
Speculative Decoupled Software Pipelining

Neil Vachharajani Ram Rangan† Easwaran Raman
Matthew J. Bridges Guilherme Ottoni David I. August

Department of Computer Science

Princeton University

Princeton, NJ 08540

{nvachhar,ram,eraman,mbridges,ottoni,august}@princeton.edu

Abstract

In recent years, microprocessor manufacturers have
shifted their focus from single-core to multi-core pro-
cessors. To avoid burdening programmers with the re-
sponsibility of parallelizing their applications, some re-
searchers have advocated automatic thread extraction. A
recently proposed technique, Decoupled Software Pipelin-
ing (DSWP), has demonstrated promise by partitioning
loops into long-running, fine-grained threads organized
into a pipeline. Using a pipeline organization and execu-
tion decoupled by inter-core communication queues, DSWP
offers increased execution efficiency that is largely indepen-
dent of inter-core communication latency.

This paper proposes adding speculation to DSWP and
evaluates an automatic approach for its implementation.
By speculating past infrequent dependences, the benefit of
DSWP is increased by making it applicable to more loops,
facilitating better balanced threads, and enabling paral-
lelized loops to be run on more cores. Unlike prior spec-
ulative threading proposals, speculative DSWP focuses on
breaking dependence recurrences. By speculatively break-
ing these recurrences, instructions that were formerly re-
stricted to a single thread to ensure decoupling are now
free to span multiple threads. Using an initial automatic
compiler implementation and a validated processor model,
this paper demonstrates significant gains using speculation
for 4-core chip multiprocessor models running a variety of
codes.

1 Introduction
For years, steadily increasing clock speeds and unipro-

cessor microarchitectural improvements reliably enhanced
performance for a wide range of applications. Although
this approach has recently faltered, the exponential growth
in transistor count remains strong, leading microprocessor

†Currently with the Performance and Tools Group, IBM Austin Re-
search Laboratory, rrangan@us.ibm.com.

manufacturers to add value by producing chips that incor-
porate multiple processors. Multi-core processors can im-
prove system throughput and speed up multithreaded appli-
cations, but single-threaded applications receive no benefits.

While the task of producing multithreaded code could
be left to the programmer, there are several disadvantages
to this approach. First, writing multithreaded codes is in-
herently more difficult than writing single-threaded codes.
Multithreaded programming requires programmers to rea-
son about concurrent accesses to shared data and to insert
sufficient synchronization to ensure proper behavior while
still permitting enough parallelism to improve performance.
Active research in automatic tools to identify deadlock, live-
lock, and race conditions [3, 4, 5, 14, 21] in multithreaded
programs is a testament to the difficulty of this task. Second,
there are many legacy applications that are single-threaded.
Even if the source code for these applications is available, it
would take enormous programming effort to translate these
programs into well-performing parallel versions.

A promising alternative approach for producing multi-
threaded codes is to let the compiler automatically convert
single-threaded applications into multithreaded ones. This
approach is attractive as it takes the burden of writing mul-
tithreaded code off the programmer. Additionally, it allows
the compiler to automatically adjust the amount and type
of parallelism extracted depending on the underlying archi-
tecture, just as instruction-level parallelism (ILP) optimiza-
tions relieved the programmer of the burden of targeting
complex single-threaded architectures.

Unfortunately, compilers have been unable to extract
thread-level parallelism (TLP) despite the pressing need.
While success of this type has not been achieved yet,
progress has been made. Techniques dedicated to paralleliz-
ing scientific and numerical applications, such as DOALL
and DOACROSS, are used routinely in such domains with
good results [10, 25]. Such techniques perform well on
counted loops manipulating very regular and analyzable
structures consisting mostly of predictable array accesses.
Since these techniques were originally proposed for scien-

tific applications, they generally do not handle loops with
arbitrary control flow or unpredictable data access patterns
that are the norm for general-purpose applications.

Because dependences tend to be the limiting factor in
extracting parallelism, speculative techniques, loosely clas-
sified as thread-level speculation (TLS), have dominated the
literature [1, 2, 8, 9, 11, 12, 15, 22, 23, 26, 28]. Speculating
dependences that prohibit DOALL or DOACROSS paral-
lelization increases the amount of parallelism that can be
extracted. Unfortunately, speculating enough dependences
to create DOALL parallelization often leads to excessive
misspeculation. Additionally, as will be discussed in Sec-
tion 2, core-to-core communication latency combined with
the communication pattern exhibited by DOACROSS par-
allelization often negates the parallelism benefits offered
by both speculative and non-speculative DOACROSS par-
allelization.

Decoupled Software Pipelining (DSWP) [16, 20] ap-
proaches the problem differently. Rather than partitioning
a loop by placing distinct iterations in different threads,
DSWP partitions the loop body into a pipeline of threads,
ensuring that critical path dependences are kept thread-
local. The parallelization is tolerant of both variable latency
within each thread and long communication latencies be-
tween threads. Since the existing DSWP algorithm is non-
speculative, it must respect all dependences in the loop. Un-
fortunately, this means many loops cannot be parallelized
with DSWP.

In this paper, we present Speculative Decoupled Soft-
ware Pipelining (SpecDSWP) and an initial automatic
compiler implementation of it. SpecDSWP leverages the
latency-tolerant pipeline of threads characteristic of DSWP
and combines it with the power of speculation to break
dependence recurrences that inhibit DSWP parallelization.
Like DSWP, SpecDSWP exploits the fine-grained pipeline
parallelism hidden in many applications to extract long-
running, concurrently executing threads, and can do so
on more loops than DSWP. The speculative, decoupled
threads produced by SpecDSWP increase execution effi-
ciency and may also mitigate design complexity by reduc-
ing the need for low-latency inter-core communication. Ad-
ditionally, since effectively extracting fine-grained pipeline
parallelism often requires in-depth knowledge of many mi-
croarchitectural details, the compiler’s automatic applica-
tion of SpecDSWP frees the programmer from the difficult
and even counter-productive involvement at this level.

Using an initial automatic compiler implementation and
a validated processor model, this paper demonstrates that
SpecDSWP provides significant performance gains for a
multi-core processor running a variety of codes. Ottoni et
al. demonstrated DSWP’s initial promise by applying it to
9 key application loops [16]. Here, we extend their work
by extracting significant speedup, 40% on average, from

four additional key application loops using only control and
silent store speculation.

