of bytes communicated between processes during parallel execution. w.o. Opti and w. Opti show the results
without and with the run-time optimization presented in the paper, respectively.

formance, respectively. These improvements are consistent
with IPLS [33].

The DOALL parallelism in the input scripts becomes
pipeline parallelism in all 12 specialized programs (6 for
each Lua and Perl). DSWP extracts a two-stage pipeline
featuring a leading sequential stage and a trailing parallel
stage. The leading sequential stage contains code to control
the loop execution; the specialized loop is no longer a
simple counted loop, its control predicate is computed from
two complex data structures, the loop control variable and
bound value from the input script, loaded from memory.
The parallel stage handles the main workload of the input
script. The presence of a parallel stage is consistent with the
DOALL parallelism in the input script. As the parallel stage
contains the majority of each iteration’s execution time, this
parallelization scales well. This confirms that IPLS folds
the parallelism within the input script into the specialized
program.

Harnessing DSWP parallelism with a parallel stage is only
achievable with the support of context-sensitive speculation.
Comparing the Context-Insensitive and Context-Sensitive
columns in Table I shows the effect of context-sensitive spec-
ulation. Each column represents the number of speculatively
removed dependences and expected speedup computed by
the parallelization planner described in Section III, without
and with context-sensitive speculation support, respectively.
As shown in the table, context-sensitive speculation removes
more unlikely-manifesting dependences from the program
dependence graph. Without context-sensitive speculation the
expected speedup is 1.00× across all benchmarks, which
means that no speedup is expected from the given paral-
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Figure 8: Percentage of the parallel execution capacity that parallel
workers spend on inter-process communication. The number is
averaged across all parallel worker processes.

lelization plan. Even though context-insensitive speculation
removes many dependences, the loop is not parallelizable at
all until the last dependence that prevents parallelization is
removed.

Table I also shows the effect of the optimized run-time.
The table shows that the total number of bytes communi-
cated between processes is reduced by several orders of
magnitude with the proposed optimized run-time system.
This optimization is critical in achieving speedup with
speculatively parallelized programs. Without the optimized
run-time system, the benchmarks listed in Table I incur
at least 50× slowdown rather than the speedup shown in
Figure 7.

Across all scripts, parallelization provides greater speedup
on Lua than on Perl. This is due to the higher communication
overhead in Perl. Figure 8 presents communication overhead



as a percentage of the execution capacity that parallel work-
ers spend at subTX boundaries when using 24 processes.
These percentages are normalized to the total computation
capacity of the parallel invocation (in core-seconds), i.e.,
the number of cores times the duration of the invocation.
The figure shows that Lua spent a geomean of 4.55% of
its execution at subTX boundaries while Perl spent 19.84%.
As Perl consumes more memory than Lua to run the same
algorithm (across 6 programs, the sequential version of Perl
consumes 2.23× more memory by geomean than Lua), Perl
suffers from higher communication overhead.

B. Current Limitations and Future Work

While speculation does greatly reduce the reliance on
analysis, both the analysis and speculative logics must
be able to handle complex dependencies. Adding context
sensitivity solved a large class of dependencies found in
interpreters but more work remains to be done.

While no modification has been made to the interpreter
source code, we configured Perl with the PURIFY and
NO_PERL_PRESERVE_IVUV compile time options. The
PURIFY flag compiles Perl with the C’s default implemen-
tation of malloc and free, rather than a specially crafted
implementation. Custom memory allocators introduce many
complex dependences that are hard to analyze; whereas
PEP’s analysis understands common library functions, such
as malloc and free, and is thus able to disprove depen-
dences involving them. The NO_PERL_PRESERVE_IVUV
flag disables an interpreter optimization for script values
that are assumed to be integers. Without these flags, the
specialized code includes additional features that are difficult
to analyze.

As part of future work, we wish to parallelize the
Python [44] interpreter but expect to run into difficulties with
the way Python handles integer overflow and asynchronous
events. Adding analysis and speculative logic to systemat-
ically handle such dependencies is part of future work to
turn PEP into a complete system.

Recall that the specialization process introduces depen-
dences that change DOALL parallelism in input scripts into
pipeline parallelism in the specialized program, primarily
due to simple values becoming complex data structures. If
the input script contains complex forms of parallelism, e.g.,
pipeline parallelism, more non-trivial dependences manifest.
Such dependences currently prevent PEP from achieving
parallel speedup. Better analysis and logic to handle the way
that interpreters store values as complex data structures and
exploiting complex forms of input parallelism will also be
investigated in future work.

