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ABSTRACT
Automatic parallelization has shown promise in producing
scalable multi-threaded programs for multi-core architec-
tures. Most existing automatic techniques parallelize in-
dependent loops and insert global synchronization between
loop invocations. For programs with many loop invoca-
tions, frequent synchronization often becomes the perfor-
mance bottleneck. Some techniques exploit cross-invocation
parallelism to overcome this problem. Using static analy-
sis, they partition iterations among threads to avoid cross-
thread dependences. However, this approach may fail if
dependence pattern information is not available at com-
pile time. To address this limitation, this work proposes
SpecCross–the first automatic parallelization technique to
exploit cross-invocation parallelism using speculation. With
speculation, iterations from different loop invocations can
execute concurrently, and the program synchronizes only on
misspeculation. This allows SpecCross to adapt to depen-
dence patterns that only manifest on particular inputs at
runtime. Evaluation on eight programs shows that Spec-
Cross achieves a geomean speedup of 3.43× over parallel
execution without cross-invocation parallelization.

Keywords
Automatic parallelization; Barrier speculation; Code opti-
mization

1. INTRODUCTION
Scalable parallel programs are necessary to harness the

performance potential of multi-core processors. Automatic
parallelization techniques are a promising approach for pro-
ducing well-performing parallel programs. Most existing au-
tomatic parallelization techniques exploit loop level paral-
lelism [1, 11, 28, 36, 38, 39, 40, 42, 48]. These techniques
parallelize loops and globally synchronize at the end of each
loop invocation. As a result, programs with many loop in-
vocations will experience frequent synchronizations.

For such programs, most existing automatic paralleliza-
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tion techniques do not deliver scalable performance because
synchronization forces all threads to wait for the last thread
to finish an invocation [30]. At high thread counts, threads
spend more time idling at synchronization points than do-
ing useful computation. However, there is an opportunity
to improve performance: iterations from different loop in-
vocations can often execute concurrently without violating
program semantics. Instead of waiting at synchronization
points, threads can execute iterations from subsequent loop
invocations. This additional cross-invocation parallelism can
improve the processor utilization and help the parallel pro-
grams achieve much better scalability.

Prior work has presented some automatic parallelization
techniques that exploit cross-invocation parallelism [15, 33,
49, 51]. These techniques respect cross-invocation depen-
dences without inserting coarse-grained global synchroniza-
tions such as barriers. Some of these techniques [15, 51] com-
bine several small loops into a single larger loop. This ap-
proach side-steps the problem of exploiting cross-invocation
parallelism by converting it into cross-iteration parallelism.
Other approaches [33, 49] carefully partition the iteration
space in each loop invocation so that cross-invocation de-
pendences are never split between threads. However, both
types of techniques rely on static analysis, which is inher-
ently conservative. They cannot adapt to runtime depen-
dence patterns manifested by particular inputs. In real-
ity, many statically detected dependences only manifest un-
der specific input conditions. For many programs, these
dependences rarely manifest given the most common pro-
gram inputs. Thus, programs could exploit additional cross-
invocation parallelism and achieve greater scalability, if they
are adapted to dependence patterns of specific inputs at run-
time.

This insight motivates SpecCross, the first automatic
parallelization technique designed to aggressively exploit
cross-invocation parallelism using high-confidence specula-
tion. SpecCross parallelizes independent loops and re-
places the barrier synchronization between two loop in-
vocations with its speculative counterpart. Unlike non-
speculative barriers which pessimistically synchronize to en-
force dependences, speculative techniques allow threads to
execute past barriers without stalling. Speculation allows
programs to optimistically execute potentially dependent in-
structions and later check for misspeculation. If misspecu-
lation occurs, the program recovers using checkpointed non-
speculative state. Speculative barriers improve performance
by synchronizing only on misspeculation.

SpecCross consists of three components: a parallelizing



compiler, a profiling library and a runtime library. The par-
allelizing compiler automatically detects and parallelizes a
code region with many loop invocations. The profiling li-
brary determines how aggressively to speculate and is the
key to achieving high confidence speculation. The runtime
library provides support for speculative execution, misspec-
ulation detection, and recovery.

SpecCross uses profiling to find program regions where
speculation will be beneficial. Profiling identifies access pat-
terns conducive to barrier speculation. For instance, scan-
ning data access pattern is highly amenable to barrier specu-
lation. In this pattern, when two loop invocations separated
by a barrier scan through memory, the last few iterations be-
fore the barrier will not interfere with the first few iterations
of the loop after the barrier. By determining which regions
to speculate, profiling keeps misspeculation rates low.

The SpecCross runtime system allows threads to exe-
cute speculatively without synchronization. To support re-
covery in case of misspeculation, non-speculative program
state is checkpointed at regular intervals. Periodically, the
speculative threads compute and send signatures encoding
summaries of their memory accesses to a checker thread.
The checker thread uses these signatures to determine if
any cross-thread dependences are violated. If so, the checker
thread restores the program to the most recent checkpoint.
Restoring a checkpoint allows non-speculative replay.

The contributions of this paper are:

• A novel automatic parallelization technique to exploit
cross-invocation parallelism using high-confidence spec-
ulation;

• Design and implementation of the first software-only
speculative barrier;

• Design and implementation of the first profiler target-
ing speculative cross-invocation parallelization.

Evaluation over eight benchmark applications shows that
SpecCross achieves a geomean speedup of 3.43× over codes
without cross-invocation parallelization and 4.59× over the
best sequential execution on a 24-core machine.

2. MOTIVATION

2.1 Limitations of Static Analysis-based Par-
allelization

Figure 1(a) shows a code example before parallelization.
In this example, loop L1 updates array elements in array
A while loop L2 reads elements from array A and uses those
values to update array B. The whole process is repeated STEP

times. Both L1 and L2 can be individually parallelized us-
ing DOALL [1]. However, dependences between L1 and L2

prevent the outer loop from being parallelized.
Ideally, we should only synchronize inner loop iterations

that depend on each other, without stalling the execution of
independent iterations. If static analysis [33, 49, 53] could
prove that each thread accesses a separate section of ar-
rays A and B, the loops can be näıvely parallelized without
any synchronization between two adjacent inner loop invo-
cations. However, since arrays A and B are accessed in an
irregular manner (through index arrays C and D), static anal-
ysis cannot determine the dependence pattern between L1

and L2 precisely. As a result, this näıve parallelization may
lead to incorrect runtime behavior.
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Figure 2: Overhead of barrier synchronizations for programs
parallelized with 8 and 24 threads
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Figure 3: Execution plan for TM-style speculation: each
block A.B stands for the Bth iteration in the Ath

loop invocation: iteration 2.1 overlaps with iterations
2.2, 2.3, 2.4, 2.7, 2.8, thus its memory accesses need to be
compared with theirs even though all these iterations come
from the same loop invocation and are guaranteed to be
independent.

