
Operating System Support for Pipeline Parallelism
on Multicore Architectures

John Giacomoni and Manish Vachharajani
University of Colorado at Boulder

Abstract.
The industry wide shift to multicore architectures

presents the software development community with
an opportunity to revisit fundamental programming
models and resource management strategies. Con-
tinuing to track the historical performance gains en-
abled by Moore’s law with multicores may be dif-
ficult as many applications are fundamentally se-
quential and not amenable to data- or task-parallel
organizations. Fortunately, an important subset of
these applications stream data (e.g., video process-
ing, network frame processing, and scientific com-
puting) and can be decomposed into pipeline-parallel
structures, delivering increases proportional to the
pipeline depth (2x, 3x, etc.).

To realize the potential of pipeline-parallel soft-
ware organizations requires reexamining some ba-
sic historical assumptions in OS design, including
the purpose of time-sharing and the nature of appli-
cations. The key architectural change is that multi-
core architectures make it possible to fully dedicate
resources as needed without compromising existing
OS services. This paper describes the minimal OS
extensions necessary to support efficient pipeline-
parallel applications on multicore systems with sup-
porting evidence from the domain of network frame
processing.

1 Introduction

The industry wide shift to multicore1 architectures
presents the software development community with
a rare opportunity to revisit fundamental program-
ming models and resources management strategies.
Multicore systems are now present in every class of
system including embedded systems, workstations,
and laptops. The question that must be addressed by

1 We are using the the term “multicore” to refer to systems with
4 to 100 processing cores [4].

the systems community is how to utilize the addi-
tional computational resources and what minimum
OS changes are needed to maximize their potential.
The obvious use is improve overall system through-
put by increasing task and data parallelism. However,
there exists an important set of applications that are
sequential and thus cannot utilize task or data paral-
lelism to achieve performance improvements.

For sequential and other applications, an appeal-
ing option is to utilize the resources for important
novel programming tasks such as shadow profil-
ing [16] and transient fault tolerance [21]. Shadow
Profiling works by running a snapshot of a process
on a separate core to perform deep instrumentation
while the fault tolerance work runs process clones
in parallel to detect and correct transient soft errors
without additional hardware support. By using mul-
tiple cores, both systems extend the system’s func-
tionality without impacting performance.

The assumption in the above scenarios is that mul-
ticore augment the historical per-core performance
increases. The reality is that limitations arising from
power consumption, design complexity, and wire de-
lays limit our ability to increase the computational
capabilities of a single core. Fortunately, Moore’s
law continues to hold and it is possible to continue
increasing resources by doubling cores according to
the historic exponential growth in transistor density.
Therefore it is possible to continue receiving div-
idends from existing data- and task-parallel strate-
gies. Sequential applications have traditionally relied
upon ever increasing processor performance to im-
prove their performance.

Fortunately, many sequential applications of in-
terest such as video decoding, network frame pro-
cessing, scientific computing while sequential in na-
ture may be restructured either by hand or opti-
mizing compiler to manifest innate pipeline paral-
lelism. Pipelines are instantiated in software by bind-



ing pipeline stages to different threads of execution
and feeding data serially through the different stages.
For optimal performance these stages will be simul-
taneously bound to different processors.

In this work we focus on efficiently supporting
those applications that are streaming in nature and
can be restructured with a pipeline-parallel structure.
Pipeline-parallel structures are of interest as they
can deliver performance increases proportional to the
pipeline depth; a basic three stage networking appli-
cation (Section 2.2) can increase either its available
computation time or increase its throughput by ap-
proximately three times. We know of no other tech-
nique, short of a high-level redesign, that can deliver
equivalent increases on sequential applications.

These sequential applications exhibit a critical
property that makes them particularly suited to a
pipeline-parallel decomposition, data streams se-
quentially through a well defined code path from in-
put to output. This sequential flow is relatively easy
to analyze and decompose into a pipeline-parallel
components. For example, video processing algo-
rithms (e.g., mpeg) and the basic TCP/IP stack have
very well defined boundaries that can be used to re-
cover pipeline stages without much effort.

In situations where applications appear to be fun-
damentally sequential, such as the SPECint bench-
marks, recovering parallelism may not be possible
without detailed knowledge of the machine and a
thorough code analysis. Compiler techniques such as
Decoupled Software Pipelining [17–19] may extract
some pipeline-parallelism yielding on average 10%
performance improvements by performing fine-grain
parallelization with dedicated resources.