In summary, the contributions of this paper are:
• A new technique, Speculative Decoupled Software

Pipelining, that can extract parallel threads from pre-
viously unparallelizable loops.

• A compiler implementation of SpecDSWP.
• An evaluation of several general-purpose applications

on a cycle-accurate hardware simulator.
The rest of the paper is organized as follows. Section 2

examines existing speculative and non-speculative paral-
lelization techniques to put this work in context. Section 3
provides an overview of the original non-speculative DSWP
technique, which is followed by a discussion of the specu-
lative DSWP technique in Section 4. Sections 5 and 6 de-
tail how dependences are chosen for speculation and how
misspeculation is handled. Section 7 provides experimental
results, and Section 8 concludes the paper.

2 Motivation
Three primary non-speculative loop parallelization tech-

niques exist: DOALL [10], DOACROSS [10], and
DSWP [16, 20]. Of these techniques, only DOALL par-
allelization yields speedup proportional to the number of
cores available to run the code. Unfortunately, in general-
purpose codes, DOALL is often inapplicable. For example,
consider the code shown in Figure 1. In the figure, pro-
gram dependence graph (PDG) edges that participate in de-
pendence recurrences are shown as dashed lines. Since the
statements on lines 3, 5, and 6 are each part of a dependence
recurrence, consecutive loop iterations cannot be indepen-
dently executed in separate threads. This makes DOALL
inapplicable.

DOACROSS and DSWP, however, are both able to par-
allelize the loop. Figure 2(a) and 2(b) show the parallel ex-
ecution schedules for DOACROSS and DSWP respectively.
These figures use the same notation as Figure 1, except the
nodes are numbered with both static instruction numbers
and loop iteration numbers. After an initial pipeline fill
time, both DOACROSS and DSWP complete one iteration
every other cycle. This provides a speedup of 2 over single-
threaded execution. DOACROSS and DSWP differ, how-
ever, in how this parallelism is achieved. DOACROSS al-
ternately schedules entire loop iterations on processor cores.
DSWP, on the other hand, partitions the loop code, and each
core is responsible for a particular piece of the loop across
all the iterations.

The organization used by DOACROSS forces it to
communicate dependences that participate in recurrences
(dashed lines in the figure) from core to core. This puts
communication latency on the critical path. DSWP’s or-
ganization allows it to keep these dependences thread-local
(in fact the algorithm requires it) thus avoiding communica-

1 cost=0;
2 node=list->head;
3 while(node) {
4 ncost=doit(node);
5 cost += ncost;
6 node=node->next;
7 }

(a) Loop

3

6

4

5

(b) PDG

Figure 1. Parallelizable loop.

0

1

2

3

4

5

6

Core 1 Core 2

3.1

6.1

4.1

5.1

3.3

6.3

3.2

6.2

4.2

5.2

(a) DOACROSS

0

1

2

3

4

5

6

Core 1 Core 2

3.1

6.1

3.2

6.2

3.3

6.3

4.1

5.1

4.2

5.2

4.3

(b) DSWP

0

1

2

3

4

5

6

7

Core 1 Core 2

3.1

6.1

4.1

5.1

3.3

3.2

6.2

4.2

5.2

(c) DOACROSS

0

1

2

3

4

5

6

7

Core 1 Core 2

3.1

6.1

3.2

6.2

3.3

6.3

3.4

4.1

5.1

4.2

5.2

4.3

(d) DSWP
Comm. latency = 1 cycle Comm. latency = 2 cycles

Figure 2. DOACROSS and DSWP schedules.
tion latency on the critical path. Figure 2(c) and 2(d) show
the execution schedules if communication latency were in-
creased by one cycle. Notice that DSWP still completes
one iteration every two cycles. Only its pipe-fill time in-
creased. DOACROSS, however, now only completes one
iteration every three cycles. While not shown in the figure,
by using decoupling queues, DSWP is also tolerant to vari-
able latency within each thread. Often, this increases overall
memory-level parallelism (MLP) by overlapping misses in
different threads. These features make DSWP a promising
approach to automatic thread extraction.

Unfortunately, both DOACROSS and DSWP are not
able to parallelize all loops. For example, consider the loop
shown in Figure 3, which is identical to the loop in Fig-
ure 1 except this loop can exit early if the computed cost
exceeds a threshold. Since all the loop statements partici-
pate in a single dependence recurrence (they form a single
strongly-connected component in the dependence graph),
DSWP is unable to parallelize the loop. For similar reasons,
a DOACROSS parallelization would obtain no speedup; no
iteration can begin before its predecessor has finished.

In response to this, there have been many proposals for
thread-level speculation (TLS) techniques which specula-
tively break various loop dependences [1, 2, 8, 9, 11, 12,
15, 22, 23, 26, 28]. Once these dependences are broken,
DOACROSS and sometimes even DOALL parallelization
is possible. In the example, if TLS speculatively breaks the
loop exit control dependences (the dependences originat-
ing from statement 3), then the execution schedule shown
in Figure 4(a) is possible. This parallelization offers a

1 cost=0;
2 node=list->head;
3 while(cost<T && node) {
4 ncost=doit(node);
5 cost += ncost;
6 node=node->next;
7 }

(a) Loop

3

6

4

5

(b) PDG

Figure 3. Speculatively parallelizable loop.

0

1

2

3

4

5

6

Core 1 Core 2 Core 3 Core 4

6.1

4.1

5.1

3.1

6.5

4.5

6.2

4.2

5.2

3.2

6.6

6.3

4.3

5.3

3.3

6.4

4.4

5.4

(a) TLS

0

1

2

3

4

5

6

Core 1 Core 2 Core 3 Core 4

6.1

6.2

6.3

6.4

6.5

6.6

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

5.4

5.5

3.1

3.2

3.3

3.4

(b) SpecDSWP

Figure 4. TLS and SpecDSWP schedules.

speedup of 4 over single threaded execution. Notice, how-
ever, that just as for non-speculative DOACROSS paral-
lelization, TLS must communicate dependences that par-
ticipate in recurrences. Just as before, this places commu-
nication latency on the critical path. For many codes, this
fact coupled with the non-unit communication latency typ-
ical of multi-core architectures negates most, if not all, of
the expected parallelism.