Alternatively, if static analysis could determine a depen-
dence pattern between iterations from two invocations, e.g.,
iteration 1 from L2 always depends on iteration 2 from L1,
then fine-grained synchronization can be used to synchronize
only those iterations. But this requires accurate analysis
about the dependence pattern, which is in turn, limited by
the conservative nature of static analysis. Instead, barrier
synchronization is used to globally synchronize all threads
(Figure 1(b)). Barrier synchronization conservatively as-
sumes dependences between any pair of iterations from two
different loop invocations. All threads are forced to stall at
barriers after each parallel invocation, which greatly dimin-
ishes effective parallelism. Figure 2 shows the overhead in-
troduced by Pthreads barrier synchronizations on eight pro-
grams parallelized with 8 and 24 threads. Barrier overhead
refers to the total amount of time threads sit idle waiting for
the slowest thread to reach the barrier. For most of these
programs, barrier overhead accounts for more than 30% of
the parallel execution time and increases with the number
of threads. This overhead translates into an Amdahl’s Law
limit of 3.33× maximum program speedup.

2.2 Speculative Cross-Invocation Paralleliza-
tion

The conservativeness of barrier synchronization prevents
any cross-invocation parallelization and significantly limits
performance gain. Alternatively, the optimistic approach
unlocks potential opportunities for cross-invocation paral-
lelization. It allows the threads to execute across the invo-



sequential_func() {

  for (t = 0; t < STEP; t++) {

L1: for (i = 0; i < M; i++) {

      A[i] = calc_1(B[C[i]]);

    }

L2: for (j = 0; j < M; j++) {

      B[j] = calc_2(A[D[j]]);

    }

  }

}

barrier_parallel_func() {

  for (t = 0; t < STEP; t++) {

L1: for (i = TID; i < M; i = i + THREADNUM) {

      A[i] = calc_1(B[C[i]]);

    }

    pthread_barrier_wait(&barrier);

L2: for (j = TID; j < M; j = j + THREADNUM) {

      B[j] = calc_2(A[D[j]]);

    }

    pthread_barrier_wait(&barrier);

  }

}

transaction_parallel_func() {

  for (t = 0; t < STEP; t++) {

L1: for (i = TID; i < M; i = i + THREADNUM) {

      TX_begin();

      A[i] = calc_1(B[C[i]]);

      TX_end();

    }

L2: for (j = TID; j < M; j = j + THREADNUM) {

      TX_begin();

      B[j] = calc_2(A[D[j]]);

      TX_end();

    }

  }

}

(a) Sequential Program (b) Parallelization with Barrier Synchronization (c) Parallelization with Transactions

Figure 1: Example of parallelizing a program with different techniques

cation boundary under the assumption that the dependences
rarely manifest at runtime. Two major optimistic solutions
have been proposed in the literature: one relies on transac-
tional memory and the other uses speculative barriers.

Figure 1(c) demonstrates the basic idea of speculative par-
allelization using transactional memory systems (TM) [21].
In this example, each inner loop iteration is treated as a
separate transaction. The commit algorithms proposed in
Grace [2] and TCC [19] allow transactions within the same
inner loop invocation to commit out of order but guaran-
tee transactions from later invocations should commit after
those from earlier ones. However, this approach assumes
that every transaction may conflict with another transaction
and must be compared against each other for violation de-
tection. It ignores the important fact that for most programs
which could benefit from cross-invocation parallelization, all
iterations from the same invocation are often guaranteed to
be independent at compile time and wrapping them in sep-
arate transactions introduces unnecessary runtime checking
and commit overhead. For example, in Figure 3, the ex-
ecution of the first iteration of the second loop invocation
(annotated as 2.1) overlaps with that of iterations 2.2, 2.3,
2.4, 2.7 and 2.8. Even though they come from the same
loop invocation, the TM framework needs to check them
for access violations before 2.1 can commit. More coarse-
grained transactions can reduce this checking overhead, but
they also increase the possibility of misspeculation between
two transactions.

Speculative barrier synchronization, on the other hand,
preserves the DOALL property of each loop invocation while
still allowing threads to execute past the barrier without
stalling. Since all existing speculative barrier synchroniza-
tion techniques [23, 26, 30] require specialized hardware sup-
port, we refer to these techniques collectively as hardware-
based barrier speculation (HWBS). Compared to execution
models supported by TM, HWBS distinguishes speculative
and non-speculative threads to avoid unnecessary value buffer-
ing and violation checking. Non-speculative worker threads
can commit their writes concurrently without waiting. As a
result, HWBS is regarded as a better solution for a program
pattern where iterations in the same loop invocation are
independent and iterations from different invocations may
depend on each other.

Despite its effectiveness, HWBS requires specialized hard-
ware to detect misspeculation and recover. Programs par-
allelized for commodity hardware cannot benefit from it.
This limitation motivates us to design and implement the
first software-only speculative barrier for SpecCross, which

aims at generating scalable parallel programs for commodity
multicore machines.

3. SPECCROSS SYSTEM OVERVIEW
SpecCross enables automatic cross-invocation paralleliza-

tion with software-only speculative barriers. Figure 4 gives
an overview of the SpecCross system, which consists of
the following three components: parallelizing compiler, run-
time library, and profiler. The parallelizing compiler takes
a sequential program as input and detects a SpecCross
code region as the transformation target (§3.1). A Spec-
Cross code region is often an outermost loop composed of
consecutive parallelizable inner loops. The compiler paral-
lelizes each independent inner loop and then inserts Spec-
Cross runtime library function calls to enable speculative
cross-invocation parallelization. To avoid high penalty for
misspeculation, SpecCross uses a profiler to determine the
speculative range, which controls how aggressively to spec-
ulate (§3.2). Choosing the correct limit for the speculative
range keeps misspeculation rates low.