In our work on exploiting pipeline-parallelsim for
network frame processing and scientific computing
we found that widely deployed general purpose op-
erating systems (e.g., Unix variants, Windows, and
MacOS X) are not prepared to efficiently support
pipeline-parallel applications. This is because these
general purpose OSes are designed to optimize over-
all throughput in a resource constrained (i.e., over-
subscribed) environment while maintaining accept-
able interactive behavior. This behavior historically
made sense in the era of the Computer Utility, first
proposed by John McCarthy, and later with personal
computers where the number of tasks to be serviced
dwarfed the available computational resources.

1.1 Claims

Multicore architectures alter the landscape by pro-
viding sufficient resources to handle background
tasks while dedicating resources for performance-
critical tasks. This is the key observation upon which
our work is based.

We suggest that when dealing with multicore ar-
chitectures, where the computing power of individ-
ual cores is stagnant but where cores are plentiful, the
resource management strategy of OSes be extended
to permit full resource dedication instead of opti-
mizing the resource sharing as done by SEDA [22]
and Synthesis [15]. Building efficient pipelines as
used by network frame processing and scientific
computing requires that: (1) interstage communica-
tion be proportionally small; (2) zero-stalls enter the
pipeline; (3) services are pipelineable. Additionally,
we argue that (4) managing efficient pipeline appli-
cations will require a new labeling abstration that is
orthogonal to the existing application abstractions.
With these features it is possible to build a pipeline
in software that is optimally efficient without neces-
sitating substantial changes to the OS.

The rest of this paper is organized as follows. Sec-
tion 2 reviews task, data, and pipeline parallelism as
well as presenting a case study from our work on
high-rate network frame processing and addresses
our first claim, the need for low-cost communica-
tion. Section 3 addresses our second claim, the need
for selective disabling of timesharing, based on the
need for a zero-stall guarantee. Section 4 addresses
our third claim, the value of pipelineable services.
Section 5 addresses our fourth claim and argues that
a new labeling abstraction is needed for pipeline ap-
plications that is orthogonal to existing abstactions.
Section 6 concludes.

2 Background

This section reviews the three basic parallel struc-
tures (i.e., task, data and pipeline) and discusses our
overarching motivating example (i.e., network frame
processing) from which we recover our three claims.
Included in the example is a discussion of our first
claim on the value of very low-cost stage-to-stage
communication (35-40 ns).



1 2 N 1 2 N-1

Split/Map

N 1 2 N-1 N

Task Parallelism Data Parallelism Pipeline Parallelism

N-1

Join/Reduce

Fig. 1. Parallel Structures

2.1 Parallel Structures

Pipeline parallelism’s ability to parallelize applica-
tions that are sequential due to internal data depen-
dencies and therefore not amenable to other forms
of parallelism is the key point of interest. Examples
of well suited applications are network frame pro-
cessing (Section 2.2), video and audio decoding, and
scientific computing. Notice how each of these ex-
amples is both of interest and poorly suited to task-
and data-parallel approaches as there exists a par-
tial or total ordering in each data stream. Further,
these examples span the systems space from embed-
ded systems to workstation and supercomputer class
systems. For clarity, we describe the three forms of
parallelism below and depict them in Figure 1.

Task Parallelism consists of running multiple inde-
pendent tasks in parallel and is limited by the
availability of independent tasks.

Data Parallelism consists of simultaneously pro-
cessing multiple independent data elements in
a single task. This technique scales well from
a few processing cores to an entire cluster [6].
The flexibility of the technique relies upon state-
less processing routines (filters) implying that
the data elements must be fully independent.

Pipeline Parallelism allows for parallelization of a
single task when there exists a partial or total or-
der in the data set implying the need for state and
therefore preventing the use of data parallelism.
Parallelism is achieved by running each stage si-
multaneously on sequential elements of the data
flow. This form of parallelism is limited only by
the sequential decomposability of the task and
the length of the longest stage.

