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Abstract

Until recently, a steadily rising clock rate and other
uniprocessor microarchitectural improvements could be
relied upon to consistently deliver increasing perfor-
mance for a wide range of applications. Current difficul-
ties in maintaining this trend have lead microprocessor
companies to add value by incorporating multiple pro-
cessors on a chip. Unfortunately, since decades of com-
piler research have not succeeded in delivering automatic
threading for prevalent code properties, this approach
demonstrates no significant improvement for general-
purpose codes. To find useful work for chip multipro-
cessors, we propose an automatic approach to thread ex-
traction, called Decoupled Software Pipelining (DSWP).
DSWP exploits the fine-grained pipeline parallelism lurk-
ing in most applications to extract long-running, concur-
rently executing threads. Use of the non-speculative and
truly decoupled threads produced by DSWP can increase
execution efficiency and provide significant latency toler-
ance, mitigating design complexity by reducing inter-core
communication and per-core resource requirements. Us-
ing our initial fully automatic compiler implementation
and a validated processor model, we prove the concept by
demonstrating significant speedups (19.4% on average,
maximum 48%) for dual-core chip multiprocessor models
running a variety of important benchmark loops.

1 Introduction

For years, a steadily growing clock speed and other
uniprocessor microarchitectural improvements could be
relied upon to consistently deliver increased performance
for a wide range of applications. Recently, however,
this approach has faltered. Meanwhile, the exponential
growth in transistor count remains strong, tempting ma-
jor microprocessor companies to add value by producing
chips that incorporate multiple processors. Unfortunately,
while chip multiprocessors (CMPs) increase throughput
for multiprogrammed and multi-threaded codes, many
important applications are single threaded and thus do not
benefit.

Despite the routine use of powerful instruction-level par-
allelism (ILP) compilation techniques on a wide vari-
ety of unmodified applications, compiler writers have
been unable to repeat such success for thread-level par-
allelism (TLP) despite the pressing need. While success
of this type has not been achieved, progress has been
made. Techniques dedicated to parallelizing scientific
and numerical applications are used routinely in such do-
mains with good results [7]. Such techniques perform
well on counted loops manipulating very regular, analyz-
able structures, consisting mostly of predictable array ac-
cesses. In many cases, sets of completely independent
(DOALL) loop iterations occur naturally or are easily ex-
posed by loop traversal transformations. Unfortunately,
the prevalence of control flow, recursive data structures,
and pointer accesses in ordinary programs renders these
techniques unsuitable.

Since automatic thread extraction has been hard for com-
piler writers to achieve, computer architects have turned
to speculative [6, 17, 18, 20] and multiple-pass [8, 2]
techniques to make use of additional hardware contexts.
These techniques are promising, but generally require sig-
nificant hardware support to handle recovery in the case of
mis-speculation or to affect the warming of microarchitec-
tural structures. These approaches are also limited by the
increasing mis-speculation rates, penalties, and pollution
encountered as they become more aggressive. Even the
best of these techniques do not replace the need for au-
tomatic, non-speculative thread extraction. Instead, they
play an important, largely orthogonal role.

In this paper, we propose an effective,fully automaticap-
proach tonon-speculativethread extraction, calledDe-
coupled Software Pipelining(DSWP). DSWP exploits the
fine-grainedpipeline parallelismlurking in most appli-
cations to extract long-running, concurrently executing
threads. Since extracting fine-grained pipelined paral-
lelism requires knowledge of microarchitectural proper-
ties, DSWP frees the programmer from difficult and even
counter-productive involvement at this level. DSWP also
complements coarser-grained manual threading, specula-



tive threading, and prefetch threading techniques. Operat-
ing at the instruction level also allows DSWP to leverage
decades of ILP compilation work and allows it to be easily
added to existing compiler back-ends.

Use of the non-speculative and truly decoupled threads
produced by DSWP can increase execution efficiency and
provide significant latency tolerance, mitigating design
complexity by reducing inter-core communication and
per-core resource requirements. Using an initial fully au-
tomatic compiler implementation and a validated proces-
sor model, DSWP demonstrates significant gains for se-
quential codes running on two cores, suggesting a promis-
ing future for the technique.

Section 2 describes DSWP. Section 3 then details an im-
plementation of DSWP on an aggressive ILP compiler.
Section 4 presents an evaluation of DSWP, and Section 5
relates it to prior work. Finally, the paper ends with a for-
ward looking conclusion.

2 Decoupled Software Pipelining

One way to understand why decoupled software pipelin-
ing (DSWP) is effective is to start with an examination
of the salient properties of DOACROSS parallelism [7].
DOACROSS parallelism is interesting for non-scientific
codes because loops in these codes often have depen-
dences among the iterations of the loop. DOACROSS
parallelism is characterized by the concurrent execution
of parts of each loop iteration across multiple cores. De-
pendences are respected by forwarding values from core
to core by some means, often through memory with syn-
chronization.