SpecCross’s runtime library implements a software-only
speculative barrier, which works as a light-weight substitu-
tion for HWBS on commodity hardware (§4). This runtime
library provides efficient misspeculation detection (§4.1). At
runtime, the original process spawns multiple worker threads
and a checker thread. All worker threads execute their code
sections and periodically send memory access signatures to
the checker thread. These signatures approximately sum-
marize all the speculative memory accesses. The checker
thread uses these signatures to verify that speculative exe-
cution respects all memory dependences.

If the checker thread detects misspeculation, it signals
a separate checkpoint process for misspeculation recovery
(§4.2). The checkpoint process is periodically forked from
the original process. Once recovery is completed by squash-
ing all speculative workers, execution is resumed from the
last checkpoint with non-speculative barriers.

3.1 SpecCross Parallelizing Compiler
The SpecCross parallelizing compiler automatically par-

allelizes the sequential program and applies software-only
speculative barriers to enable cross-invocation paralleliza-
tion. Non-speculative barriers guarantee that all code before
a barrier executes before any code after the barrier. Spec-
ulative barriers such as the one applied by the SpecCross
compiler, violate this synchronization guarantee to achieve
higher processor utilization and thus, higher performance.

SpecCross targets a code region whose original parallel
performance is limited by frequent global synchronizations.



Often, such a code region is an outermost loop which con-
tains multiple parallelizable inner loops. To locate these
code regions, we analyze all hot loops within the sequential
program. A hot loop should account for at least 10% of the
overall execution time. A hot loop is a candidate for Spec-
Cross if it satisfies three conditions: (1) the outermost loop
itself cannot be successfully parallelized by any automatic
parallelization technique implemented in the existing paral-
lelizing compiler infrastructure (including DOALL [1], LO-
CALWRITE [20] and DSWP [34]); (2) each inner loop can
be independently parallelized by a non-speculative and non-
partition based parallelization technique such as DOALL
and LOCALWRITE; and (3) the sequential code between
two inner loops can be privatized and duplicated among all
worker threads.

After locating the candidate loops, the SpecCross trans-
formation is applied to each of them. The transformation
itself consists of two major steps. First, the compiler paral-
lelizes the hot loop by applying DOALL or LOCALWRITE
to each inner loop. Second, the compiler inserts SpecCross
library function calls in the parallel program to enable bar-
rier speculation. The function calls that comprise the Spec-
Cross runtime library interface are described in §4.3.

3.2 SpecCross Profiler
To determine when speculation is beneficial, SpecCross

uses profiling to determine the speculative range, which con-
trols how aggressively to speculate (Figure 4). SpecCross
assigns each thread an epoch number and a task number,
which are then used to determine the speculative range and
also to determine when speculative memory accesses must
be checked at runtime.

An epoch is defined as the code region between two con-
secutive barriers, and the epoch number counts how many
speculative barriers a thread has passed. Non-speculative
barriers ensure that all threads have the same epoch num-
ber, whereas speculative barriers allow each thread’s epoch
number to increase independently. When the difference of
two threads’ epoch numbers is zero, misspeculation is im-
possible, since nothing is speculated. When the difference is
high, misspeculation is more likely, since more intervening
memory accesses are speculated. A task is the smallest unit
of work that can be independently assigned to a thread, and
the task number counts how many tasks a thread has exe-
cuted since the last barrier. For many parallel programs, a
task is one inner loop iteration. Note that epoch number-
task number pairs are not unique across threads as each
thread counts epochs and tasks independently.

In profiling mode, all barriers are non-speculative and
thus, threads synchronize at every barrier. The profiler com-
pares the memory access signature (summary of memory
accesses) of every task to signatures of tasks from earlier
epochs. If two tasks conflict, the distance between them
is recorded. Note that this dependence distance between
tasks refers to the number of intervening inner loop itera-
tions (or tasks in our terminology). At the end of the profil-
ing, the smallest dependence distance is set as the specula-
tive range. If the minimum dependence distance is smaller
than a threshold value, speculation will not be done. By
default, the threshold value is set to be equal to the number
of worker threads.

If the dependence distance is large, it means the program
has an access pattern suitable for barrier speculation. To
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Figure 4: Overview of SpecCross: At compile time, the
SpecCross compiler detects code regions composed of con-
secutive parallel loop invocations, parallelizes the code re-
gion and inserts SpecCross library function calls to enable
barrier speculation. At runtime, the whole program is first
executed speculatively without barriers. Once misspecula-
tion occurs, the checkpoint process is woken up. It kills
the original child process and spawns new worker threads.
The worker threads will re-execute the misspeculated epochs
with non-speculative barriers.

reduce the possibility of misspeculation, the minimum de-
pendence distance is passed as an input parameter to the
speculation runtime library (§4.3). At runtime, the leading
thread stalls if it executes beyond this distance.

4. SPECCROSS RUNTIME SYSTEM
The runtime system of SpecCross implements a software-

only speculative barrier. To maintain the same semantics as
non-speculative barriers, speculative barriers check for run-
time dependence violations. Upon detecting a violation, the
runtime system triggers a misspeculation (§4.1) and rolls
back to non-speculative state using the most recent check-
point (§4.2).

4.1 Misspeculation Detection
Signature-based violation detection. SpecCross

uses signature-based violation detection [9, 16, 28, 44, 52]
to detect misspeculation. A signature is an approximate
summary of memory accesses and provides a customizable
tradeoff between signature size and false positive rates. By
default, SpecCross defines a thread’s signature as the range
of memory addresses speculatively accessed by that thread.
There are two advantages to using this scheme. First, it
incurs low runtime overhead, as computing the memory ac-
cess signature involves keeping the minimum and maximum
memory address accessed, instead of logging every specula-
tive memory access. Second, the correctness of this scheme
can be proved easily: Threads are deemed independent if
the signatures do not overlap.

However, adopting range-based signatures may result in
an increase in the number of misspeculations detected by
the SpecCross runtime system (false positives). To enable
users to achieve the right balance between false positives and
complexity of checking, SpecCross also provides an API
to plug in user-provided signature generation and checking
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Figure 5: Timing diagram for SpecCross showing epoch
and task numbers. Label <A,B>: The thread updates
its epoch number to A and task number to B when the
task starts executing. Label [A,B,C] in the checker thread:
Check memory access signature of task with epoch num-
ber A, task number B, and executing on worker thread C
against the memory access signatures of tasks indicated in
Table 1.