2.2 Case Study: Network Frame Processing

Network frame processing provides an interesting
case study for pipeline parallelism as such systems

IP (P1) APP (P2) OP (P3)

IP APP OP

P1
(IP)

P2
(APP)

P3
(OP)

IP (P1) APP (P2) OP (P3)

IP (P1) APP (P2) OP (P3)

IP (P1) APP (P2)

IP (P1)

T/3 T/3 T/3 T/3 T/3

T

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Processors

Time

Execution 
Stages for 

Single Frame

Pipelined 
Execution

Fig. 2. Frame Shared Memory Pipeline

are both useful (intrusion detection, firewalls, and
routers) and may exhibit high data rates (672 ns per
datum/frame) which challenges previous implemen-
tation techniques. Using our Frame Shared Mem-
ory (FShm) architecture [9] we are able to forward at
a rate of 1.428 million frames per second, the limit
of our hardware, while achieving a 3x or larger in-
crease in frame processing time without dropping
any frames. The lessons learned from this domain
can be generalized to any domain with ordered data
and thus are candidates for OS level support.

In the past and present network frame processing
system such as this one have been built with custom
or specialized hardware (e.g., network processors).
However, to build such a system on a general pur-
pose system requires that the system at a minumum
provides a guarantee of zero-stalls and a very low-
cost communication mechanism [10]. Below we de-
scribe the scenario and recover our first claim, the
need for low-cost communication. Our second claim,
the zero-stall guarantee and its OS implications, will
be discussed in detail in Section 3.

The network frame processing domain is chal-
lenging if one wants to handle the two degenerate
cases, maximum bandwidth and maximum frame
rate. Handling the maximum bandwidth requires
only high bandwidth hardware as internal communi-



cation mechanisms have low overhead compared to
the frame arrival rate. Handling the maximum frame
rate case is more challenging as the arrival rate on
modern networks stresses both the hardware (e.g, bus
arbitration) and software (e.g., locking methods).

Considering gigabit Ethernet, at maximum band-
width there are only 81,274 frames per second while
at the maximum frame rate case there are 1,488,095
frames per second. This means that a new frame can
arrive every 672 ns. The complication for software
is that once the frame arrival is signaled, there might
only be 672 ns to remove the frame from the data
structures shared with the network card, processes
the frame, and if the frame is being forwarded insert
it into the output network interface’s data structures.
In networking, increasing the throughput beyond the
arrival rate is meaningless; The goal is to increase
the available per frame processing time.

0.00

2.50 · 103

5.00 · 103

7.50 · 103

1.00 · 104

1.25 · 104

na
no

se
co

nd
s

KH
64

B

KH
96

B

KH
12

8B

KH
19

2B

KH
25

6B

KH
38

4B

KH
51

2B

KH
76

8B

KH
10

24
B

KH
15

18
B

UH
64

B

UH
96

B

UH
12

8B

UH
19

2B

UH
25

6B

UH
38

4B

UH
51

2B

UH
76

8B

UH
10

24
B

UH
15

18
B

Frame Size (Bytes)

Input

Output

Work

Fig. 3. Frame Shared Memory Capture Results. This figure
shows the time available for the input and application stages for
both pinned kernel and user-space stages.

In FShm we increase the per-frame processing
time by using pipelining to overlap different stages
of frame processing. In a basic forwarding applica-
tion we are able to decompose the task into three
stages, with each being alloted the full frame compu-
tation time period and therefore tripling the total time
available to the software to manipulate the frame.
Figure 2 shows the structure of FShm for this ba-
sic forwarding application. The task is decomposed

into input, application, and output stages. The out-
put and input stages handle transferring the frame
to and from the network interfaces. The application
stage performs the actual application related frame
processing without worrying about the cost of the
input and output work. By simultaneously binding
the three stages to different processors we can build
a pipeline with full overlap potential in every time
step. Notice also that the per frame processing time
can be extended to 4x and beyond if the application
stage can be further decomposed.

The difficulty in achieving this performance is the
stage-to-stage communication cost. If the communi-
cation cost is too high there may be a negative return
in decomposing an application into a pipeline. Ini-
tially, we built a standard queue with mutexes on a
2 GHz Operton 270 based system and found the per-
operation (get or put) cost to be at least 600 ns. This
cost was found to increase dramatically as the con-
tention increased by shortening the period between
operations. To address this, FShm provides a suit-
able streaming queue implementation costing only
35-40ns per operation [10]. The performance of a
two stage capture application is shown in Figure 3.