Consider the code of Figure 1. In the DOACROSS case,
each iteration is assigned alternately to each core on a
dual-core machine. The pointer chasing load dependence
is forwarded from core to core on each iteration. While
DOACROSS overlaps the execution of the body of the
loop in the current iteration with the next field traversal
load in the next iteration, communication costs may more
than completely negate such gains. This is a consequence
of routing the loop critical path (the pointer chasing load
recurring dependence) between the cores on each itera-
tion, extending the critical path, and hence the completion
of the loop body, by at least the average communication
latency multiplied by the number of iterations.

The simple, key insight of DSWP is that the loop criti-
cal path dependence need not be routed from core to core
to achieve pipelined parallelism. This alternative is illus-
trated in the right side of Figure 1. In this case, rather than
placing each iteration alternately on each core, DSWP
breaks the loop iteration up, placing the first part, the
pointer chasing load, on Core 0 and placing the second
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Figure 1: A simple linked list traversal loop executed as
DOACROSS and DSWP. For simplicity, the pointer chas-
ing load is labeled “LD” and the body of the loop “X”.

part, the body of the loop, on Core 1. As a consequence
of this, the loop critical path dependence remains on Core
0 and thus is not subject to delay by communication la-
tency.

Unlike techniques exploiting DOACROSS parallelism
and other prior non-speculative partitioning tech-
niques [11, 14], DSWP demands that the flow of data
among cores is acyclic. This implies that the instruc-
tions of each recurrence (there may be several) must
be scheduled on the same core as all other instructions
of that same recurrence. This acyclic flow creates an
opportunity for decoupling when inter-core queues are
used to buffer inter-core values. Recurrences are often
assigned to different cores in practice, since by definition
the dependences among recurrences are acyclic. In Sec-
tion 4, we will show that, with relatively small inter-core
queues, utilizing this insight provides decoupling of up
to thousands of instructions between cores. As such, the
benefit of DSWP is not just in the better utilization of
parallel resources (cores), but also in creating very high
tolerance to variable latency stalls, keeping non-stalled
cores executing useful work.

Clearly, the DSWP requirement that all instructions in a
recurrence remain within a thread may limit the loops on
which it is applicable. For example, one could construct
a loop consisting of only a single cross-iteration depen-
dence chain. In such a case, DSWP would not be ap-
plicable without help, but neither would any other non-
speculative technique. While DSWP does impose a re-
striction regarding recurrences, it does not have other lim-
itations associated with DOACROSS techniques. The ex-
traction of DOACROSS parallelization is often more re-
stricted than implied in the prior discussion. In many
cases, such transformations require loops to be counted
loops, to operate solely on arrays, to have regular memory
access patterns, and to have simple (or even no) control
flow [7]. Observe in subsequent discussions that DSWP
as presented in this paper does not have any of these re-
strictions.
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Figure 2: (a) Original code; (b) the corresponding dependence graph; (c) and itsDAGSCC . The assembly code after
DSWP, partitioned into (d) producer thread and (e) consumer thread.

2.1 Assumed Architectural Model

The DSWP architectural model used here assumes a sim-
ple message passing mechanism that can communicate
one word of data per message using two special instruc-
tions, produce and consume , to send and to receive
values respectively. For clarity and ease of use,produce
andconsume instructions have an operand that identifies
a communication channel (queue) to operate upon. The
produce andconsume instructions are matched in or-
der, and the compiler can rely on this property to correctly
transform the code.

While queue latency is not important (as described above
and measured later in Section 4), synchronization over-
head, as it affects the forward progress of a thread indi-
vidually, is very important because it may slow the critical
path. To avoid the synchronization overhead associated
with software implemented shared queues, theproduce
andconsume instructions block only when enqueuing to
a full queue and when dequeuing from an empty queue,
but otherwise operate freely. Others describe how such
inter-core queues can be implemented [13, 16].

2.2 The DSWP Algorithm

This section illustrates the DSWP algorithm as it operates
on the code of Figure 2(a), which traverses a list of lists of
integers and computes the sum of all the element values.

After performing DSWP on the outer loop in Figure 2(a),
it is transformed into two threads shown in Figures 2(d)-
(e). In this example, the loop in Figure 2(d) is executed as
part of the main thread of the program, the thread which
includes the un-optimized sequential portions of the code.