Checked tasks Compared against
[2,1,3] [1,2,1], [1,2,2]
[2,1,4] [1,2,1], [1,2,2]
[3,1,1] [2,2,4]

[3,1,2] [2,2,4]

[4,1,4] [3,2,1], [3,1,2], [3,1,3]
[4,2,4] [3,2,2], [3,1,3]
[3,1,3] [2,2,1], [2,2,2], [2,2,4]
[4,1,2] [3,1,3]

[4,1,1] [3,2,2], [3,1,3]
[5,1,4] [4,1,1], [4,1,2], [4,1,3]
[5,2,4] [4,2,1], [4,2,2], [4,2,3]

Table 1: Comparisons of memory access signatures per-
formed by the checker thread for the timeline in Figure 5.
Label [A,B,C] refers to thread C executing task number B
in epoch number A.

schemes. For instance, range-based signature schemes work
well when memory accesses are clustered. For random ac-
cess patterns, a Bloom filter-based signature can offer lower
false positive rates. Our experiments have shown that the
simple range-based checking scheme enables effective and ef-
ficient misspeculation detection; in fact, there were no false
positives in any of the benchmarks evaluated in Section 5.

Violation detection scheme. To determine when the
speculative barrier assumptions need to be checked, Spec-
Cross assigns each thread an epoch number and a task num-
ber (defined in §3.2). Worker threads collaborate with the
checker thread to detect violations. When a worker thread
begins a new task, it updates its own epoch and task num-
bers and then records the current epoch and task numbers
for all the other threads. Next, the worker executes the task
itself. During execution, the worker computes the memory
access signature for that task by maintaining the minimum
and maximum values of memory addresses accessed. Once

the task finishes execution, the worker thread saves its sig-
nature in a global signature log. On completion of each
task, the worker thread sends the following information to
the checker thread to enable asynchronous misspeculation
detection: (1) the worker thread’s current epoch and task
numbers, (2) the memory access signature for the task, and
(3) the recorded epoch and task numbers of all other threads
that were running when the current task began. The checker
thread compares the task’s memory access signature to all
signatures from epochs earlier than the current task’s epoch,
but at least as recent as the epoch-task number pair recorded
when the task began. Signatures from the same epoch are
safely ignored as they are not separated by a barrier.

If the checker thread detects misspeculation, it signals a
separate checkpoint process for misspeculation recovery (ex-
plained in §4.2). By default, SpecCross checkpoints pro-
gram state once every thousand epochs. Therefore, each
worker thread has one thousand entries in the signature log.
Worker threads synchronize at the checkpoint and signature
log entries can be re-used after checkpointing. Each entry
of the signature log contains a pointer to an array used for
saving signatures within a single epoch. The size of the ar-
ray is initialized to store 1024 signatures and is increased
dynamically, if the number of tasks exceeds the array size.

Example. Figure 5 is a timing diagram for speculative
barrier execution. When worker thread 3 starts task <3,1>,
the other worker threads are still executing task <2,2> in
the second epoch. The checker thread must check the ac-
cess signatures of these three tasks against that of [3,1,3]

(Table 1). Before task <3,1> finishes in worker thread 3,
all other threads have already begun the fourth epoch. As
a result, the checker thread must check the memory access
signatures of task <4,1> in threads 1, 2, and 4 and task
<4,2> in thread 4 against [3,1,3] (Table 1).

After sending data to the checker thread, a worker thread
may stall to wait for other worker threads if continuing exe-
cution would exceed the speculative range. In Figure 5, we
assume that the profiler calculates a speculative range limit
of two. When thread 4 tries to start task <5,1>, tasks <3,1>,
<4,1>, and <4,2> have already finished executing in thread
4, whereas thread 3 is still executing task <3,1>. Thus, the
dependence distance between the two threads (defined as
the difference in task numbers of the two threads) is three,
one more than the limit specified by the profiler. Therefore,
thread 4 stalls after executing task <4,2>. Note that the
example is simplified as in real programs, the speculative
range is always at least the number of worker threads and
usually much larger.

Overhead of dependence detection. The checker
thread forms the actual bottleneck for the dependence de-
tection process. It needs to compare the signature of every
task with the signatures of tasks being executed by all other
threads at the time when the former task began execution.
The checker runs in parallel to the worker threads and can
keep up with the worker threads, especially if the number of
workers is not high. However, when the worker thread count
increases, the checker may not be able to compare signatures
fast enough, which would lead to stalls whenever the pro-
gram reaches a checkpoint. During these stalls, the worker
threads wait for the checker to finish all the outstanding
signature comparisons to determine if a misspeculation oc-
curred. Once the checker detects no misspeculation, a new
checkpoint is then created.



As discussed earlier, the runtime overhead for the worker
threads is minimal as the range is defined only by the min-
imum and maximum address speculatively accessed. While
there are potential false positives due to the use of range-
based signatures, such false positives were not found in any
of the evaluated benchmarks. Further, as the memory ac-
cesses of entire tasks are summarized by the range, using
range-based signatures also keeps the overhead of checking
signatures against each other minimal. The cost of checking
is further mitigated by minimizing the number of signature
comparisons. Checking is only necessary for two threads
separated by a barrier when the two threads execute out-of-
order with respect to the non-speculative execution. Thus,
signatures from the same epoch are safely ignored as they are
not separated by a barrier. Furthermore, if compiler analy-
sis guarantees tasks to be independent, speculative checking
is unnecessary and thus, skipped.

Memory consistency issues. There are two subtle
memory consistency issues with the checking scheme de-
scribed above. First, the checking scheme assumes that up-
dates to the epoch and task numbers will be globally visible
after all other stores in the previous task. If the memory
consistency model allows the architecture to reorder stores,
this assumption will be false. In other words, the check-
ing methodology assumes a Total Store Order (TSO) archi-
tecture. Modern TSO architectures include: x86, x86-64,
SPARC, and the IBM zSeries [27]. For architectures that do
not support TSO, such as ARM and POWER, each thread
should execute a memory fence before updating the epoch
and task numbers. The costs of memory fences may be
greater than the costs of speculative barriers when the num-
ber of tasks per epoch is high.

Second, the epoch and task numbers must update together
atomically. The easiest way to accomplish this is to store
these numbers as the high and low bits of a 64-bit word and
use an atomic write operation. For x86-64, 64-bit writes are
atomic by default, so no special handling is required.

4.2 Checkpointing and Recovery
There are three conditions that trigger misspeculation in

SpecCross. First, the checker thread triggers misspecu-
lation if it finds a pair of conflicting signatures. Second,
misspeculation occurs if any of the worker threads triggers
a segmentation fault. Third, misspeculation can be trig-
gered in response to a pre-defined timeout. Timeouts are
necessary, since speculative updates to the shared memory
may change the exit condition of a loop and cause infinite
execution.