3 Zero-Stall vs. Oversubscription

Maintaining a smoothly flowing pipeline, that is a
pipeline where a datum is never waiting for proces-
sor time, requires the system to provide a zero-stall
guarantee. Pipelines implemented in hardware are
based on this guarantee and ensure it by having ev-
ery stage operate in lockstep with a uniform stage
length of 1 cycle. OSes in general do not make this
guarantee as they have been built on the principle
of timesharing resources, dating back to the Com-
puter Utility, on oversubscribed systems 3.1. Multi-
core systems are different in that they may provide
abundant processing resources permitting a system
to use “selective timesharing” (Section 3.2) and fully
dedicate resources to an application for an extended
period of time. With dedicated resources it is possi-
ble to achieve the zero-stall guarantee.

More precisely, a zero-stall guarantee ensures that
allocated resources are never unexpectedly made un-
available by the system for any reason (e.g., over-
subscription). Failing to meet this requirement intro-



Execution StagesStage2

Pipelined 
Execution

Stages 1 & 2 run concurrently on processors 1 & 2

Stage1

Stage1

T/2 T/2 T/2 T/2 T/2

Datum 1

Datum 2

Datum 3

Stage2

T

Stage1

Time

Datum 4

Stage1

Stage2

Stage1

Stage2

Stage2

(a) Ideal (Concurrent)

Datum 3 on Processor 1Datum 1 on Processor 1 

Dropped

Stage1

Stage1

T/2 T/2 T/2 T/2 T/2

Datum 1

Datum 2

Datum 3

Stage2

Stage2

T

Execution StagesStage1

Time

Datum 4

Dropped

Stage2

(b) Oversubscribed (Serial)

Fig. 4. Pipeline Timing in Ideal and Oversubscribed Conditions

duces stalls into the pipeline which may not be easily
predicted or compensated for. Consider a pipeline,
show in Figure 4.a, where every stage is running ef-
ficiently (i.e., little to no built-in slack time). If a stall
is introduced into this pipeline, no amount of queue-
ing can compensate for an indefinite period of time.
This is definitely a problem in the network frame
processing example described in Section 2.2 or any
other system operating with similar data rates. Note
that in security related systems, dropping a single da-
tum can be considered a system failure as an attack
could have been contained in the datum and would
be lost forever.

Meeting a zero-stall guarantee may be impossible
for software as the underlying architecture may make
some stalls inevitable. Therefore, the goal for an OS
is to eliminate itself as the cause of stalls. This means
eliminating all non-application related work on the
processors used by the application. For example, we
have found that even tiny OS related stalls, such as
the hardclock background tick (to maintain clock ac-
curacy) have a noticeable effect on performance.

3.1 Oversubscription

The zero-stall guarantee as described above is im-
possible to make on an oversubscribed general pur-
pose system that is timesharing all of its resources.
We are only making an overarching performance
goal for a given pipeline application that processes
an unbounded stream of data. We are not making
claims about overall system throughput. Section 3.2
discusses our rationale in more detail.

Pipelining as a software architecture has been
extensively studied for its performance and soft-
ware engineering benefits. Examples of use include

Unix pipes [20], the Staged Event Driven Architec-
ture (SEDA) [22], and Synthesis [15].

We claim that despite the existence of efficient
pipelining systems, they are not used for perfor-
mance reasons due to the previously limited num-
ber of available processing resources (1-4). Prior
work on optimizing the scheduling of limited re-
sources has certainly had success and improved the
efficiency of pipeline applications and the host sys-
tems [14, 23]. However, these systems are all in-
capable of meeting the zero-stall guarantee as they
were designed to optimize in an oversubscribed envi-
ronment. Further, just-in-time scheduling is also less
than optimal for streaming applications as data will
always be available, making the cost of such schedul-
ing infrastructures pure overhead.

In contrast with the ideal pipeline depicted in Fig-
ure 4.a, Figure 4.b depicts an example of pipeline
scheduling in oversubscribed conditions. In the ideal
case, a task is broken into a number of equal length
stages (for simplicity, we assume two) with each
stage simultaneously bound to a processor. The
throughput of such a system will be one per time
step, just as in a hardware pipeline. However in the
oversubscribed scenario it could happen that it is
only possible to schedule the two stages in series due
to other system resource demands. Throughput in
this situation would be one every two time steps, or
half the ideal situation. The system’s inability to con-
currently schedule the two stages is shown to cause a
datum drop every other time step. While the depicted
drop rate may be extreme, it does highlight that not
every datum can be handled in situations where con-
current scheduling could handle the load. Further, the
oversubscribed scenario must account for the over-
head of scheduling and context swapping.



