
Recursive Data Structure Profiling

Easwaran Raman David I. August

Department of Computer Science
Princeton University
Princeton, NJ 08544

{eraman,august }@princeton.edu

ABSTRACT
As the processor-memory performance gap increases, so does the
need for aggressive data structure optimizations to reduce memory
access latencies. Such optimizations require a better understand-
ing of the memory behavior of programs. We propose a profiling
technique calledRecursive Data Structure Profilingto help better
understand the memory access behavior of programs that use re-
cursive data structures (RDS) such as lists, trees, etc. An RDS
profile captures the runtime behavior of the individual instances of
recursive data structures. RDS profiling differs from other memory
profiling techniques in its ability to aggregate information pertain-
ing to an entire data structure instance, rather than merely capturing
the behavior of individual loads and stores, thereby giving a more
global view of a program’s memory accesses.

This paper describes a method for collecting RDS profile with-
out requiring any high-level program representation or type infor-
mation. RDS profiling achieves this with manageable space and
time overhead on a mixture of pointer intensive benchmarks from
the SPEC, Olden and other benchmark suites. To illustrate the po-
tential of the RDS profile in providing a better understanding of
memory accesses, we introduce a metric to quantify the notion of
stabilityof an RDS instance. A stable RDS instance is one that un-
dergoes very few changes to its structure between its initial creation
and final destruction, making it an attractive candidate to certain
data structure optimizations.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Measurement techniques]

General Terms
Experimentation, Measurement

Keywords
RDS, dynamic shape graph, list linearization, memory profiling,
shape profiling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSP’05,Chicago, USA.
Copyright 2005 ACM 1-59593-147-3/05/06 ...$5.00.

1. INTRODUCTION
The continuing trend of deeper processor pipelines and the in-

creasing gap between memory speed and the processor speed ne-
cessitates new techniques for memory latency tolerance. To de-
velop these techniques, a high-level understanding of the memory
characteristics of programs is required. That is, we need to under-
stand how programmer intended to use the memory, not just how
the individual load/store operations in the program behave. Static
analysis techniques like alias analysis and shape analysis help us
understand how a program uses memory. Unfortunately these tech-
niques are conservative and are not intended to capture the dynamic
memory behavior of applications, which is necessary for develop-
ing more aggressive optimizations. Dynamic memory behavior of
programs is recorded by memory profilers, but existing memory
profilers typically operate at the granularity of individual memory
operations or memory addresses. As a result, they do not provide
the kind of high-level understanding of memory behavior desirable
for any potential aggressive memory optimizations of the future.

To help guide new memory optimizations, we want to develop a
profiling technique that overcomes the above mentioned drawbacks
of existing memory profiling schemes. Since address-regular mem-
ory accesses, like array traversals, are usually better understood and
easier to optimize than irregular accesses, we focus our efforts on
the latter. In particular, our focus is on the dynamic memory char-
acteristics of recursive data structures (RDS). RDSs are created by
data types that are defined in terms of themselves. The ideas de-
scribed in this paper are not dependent on any particular program-
ming language, but for the ease of understanding, we use examples
from the C programming language. In C, RDS are a special case
of what is known as Linked Data Structures(LDS). A Linked Data
Structure is created by a C structure that has a pointer field. By
making this pointer point to an object of the same structure type,
RDSs are formed.

Consider some examples that illustrate our terminology. An ar-
ray of pointers to integers creates an LDS, since these pointers serve
as links. This, however, is not considered as an RDS. On the other
hand, a list node structure that has a pointer field to the same list
node structure would produce an RDS. An RDS can also be mutu-
ally recursive when a structure of type A has a pointer to structure
of type B and vice-versa. Continuing with our list example, a pro-
gram can create many separate lists from the same list structure
by having many ‘head’ pointers pointing to the start of the lists.
We use the termRDS instanceto denote these separate lists with
separate head pointers. We use the termRDS typeto denote the
set of data structure declarations that create all these separate list
instances.

Since the size of RDSs is unbounded due to their recursive na-
ture, RDSs can form a major part of the irregular memory access in

a program. Hence, we propose a technique called Recursive Data
Structure Profiling to study the dynamic memory behavior of these
structures without requiring any high level representation or type
information thereby enabling its application even on legacy appli-
cations. This constitutes the main contribution of this paper.

As a demonstration of the RDS profiler’s ability to provide new
ways to understand the memory access behavior, we introduce the
notion of RDS stabilityand a metric to quantify it. Informally, a
stable RDS is one which, once created, suffers “few” changes to
its structure during its lifetime. We quantify this informal notion
by defining a metric called the RDS stability factor. This notion
of stability is crucial in the development of optimizations, likelist
linearization [2, 10], that attempt to remap the data structure to a
different location in memory during runtime. If an RDS is stable,
then this remapping has to be done only once after its creation, and
the benefits of this remapping will not be lost due to changes to the
RDS instance.