For enabling misspeculation recovery, the worker threads
periodically checkpoint their state. Checkpoints act as non-
speculative barriers. All worker threads synchronize at the
checkpoint, waiting for the checker thread to finish all check-
ing requests before the checkpoint, thereby ensuring the
safety of the checkpoint’s state. During checkpointing, Spec-
Cross first saves the register state of each thread using the C
standard library’s setjmp function. After the register state
is saved, the process forks, duplicating the memory state
of the entire process. The newly forked child sleeps until
the checker thread detects misspeculation. Upon misspecu-
lation, the child spawns new worker threads and each newly
spawned thread executes longjmp to inherit the program
state of an original thread.

As SpecCross is based on speculating barriers, check-

pointing based on epochs is much easier to reason about
than checkpointing based on time. Additionally, SpecCross
explicitly allocates stacks of worker threads to ensure they
are not deallocated by fork. This is necessary because the
POSIX standard allows processes to deallocate the stacks
of associated threads after forking. Explicitly allocating the
worker threads’ stacks ensures that longjmp will restore a
valid stack.

Checkpointing Overhead. Our experiments show that
recovering from misspeculation requires about one millisec-
ond. The execution time for recovering non-speculative state
is dominated by the kill and clone system calls. The
checker thread invokes kill to asynchronously terminate
misspeculating threads and awaken the checkpoint process.
It then invokes clone (called internally by pthread_create)
to create new worker threads. The number of syscalls scales
linearly with the number of worker threads, but performance
is not affected by either the program’s memory footprint or
the size of the speculative state.

Checkpointing Frequency. SpecCross’s misspecula-
tion recovery mechanism presents a fine tradeoff between the
frequency of checkpointing and the overhead of the runtime
system. Infrequent checkpointing reduces runtime overhead
but increases the cost of misspeculation. SpecCross’s pro-
filing library enables very low rates of misspeculation, thus
infrequent checkpointing is efficient in practice. By default,
SpecCross checkpoints at every thousandth speculative bar-
rier, though it can be re-configured based on program char-
acteristics.

Handling Irreversible Operations. Some epochs con-
tain irreversible operations (for example I/O) which must be
executed non-speculatively. Before entering an irreversible
epoch, all worker and checker threads synchronize. Just
like checkpointing, synchronizing all threads ensures non-
speculative execution. After exiting the irreversible region,
the program checkpoints. Otherwise, later misspeculation
could cause the irreversible region to be repeated.

4.3 Runtime Interface
Table 2 lists the interface functions exposed by Spec-

Cross, along with a description of each function’s semantics.
Figure 6 shows an instantiation of these functions in a par-
allel program. In the example, each inner loop invocation
is treated as an epoch, and each inner loop iteration as a
task. SpecCross provides the same interface functions for
both profiling and speculation purposes. As a result, the
compiler must only insert the function calls once, for both
profiling and speculative execution. Whether to profile or
speculate is decided by defining the environment variable
MODE. The MODE value can also be set to NON-SPECULATIVE. In
non-speculative mode, most interface functions do nothing
and speculative barriers are replaced with non-speculative
ones. This non-speculative mode is enabled automatically
when re-executing the misspeculated epochs after recover-
ing from misspeculation. The following paragraphs describe
how the compiler automatically inserts some of these func-
tion calls into the program.

A code region between two consecutive enter_barrier

functions is considered as an epoch. For simplicity, each in-
ner loop invocation is usually treated as an epoch. As a re-
sult, the SpecCross compiler inserts enter_barrier func-
tion calls at the beginning of each inner loop’s preheader
basic block.



Operation Description

Functions for Both Profiling and Speculation
init() Initialize data structures used for barrier profiling or speculative exe-

cution. If in speculation mode, checkpoint the program before begin-
ning the parallel execution.

exit task(threadID) Record the signature of the current task in global signature log. In-
crement the task number. If in profiling mode, compare the signature
of current task with signatures of tasks belonging to previous epochs
and return the minimum dependence distance. If in speculation mode,
return value is 0.

spec access(threadID, callback, addr list, ...) Apply callback function to each address in the addr list to compute
the signature.

enter barrier(threadID, loop name) Increment the epoch number. If in profiling mode, execute the actual
non-speculative barrier operation. If in speculation mode, checkpoint
according to the checkpointing frequency.

create threads(threads, attrs, start routines, args) Create worker threads and if in speculation mode, create a checker
thread for violation detection.

cleanup() Wait for worker threads and checker thread to finish. Free data struc-
tures allocated for profiling or speculation.

Functions for Speculation Only
enter task(threadID, spec distance) Collect epoch number and task number of other worker threads and

send them to the checker thread. The parameter spec distance speci-
fies the speculation distance between two tasks.

send end token(threadID) Send an END TOKEN to checker thread to inform it of the comple-
tion of a worker thread.

sync() Synchronize all threads before entering the next epoch.
checkpoint() Checkpoint program state before entering the next epoch.

Table 2: Interface for SpecCross runtime library

Main thread:

main() {

  init();

  create_threads(threads, attrs, SpecCross_parallel_func, args);

  cleanup();

}

Worker thread:

SpecCross_parallel_func(threadID) {

  for (t = 0; t < STEP; t++) {

    enter_barrier(threadID, "L1");

L1: for (i = threadID; i < M; i = i + THREADNUM) {

      enter_task(threadID, minimum_distance_L1);

      spec_access(threadID, callback, &A[i], &B[C[i]], (char*)0);

      A[i] = do_work(B[C[i]]);

      exit_task(threadID);

    }

    enter_barrier(threadID, "L2");

L2: for (j = threadID; j < M; j = j + THREADNUM) {

      enter_task(threadID, minimum_distance_L2);

      spec_access(threadID, callback, &B[j], &A[D[j]], (char*)0);

      B[j] = do_work(A[D[j]]);

      exit_task(threadID);

    }

  }

  send_end_token(threadID);

}

Figure 6: Demonstration of using SpecCross runtime li-
brary in a parallel program

Function enter_task marks the beginning of each task.
Since an inner loop iteration is usually treated as a separate
task, the SpecCross compiler inserts enter_task function
calls at the beginning of each inner loop’s header.