The Speculative DSWP1 technique described in this pa-
per can be considered the DSWP analogue of TLS. Just
as adding speculation to DOALL and DOACROSS ex-
panded their applicability, adding speculation to DSWP al-
lows it to parallelize more loops. Figure 4(b) shows the
execution schedule achieved by applying SpecDSWP to
the loop in Figure 3. Similar to the TLS parallelization,
SpecDSWP offers a speedup of 4 over single-threaded ex-
ecution. However, SpecDSWP retains the pipelined orga-
nization of DSWP. Notice, in the execution schedule, that
all dependence recurrences are kept thread-local. This as-
sures, in the absence of misspeculation, SpecDSWP’s per-
formance is independent of communication latency and tol-
erant of intra-thread memory stalls. The remainder of this
paper will review DSWP and will then describe Speculative
DSWP in detail.

1Speculative Decoupled Software Pipelining and Speculative Pipelin-
ing [18] have similar names, but the two techniques are different. The latter
is a prepass applied to code before applying TLS. This prepass could also
be applied before DSWP or Speculative DSWP to improve performance.

THREAD

SCC

3

6

4

5

Figure 5. DSWP transformation example.

3 Decoupled Software Pipelining

This section describes the DSWP transformation, from
which the Speculative DSWP algorithm is built. DSWP is
a non-speculative pipelined multithreading transformation
that parallelizes a loop by partitioning the loop body into
stages of a pipeline. Like conventional software pipelining
(SWP), each stage of the decoupled software pipeline oper-
ates on a different iteration of the loop, with earlier stages
operating on later iterations. DSWP differs from conven-
tional SWP in three principal ways. First, DSWP relies
on TLP, rather than ILP, to run the stages of the pipeline
in parallel. Each pipeline stage executes within a thread
and communicates to neighboring stages via communica-
tion queues. Second, since each pipeline stage is run in
a separate thread and has an independent flow of control,
DSWP can parallelize loops with complex control flow.
Third, since inter-thread communication is buffered by a
queue, the pipeline stages are decoupled and insulated from
stalls in other stages. Variability in the execution time of
one stage does not affect surrounding stages provided suf-
ficient data has been buffered in queues for later stages
and sufficient space is available in queues fed by earlier
stages [20].

The DSWP algorithm partitions operations into pipeline
stages and has three main steps (see [16] for a detailed
discussion). Figure 5 illustrates each of these steps on
the loop from Figure 1. First, the program dependence
graph (PDG) is constructed for the loop being parallelized.
The PDG contains all register, memory, and control depen-
dences present in the loop.2 Second, all dependence recur-
rences are found in the PDG by identifying its strongly-
connected components (SCCs). To ensure that there are
no cyclic cross-thread dependences after partitioning, the
SCCs will be the minimum scheduling units. Lastly, each
SCC is allocated to a thread while ensuring that no cyclic
dependences are formed between the threads. SCCs are par-
titioned among the desired number of threads according to
a heuristic that tries to balance the execution time of each
thread [16].

2Register anti- and output-dependences are ignored since each thread
will have an independent set of registers.

THREAD

SCC

356 4

Figure 6. Speculative DSWP example.

4 Speculative DSWP
Despite the success of DSWP, the non-speculative trans-

formation does not leverage the fact that many dependences
are easily predictable or manifest themselves infrequently.
If these dependences were speculatively ignored, large de-
pendence recurrences (SCCs) may be split into smaller ones
with more balanced performance characteristics. As the ex-
ample from Section 2 showed, these smaller recurrences
provide DSWP with more scheduling freedom, leading to
greater applicability, scalability, and performance.

4.1 Execution Model
Before describing the compiler transformation used by

speculative DSWP, this section outlines the basic execu-
tion paradigm and hardware support necessary. SpecDSWP
transforms a loop into a pipeline of threads with each
thread’s loop body consisting of a portion of the origi-
nal loop body. SpecDSWP speculates certain dependences
to ensure no dependence flows between a later thread
and an earlier thread. In the absence of misspeculation,
SpecDSWP achieves decoupled, pipelined multithreaded
execution like DSWP.

To manage misspeculation recovery, threads created
by SpecDSWP conceptually checkpoint architectural state
each time they initiate a loop iteration. When misspecu-
lation is detected, each thread is resteered to its recovery
code, and jointly the threads are responsible for restoring
state to the values checkpointed at the beginning of the
misspeculated iteration and re-executing the iteration non-
speculatively. Our current SpecDSWP implementation uses
software to detect misspeculation and recover register state.
It, however, relies on hardware versioned memory (see Sec-
tion 6.1) to rollback the effects of speculative stores.

4.2 Compiler Transformation Overview
To generate parallel code, a Speculative DSWP compiler

should follow the steps below.
1. Build the PDG for the loop to be parallelized.
2. Select the dependence edges to speculate.
3. Remove the selected edges from the PDG.
4. Apply the DSWP transformation [16] using the PDG

with speculated edges removed.
5. Insert code necessary to detect misspeculation.
6. Insert code to recover from misspeculation.
Recall the loop from Figure 3(a). Applying step 1 yields

the PDG shown in Figure 3(b). In step 2, the compiler

1 node=list->head;
2 produce(node);
3 while(TRUE) {
4 node=node->next;
5 produce(node);
6 }
7

(a) Thread 1

1 node=consume();
2 while(TRUE) {
3 ncost=
4 doit(node);
5 produce(ncost);
6 node=consume();
7 }

(b) Thread 2

1 cost=0;
2 produce(cost);
3 while(TRUE) {
4 ncost=consume();
5 cost += ncost;
6 produce(cost);
7 }

(c) Thread 3

1 node=consume();
2 cost=consume();
3 while(cost<T && node) {
4 cost=consume();
5 node=consume();
6 }
7 FLAG_MISSPECULATION();

(d) Thread 4

Figure 7. The code from Figure 3(a) after SpecDSWP is applied.

would select the loop exit control dependences to be spec-
ulated. Step 3 would produce the PDG in Figure 6. After
steps 4 and 5, the code in Figure 7 would be produced.

The next two sections will provide more details on the
SpecDSWP transformation. Steps 2 and 5 are described in
Section 5, and step 6 is described in Section 6.