There are several important properties of the transformed
code to be observed. First, the set of original instructions
is partitioned between the two threads with one instruction
in both (B asB andB’ ). Also notice that DSWP doesnot
replicate the control-flow graph completely, but only the
parts that are relevant to each thread. In order to respect
dependences,produce and consume instructions are
inserted as necessary. For example, instructionCwrites a
value intor2 that is then used by instructionsD, F, andH
in the other thread. Queue 2 is used to communicate this
value as indicated in the square brackets. Note that, within
the loop, the dependences only go in one direction, from
the producer to the consumer thread. This acyclic nature,
along with the queue communication structures, provides
for the decoupling described earlier while executing the
body of the loop. Outside the loop, this property need
not be maintained; the main thread produces loop live-
in values for the other thread and consumes loop live-out
values after consumer loop termination.

Figure 3 shows the pseudo-code for the DSWP algorithm.
As input, it takes a loopL to be optimized in an interme-
diate representation, and modifies it as a side-effect. The



DSWP (loopL)
(1) G← build dependencegraph(L)
(2) SCCs← find stronglyconnectedcomponents(G)
(3) if |SCCs| = 1 then return
(4) DAGSCC ← coalesceSCCs(G, SCCs)
(5) P ← TPPalgorithm(DAGSCC , L)
(6) if |P| = 1 then return
(7) split codeinto loops(L,P)
(8) insertnecessaryflows(L,P)

Figure 3: DSWP algorithm.

following subsections describe each step of the algorithm
in detail.

2.2.1 Step 1: Build the Dependence Graph – Line 1

The first step in the DSWP algorithm is to build the de-
pendence graphG for loop L [7]. In this graph, each
vertex corresponds to one instruction ofL, and the arcs
represent the dependences among the instructions (u → v
indicates thatu must execute beforev). This dependence
graph must be complete in that it contains all data, con-
trol, and memory dependences, both intra-iteration and
loop-carried, conservatively including a dependence when
its absence cannot be proved. For register data depen-
dences, the compiler need only account for true (flow) de-
pendences. Output- and anti-dependences can be ignored
since, when instructions related by such a dependence are
put in different threads, they will run in different cores,
naturally using a different set of registers. As described in
Section 2.3, the compiler adds additional control depen-
dences just for the purposes of DSWP.

Figure 2(b) illustrates the dependence graph for the loop
in Figure 2(a). The arcs for intra-iteration dependences
are represented with solid lines; inter-iteration (or loop-
carried) dependences are represented with dashed lines.
Data dependence arcs are annotated with the correspond-
ing register holding the value. Control dependence arcs
have no label. In this example, there are no memory de-
pendences. Special nodes are included in the top (bottom)
of the dependence graph to represent loop live-in (live-
out) registers.

2.2.2 Step 2: Thread Partitioning – Lines 2-6

The second step in the algorithm is to ensure an acyclic
partitioning by finding the strongly connected compo-
nents (SCCs) and creating the directed acyclic graph of
them, theDAGSCC . The SCCs correspond to instruc-
tions collectively participating in a dependence cycle, the
loop recurrences. As such, DSWP requires all instructions
in the same SCC to remain in the same thread. Step (3)
stops the transformation ifG has a single SCC, since such
a graph is not partitionable into multiple threads. Step

(4) coalesces each SCC inG to a single node, obtaining
theDAGSCC . Figure 2(b) shows the SCCs delimited by
rectangles, and Figure 2(c) shows theDAGSCC for the
dependence graph in Figure 2(b).

Definition 1 (Valid Partitioning) A valid partitioningP
of theDAGSCC is a sequenceP1, P2, . . . , Pn of sets of
DAGSCC ’s vertices (i.e.Pis are sets of SCCs) satisfying
the following conditions:

1. 1 ≤ n ≤ t, wheret is the number of threads that the
target processor can execute simultaneously.

2. Each vertex inDAGSCC belongs to exactly one par-
tition in P.

3. For each arc(u → v) in DAGSCC , with u ∈ Pi and
v ∈ Pj , we havei ≤ j.

Using the concepts above, we define avalid partition-
ing of theDAGSCC . A valid partitioning guarantees that
all members of partitionPi ∈ P can be assigned to a
thread loopLi, and that this loopLi can be executed in
its own context. Condition (3) in Definition 1 guarantees
that each arc in the dependence graphG either flows for-
ward to a loopLj , wherej > i, or is internal to its parti-
tion. In other words, this condition guarantees an ordering
between the partitions that permits the resulting loops to
form a pipeline.

TheThread-Partitioning Problem(TPP) is the problem of
choosing avalid partitioning that minimizes the total ex-
ecution time of the resulting code. The optimal partition-
ing of theDAGSCC that minimizes this cost is machine
dependent, and can be demonstrated to be NP-complete
through a reduction from thebin packingproblem [4]. In
practice, we use a heuristic to maximize the load balance
among the threads. This is a commonly used criterion
in scheduling and parallelization problems and, as exper-
iments in Section 4 show, generally performs well here.
As in a processor pipeline, the more balanced the DSWP
stages are, the greater its efficiency. In other words, the
thread pipeline is limited by the stage with the longest av-
erage latency.

