FastForward for
Efticient Pipeline Farall

Parallelizing Sequential Tasks:

Need to efficiently support the parallelization of tasks
with partially or totally ordered data. Pipeline-parallel
organizations avoid contention and stalls caused by
Intra-thread synchronization other organizations.

Execution I
Stages for
Single Frame

— /3 T/3 —] — /3

Frame 1 ‘ IP (P1) APP (P2) OP (P3)

Frame 2 | IP (P1) APP (P2)
|
Frame 3 ,

|
|
Frame 4 :"' <672ns —*

|

Frame 5 |

IP OP

T/3 —]

OP (P3)
IP (P1) APP (P2)

OP (P3)
IP (P1) APP (P2)
IP (P1)

Pipelined
Execution

P1 |) P2

Time

O)
=
)
P
O
O
O
—
al
'
-
O
=
O
Z
a—
O
)

Processors

|_>

Proof Sketch

The references [1] prove that "in the program order of
the consumer, the consumer dequeues values in the
same order that they were enqueued In the
producer’s program order,” for strong to weakly
ordered consistency models, showing that
FastForward works even on relaxed memory models.

[1] J. Giacomoni, T. Moseley, and M. Vachharajani. FastForward for
efficient pipeline parallelism. Technical Report CU-CS-1028-07,
Univerity of Colorado at Boulder, 2007.

computer SCIENCE

AT BOULDER

7 &13

Hardware Performance Issues

Cache Thrashing (Communication Channel)

r S fetch |write: 1 etc rite: etch |write: 3

Careful resource scheduling may
be required for performance.

02|03 10 (| 11(|12 (|13

Crossbar

ar |
Ik IC

Memory

IC C

21 30 23

Weak Memory Models
o 1&:2i;; (Nl) > wm o) g:jygifi (N+1) \\\\\; O
€:3s\\\ﬁ;€:3 >{::V""{::f'

Weak memory models can exhibit unexpected behavior;
In this example, a write passing a write may result in a read of a stale data value.

Performance Comparison

200 200

[] Ons

R 50 ns 5
B 100ns 2
B 200 ns)
12 400 ns -
=) 800ns &

[] Ons

R 50 ns 5
B 100ns 2
B 200 ns)
12 400 ns -
=) 800ns &

[] Ons

R 50 ns
B 100 ns
B 200 ns
12 400 ns
| 800 ns

nds per Operation

Nanoseco

FastForward

[] Ons

Y 50 ns 5
g 100ns 5
B 200ns @
12 400 ns -
- f JEEE 800 ns 2

[] Ons

Y 50 ns 5
g 100ns 5
B 200ns @
172 400 ns -
_|ET 800 ns &

[Ons

Y 50 ns
B 100 ns
B 200 ns
\ I 129 400 ns
INEITT (NE B 800 ns

R R R R R R R R R R R N R R R

STON: Z8M0N: Z8M0N: 28NN 78 N5 ZBMIN: ZEMIN: ZBIIN: Z8MAN: 28 SION: Z8M0N: Z8M0N: 28NN 7
64 128 192 256 2048 64 128 192 256 2048 64 128 192 256 2048
Queue Size Queue Size Queue Size

2 Threads 2 Threads 3 Threads
On-die Cross-die Cross-die

Dual-processor Dual-core 2.0 GHz AMD Opteron

T'Y OF COLORADO AT BOULDER

ELECTRICAL & COMPUTER
‘"l ENGINEERING HN=:

John Giacomoni, Tipp Mosel

The FastForward Solution

: enqueue lamport(...) {
1f (NEXT (head) == tail) {
// Handle full queue. :
} : }
buf[head] = data; : buf[head] =
head = NEXT(head); head =

} 2}

: enqueue fastforward(...) {
1f(NULL != buf[head]) {
// Handle full queue.

data;
NEXT (head);

9: dequeue lamport(...) { 9:
10: 10:
11: 1f (head == tail) { 11:
12 // Handle empty queue. 12
13: } 13 }
14 : data buf[tail] 14 :
15: tail NEXT(tail) 15:
16: } 16: }

Decoupling at the cache coherence layer can
eliminate cache thrashing, hide non-uniform memory
access Issues, and support weak memory models.

dequeue fastforward(...
data = buf[tail];
1f (NULL == data) {
// Handle empty queue.

tail = NEXT(tail)

Conclusions

1) Decoupling communicating threads at the cache
layer on ccNUMA machines may yield significant
performance improvements.

2) FastForward provides an efficient point-to-point
communication primitive ideally suited to pipeline-
parallel applications.

a) Consistent performance.

b) Software only solution.

c) Correct under strong to weakly ordered
consistency models.

d) May provide performance improvements to
other streaming parallel organizations.

® .. .ﬁ-
R+ '

UNIVERSITY OF COLORADO AT BOULDE]