5 Selecting Edges to Speculate

Since the scheduling freedom enjoyed by SpecDSWP,
and consequently its potential for speedup, is determined
by the number and performance (i.e., schedule height) of
a loop’s dependence recurrences, SpecDSWP should try to
speculate dependences which break recurrences. However,
since speculating one dependence alone may not break a
recurrence, SpecDSWP ideally would simultaneously con-
sider speculating all sets of dependences. Since expo-
nentially many dependence sets exist, SpecDSWP uses a
heuristic solution. First, SpecDSWP provisionally specu-
lates all dependences which are highly predictable. Next,
the partitioning heuristic allocates instructions to threads
using a PDG with the provisionally speculated edges re-
moved. Once the partitioning is complete, SpecDSWP
identifies the set of provisionally speculated edges that are
cross-thread and that originate from a thread later in the
pipeline to an earlier thread. These dependences are the
only edges that need to be speculated to ensure acyclic com-
munication between the threads. Consequently, only these
edges are speculated. All other provisionally speculated
dependences are not speculated and are added back to the
PDG before invoking the non-speculative DSWP transfor-
mation (step 4 from Section 4.2).

A SpecDSWP implementation can speculate any de-
pendence that has an appropriate misspeculation detection
mechanism and, for value speculation, that also has an ap-
propriate value predictor. Each misspeculation detection
mechanism and value predictor can be implemented either
in software, hardware, or a hybrid of the two. Our cur-
rent implementation relies solely on software for value pre-
diction and misspeculation detection. The remainder of
this section will detail the speculation carried out by our
SpecDSWP compiler.

5.1 Biased Branches
As the example presented earlier (Figures 3, 6, and 7)

showed, speculating biased branches can break dependence
recurrences. Recall from the example that the loop termi-
nating branch (statement 3) was biased provided that the
loop ran for many iterations. Consequently, the compiler
can speculatively break the control dependences between
the branch and other instructions. Figures 3(b) and 6 show
the dependence graph before and after speculation, respec-
tively. This speculation is realized by inserting an uncon-
ditional branch in each thread that was dependent on the
branch. The while(TRUE) statements in Figures 7(a),
7(b), and 7(c) are the unconditional branches. Misspecula-
tion detection is achieved by making the taken (fall through)
path of the speculated branch be code that flags misspecu-
lation assuming the branch was predicted not taken (taken).
In the example, the not-predicted path is the loop exit, so
misspeculation is flagged there (line 7 of Figure 7(d)).

Our SpecDSWP compiler assumes that all branches that
exit the loop being SpecDSWPed are biased and speculates
the loop will not terminate. For other branches, if their bias
exceeds a threshold, the branch is speculated. Finally, inner
loop exit branches are handled specially. If all inner loop
exits are speculatively removed, each time the inner loop
is invoked it will eventually flag misspeculation. Since our
misspeculation recovery model forces rollback to the begin-
ning of a loop iteration for the loop being SpecDSWPed,
this is tantamount to speculating the inner loop will not be
invoked. Consequently, if the compiler does not speculate
that an inner loop will never be invoked, it preserves some
exit from the inner loop.

5.2 Infrequent Basic Block Speculation
While speculating biased branches is successful in the

previous example, consider the code shown in Figure 8.
Assume, in this example, that our branch bias threshold is
95%. This implies that neither operation A nor B will be
speculated. Further, notice that, despite not being the target
of a sufficiently biased branch, operation C only has a 1%
chance of execution. Since its execution is very unlikely,
SpecDSWP will speculatively break the dependences be-
tween operation C and D. Speculating these dependences

A: if f(x)

B: if f(y)

C: p=f(q)

E: q=h(p)

D: p=g(p)

10%

10% 90%90%

(a) CFG

C: p=f(q) D: p=g(p)

E: q=h(p)

B: if f(y)

A: if f(x)

(b) PDG

Figure 8. Infrequent basic block speculation.

breaks the dependence recurrence between operations C, D,
and E. Note, in this example, even if branches A and B were
sufficiently biased, breaking the dependences from A to B
or from B to C would not have broken the dependence re-
currence between C, D, and E.

In general, SpecDSWP will break all dependences orig-
inating from operations in infrequently executed basic
blocks. Just as for biased branches, SpecDSWP uses a
threshold parameter to determine if a basic block is infre-
quently executed. To detect misspeculation, operations in
the speculated basic block are replaced with code that flags
misspeculation.

5.3 Silent Stores

In addition to control speculation, our SpecDSWP com-
piler speculates memory flow dependences originating at
frequently silent stores [13]. To enable this speculation,
the compiler first profiles the application to identify silent
stores. Then, the compiler transforms a silent store into
a hammock that first loads the value at the address given
by the store, compares this value to the value about to be
stored, and only if the two differ perform the store. After
this transformation, the biased branch speculation mecha-
nism described above is applied. The compiler will predict
that the store will never occur, and if it does occur, misspec-
ulation will be flagged.

5.4 False Memory Dependences

Finally, our compiler disregards all loop-carried memory
anti- and output-dependences. Since our recovery mecha-
nism relies on versioned memory (see Section 6.1) to re-
cover from misspeculation, each loop iteration can explic-
itly load from and store to a particular version of the mem-
ory. Consequently, loop-carried false memory dependences
no longer need to be respected. Since the compiler is re-
moving edges from the PDG, this is similar to speculation,
but since these dependences truly do not need to be re-
spected, there is no need to detect misspeculation or initiate
recovery.

6 Misspeculation Recovery
Recall from Section 4.1 that SpecDSWP handles mis-

speculation at the iteration level. When thread j in a
pipeline of T threads detects misspeculation, several actions
must be taken to recover. In this discussion, assume that,
when misspeculation is detected, thread j is executing iter-
ation nj . These are the actions that need to be performed:

1. The first step in recovery is waiting for all threads to
complete iteration nj − 1.

2. Second, speculative state must be discarded and non-
speculative state must be restored. This includes re-
verting the effects of speculative stores to memory,
speculative writes to registers, as well as specula-
tive produces to cross-thread communication queues.
Since values produced to communication queues in a
particular iteration are consumed in the same iteration,
it is safe to flush the communication queues (i.e., af-
ter all threads have reached iteration nj , there are no
non-speculative values in the queues).

3. Third, the misspeculated iteration must be re-executed.
Since the speculative code is deterministic, re-
executing it will again result in misspeculation. Conse-
quently, a non-speculative version of the iteration must
be executed.

4. Finally, speculative execution can recommence from
iteration nj + 1.

To orchestrate this recovery process, SpecDSWP relies
on an additional commit thread, which receives state check-
points and status messages from each of the worker threads.
Pseudo-code for a worker thread and the commit thread are
shown in Figure 9.