Function exit_task marks the end of a task, i.e., it is in-
voked either before exiting an inner loop invocation or before
entering another inner loop iteration. To locate these inser-
tion points, the SpecCross compiler checks the terminator
instruction of each basic block in an inner loop. If a ter-
minator instruction is an unconditional branch which either
exits the loop or branches back to the header of the loop,

Barriers not necessary Existing techniques not profitable

blackscholes, swaptions (Parsec [4]) mesa, art and ammp (SpecFP [45])
pi, mandelbrot (OMPBench [14]) ferret (Parsec [4])
gemm, doitgen, 2mm (PolyBench [37]) mg (NAS [31])

Table 3: Benchmark programs not suitable for evaluation

the compiler inserts an exit_task function call right before
the terminator instruction. If the terminator instruction is
a conditional branch and (1) if one of its targets is a basic
block outside the loop and the other is the loop header, the
compiler also inserts a call to exit_task before the termina-
tor instruction; or (2) if one target is a basic block outside
the loop and the other is a basic block within the loop ex-
cept the loop header, the exit_task function is invoked only
when the execution exits the loop; or (3) if one target is the
header of the loop and the other is some other basic block
within the loop, an exit_task function is invoked only when
the execution branches back to the loop header.

Function spec_access is used to calculate the access sig-
nature for each task. The compiler inserts calls to this func-
tion before each memory operation (store or load) that is
involved in a cross-invocation dependence.

5. EVALUATION
The implementation of SpecCross parallelization is eval-

uated on a 24-core shared memory machine. It has four Intel
6-core Xeon X7460 processors running at 2.66 GHz with 24
GB of memory. Its operating system is 64-bit Ubuntu 9.10.
All benchmark programs are compiled using clang compiler
version 3.0 with -O3.

5.1 Experimental Setup
Twenty programs from six benchmark suites that are par-

allelizable by SpecCross were examined as potential candi-
dates for evaluation, and eight were finally selected. We have
taken programs from multiple benchmark suites to demon-



# of Minimum
Benchmark Suite Source Coverage of # of tasks # of epochs checking Distance

Exec. Time requests train ref

CG NAS [31] 12.8 63000 7000 40609 * *
EQUAKE SpecFP [45] 98 66000 3000 55181 * *
FDTD PolyBench [37] 99 200600 1200 96180 599 799
FLUIDANIMATE Parsec [4] 99 1379510 1488 295000 54 / * 54 / *
JACOBI PolyBench [37] 99 99400 1000 67163 497 997
LLUBENCH LLVMBench [24] 90.5 110000 2000 81965 * *
LOOPDEP OMPBench [14] 99 245000 1000 98251 500 800
SYMM PolyBench [37] 99 500500 2000 369731 * *

Table 4: Details of benchmark programs. * indicates no access conflicts are detected in profiling.

strate the effectiveness of SpecCross over various applica-
tion types, which work best with different optimization tech-
niques. Of the twenty candidates, seven programs have a
DOALL-able outermost loop and hence do not require barri-
ers. For five programs, existing techniques are not profitable
for either outer loop or inner loop parallelization. Table 3
summarizes these rejected programs. The remaining eight
programs are chosen because they share two characteristics:
their performance dominating loop nests cannot be prof-
itably parallelized by non-speculative automatic paralleliza-
tion techniques such as DOALL [1], LOCALWRITE [20]
or DSWP [34]. Meanwhile, although these loop nests con-
tain parallelizable inner loops, parallelizing them introduces
frequent barrier synchronizations limiting overall scalabil-
ity. These two characteristics are required for SpecCross
to have a potential benefit.

Table 4 characterizes these eight programs. We compared
two parallel versions of these programs: (a) inner loop par-
allelization with non-speculative pthread barriers [6]; and
(b) outer loop parallelization with SpecCross. The non-
speculative technique imposes synchronization on every bar-
rier assuming that there are dependences between any pair
of iterations from two different outer loop invocations. Even
with a non-pthread barrier method, the performance would
not have differed much. The common trait of any such
method is that no cross-invocation parallelism is exploited
and barrier synchronization is enforced. For performance
measurements, the best sequential execution of the paral-
lelized loops is considered the common baseline for both
cases.

For most of these programs, the parallelized loops account
for more than 90% of the execution time. When paralleliz-
ing using SpecCross, each loop iteration is regarded as a
separate task. The range-based signature described in §4.1
is used to track the range of memory locations (or array
indices) accessed by each task. Each parallel program is
first instrumented using the profiling functions provided by
SpecCross. The profiling step finds a minimum dependence
distance value for use in speculative barrier execution. All
benchmark programs have multiple input sets. We chose
the training input set for profiling run. Table 4 shows the
minimum dependence distance results for the evaluated pro-
grams using two different input sets (a training input set for
profiling run and another reference input set for performance
run). Four of the eight programs had runtime dependences
detected by profiling functions while the rest do not. The
minimum dependence distance between two inner loops in
program FLUIDANIMATE varies a lot. Some of the loops
do not cause any runtime access conflicts while others have
a very small minimum dependence distance. For the lat-

ter case, SpecCross basically serves as a non-speculative
barrier. Regarding program JACOBI, the profiler under-
estimated the speculative range (497 for training input vs.
997 for reference input), resulting in conservative specula-
tion. This reflects in the performance of the benchmark, as
shown in Figure 7(e).

5.2 Performance
Figure 7 compares the speedups achieved by the paral-

lelized loops using pthread barriers and SpecCross. It
demonstrates the benefits of enabling cross-invocation par-
allelization. The best sequential execution time of the paral-
lelized loops is considered as the common baseline for both
SpecCross and pthread barriers. The original execution
with pthread barriers does not scale well beyond a small
number of cores. Among the eight programs in barriers, CG
performs the worst since each of its epochs only contains nine
iterations. With higher thread counts, the overhead caused
by barriers increases without any gains in parallelism.

The speculative barrier solution provided by SpecCross
enables all programs to scale to higher thread counts when
compared to an equivalent execution with pthread barriers.
At lower thread counts, pthread barrier implementation for
some programs yields better performance than SpecCross.
This happens for two reasons: (a) SpecCross requires an
extra thread for violation detection. At lower thread counts,
one fewer thread is available to do actual work, which is
significant when the total number of threads is small; (b) the
overhead of barrier synchronization increases with increasing
thread counts. As a result, the effectiveness of SpecCross
is more pronounced at higher thread counts.