Our heuristic computes theestimated cyclesnecessary to
execute all the instructions in each SCC by considering
the instruction latency and its execution profile weight.
Ideally, function call latencies should include the average
latency to execute the callee. The algorithm keeps a set of
candidate nodes, whose predecessors have already been
assigned to a partition, and proceeds by choosing the SCC
node in this set with the largest estimated cycles. When
the total estimated cycles assigned to the current partition
(Pi) gets close to the overall estimated cycles divided by
the desired number of threads, the algorithm finishes par-
tition Pi and starts assigning SCC nodes to partitionPi+1.



In order to minimize the cost of necessary flows between
the threads, the heuristic breaks ties by choosing a candi-
date SCC that will reduce the number of outgoing depen-
dences from the current partition. The partitioning chosen
in Figure 2 puts the top two SCC nodes inP1, and the
remaining three inP2.

After a partitioning is made, the algorithm estimates
whether or not it will be profitable by considering the cost
of theproduce andconsume instructions that need to
be inserted. The TPPalgorithm may indicate that no par-
titioning is desirable by returning a single partition. In
such cases, the algorithm in Figure 3 simply terminates
in step (6). Otherwise, it continues by splitting the code
of the original loopL according to the partitioningP. In
our splitting scheme, loopL1, the one corresponding to
the first partitionP1, remains part of the main program
thread. The other threads are placed in new auxiliary
threads. Section 3 describes this process in more detail.

2.2.3 Step 3: Splitting the Code – Line 7

Splitting the code involves the following steps:

1. Compute the set of relevant basic blocks (BBs) for
each partitionPi. Naturally, this set includes all the
BBs in the original loop that contain an instruction
assigned toPi. This set also contains BBs which
contain an instruction upon which an instruction in
Pi depends, to allow for the proper placement of
produce and consume instructions at the point
where dependent values are defined in the code. This
preserves the condition under which the dependence
occurs. This occurs in BB3” in Figure 2(e).

2. Create the BBs forPi.

3. Place instructions assigned toPi in the correspond-
ing BB, maintaining their original relative order
within the BB.

4. Fix branch targets. In cases where the original tar-
get does not have a corresponding BB in the same
thread, the new target is set to be the BB correspond-
ing to the closest relevant post-dominator BB of the
original target. This is illustrated in the new loop in
Figure 2(d) by the arc going from the BB3’ to BB6’.

With the above steps, control flow will be respected be-
cause branch instructions were assigned toPi directly
(e.g. instructionE in Figure 2(e)), or they were duplicated
to implement a control dependence enteringPi (e.g. in-
structionB’ in Figure 2(e)). Additional jumps may be
necessary, however, depending on the layout of the BBs in
the new loop and subsequent code layout optimizations.

2.2.4 Step 4: Inserting the Flows – Line 8

The last step of the DSWP algorithm inserts the neces-
sary produce and consume instruction pairs (called
flows) to guarantee correctness of the transformed code.
The flows created can be classified into three categories
based upon the dependence type respected by them.

1. Data Dependence: a data value is transmitted.

2. Control Dependence: a flag indicating a branch di-
rection is transmitted to a duplicated branch. This
is illustrated by the control dependence emanating
from instructionB in Figure 2(b), implemented us-
ing queue 1 in Figures 2(d)-(e).

3. Memory/synchronization Dependence: no value is
transmitted. The flow itself is used as a token to en-
force operation ordering constraints. This is useful
for preserving memory operation ordering and the
ordering of system calls.

Flows can also orthogonally be classified by their position
within a loop partition.

1. Loop Flow: when an instruction in loopLj depends
on an instruction in loopLi, wherei < j, a pair
of flow instructions are inserted inside loopsLi and
Lj . As already mentioned, the necessaryproduce
andconsume instructions are inserted in the points
corresponding to the source instruction for this de-
pendence, so as to keep the correct condition under
which this dependence occurs. This is illustrated in
Figures 2(d)-(e).

2. Initial Flow: when an instruction in a loopLi, i >
1, uses a value that is loop-invariant in the original
loopL, a flow is inserted prior to the loops inL1 and
Li to deliver the loop-invariant values every time the
transformed loop is invoked.

3. Final Flow: when an instruction in a loopLi, i >
1, produces a value that is live out of the original
loop L, a flow fromLi to the main thread delivers
the value after the last iteration for subsequent use.

Redundant flow elimination can be used to avoid com-
municating a value more than once inside the loop. In
addition, code motion can be performed to move initial
(final) flow instructions as early (late) as possible to en-
hance parallelism by overlapping the fill (spill) portion of
the DSWP’ed loop with other work.