To support rolling back of speculative memory updates,
the worker threads and the commit thread rely on versioned
memory. Consequently, during normal speculative execu-
tion, the first action taken in each loop iteration is to advance
to the next sequential memory version. Details regarding
how versioned memory works are described in Section 6.1.

After checkpointing memory state, each worker thread
collects the set of live registers that need to be checkpointed
and sends them to the commit thread. The commit thread re-
ceives these registers and locally buffers them. Section 6.2
details which registers need to be checkpointed.

Next, each worker thread executes the portion of the
original loop iteration allocated to it. Execution of the loop
iteration generates a status: the loop iteration completed
normally, misspeculation was detected, or the loop iteration
exited the loop. The worker thread sends this status to the
commit thread, and then, based on the status, either contin-
ues speculative execution, waits to be redirected to recovery
code, or exits the loop normally.

The commit thread collects the status messages sent by
each thread and takes appropriate action. If all worker
threads successfully completed an iteration, then the cur-

1 while (true) {
2 move_to_next_memory_version();
3 produce_register_checkpoint(commit_thread);
4 status = execute_loop_iteration();
5 produce(commit_thread, status);
6 if (status == EXIT)
7 break;
8 else if (status == MISSPEC)
9 wait_for_resteer();

10 else if (status == OK)
11 continue;
12
13 recovery:
14 produce_resteer_ack(commit_thread);
15 flush_queues();
16 regs = consume_register_checkpoint(commit_thread);
17 restore_registers(regs);
18
19 if (MULTI_THREAD_RECOVERY)
20 execute_synchronized_loop_iteration();
21 }

(a) Worker Thread

1 do {
2 move_to_next_memory_version();
3 regs = consume_register_checkpoints(threads);
4
5 status = poll_worker_statuses(threads);
6
7 if (status == MISSPEC) {
8 resteer_threads(threads);
9 consume_resteer_acks(threads);

10 rollback_memory();
11
12 if (SINGLE_THREAD_RECOVERY)
13 regs = execute_full_loop_iteration(regs);
14
15 produce_register_checkpoints(threads, regs);
16 } else if (status == OK || status == EXIT)
17 commit_memory();
18 } while (status != EXIT);
19
20
21

(b) Commit Thread

Figure 9. Pseudo-Code for (a) Worker and (b) Commit threads

rent memory version is committed, and the register check-
point is discarded.3 If any thread detected misspeculation,
the commit thread initiates recovery.

By collecting a status message from all worker threads
each iteration, it is guaranteed that no worker thread is in
an earlier iteration than the commit thread. Consequently,
when recovery is initiated, step 1 is already complete. Re-
covery thus begins by asynchronously resteering all worker
threads to thread-local recovery code. Once each thread
acknowledges that it has been resteered, step 2 begins.
The resteer acknowledgment prevents worker threads from
speculatively modifying memory or producing values once
memory state has been recovered or queues flushed. To re-
cover state, the commit thread informs the versioned mem-
ory to discard all memory writes to the current or later ver-
sions. Additionally, the worker threads flush all queues used
by the thread.

Lastly, the misspeculated iteration is re-executed. Two
possibilities exist for this re-execution: the worker threads
can run a non-speculative multithreaded version of the loop
body (this version will have cyclic cross-thread depen-
dences), or one thread (usually the commit thread) can run
the original single threaded loop body. In the first case, the
register-checkpoints collected at the beginning of the iter-
ation are sent back to each thread, and the iteration is re-
executed. In the second case, the commit thread will use
the register checkpoint to execute the single-threaded loop
body. The register values after the iteration has been re-
executed will then be distributed back to the worker threads.
The tradeoffs between single-threaded and multi-threaded
recovery are discussed in Section 6.3.

3Since the register checkpoint is saved in virtual registers in the commit
thread, no explicit action is required to discard the register checkpoint.

Note that the commit thread incurs overhead that scales
with the number of worker threads. While this code is
very light weight, there is a point at which using additional
worker threads will result in worse performance, since one
iteration in the commit thread takes longer than any worker
thread. However, various solutions to this problem exist.
First the commit thread code is parallelizable. Additional
threads can be used to reduce the latency of committing
a loop iteration. Second, the problem can be mitigated
by unrolling the original loop. This effectively increases
the amount of time the commit thread has to complete its
bookkeeping. This can potentially increase the misspecula-
tion penalty, but provided misspeculation is infrequent, the
tradeoff should favor additional worker threads.

6.1 Versioned Memory

Speculative DSWP leverages versioned memory to al-
low for speculative writes to memory. Like transactional
memories or memory subsystems used in TLS architec-
tures [6, 7, 19], SpecDSWP’s versioned memory buffers
speculative stores. One version in the versioned mem-
ory roughly corresponds to a transaction in a transactional
memory. If a memory version is committed, then the
stores buffered in that version are allowed to update non-
speculative architectural state. Otherwise, if the version is
rolled back, the buffered stores are discarded.

SpecDSWP’s versioned memory differs from transac-
tional memories in three principal ways. First, the versioned
memory does not provide any mechanism for detecting con-
flicting memory accesses across two versions. Any cross-
version dependences that need to be enforced must explic-
itly be synchronized in the software. Second, many threads
(and cores) can simultaneously read from and update the
same memory version. Third, reads to addresses not ex-

plicitly written in a particular version are obtained from the
latest version where an explicit write has taken place even
if that version has not yet been committed.

The architectural semantics of the versioned memory are
as follows. Note that this is a description of the semantics,
not an implementation, of versioned memory. Each thread
maintains a current version number. All threads in a process
share a committed version number. Memory is addressed
with (version number, address) pairs. Memory cells (i.e., a
particular address in a given version) that have never been
written are initialized with a sentinel value, ε. Stores from a
particular thread update the specified address in the current
version of the thread. Loads from a thread read from the
specified address in the current version of the thread. If ε is
read, the load will read from previous versions until a non-ε
value is found. If, in the committed version number, ε is
found, then the result of the load is undefined. Each thread
can increment its current version number, update the pro-
cess’s committed version number, and discard all versions
past the committed version number. The rollback operation
resets all addresses in all versions past the committed ver-
sion to ε and asynchronously updates all threads’ current
version number to the committed version number.