VII. RELATED WORK

Parallelizing Scripting Language Execution: There are
a variety of parallel libraries or parallel language extensions
[10], [23], [32], [41], [42], [49], [50] for scripting languages

that allow the programmer to take advantage of multiple
processors by manually parallelizing their code. Manual par-
allelization, however, is a toilsome and error-prone process,
and is best avoided by leveraging automatic parallelization.

There are several techniques that were developed for
automatically parallelizing sequential script programs. In
[25], Ma et al. build a framework that uses dynamic
dependence analysis to identify parallelizable tasks in R
programs and parallelizes the execution accordingly. This
technique is able to parallelize loops and function calls,
but only when there are absolutely no dependences. Talbot
et al. present Riposte [55], a runtime system that is able
to dynamically discover and extract sequences of vector
operations from arbitrary R code. These sequences can be
fused to eliminate unnecessary memory traffic and compiled
to exploit SIMD units as well as multiple cores. Mehrara
et al. [27] enable dynamic speculative parallelization of
Javascript programs by proposing ultra-lightweight software
speculation mechanism. Though these techniques are able
to successfully parallelize some scripts, they require manual
changes or extensions to the interpreter or JIT. Thus porting
them to other scripting languages requires large amounts of
programming effort. In comparison, the technique proposed
in this paper can be seamlessly applied across different script
interpreters.

Program Specialization: C-Mix [4], [26] and
Tempo [11] are program specializers for C programs.
However, those specializers require two types of user
annotations to work; one to find expressions that depend
solely on program invariants, and the other to direct
code generation policy to produce efficient programs.
DyC [17] is a program specializer focused on minimizing
code generation overhead. DyC partly automate the
specialization process by using a tool called Calpa [30],
which generates annotations for DyC. However, Calpa only
provides annotations for code generation policy, thus DyC
still resorts to user hints to find static expressions.

Some program specializers are fully automatic and do
not require any user annotations [5], [52]. However, they
cannot be used as an enabling transformation for automatic
parallelizing compilers as they perform specialization at run-
time.

Automatic Parallelization: There has been a large body
of work on automatic parallelization. Some techniques [8],
[36], [47] rely solely on static program analysis to identify
the applicability of parallel transformations. Still, impreci-
sion and fragility of static analyses limit the applicability
of automatic parallelization. Several techniques have been
proposed to overcome this limitation by resorting to the
programmer’s help [7], [14], [20], [39], [56], [59], [62], [64].
However, it is unsafe and error-prone to ask programmers
to manually annotate or inspect complex programs. The
problem is worse for specialized script interpreters, which
are automatically generated by the compiler.



Speculation alleviates the limitations of static analysis
without manual intervention. Although most automatic spec-
ulative parallelization systems require specialized hardware,
there are techniques that do not require any hardware exten-
sions and are applicable to commodity machines [18], [19],
[57], [58]. In the CorD execution model [57], [58], each
loop iteration is separated into a prologue and epilogue,
which are executed sequentially by the main thread, and
the body, which is executed speculatively. Privateer [18]
is the first fully automatic system that supports speculative
reduction/privatization and targets general purpose programs
with complex control-flow and irregular data structures.
Cluster Spec-DOALL [19] proposed an automatic paral-
lelizing compiler and run-time system to enable speculative
DOALL execution on commodity clusters. Unlike the sys-
tem proposed in this paper, none of these techniques are
capable of context-sensitive speculation.

Several works focus on proposing software run-time sys-
tems to support speculative parallelization. LRPD [48] and
R-LRPD [12] supports speculative DOALL execution by
validating the absence of loop-carried dependences at the
end of parallel execution. Cintra and Llanos [9] proposed a
run-time system that performs eager memory management
where each speculative operation checks if misspeculation
occurred and updates the non-speculative memory directly
when there is no misspeculation. STMLite [28] is based
on software transactional memory [13], [29], [51], [53]. It
optimizes performance by providing enough functionality to
support speculative loop parallelization without implement-
ing the whole spectrum of transactional memory features.
None of these techniques support multi-threaded atomicity,
which is necessary to enable speculative pipeline paralleliza-
tion. SMTX [46] resolved this problem, but has substantial
performance overhead for heavily speculated programs, as
described in Section V.