2.3 Dependence Graph Details

As mentioned in Section 2.2.1, DSWP requires a few ex-
tensions to the traditional concept of control dependence.
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Figure 4: Example of loop-iteration control dependences.

Each of the following subsections describe an extension
necessary to make the DSWP transformation correct.

2.3.1 Loop-Iteration Control Dependences

In DSWP, the queues are reused every iteration and, de-
pending on the control-flow path executed, the set of
queues used can vary in each iteration. Therefore, in or-
der to guarantee correctness, the compiler must ensure
that values from different loop iterations are correctly
delivered. For this purpose, the thread control flow is
matched iteration by iteration. This requires some ad-
ditional control dependences to be inserted which are
not accounted for in standard control dependences [7].
We call such dependencesloop-iteration control depen-
dences. As an example, consider the code in Figure 4(a).
Figure 4(b) shows the corresponding standard control de-
pendence graph, in which no instructions are dependent
on branchF. However, this branch determines whether or
not the loop will skip to the next iteration. Additionally,
there is no traditional control dependence from branchB
to F. Yet, depending on the direction thatB takes,F might
be executed in this iteration.

In order to capture such loop-iteration control depen-
dences, the compiler conceptually peels the first iteration
of the loop, so that each instruction is duplicated as shown
in Figure 4(c). The algorithm then computes the standard
control dependences for the peeled version of the code for
use on the original code. Figure 4(d) shows the control
dependence for Figure 4(c), with the dashed lines cor-
responding to dependences between different loop itera-
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Figure 5: (a) CFG illustrating the necessity for conditional
control dependence. (b) CFG showing the live output de-
pendence problem.

tions. The control dependence graph used for DSWP is
then obtained by coalescing corresponding pairs of nodes
in the control dependence graph for the peeled code. This
is illustrated in Figure 4(e). The resulting control de-
pendence graph includes both standard and loop-iteration
control dependences.

2.3.2 Conditional Control Dependences

For dependences that may or may not occur, it is not
enough to simply communicate the dependence, but the
code must also communicate when the dependence oc-
curs. To do this, additional flows are used to communicate
theconditionunder which such dependences occur. Con-
sider the example CFG in Figure 5(a), in which there is
a data dependence flowing from instructionD to instruc-
tion U. In this example, clearlyD is control dependent on
branchB, while U is not. If DandUare assigned to differ-
ent threads, keeping the semantics of the dependence the
same as in the original code involves determining when
to enact the flow of data fromD to U through a inter-core
flow. To indicate whenU should get its value fromD, the
algorithm inserts a dependence arc fromB to U. This de-
pendence ensures that whenU andD are put in different
partitions, the dependence condition is communicated to
the consuming thread indicating whether to use the cur-
rent value or to consume a new value fromD in the pro-
ducing thread.

A similar problem occurs with the live-out values at the
loop exit, if multiple definitions of a live-out value reach-
ing the loop exit are assigned to different threads. This
is illustrated byr1 in Figure 5(b) if instructionsA andC
are put in different threads. Additional information would
need to be maintained in order to know which definition
would occur last in the sequential execution. Alterna-
tively, we adopt a simple solution in this case, which is
to not ignore the output dependences among these def-
initions. This effectively forces these instructions to be
on the same SCC, thus executing in the same thread and



making it trivial to determine which thread produces the
final value. Although this solution can potentially reduce
the number of SCCs, we did not observe this drawback in
practice.

3 Compiler Implementation

To evaluate DSWP, we implemented it in the back-end of
the IMPACT compiler [15]. The IMPACT compiler per-
forms a large number of sophisticated ILP techniques (in-
cluding Software Pipelining [9]) and delivers exceptional
code quality when targeting Itanium 2, often matching or
beating Intel’s reference compiler on the SPEC-CPU2000
benchmark suite [15]. The compiler targets a dual-core
Itanium 2 processor.

DSWP was added as a pass in the back-end, operating
on ILP optimized predicated code at the assembly level.
Memory analysis is the accurate but conservative pointer
analysis available in the IMPACT compiler [3]. Stan-
dard IMPACT profiling tools were used to obtain control
flow arc weight used by the DSWP partitioning heuristics.
However, function call latencies currently do not include
an estimate of the cycles taken to execute the callee, what
can lead to poor partitioning decisions for loops with func-
tion calls. No optimizations other than scheduling (which
includes both traditional software pipelining and acyclic
list scheduling) and register allocation are performed af-
ter DSWP partitioning.