Notice, in addition to buffering speculative stores,
the versioned memory semantics allow anti- (WAR) and
output- (WAW) memory dependences to be safely ignored
provided the source of the dependence executes in a differ-
ent memory version than the destination of the dependence.

Implementation details of versioned memory are beyond
the scope of this paper. However, observe that the relation
to transactional memories suggests that using caches with
augmented tags and coherence protocols is a viable imple-
mentation strategy. Garzarán et al. explore a vast design
space [6] and many of the designs they discuss could be
modified to implement versioned memory.

6.2 Saving Register State

Since recovery occurs at iteration boundaries, each
thread need only checkpoint those registers which are live
into its loop header, since these are the only registers nec-
essary to run the loop and code following the loop. (Callee-
saved registers must be handled specially, but due to space
limitations the details have been omitted.) In addition to
high-level compiler temporaries (virtual registers), it is nec-
essary to checkpoint machine-specific registers which may
be live into the loop header such as the stack pointer, global
pointer, or register window position.

The set of registers to be checkpointed can be optimized
by recognizing that registers that are live into the loop en-
try, but that are not modified in the loop (loop invariants
in the speculative code), need not be checkpointed each it-
eration, since their values are constant for the loop execu-
tion. Instead, these registers can be checkpointed once per

Core Functional Units - 6-issue, 6 ALU, 4 memory, 2 FP, 3 branch
L1I Cache - 1 cycle, 16 KB, 4-way, 64B lines
L1D Cache - 1 cycle, 16 KB, 4-way, 64B lines, write-through
L2 Cache - 5,7,9 cycles, 256KB, 8-way, 128B lines, writeback
Maximum Outstanding Loads - 16

Shared L3 Cache > 12 cycles, 1.5 MB, 12-way, 128B lines, writeback
Main Memory 141 cycles
Coherence Snoop-based, write-invalidate protocol
L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-transaction bus with

round robin arbitration
SyncArray 256 32-entry queues, 1-cycle inter-core latency

Table 1. Machine details
loop invocation. While these loop invariant registers can
be checkpointed once per invocation, upon misspeculation,
they must be recovered since, due to misspeculation, unex-
pected code may have executed and modified their values.

6.3 Iteration Re-execution
After restoring state, the commit thread must ensure that

the misspeculated iteration executes nonspeculatively. We
explored two options for how to perform this iteration:
multi-threaded and single-threaded. With multi-threaded
recovery, each thread runs the same portion of the origi-
nal loop that it does during speculative execution except the
speculated dependences are synchronized with cross-thread
communication. This communication creates cyclic depen-
dences between the threads, thus putting communication la-
tency on the critical path for the recovery iteration. How-
ever, the sequential ordering of operations from the single-
threaded loop guarantees that the cyclic communication pat-
tern does not result in deadlock.

On the other hand, single-threaded recovery executes the
original single-threaded loop body in the commit thread.
For the recovery iteration, any potential benefit of thread
parallelism is lost. However, the cost of communication on
the critical path often outweighs the benefits of parallelism,
potentially making this faster than multithreaded recov-
ery. Single-threaded recovery also allows worker threads
to overlap some of their recovery with the execution of
the non-speculative iteration. As will be discussed in Sec-
tion 7.4, our experiments have shown that the time taken to
flush queues and restore certain machine specific registers
can sometimes dominate the recovery time. Unfortunately,
single-threaded recovery suffers from cold microarchitec-
tural structures. In particular, the core running the com-
mit thread does not have any application data loaded into
its caches. These tradeoffs make it unclear which recovery
style is superior.

7 Evaluation
This section evaluates our initial implementation of

Speculative DSWP targeting a quad-core chip multipro-
cessor. Speculative DSWP was implemented in the VE-
LOCITY backend optimizing compiler [24]. VELOCITY
contains an aggressive classical optimizer, which includes
global versions of partial redundancy elimination, dead and

of Average # of # of Max % of
% of Loop Iterations SCCs Comm. Saved # of Speculation Iters. with

Benchmark Function Runtime Ops. per Invocation Non-Spec. Spec. Ops. Regs Versions Types Misspec.
164.gzip deflate 53% 586 24444826.0 9 336 677 3 - CF 12.4%
256.bzip2 fullGtU 38% 99 123.4 2 51 17 25 32 CF 0.8%
181.mcf primal net simplex 75% 254 17428.8 3 78 112 10 22 CF, SS 0.2%
052.alvinn main 98% 181 30.0 57 63 82 9 2 None 0.0%
mpeg2enc dist1 56% 136 6.3 1 101 4 10 20 CF 15.9%

CF = Control Flow, SS = Silent Store

Table 2. Benchmark Details

unreachable code elimination, copy and constant propa-
gation, reverse copy propagation, algebraic simplification,
constant folding, strength reduction, and redundant load and
store elimination. VELOCITY also performs an aggressive
inlining, superblock formation, superblock-based schedul-
ing, and register allocation. Speculative DSWP was applied
to benchmarks from the SPEC-CPU2000, SPEC-CPU92,
and Mediabench suites. We report results for all benchmark
loops in which the non-speculative DSWP transformation
found no suitable partition, but SpecDSWP found a suit-
able partition, and the loop accounted for more than a third
of the program runtime.

To evaluate the performance of SpecDSWP, we used a
validated cycle-accurate Itanium 2 processor performance
model (IPC accurate to within 6% of real hardware for
benchmarks measured [17]) to build a multi-core model
comprising four Itanium 2 cores connected by a synchro-
nization array [20]. The models were built using the Lib-
erty Simulation Environment [27]. Table 1 provides details
about the simulation model.

The synchronization array (SA) in the model works as a
set of low-latency queues. The Itanium ISA was extended
with produce and consume instructions for inter-thread
communication. As long as the SA queue is not empty,
a consume and its dependent instructions can execute in
back-to-back cycles. The ISA was additionally augmented
with a resteer instruction that interrupts the execution
of the specified core and restarts its execution at the given
address. Finally, our model includes a versioned mem-
ory which supports 32 simultaneous outstanding versions.
Speculative state is buffered both in the private L1 and L2
caches and in the shared L3 cache. In our experiments,
speculative state never exceeded the size of the L3 cache.

The detail of the validated Itanium 2 model prevented
whole program simulation. Instead, detailed simulation was
restricted to the loops in question in each benchmark. The
remaining sections were functionally simulated keeping the
caches and branch predictors warm.