3.2 Selective Timesharing

Meeting the zero-stall guarantee for all scenarios, as
we argued above, requires that the OS not share its
resources, particularly its computational resources.
In practice this means that the OS needs to be ca-
pable of partitioning its resources into two groups,
those that are dedicated and those that timeshared
in a traditional manner. This partitioning is different
in motivation from existing work on binding execu-
tion contexts to processors. We question whether the
resource sharing strategies first explored under the
Computer Utility banner in the 1960s are still valid
on multicore systems with limited numbers of tasks.
Our conclusion is that OSes need to be altered to in-
clude user directed “selective timesharing.”

Traditionally OSes have focused on different
strategies to “fairly” share limited resources among
many users and ensure that every task made forward
progress. This strategy is the only acceptable strategy
when scheduling many tasks on systems with limited
resources. The notion of a Computer Utility, first for-
mulated by John McCarthy, proposed that since com-
puters were expensive, their resources should be dis-
tributed from a central location in a fashion similar
to other utilities (e.g., electric utilities). Therefore,
OSes were design to share the resources while simul-
taneously optimizing for both interactive response
and overall throughput. This strategy was the basis
of the CTSS [5] and has influenced all subsequent
general purpose OSes.

The emergence of the personal computer depre-
ciated the notion of a Computer Utility. However,
its legacy continues to form the basis of our current
OSes. This is no surprise as the average user, on their
PC, concurrently executes multiple tasks on a lim-
ited number of processors (1-2) just as the Computer
Utility did with multiple tasks from different users.

The emergence of the Internet and multicore sys-
tems are completing the conceptual shift begun by
the personal computer. Internet companies such as
Google, Yahoo!, and Microsoft are creating large
centralized services on the Internet that, for practical
purposes, are Computer Utilities. Further, multicore
architectures are dramatically increasing the number
of processing cores per system to the point where
many systems may not have enough task or data par-
allelism to fully saturate the available resources.

Our proposition is to harness these resources by
recognizing that many systems are focused on run-
ning a few important tasks with many support tasks.
This ordering of tasks is true for many classes of
systems including embedded systems and some clus-
ters as well. Our proposed solution is to acknowledge
this ordering and to dedicate resources to important
tasks to optimize their throughput and let the support
tasks use the remaining timeshared resources. Notice
that this organizing is not only necessary for many
pipeline applications, it is also of use to any task, be
it sequential or data-parallel.

4 Pipelineable Services

Returning to the network frame example from Sec-
tion 2.2 we found it useful to create pipelinable OS
services (thus supporting our third claim), that is ser-
vices which could be included directly into a pipeline
application. Being able to directly incorporate ser-
vices into a pipeline means that those services can
be overlapped with application stages and therefore
increase the amount of parallelism available in the
pipeline. These services differ from traditional OS
services in that they are active and not passive. An
active service is simply a service that proceeds with-
out waiting for a service request. Careful consider-
ation suggests that these pipelineable services need
not be restricted to the OS, but could be provided
by other applications or by special purpose hard-
ware (e.g., a cryptography accelerator).

In our networking example we discussed having
three stages (i.e., input, application, and output) in a
basic forwarding pipeline. However, we did not dis-
cuss where these stages were instantiated. Each stage
can be instantiated either in a single application con-
text or in multiple. One approach is to instantiate all
three stages in the application and bind the network
interfaces to the application. However, this implies
that not only are the necessary processors dedicated
to the application, but the network interfaces as well.
This dedication of hardware devices works for cer-
tain devices (e.g., network interfaces) but is problem-
atic for other devices that are usually shared (e.g.,
storage and network attached storage). Therefore, to
maintain both resource sharing and efficiency in the



pipeline, some stages might need to be inside the OS
while others in a user-space application.

The closest design paradigm to pipelineable OS
services are message passing based microkernel sys-
tems. While microkernels could use their message
passing interface to implement pipelineable services,
they are often used in a synchronous manner similar
to the system call interface (i.e., send message with
service request and wait for completion). This mode
of use makes sense in an oversubscribed environ-
ment where it impossible to overlap the producer and
consumer stages due to a lack of computational re-
sources. Click [13] and Synthesis [15] go so far as to
support call through semantics, where the producer
may switch to the consumer context to complete the
request. In contrast, a pipeline stage is an active ele-
ment that operates independently, though usually in
lockstep, with the other stages in a pipeline.