5.3 Overhead Analysis
In our evaluation, the program state is checkpointed once

every 1000 epochs. For the eight programs evaluated, profil-
ing results are accurate enough to result in high-confidence
speculation and no misspeculation is recorded at runtime.
As a result, the operations that contribute to major run-
time overheads include computing access signatures, send-
ing checking requests, detecting dependence violation, and
checkpointing.

Table 4 shows for each program, the number of tasks ex-
ecuted, the number of epochs, and the number of checking
requests for execution with 24 threads. The performance re-
sults (Figure 7) indicate that with higher thread counts, the
checker thread may become the bottleneck. In particular,
the performance of SpecCross scales up to 18 threads and
either flattens or decreases after that. The effects of checker
thread in limiting performance can be illustrated by consid-
ering the example of LLUBENCH. The number of check-
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(b) EQUAKE
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(d) FLUIDANIMATE
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(e) JACOBI
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(f) LLUBENCH
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(h) SYMM
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Figure 7: Performance comparison between code parallelized with or without cross-invocation parallelization.

ing requests for LLUBENCH increases by 3.3× when going
from 8 threads to 24 threads, with the resulting performance
improvements being minimal. Parallelizing dependence vio-
lation detection in the checker thread is one option to solve
this problem and is part of future work.

Checkpointing is much more expensive than signature cal-
culation or checking operations and hence is done infre-
quently. For benchmark programs evaluated, there are fewer
than 10 checkpoints, since SpecCross by default check-
points every 1000 epochs. However, frequency of checkpoint-
ing can be reconfigured depending on desired performance
characteristics. To quantify the impact of checkpointing on
performance, Figure 8 shows the geomean speedup results
of increasing the number of checkpoints from 2 to 100, for
all of the eight benchmark programs. To evaluate the over-
head of the whole recovery process, we randomly triggered
a misspeculation during the speculative parallel execution.
Evaluation results are shown in Figure 8. As can be seen,
more checkpoints increases the overhead at runtime, however
also reduce the time spent in re-execution once misspecula-
tion happens. Finding an optimal configuration for them is
important and will be part of the future work.

The time required by worker threads to compute mem-
ory access signatures is another source of overhead for the
SpecCross system. As mentioned in Section 4.1, the range-
based memory access signatures incur a low overhead as it
does not need to log every speculative memory access. This
is borne out by the 1.04% geomean overhead (for 24 threads)
per task in computing these access signatures. The highest
overhead was for CG, where computing signatures resulted in
an average overhead of 6.7% per task. This was because of
a relatively large number of speculative memory accesses in
every task. On the other hand, for LLUBENCH and EQUAKE,
the number of range computations could be minimized due
to compiler analysis, resulting in overheads as low as 0.26%
and 0.13% per task.

5.4 Comparison of SpecCross and Previous Work
Figure 9 compares speedups achieved by SpecCross and

previous work using the same programs [4, 7, 14, 17, 22]. All
comparisons were done on our evaluation platform. We have
omitted EQUAKE from Figure 9 as it was parallelized by
Helix [7] whose source code is not accessible. For all other
programs, SpecCross achieves better performance.
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Figure 9: Best performance comparison between Spec-
Cross and previous works on the same platform.

Programs JACOBI, FDTD and SYMM were originally designed
for Polyhedral optimizations [17]. They can be automat-
ically parallelized by the Polly optimizer in LLVM com-
piler infrastructure. Polly uses an abstract mathematical
representation to analyze the memory access pattern of a
program and automatically exploits thread-level and SIMD
parallelism. Polly successfully achieves promising speedup
for 16 out of 30 Polyhedral benchmark programs. However,
it fails to extract enough parallelism from JACOBI, FDTD or
SYMM due to the irregular memory access patterns of the out-
ermost loop. SpecCross applies DOALL to the inner loops
and exploits cross-invocation parallelism using speculative
barriers, and therefore achieves much better performance.
CG was manually parallelized by DSWP+ technique [22].

DSWP+ performs as a manual equivalence of SpecCross
parallelization. As shown in the graph, SpecCross is able to
achieve close performance gain as the manual parallelization.

Both LOOPDEP and FLUIDANMIATE have a parallel imple-
mentation in their benchmark suites. We compare the best
performance results of their parallel versions with the best
performance achieved by SpecCross. Helix automatically
parallelized EQUAKE and its performance gain was presented
in [7]. We compare the best performance reported with
that achieved by SpecCross. These previous works par-
allelize the three programs in a similar way: each inner loop
within the outermost loop is independently parallelized by
DOALL or DOACROSS and non-speculative barrier syn-
chronizations are inserted between inner loops to respect
cross-invocation dependences. Those synchronizations limit
the scalability of the performance.

We cannot find any existing parallelization result for LLUBENCH,
so in Figure 9, best performance result of SpecCross is com-
pared against the best performance achieved by inner loop
DOALL with pthread barrier synchronizations.

6. RELATED WORK
Cross-invocation Parallelization: Existing automatic

cross-invocation parallelization techniques all rely on static
analysis. Zhao et al. [54] transform an inner DOALL loop to
an outer DOALL loop before parallelization in order to avoid
barriers between two consecutive parallel loop invocations.
Ferrero et al. [15] aggregate small parallel loops into large
ones for the same purpose. Tseng et al. [49] apply flow anal-
ysis to carefully partition the iteration space so that cross-
invocation dependences do not flow across threads. Com-
pared to these techniques, SpecCross is not limited by the
conservativeness of static analysis, and therefore can adapt
to irregular dependence patterns manifested by particular
inputs.

Comparison to Other Dynamic Parallelization Sys-
tems: Tian et al. [48] proposed Copy-Or-Discard (CoD) ex-
ecution model for speculative parallelization, which achieves
excellent speedup on six benchmarks. CorD’s execution
model focuses on parallelizing loops, where different iter-
ations of the same loop can be speculatively executed in
parallel. By contrast, SpecCross aims to exploit cross-
invocation parallelism, where tasks from different loop in-
vocations may be speculatively executed in parallel. The
other contrast lies in the way the two techniques detect con-
flicts: CorD uses memory versioning while SpecCross uses
range-based memory access signatures.

BOP [13] offers a promising method for speculative par-
allelization by allowing specification of potential for parallel
execution of code regions. The specification can be made
either via programmer-inserted annotations or by certain
profilers. If speculation does not prove profitable, execu-
tion time is the same as the sequential execution time. In
BOP’s execution model, each speculative region is run in a
separate process; thus, it incurs extra overhead due to merg-
ing of modified pages by different processes (this cost may
be partly hidden by copy-on-write mechanisms). By con-
trast, SpecCross speculates barriers which leads to tasks
executing in different parallel threads. As a result, specula-
tive accesses once checked, do not require separate copying
or merging. Additionally, compared to BOP’s page-based
monitoring, SpecCross monitors only inter-invocation de-
pendences, which may lead to lower checking overheads.