7.1 Experimental Results
Table 2 presents compilation and profile statistics for the

chosen loops. These loops account for between 38% and
98% of the total benchmark execution time, and the loops
contain between 99 and 586 static operations (excluding op-

0

50

100

150

P
er
ce
n
t
S
p
ee
d
u
p

164.gzip 256.bzip2 181.mcf 052.alvinn mpeg2enc GeoMean

All Iters. (Loop)

Misspec-free Iters. (Loop)

All Iters. (Bench)

Misspec-free Iters. (Bench)

Figure 10. Speedup vs. single threaded code.

erations in called procedures). Table 2 also presents the
number of SCCs in the PDG for each loop both before and
after speculating dependences. Notice that for all the bench-
marks (except 052.alvinn), speculation dramatically in-
creases the number of SCCs in the PDG. This increase in
the number of SCCs directly translates into scheduling free-
dom for the partitioning heuristic.

All loops were compiled to generate 3 worker threads
and a commit thread, for a total of 4 threads. Figure 10
shows the speedup over single-threaded execution for these
parallelizations. For each loop, the loop speedup and the
benchmark speedup (assuming only the given loop is par-
allelized) are shown. Speedup is further broken down
into speedup obtained ignoring iterations that misspecu-
lated (i.e., assuming these iterations were not executed)
and speedup for all iterations. All benchmarks, except
164.gzip, exhibit considerable loop speedup ranging
from 1.24x to 2.24x. The average speedup over all paral-
lelized loops was 1.40x. The rest of this section examines
the results of several of benchmarks in more detail to high-
light interesting features of SpecDSWP.

7.2 A Closer Look: Communication Cost
The slowdown seen in 164.gzip can be attributed to

a poor partition, large amount of communication, and the
high rate of misspeculation. While SpecDSWP (and DSWP
in general) prevents communication latency from appear-
ing on the critical path, the effects of communication in-
structions within a core are significant. In 164.gzip,
the schedule height of one iteration of the slowest thread
increased (compared to the schedule height of a single-
threaded loop iteration) due to resource contention between
original loop instructions and communication instructions.

This increase was not offset by the reduction in schedule
height due to parallelization. Improvements in the parti-
tioning heuristic and additional optimizations may be able
to improve the performance of SpecDSWP on this bench-
mark.

7.3 A Closer Look: Versioned Memory
While all parallelized loops rely on versioned memory

to rollback speculative stores, the loops from 181.mcf
and 052.alvinn benefit from the effective privatization
provided by versioned memory. In 181.mcf, execution
of the function refresh potential could be over-
lapped with other code within the primal net simplex
loop by speculating that refresh potential would
not change a node’s potential (using silent store spec-
ulation). The versioned memory allows subsequent it-
erations of the loop to modify the tree data structure
used by refresh potential without interfering with
refresh potential’s computation. Due to the com-
plexity of the left-child, right-sibling tree data structure, it
is unlikely that compiler privatization could achieve the ef-
fects of the versioned memory.

In 052.alvinn, versioned memory privatized several
arrays. The parallelized loop contains several inner loops.
Each inner loop scans an input array and produces an output
array that feeds the subsequent inner loop. While the loop is
not DOALL (dependences exist between invocations of the
inner loops), each inner loop can be put in its own thread.
Each stage in the SpecDSWP pipeline, therefore, is one of
the inner loops. However, privatization is needed to allow
later invocations of an early inner loop to execute before
earlier invocations of a later inner loop have finished. Note
that 052.alvinn did not require any true speculation.
False dependences broken by the versioned memory were
sufficient to achieve parallelism. Consequently, in addition
to its role in SpecDSWP, versioned memory also has poten-
tial in improving parallelism for non-speculative DSWP.

7.4 A Closer Look: Misspeculation
As Figure 10 shows, of the loops that were parallelized,

only mpeg2enc observed a significant performance loss
due to misspeculation. This performance loss is directly at-
tributable to the delay in detecting misspeculation, the sig-
nificant misspeculation rate, and the cost of recovery. Only
loop exits were speculated to achieve the parallelization in
mpeg2enc. However, as Table 2 shows, mpeg2enc has
only a few iterations per invocation. This translates to sig-
nificant misspeculation due to loop exit speculation.

Despite the significant misspeculation, the paralleliza-
tion benefit outweighs the recovery cost. However, opti-
mization may be able to mitigate the deleterious effects of
misspeculation. As SpecDSWP is currently implemented,
upon misspeculation, state is rolled back to the state at the
beginning of the iteration, and the iteration is re-executed

non-speculatively. However, in the case of a loop exit mis-
speculation, observe that no values have been incorrectly
computed, only additional work has been done. Conse-
quently, provided no live-out values have been overwritten,
it is only necessary to squash the speculative work; the iter-
ation does not have to be rolled back and re-executed. With
single-threaded recovery, the savings can be significant. For
example, in mpeg2enc, on average a single-threaded loop
iteration takes 120 cycles. The parallelized loop iteration,
conversely, takes about 53 cycles. After one misspecula-
tion, due to a cold branch predictor, the recovery iteration
took 179 cycles to execute. Reclaiming these 179 cycles
would significantly close the performance gap between the
iterations without misspeculation and all the iterations. We
are currently working to extend our SpecDSWP implemen-
tation to recognize these situations and to avoid unnecessar-
ily rolling back state and re-executing the last loop iteration.

Given the deleterious effects of cold architectural state
on recovery code and the significant parallelism present in
this loop, it is natural to ask if multithreaded recovery would
fare better. Our initial experiments with multithreaded re-
covery in mpeg2enc showed that all the parallelization
speedup is lost due to recovery overhead. In particular, on
Itanium, it was necessary to recover the state of the register
stack engine (RSE) after misspeculation. Manipulating cer-
tain RSE control registers (e.g., CFM), requires a function
call. The overhead of this recovery code was significant in
comparison to the execution time of one loop iteration, sig-
nificantly slowing recovery. By moving to single-threaded
recovery, the compiler was able to overlap this recovery in
the worker threads with the execution of the recovery iter-
ation in the commit thread. In our experience this balance
yielded better performing recovery code.