In other situations it is worth considering the inte-
gration of active services from either another appli-
cation or a special purpose hardware element. One
example of a service provided by another application
is a database system for managing log files. Consider
two applications: (1) a web server feeding entries
into the database (2) a reporting application stage
streaming requests through the database to another
stage in the reporting application. In both cases it is
possible to overlap the database stages with the ap-
plication stages maintaining the pipeline even though
the producer and consumer are not in the same exe-
cution domain. Finally, integrating hardware compo-
nents is straightforward given a producer/consumer
communication mechanism understood by both the
software and hardware.

5 Nature of Applications

Supporting the zero-stall guarantee, especially with
pipelineable services, is difficult for general purpose
OSes. A new abstraction is needed to mange the
shared execution context of a pipeline application
(fourth claim). Existing abstractions are designed
to manage resources as individual entities and not
in terms of collections of partially overlapping re-
sources. Further, OSes are not designed to manage
resources that simultaneously affect multiple execu-
tion contexts.

We suggest that a new abstraction is needed to ef-
ficiently manage pipeline applications that may exist
in multiple execution contexts simultaneously. With
multicore systems, these resources may consist of
general purpose cores and specialized cores such as
graphics processing units [1] that do not share mem-
ory or the OS image. Mapping the stages to general
purpose computational resources could be done with
a modified version of gang scheduling [11] that is
biased towards efficient long term resource alloca-
tion. However, as multicore systems become hetero-
geneous, this new abstraction would need to act as a
new form of application label defining the full exe-
cution context, hardware requirements, and memory
address space for a single pipeline application. This
label needs to be orthogonal to existing application
labels as a pipeline stage may be a subset of an ap-
plication and therefore it would be inappropriate to
label an entire application as being part of a pipeline.

The key insight is that the pipeline application is
its own application-like entity that is overlaid on both
the application and the OS. Recall from Section 2.1
that pipeline stages are permitted to maintain their
own local state. Therefore, there are in fact multiple
distinct memory storage locations. First, the pipeline
has its own state that is distinct from other applica-
tions. Second, stages have state that may be shared
with individual applications. Finally, the applications
that contain stages may have their own local pri-
vate state that should not be shared with any pipeline
stages. Efficiently maintaining the privacy of these
different regions requires correct labeling.

This new multi-domain application abstraction is
fundamentally different from previous models. Pre-
vious related work has focused on either bringing ev-
erything into a single address space [3] or allowed
data to flow between domains under very controlled
situations [2, 7, 8, 12]. The important difference is
that this multi-domain application model respects the
private data model implicit in single-domain appli-
cations while providing first-class naming for multi-
domain pipelines.

6 Conclusion

This paper argued that multicore architectures will
make it possible to achieve the optimal performance



potential of pipelines and presented the system ex-
tensions necessary for implementation. A support-
ing example from the domain of network frame pro-
cessing was presented showing that performance im-
provements may be proportional to the depth of the
pipeline (three in the example). It was argued that re-
alizing the improvements requires the operating sys-
tem to provide a zero-stall guarantee that cannot be
realized in an environment where the computational
resources are oversubscribed. Meeting the zero-stall
guarantee for any pipeline requires that the system:
(1) fully dedicates (i.e., by selectively disabling time-
sharing) sufficient computational resources to the ap-
plication and (2) provides a set of pipelineable ser-
vices. Finally, supporting a pipeline that spans mul-
tiple execution contexts (e.g., uses pipelineable ser-
vices) requires a new abstraction to label the pipeline
as single entity for resource allocation and security.

References

1. Advanced Micro Devices. AMD completes ATI acquisition
and creates processing powerhouse. http://www.amd.
com/us-en/Corporate/VirtualPressRoom/0,
,51 104 543∼113741,00.html, October 2006.

2. B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. Lightweight remote procedure call. In 12th Sym-
posium on Operating Systems Principles, pages 102–113,
December 1989.