VIII. CONCLUSION

This paper proposes a fully automatic technique to exploit
parallelism within scripts that is universally applicable to
multiple scripting language interpreters. By coupling pro-
gram specialization with advanced speculative paralleliza-
tion techniques, parallelism within scripts can result in
parallel speedup. PEP, the prototype implementation of the
proposed technique, has been evaluated against two widely-
used open-source script interpreters with 6 input scripts,
which describe linear algebra kernel with latent parallelism,
each yielding a geomean speedup of 5.10× over the best
sequential version. This proves that the approach proposed
in this paper is both feasible and worthy of further investi-
gation.
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A. González, and D. M. Tullsen, “Mitosis compiler: an infras-
tructure for speculative threading based on pre-computation
slices,” in Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and implementation.
ACM, 2005.

[46] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I.
August, “Speculative parallelization using software multi-
threaded transactions,” in Proceedings of the Fifteenth Inter-
national Symposium on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2010.

[47] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I.
August, “Parallel-stage decoupled software pipelining,” in
Proceedings of the Annual International Symposium on Code
Generation and Optimization (CGO), 2008.

[48] L. Rauchwerger and D. A. Padua, “The LRPD test: Spec-
ulative run-time parallelization of loops with privatization
and reduction parallelization,” IEEE Transactions on Parallel
Distributed Systems, February 1999.

[49] RMPI, http://www.stats.uwo.ca/faculty/yu/Rmpi/.

[50] A. Rubinsteyn, E. Hielscher, N. Weinman, and D. Shasha,
“Parakeet: A just-in-time parallel accelerator for python,” in
Proceedings of the 4th USENIX Conference on Hot Topics in
Parallelism, ser. HotPar’12. USENIX Association, 2012.

[51] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson, “Architectural
support for software transactional memory,” in Proceedings
of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 39. IEEE Computer Society,
2006.

[52] A. Shankar, S. S. Sastry, R. Bodı́k, and J. E. Smith, “Runtime
specialization with optimistic heap analysis,” in Proceedings
of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications,
2005.

[53] N. Shavit and D. Touitou, “Software transactional memory,”
in Proceedings of the Fourteenth Annual ACM Symposium on
Principles of Distributed Computing, ser. PODC ’95. ACM,
1995.

[54] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry,
“The STAMPede approach to thread-level speculation,” ACM
Transactions on Computer Systems, February 2005.

[55] J. Talbot, Z. DeVito, and P. Hanrahan, “Riposte: A trace-
driven compiler and parallel vm for vector code in r,” in
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’12.
ACM, 2012.

[56] W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A prac-
tical approach to exploiting coarse-grained pipeline paral-
lelism in C programs,” in Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2007.

[57] C. Tian, M. Feng, and R. Gupta, “Supporting speculative
parallelization in the presence of dynamic data structures,”
in Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser.
PLDI ’10. ACM, 2010.

[58] C. Tian, M. Feng, V. Nagarajan, and R. Gupta, “Copy or
discard execution model for speculative parallelization on
multicores,” in Proceedings of the 41st Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO
41. IEEE Computer Society, 2008.

[59] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle,
“Towards a holistic approach to auto-parallelization: Integrat-
ing profile-driven parallelism detection and machine-learning
based mapping,” in Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’09, 2009.

[60] N. Vachharajani, “Intelligent speculation for pipelined multi-
threading,” Ph.D. dissertation, Princeton, NJ, USA, 2008.

[61] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges,
G. Ottoni, and D. I. August, “Speculative decoupled software
pipelining,” in PACT ’07: Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation
Techniques. IEEE Computer Society, 2007.

[62] H. Vandierendonck, S. Rul, and K. De Bosschere, “The Par-
alax infrastructure: Automatic parallelization with a helping
hand,” in Proceedings of the 19th International Conference
on Parallel Architecture and Compilation Techniques (PACT),
2010.

[63] C. Wang, Y. Wu, E. Borin, S. Hu, W. Liu, D. Sager,
T.-f. Ngai, and J. Fang, “Dynamic parallelization of
single-threaded binary programs using speculative slicing,”
in Proceedings of the 23rd International Conference on
Supercomputing, ser. ICS ’09. ACM, 2009. [Online].
Available: http://doi.acm.org/10.1145/1542275.1542302

[64] H. Yu, H.-J. Ko, and Z. Li, “General data structure expan-
sion for multi-threading,” in Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’13. ACM, 2013.



[65] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke, “Un-
covering hidden loop level parallelism in sequential applica-
tions,” in Proceedings of the 14th International Symposium
on High-Performance Computer Architecture (HPCA), 2008.