8 Summary
This paper introduced Speculative DSWP, a speculative

extension to the pipelined multithreading technique DSWP.
Contrary to existing thread-level speculation techniques, the
parallelism extracted is neither DOALL nor DOACROSS.
Instead, by combining speculation and pipeline parallelism,
SpecDSWP is able to offer significant speedup on a variety
of applications even in the presence of long inter-core com-
munication latency. Our proof-of-concept implementation
extracted an average of 40% loop speedup on the applica-
tions explored with support for only control and silent store
speculation. As the implementation is refined and support
for more types of speculation, such as memory alias or value
speculation, are added, we expect to be able to target more
loops and offer still more performance.

Acknowledgments
We thank the entire Liberty Research Group for their

support and feedback during this work. Additionally, we

thank the anonymous reviewers for their insightful com-
ments. The authors acknowledge the support of the GSRC
Focus Center, one of five research centers funded under
the Focus Center Research Program, a Semiconductor Re-
search Corporation program. This work has been supported
by Intel Corporation. Opinions, findings, conclusions, and
recommendations expressed throughout this work are not
necessarily the views of our sponsors.

References
[1] H. Akkary and M. A. Driscoll. A dynamic multithreading

processor. In Proceedings of the 31st Annual ACM/IEEE
International Symposium on Microarchitecture, pages 226–
236, Los Alamitos, CA, USA, 1998. IEEE Computer Society
Press.

[2] A. Bhowmik and M. Franklin. A general compiler framework
for speculative multithreading. In Proceedings of the 14th
ACM Symposium on Parallel Algorithms and Architectures,
pages 99–108, 2002.

[3] J. C. Corbett. Evaluating deadlock detection methods for con-
current software. IEEE Transactions on Software Engineer-
ing, 22(3):161–180, 1996.

[4] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection
tool for concurrent Java programs. Software: Practice and
Experience, 29(7):577–603, 1999.

[5] P. A. Emrath and D. A. Padua. Automatic detection of non-
determinacy in parallel programs. In Proceedings of the
1988 ACM SIGPLAN and SIGOPS Workshop on Parallel and
Distributed Debugging, pages 89–99, New York, NY, USA,
1988. ACM Press.

[6] M. J. Garzarán, M. Prvulovic, J. M. Llaberı́a, V. Viñals,
L. Rauchwerger, and J. Torrellas. Tradeoffs in buffering spec-
ulative memory state for thread-level speculation in multipro-
cessors. ACM Transactions on Architecture Code Optimiza-
tion, 2(3):247–279, 2005.

[7] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen,
C. Kozyrakis, and K. Olukotun. Transactional coherence
and consistency: Simplifying parallel hardware and software.
IEEE Micro, 24(6), Nov-Dec 2004.

[8] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen,
and K. Olukotun. The Stanford Hydra CMP. IEEE Micro,
20(2):71–84, 2000.

[9] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-
cut program decomposition for thread-level speculation. In
Proceedings of the ACM SIGPLAN 2004 Conference on Pro-
gramming Language Design and Implementation, pages 59–
70, 2004.

[10] K. Kennedy and J. R. Allen. Optimizing compilers for mod-
ern architectures: a dependence-based approach. Morgan
Kaufmann Publishers Inc., 2002.

[11] D. Kim and D. Yeung. A study of source-level compiler
algorithms for automatic construction of pre-execution code.
ACM Trans. Comput. Syst., 22(3):326–379, 2004.

[12] V. Krishnan and J. Torrellas. A chip-multiprocessor archi-
tecture with speculative multithreading. IEEE Transactions
on Computers, 48(9):866–880, 1999.

[13] K. M. Lepak and M. H. Lipasti. Silent stores for free. In Pro-
ceedings of the 33rd Annual ACM/IEEE International Sym-
posium on Microarchitecture, pages 22–31, New York, NY,
USA, 2000. ACM Press.

[14] G. R. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and M. Kraeva.
Deadlock detection in MPI programs. Concurrency and
Computation: Practice and Experience, 14(11):911–932,
2002.

[15] P. Marcuello and A. González. Clustered speculative multi-
threaded processors. In Proceedings of the 13th International
Conference on Supercomputing, pages 365–372, New York,
NY, USA, 1999. ACM Press.

[16] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic
thread extraction with decoupled software pipelining. In Pro-
ceedings of the 38th IEEE/ACM International Symposium on
Microarchitecture, November 2005.

[17] D. A. Penry, M. Vachharajani, and D. I. August. Rapid de-
velopment of a flexible validated processor model. In Pro-
ceedings of the 2005 Workshop on Modeling, Benchmarking,
and Simulation, June 2005.

[18] M. K. Prabhu and K. Olukotun. Using thread-level specula-
tion to simplify manual parallelization. In Proceedings of the
Ninth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 1–12, New York, NY, USA,
2003. ACM Press.

[19] R. Rajwar and J. R. Goodman. Transactional execution: To-
ward reliable, high-performance multithreading. IEEE Mi-
cro, 23(6):117–125, Nov-Dec 2003.

[20] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. Au-
gust. Decoupled software pipelining with the synchronization
array. In Proceedings of the 13th International Conference
on Parallel Architectures and Compilation Techniques, pages
177–188, September 2004.

[21] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Systems,
15(4):391–411, 1997.

[22] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar pro-
cessors. In Proceedings of the 22th International Symposium
on Computer Architecture, June 1995.

[23] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry.
The STAMPede approach to thread-level speculation. ACM
Transactions on Computer Systems, 23(3):253–300, 2005.

[24] S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni, and D. I.
August. A framework for unrestricted whole-program opti-
mization. In ACM SIGPLAN 2006 Conference on Program-
ming Language Design and Implementation, pages 61–71,
June 2006.

[25] R. Triolet, F. Irigoin, and P. Feautrier. Direct paralleliza-
tion of call statements. In Proceedings of the 1986 SIGPLAN
Symposium on Compiler Construction, pages 176–185, New
York, NY, USA, 1986. ACM Press.

[26] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yew. The
superthreaded processor architecture. IEEE Transactions on
Computers, 48(9):881–902, 1999.

[27] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome,
and D. I. August. Microarchitectural exploration with Lib-
erty. In Proceedings of the 35th International Symposium on
Microarchitecture, pages 271–282, November 2002.

[28] C. Zilles and G. Sohi. Master/slave speculative paralleliza-
tion. In Proceedings of the 35th annual International Sympo-
sium on Microarchitecture, pages 85–96, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