Since the target is a dual-core processor model, only two
threads are created by the algorithm. These threads are
the main thread and one auxiliary thread. To amortize
the cost of thread creation, the auxiliary thread is created
once, at the beginning of the program. A system call to
create a new thread is used, which takes, among other ar-
guments, the address of the function containing the new
thread. Thisauxiliary thread function is created by the
compiler.

For each optimized loop, the compiler creates a new func-
tion containing the corresponding code to be executed by
the auxiliary thread. Before entering an optimized loop,
the main thread sends to the auxiliary thread the address of
the corresponding auxiliary function on a specific queue
(the master queue). The auxiliary thread, blocked on a
consume operation on this queue, wakes up and simply
calls the function whose address it receives. Upon ter-
mination of a loop, the corresponding auxiliary function
returns to the master auxiliary function, which loops back
to the consume instruction. The auxiliary thread then
blocks again on the master queue, waiting for the new re-
quest from the main thread. The auxiliary thread is termi-
nated by a special terminate signal composed of a NULL
function pointer.

Benchmark Loop Nest BBs Func. Instr. SCCs # Flows
Ex.% Calls Init. Loop Final

129.compress 16 1 1 0 20 18 2 2 1
179.art 21 1 1 0 9 7 3 3 2
181.mcf 36 2 13 0 71 23 2 20 2
183.equake 67 2 4 0 202 33 0 23 1
188.ammp 64 3 38 3 630 244 1 47 1
256.bzip2 17 3 161 18 917 127 2 116 5
adpcmdec 98 1 21 0 52 38 3 7 2
epicdec 29 1 2 0 28 4 3 4 1
jpegenc 20 1 1 0 15 13 5 4 2
wc 90 1 2 0 17 13 3 3 4

Table 1: Statistics for the selected loops in our set of
benchmarks.

4 Evaluation

This section describes an evaluation of our DSWP com-
piler implementation targeting a dual-core chip multipro-
cessor. The benchmark set includes applications drawn
from SPEC-CPU2000, Mediabench [10], and the Unix
utility ‘wc’. Applications were discarded from this ini-
tial evaluation if they failed to compile in the unmodified
development version of IMPACT upon which DSWP is
based. They were also discarded if, even after aggressive
inlining, no long running loops were visible to the com-
piler. The benchmark164.gzip was the only one in
which DSWP was unable to find a multi-SCCDAGSCC ,
and it is not evaluated with the others. For each applica-
tion, DSWP is applied to the most important visible loop
that executes at least 50 iterations on average each time it
is entered.

4.1 Candidate Loop Statistics

Table 1 presents profile statistics for the chosen loops.
These loops account for between 16% and 98% of the
total benchmark execution time. IMPACT’s front-end
preforms aggressive function inlining, which is the rea-
son why most of the loops have no function calls be-
fore DSWP. Table 1 also presents the number of SCCs
for each loop and gives the number of flows (pro-
duce/consume pairs) that were created by the automatic
partitioning as per the heuristic in Section 2.2.2.

Note that three of the selected loops are actually
DOALL loops, namely the ones from129.compress ,
179.art , and jpegenc . Although DSWP can be ap-
plied to these loops, it is likely more efficient to paral-
lelize them as independent threads, thereby avoiding all
overhead of inter-thread communication during loop exe-
cution.

4.2 Performance: Threaded vs. Baseline

To evaluate the performance of DSWP, we used a val-
idated cycle-accurate Itanium 2 processor performance
model (IPC accurate to within 6% of actual hardware
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Figure 6: Performance summary: full-width Itanium 2 baseline.

for benchmarks measured [12]) to build a dual-core CMP
model comprising two Itanium 2 cores connected by the
synchronization arraycommunication mechanism pro-
posed in [13]. The models were built using the Liberty
Simulation Environment [21].

The synchronization array (SA) in the model works as a
set of low-latency queues. The modeled SA has a total
of 256 queues, each one with 32 elements. The SA has a
1-cycle read access latency and has four request ports that
are shared between the two cores. The Itanium 2 ISA was
extended withproduce andconsume instructions for
inter-thread communication. These instructions use the M
pipeline, which is also used by memory instructions. This
imposes the limit that only 4 of these instructions (minus
any other memory instructions) can be issued per cycle
on each core, since the Itanium 2 can issue only four M-
type instructions in a given cycle. While theconsume in-
structions can access the SA speculatively, theproduce
instructions write to the SA only on commit. As long as
the SA queue is not empty, aconsume and its dependent
instructions can execute in back-to-back cycles.

The highly-detailed nature of the validated Itanium 2
model prevented whole program simulation. Instead, de-
tailed simulations were restricted to the loops in question
in each benchmark. We fast-forwarded through the re-
maining sections of the program while keeping the caches
and branch predictors warm.