This paper is organized as follows. In the next section, we de-
scribe related work. Section 3 describes intuitively how the RDS
instances are identified without using type information, and presents
the RDS profiling algorithm in detail. In Section 4, we give detailed
information on our profiler framework implementation. Section 5
describes some of the properties of RDS that are captured by the
profiler. Then, in Section 6, we tabulate these properties for a set
of benchmarks. We also report the space and time overhead of our
profiler in this section. Finally, in Section 7 we conclude and list
the future work.

2. RELATED WORK
There have been various works on memory analysis, memory

profiling, and profile based optimizations, but most of them work
at the granularity of individual memory operations. To our knowl-
edge, there exists no prior work on memory profiling at the RDS
instance granularity. In this section, we first examine related works
in memory analysis, then in profiling techniques closer to our work,
and finally prior work establishing a need for RDS profiling.

Lattner and Adve [7, 8] provide a link-time analysis on their
LLVM framework to identify logically disjoint data structures in
a program. Their analysis produces adisjoint data structure graph,
which is a graph representation of all the data structures in the pro-
gram. Since this is a static analysis, the solution is a conservative
one. Our approach is a profile-based one that identifies only those
data structure instances that appear in a particular run of the pro-
gram. Moreover, the crucial difference is that their analysis requires
the type information provided by LLVM, precluding it from being
applied on executables, whereas our profiler does not require any
type information.

Shape analysis [14, 4, 5] is a compile-time analysis technique
that characterizes theshapeof the data structures, that is, proper-
ties like sharing of nodes, cyclicity and reachability. Radu [13]
proposed a method called quantitative shape analysis. This method
computes quantitative properties like the skew and height for trees
in cases where they are computable at compile time, thereby con-
veying more information about the shapes than prior methods. All
these compile-time analysis schemes are conservative, cannot op-
erate on multiple compilation units and, in most cases, the analysis
time does not scale well with the size of the program. Moreover, as
already mentioned, they do not provide information on the runtime
characteristics of these shapes.

Wu et al. [16] proposed a scheme calledobject-relative mem-
ory profiling, where an object corresponds to the memory allocated
by a single call to a memory allocation routine. The objects are
assigned unique identifiers that are then used in the profile results

instead of memory addresses. In [16], objects allocated by separate
calls to the memory allocator but linked to each other by pointers
are not grouped together. In contrast, we treat heap locations of
same type connected by pointers as one logical entity and generate
a profile at that granularity. Calder et al.[1] perform memory pro-
filing to enable cache-conscious data placement. They construct
two profiles callednameandtemporal relationship graph. The for-
mer is related to the idea of object-relative memory profiling. The
temporal relationship graph captures the temporal relationship be-
tween accesses to heap locations. Again, this does not give the
programmer-intended view of the heap locations while our tech-
nique does.

Nystrom et al. [11] have characterized the access patterns of re-
cursive data structures in integer benchmarks. They use a metric
calleddata access affinityto study the correlation among accesses
to pointer-chasing loads. This only gives a local view of the shape
graph. Moreover their scheme depends on compiler annotations to
track the links and their traversal, while we use some instrumenta-
tion and then track the flow at runtime.

While RDS profiling is likely to open up many possibilities for
new optimizations, at least one existing optimization would ben-
efit. This optimization, known as list linearization, was first pro-
posed in the context of the LISP programming language [2]. Luk
and Mowry [10], describe this optimization in the context of C pro-
grams. They suggest applying this optimization one or many times
depending on whether the list under consideration is altered or not.
The RDS stability metric we propose provides a way of identifying
this property, thereby allowing an automatic way of applying this
optimization.

3. COLLECTING RDS PROFILES
In this section, we describe the methodology of collecting the

RDS profiles, without going into the specifics of our implementa-
tion. These details will be given in Section 4. The steps involved in
collecting an RDS profile are:

• Reconstructing theshape graphs(defined below)

• Associating events with shape graphs

3.1 Terminology
We now define some terminology which we use in the rest of

the paper. Analloc call is a call to any procedure that allocates
memory from the heap region. This can be any such procedure
from the standard C library –malloc, calloc or realloc
– or any other user defined procedure that allocates heap memory.
An object id (OID) is an identifier that uniquely identifies a chunk
of memory obtained by a single call to an alloc routine. The OID
consists of two components: a static id, which uniquely identifies
the alloc call site, and a dynamic id(dynid) that uniquely identifies
every instanceof an alloc call. We can construct a graph from an
RDS instance by treating memory chunks allocated by individual
alloc calls as nodes and the pointers to other nodes as edges. We
call such graphsShape Graphs.