3. B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fi-
uczynski, D. Becker, S. Eggers, and C. Chambers. Exten-
sibility, safety and performance in the SPIN operating sys-
tem. In 15th Symposium on Operating Systems Principles,
pages 267–284, Copper Mountain, Colorado, 1995.

4. CNET News.com. Intel pledges 80 cores
in five years. http://news.com.com/
2100-1006 3-6119618.html, September 2006.

5. F. J. Corbató, M. M. Daggett, R. C. Daley, R. J. Creasy, J. D.
Hellwig, R. H. Orenstein, and L. K. Korn. The Compatible
Time-Sharing System: A Programmer’s Guide. Cambridge,
Massachusetts, 1963.

6. J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters, December 2004.

7. P. Druschel and L. L. Peterson. Fbufs: a high-bandwidth
cross-domain transfer facility. In SOSP ’93: Proceedings of
the fourteenth ACM symposium on Operating systems prin-
ciples, pages 189–202, New York, NY, USA, 1993. ACM
Press.

8. D. R. Engler, M. F. Kaashoek, and J. J. O’Toole. Exoker-
nel: an operating system architecture for application-level
resource management. In SOSP ’95: Proceedings of the
fifteenth ACM symposium on Operating systems principles,
pages 251–266, New York, NY, USA, 1995. ACM Press.

9. J. Giacomoni, J. K. Bennett, A. Carzaniga, M. Vachhara-
jani, and A. L. Wolf. FShm: High-rate frame manipulation

in kernel and user-space. Technical Report CU-CS-1015-
07, Univerity of Colorado at Boulder, 2006.

10. J. Giacomoni, M. Vachharajani, and T. Moseley. FastFor-
ward for concurrent threaded pipelines. Technical Report
CU-CS-1023-07, Univerity of Colorado at Boulder, 2007.

11. M. A. Jette. Performance characteristics of gang scheduling
in multiprogrammed environments. 1997.

12. Y. A. Khalidi and M. N. Thadani. An efficient zero-copy
I/O framework for UNIX. Technical report, Mountain View,
CA, USA, 1995.

13. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions
on Computer Systems, 18(3):263–297, 2000.

14. H. Massalin and C. Pu. Fine-grain adaptive scheduling us-
ing feedback. Computing Systems, 3(1):139–173, 1989.

15. H. Massalin and C. Pu. Threads and input/output in the
Synthesis kernel. In Proceedings of the 12th ACM Sympo-
sium on Operating Systems Principles (SOSP), volume 23,
pages 191–201, 1989.

16. T. Moseley, A. Shye, V. Reddi, D. Grunwald, and R. Peri.
Shadow profiling: Hiding instrumentation costs with paral-
lelism. In Proceedings of the 2007 International Sympo-
sium on Code Generation and Optimization (CGO), March
2007.

17. G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Auto-
matic thread extraction with decoupled software pipelining.
In 38th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO’05), pages 105–118, Los Alami-
tos, CA, USA, 2005. IEEE Computer Society.

18. G. Ottoni, R. Rangan, A. Stoler, M. Bridges, and D. August.
From sequential programs to concurrent threads. Computer
Architecture Letters, IEEE, 5:6–9, 2006.

19. R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. Au-
gust. Decoupled software pipelining with the synchroniza-
tion array. In 13th International Conference on Parallel Ar-
chitecture and Compilation Techniques (PACT’04), pages
177–188, Los Alamitos, CA, USA, 2004. IEEE Computer
Society.

20. D. M. Ritchie and K. Thompson. The UNIX time-sharing
system. The Bell System Technical Journal, 57(6 (part
2)):1905+, 1978.

21. A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D. A.
Connors. Using process-level redundancy to exploit mul-
tiple cores for transient fault tolerance. In Proceedings of
the International Conference on Dependable Systems and
Networks, June 2007.

22. M. Welsh, D. Culler, and E. Brewer. SEDA: an architecture
for well-conditioned, scalable internet services. In SOSP
’01: Proceedings of the eighteenth ACM symposium on Op-
erating systems principles, pages 230–243, New York, NY,
USA, 2001. ACM Press.

23. H. Zheng and J. Nieh. SWAP: A scheduler with auto-
matic process dependency detection. In Proceedings of the
First USENIX/ACM Symposium on Networked Systems De-
sign and Implementation (NSDI-2004), pages 145–158, San
Francisco, CA, Mar. 29–31 2004. Usenix Association.