The first comparison made was between the threaded,
DSWP version of the selected loops and the correspond-
ing single-threaded, base version. In this experiment,
the latency to produce/consume a value to/from the syn-
chronization array was set to 1 cycle in our simulator
(minimum 2 cycles core-to-core). In order to evaluate
both the effectiveness of our partitioning heuristic (from
Section 2.2.2) and the potential of better heuristics, the

speedups are shown as two bars per benchmark loop in
Figure 6(a). The first bar is the fully automated DSWP,
using the heuristic. The second one corresponds to the
best performing partitioning found by iteratively specify-
ing the desired partitioning to the compiler and measur-
ing its resulting performance. Figure 6(a) shows that, in
many cases, the heuristic found the best partitioning we
were able to find in our iterative manual search. The ge-
ometric mean across these benchmark loops is 14.4% and
19.4%, for the automatically created and manually spec-
ified partitions respectively. In terms of whole-program
speedup, these geometric means translate into 6.6% and
9.2% respectively. The average baseline IPC is 1.65 and
the IPC averages for the producer and consumer cores are
0.88 and 1.24 respectively as shown in Figure 6(b). No-
tice that these IPC numbers do not include theproduce
andconsume instructions inserted by DSWP.

For simplicity, the simulator used did not model the cost
of coherence protocol. To gauge the effect of this coher-
ence cost on the results, we analyzed the memory traces
of both cores for all benchmarks. We replayed the mem-
ory accesses from the traces in an invalidation-based co-
herence model offline. Out of the ten applications, only
three (181.mcf , 256.bzip2 , and jpegenc ) exhib-
ited false-sharing. In181.mcf andjpegenc , the false-
sharing was always caused by writes in the consumer core
to locations already present in the producer core’s L1D
cache. While in181.mcf , the miss-rate of the producer
core’s L1D went up by 0.01% to 98.62%, injpegenc ,
there wasno change in the miss-rate of both cores. The
reason why the miss-rate is unaffected is because although
there is false-sharing, the producer core always runs ahead
and accesses any locations it needsbeforethose locations
are invalidated by writes to memory from the consumer’s
core.256.bzip2 has a slightly more interesting behav-
ior. We find that a particular store from the producer core
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Figure 7: Importance of balancing:DAGSCC for 181.mcf with different partitions. Numbers in eachDAGSCC node
indicate the number of instructions in the SCC. Graphs on the right illustrate the occupancy of the synchronization
array for a sample interval, and the distribution of the occupancy over the whole execution.

causes a lot of false-sharing and hence invalidations in
the consumer’s L1 data cache. Since the consumer trails
the producer, any extra latency arising out of such events
could adversely affect the consumer thread and ought to
have been modeled. However,all these coherence con-
flicts are caused by false-sharing due to a write to a global
variable (bsLive ) in the producer core. We promoted
this global variable to a register and used the modified ver-
sion of 256.bzip2 for all experiments. Thus, even without
coherence modeling, our results are valid and not over-
stated.

Figure 7 illustrates the importance of balancing work
across threads when partitioning loops, showing the
DAGSCC for the target loop in181.mcf . Each SCC is
labeled with the number of instructions it contains. Each
left-to-right line crossing theDAGSCC illustrates one
possible way of partitioning it into two threads. For each
possible partitioning, the figure also illustrates the result-
ing speedup, the corresponding synchronization array oc-
cupancy for a sample period and the cumulative cycle dis-
tribution at each possible occupancy level. An occupancy
of negative one means the corresponding queue is empty
and the consumer is stalled. The occupancy graphs illus-
trate the decoupling effect between the threads, and how
they are able to make progress concurrently – a thread
is only stalled by the other when the synchronization ar-
ray is either full or empty. The partitioning chosen au-
tomatically by our heuristic is the one corresponding to
43% speedup. Note that all partitionings result in good

speedups, except for the last one in which the threads are
not well balanced. This imbalance can be seen by the fact
that the synchronization array is usually empty, because
too much work was assigned to the first thread, in partic-
ular the three load instruction difference between it and
the compiler partitioning, causing the second one to be
blocked most of the time.

4.3 Performance Compatibility: Simpler Cores

Since future CMP’s are very likely to have simpler cores,
this section evaluates the performance compatibility of
the automatically-generated DSWP codes versus baseline
codes across full-width and half-width models. This study
uses a variant of the validated Itanium 2 model described
earlier with half of the instruction fetch and dispersal
width of the baseline Itanium 2 model.

Figure 8(a) presents the performance results, for both
the single-threaded and the DSWP versions. On aver-
age, DSWP on half-width cores performsbetter than a
full-width core running the single-threaded (ST) version.
The graph shows that DSWP-compiled codes have better
performance compatibility than standard ILP-compiled
codes across architectures with varying pipeline widths.