Alternative Synchronizations Fuzzy Barriers [18] spec-
ifies a synchronization range rather than a specific synchro-
nization point. However, it also relies on static analysis
to identify instructions that can be safely executed while
a thread waits for other threads to reach the barrier. Fuzzy
barriers cannot reduce the number of barriers; it can only
reschedule barriers for more efficient execution.

Some techniques apply speculative barriers between loop
invocations to enable cross-invocation parallelization. Na-
garajan and Gupta [30] speculatively execute parallel pro-
grams past barriers and detect conflicts by re-designing the
Itanium processor’s Advanced Load Address Table (ALAT)
hardware. Mart́ınez and Torrellas [26] apply thread level
speculation [32, 46] to speculatively remove barriers. A
speculative synchronization unit (SSU) is designed to de-
tect conflict and recover from misspeculation at runtime.



ECMon [29] exposes cache events to software so that bar-
rier speculation could efficiently detect violations at runtime.
These techniques are not limited by complicated dependence
patterns; however, they all require special hardware support.
By contrast, SpecCross implements a software-based tech-
nique which can run on commodity multicore machines.

Ziarek et al. [55] propose language extensions for spec-
ulative barriers and formulate safety properties for correct
speculation. However, they only apply it to a toy language
and provide no concrete implementation or performance re-
sults. SpecCross provides the design, implementation and
evaluation of a real system that automatically parallelizes
programs using speculative barriers.

Transactional Memory Supported Cross-invocation
Parallelization: Transactional Memory (TM) [21, 43] was
first introduced as a technique providing a way to implement
lock-free data structures and operations. The key idea be-
hind TM is to make a sequence of memory reads and writes
appear as a single transaction; all intermediate steps are hid-
den from the rest of the program. A log of all memory ac-
cesses is kept during the transaction. If a transaction reads
memory that has been altered between the start and end
of the transaction, execution of the transaction is restarted.
This continues until the transaction is able to complete suc-
cessfully, and its changes are committed to memory.

Original TM systems do not support cross-invocation spec-
ulation since they do not enforce the commit order between
transactions from different loop invocations. Grace [2] and
TCC [19] extend existing TM systems to support cross-
invocation speculation. Grace automatically wraps code
between fork and join points into transactions, removing
barrier synchronizations at the join points. Each transac-
tion commits according to its order in the sequential version
of code. TCC [19] relies on programmers to wrap concur-
rent tasks into transactions. It requires special hardware
support for violation checking and transaction numbering,
which ensures the correct commit order of each transaction.
As discussed in Section 2, both systems ignore the important
fact that a large number of independent tasks do not need
to be checked for access violations. Instead, SpecCross is
customized for this program pattern, thus it avoids unnec-
essary overhead in checking and committing. Besides, nei-
ther Grace or TCC is an automatic parallelization technique.
They are either applied to already parallelized programs or
manually inserted as annotations in sequential programs. In-
stead, SpecCross is an automatic parallelization technique
which does not require any manual work.

Load Balancing Techniques: Work stealing techniques,
implemented in parallel subsystems like Cilk [5], Intel TBB
[41], and X10 [10], balance load amongst parallel threads
by allowing one thread to steal work from another thread’s
work queue. Balancing workloads in turn reduces the im-
pact of barrier synchronization on program performance.
However, existing work stealing implementations only al-
low workers to steal work from the same epoch at any given
time. This is because these implementations do not leverage
knowledge about program dependences to steal work from
multiple epochs (across barriers) at the same time. As a
result, programs that have a limited number of tasks in a
single epoch (for example, CG in our evaluation) do not ben-
efit from work stealing techniques. In contrast, SpecCross
allows tasks from different epochs to overlap and achieve
better load balance across epochs. Other load balancing

techniques such as guided self-scheduling [35], affinity-based
scheduling [25], and trapezoidal scheduling [50] also suffer
from the same limitations as the work stealing techniques.

Synchronization via scheduling [3] is a method of load bal-
ancing that employs static and dynamic analyses to capture
runtime dependences between tasks in a task graph. The
task graph is exposed to a scheduler that schedules the tasks
onto threads in a way so as to minimize the idling time of
each thread. While being able to handle more general de-
pendence patterns than working stealing, this technique still
does not overlap tasks from successive executions of the same
task graph in parallel.

Multithreaded Program Checkpointing: Several prior
techniques implement multithreaded program checkpoint-
ing. Dieter et al. [12] propose a user-level checkpointing
system for multi-threaded applications. Carothers et al. [8]
implement a system call to transparently checkpoint multi-
threaded applications. SpecCross checkpoints the multi-
threaded programs for misspeculation recovery. These check-
pointing techniques could be merged into the SpecCross
framework.

Dependence Distance Analysis: If dependence dis-
tance manifests in a regular manner, programs can still be
parallelized by assigning dependent tasks to the same worker
thread. Dependence distance analysis [47] has been pro-
posed to serve that purpose. Like other static analyses these
techniques tend to be conservative and cannot handle irreg-
ular dependence patterns. SpecCross takes advantage of
profiling information to get a minimum distance and spec-
ulates it holds for other input sets to further reduce the
misspeculation rate. Since this information comes from pro-
filing, it applies to programs with irregular dependence pat-
terns as well.

7. CONCLUSION
This paper presented SpecCross, the first automatic par-

allelization technique to aggressively exploit cross-invocation
parallelism using high-confidence speculation. Unlike prior
techniques which are all limited by conservative static analy-
sis, SpecCross can adapt to irregular dependence patterns
determined by input data sets. The SpecCross system
consists of three major components: a parallelizing com-
piler, a runtime library and a profiler. The profiler enables
high-confidence speculation, and the runtime library imple-
ments a software-only speculative barrier. The paralleliz-
ing compiler runs the profiler and automatically transforms
a sequential program into a scalable parallel program tar-
geting the runtime library. Evaluation on eight programs
demonstrates that SpecCross achieves a geomean speedup
of 4.59× over the best sequential execution on a 24-core ma-
chine. This demonstrates the effectiveness of SpecCross in
realizing well-performing cross-invocation parallelization.
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