Additionally, note that the speedup of half-width DSWP
over half-width ST is greater than the speedup of full-
width DSWP over full-width ST. This occurs because, in
DSWP, ILP is often traded for TLP. Thus, the simpler and
less powerful a core is, the more pronounced the benefits
of DSWP are.
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Figure 8: Performance compatibility and sensitivity analyses: full-width Itanium 2 baselines.

4.4 Sensitivity Analyses: Latency and Queue Size

In order to quantify the importance of communication la-
tency for DSWP, the full-width CMP model was modified
to have communication latencies of 10 and 100 cycles be-
tween the two cores. This pipelined delay is modeled in
the produce instructions, whileconsume instructions
continued to take one cycle (representing queue locality
at the receiving side). The results are presented in Fig-
ure 8(b) and they show that DSWP is not very sensitive to
the communication latency. In fact, this was expected due
to the design of the DSWP transformation, as discussed in
Section 2.

We also evaluated the impact of queue size on perfor-
mance by varying the queue size to 8 and 128. We found
that DSWP executions are fairly insensitive to queue size,
with the mean slowdown with size 8 being 2% and the
average speedup with size 128 being 1% compared to 32-
element queues. The highest slowdown was 6% and the
peak speedup was 7% respectively.

5 Related Work

While statically-scheduled processors cannot deal very
well with variable latencies, even dynamically-scheduled
out-of-order machines exhibit poor in-order-like behav-
ior in practice due to instruction window size limitations.
Recognizing this, Rangan et al. proposed the idea of De-
coupled Software Pipelining (DSWP) for thread-parallel
architectures [13] and evaluated it with hand-modified
codes of recursive data structure loops. They showed how
DSWP is complimentary to dynamic out-of-order instruc-
tion scheduling and speculative techniques like prefetch-
ing (even perfect prefetching). This paper builds on [13],
by establishing DSWP as a more general parallelization
technique, proposing the first compiler algorithm for it,

and evaluating it with a fully automated implementation
across a diverse set of benchmarks.

While similar in name, Software Pipelining (SWP) [9]
rearranges loop instructions to create an instruction
pipeline, whereas DSWP partitions and schedules loop
code to create a pipeline of threads. Although SWP is
a very effective ILP technique, it performs poorly in the
presence of variable latency instructions (e.g. loads) [15].
DSWP, on the other hand, is able to achieve better latency
tolerance, thanks to the exploitation of coarse-grained
parallelism and the decoupled execution of the thread
pipeline. Both SWP and DSWP can be applied simul-
taneously, as they are in this work.

DSWP was inspired in part by decoupled access-execute
architectures (DAE) [16, 14], which tolerate latency by
decoupling memory accesses from other work. Since de-
pendences go both ways between the Access and the Exe-
cute cores, no single thread of execution can run ahead to
exploit coarser-grained parallelism [19]. DSWP avoids
this DAE problem at thread-pipeline creation time, by
avoiding circular dependencies amongst threads.

Other non-speculative parallelization techniques exist, but
these techniques often require special programming lan-
guages with parallel constructs [1]. Success has also been
achieved for streaming applications, through the use of
specialized programming languages [5], in effect requir-
ing the programmer to rewrite the application to expose
parallelism. These techniques ultimately rely on the pro-
grammer to identify thread-level parallelism.

Other means to unearth coarse-grained parallelism in-
clude a variety of thread-level speculation techniques [6,
18, 20] which are orthogonal to DSWP and can compli-
ment it.



6 Conclusion

This paper presentedDecoupled Software Pipelining
(DSWP), a new compilation technique to extractnon-
speculative thread-level parallelism from application
loops. Contrary to traditional parallelization techniques,
DSWP handles all kinds of dependences, effectively ex-
ploiting pipeline parallelismfound in ordinary, general-
purpose applications. Using a dual-core simulator built
on top of validated Itanium 2 core models and an imple-
mentation in a high-quality optimizing compiler, DSWP
achieves a mean speedup of 19.4% on important bench-
mark loops, translating to a mean of 9.2% over entire
benchmarks. When executing on a reduced complexity
core, DSWP turns a 17.1% slowdown for the loops in the
original single-threaded codes to a slight speedup, sug-
gesting a decent level of performance compatibility for
simpler cores.

In addition to the promising initial results achieved in
this work, these results can be improved further by ex-
isting optimizations not implemented in our framework,
and also by novel optimizations that will benefit DSWP.
More accurate memory analysis, additional optimizations
to break dependence cycles, more elaborate partitioning
heuristics, and new optimizations to reduce the number
of flows are among the directions for future work. We
believe that DSWP can be an enabler for related TLP re-
search in as much as instruction scheduling has been for
ILP, with new optimizations being discovered as more is
learned about DSWP in practice.
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