3.2 Reconstruction of the shape graphs
An important step in RDS profiling is the on-the-fly reconstruc-

tion of shape graphs created during program execution by observ-
ing the execution. Before describing how shape graphs are recon-
structed, let us first define them precisely. A shape graph is acon-
necteddirected graphG = (V, E). The set of verticesV is a set
of dynamically allocated objects of thesame RDS type. An edge
〈u, v〉 ∈ E if and only if a pointer field inu points tov. Since a

a. Unified Shape Graph

b. Static Shape Graph

T

T

T

T

T

T T

T

TT

Array

Tree

T

A

Figure 1: Array of Trees. USG and the corresponding SSG

particular RDS type declaration can have multiple instances created
at run time, it can produce multiple shape graphs.

Identification of heap objectsWe first assign a unique identifier
to every heap-allocated memory location. The identifier should not
only be unique but also contain information about the location of
the static instruction of the alloc call, for reasons that will be ex-
plained later. Identifiers are generated by inserting instrumentation
at each alloc call site. This only requires the binary executable and
the symbol table.

Identification of the links between the heap objectsOnce the
heap objects are identified, we need to identify how the heap objects
are linked together. An edge is created whenever there is a store
instruction of the form

store r1[off]= r2
where the registers r1 and r2 contain addresses from the heap

area. Thus, to identify the links, we need to track the flow of heap-
generated addresses as the program executes. There are at least two
ways of tracking this by instrumenting the binary appropriately, as
we will see in Section 4.

We can construct a graph whose adjacency list representation
is specified by the list of links identified as above. Such a graph
might contain nodes from different RDS instances. To further ex-
plain this, let us consider an array of trees. Figure 1(a) shows a
directed graph corresponding to an array of trees with both the tree
nodes and the array node. The nodes labeledT are the tree nodes
and the node labeledA is the array node that was created dynam-
ically. Instead of treating this whole graph as a single entity, we
want to separate the different instances of the tree, each of which
is a subgraph of the graph in Figure 1(a). To achieve this, we de-
velop an algorithm using the properties of these graphs based on
two simple observations. Before stating those observations, let us
define two more graphs: aunified shape graph(USG) and astatic
shape graph(SSG). An USG is the graph that is described above,
whose adjacency list representation contains the set of all links in

the program. Formally, a USG is a graphG = (V, E), whereV
is the set of dynamically allocated heap objects andE is the set of
pointer links between the elements of the setV . An SSG is a graph
G′ = (V ′, E′), whereV ′ is the set of all static alloc call-sites in
the program and an edgee′ = (u′, v′) ∈ E′ if e = (u, v) ∈ E
andu andv are heap locations allocated by the call sitesu′ andv′

respectively. The USG and the SSG corresponding to the array of
trees example is given in Figure 1.

Any dynamically allocated linked data structure created in the
program can be represented by an induced subgraph in the SSG.
The alloc calls that create the data structure form the nodes of this
induced subgraph. Our first observation is that such a subgraph cor-
responding to arecursivedata structure of unbounded size forms a
strongly connected component (SCC) in the SSG.1 This is because,
while an RDS instance could have potentially unbounded nodes
that are connected to each other, the SSG has only a finite number
of nodes. This creates a cycle in the graph, leading to a SCC. This
situation is similar to representing recursion in a call graph: poten-
tially unbounded invocations of a set of calls are represented by a
small set of call-graph nodes leading to an SCC in the call graph.
Based on this observation, an RDS type corresponds to an SCC in
the static shape graph. We note that there are ways of creating an
RDS that produce an induced subgraph which is not a single SCC.
Consider the case where two different lists are created by two dif-
ferent list creation routines and connected together. The resulting
induced subgraph is not a SCC, but it contains two SCCs. We treat
these as two different RDS types.

The second observation is related to the individual instances of
an RDS type. Two different RDS instances of an RDS type are
always separated by nodes that do not belong to that type: if they
are not, then they are, by definition, the same instance. In other
words, if only the nodes of a particular RDS type are retained in
the USG, the different RDS instances of that type will form disjoint
connected components, as any connection between them would be
only through nodes of a different type. For example, if we retain
only the tree type RDS nodes in 1, the different instances of the
tree type would not be connected to each other and all nodes in the
same instance would form a connected component (ignoring the
edge orientations).

These two properties of the RDS lead to an algorithm for iden-
tifying individual instances. A näıve algorithm would be to collect
the entire USG to a trace file and later process the graph to identify
the RDS instances based on these properties. This approach soon
becomes infeasible when collecting certain properties of the RDS
instances. For example, consider the lifetime (the time between
the creation of the first node and the deletion of the last node) of
an RDS instance. To compute this information using the naı̈ve al-
gorithm, one must keep track of the lifetime information ofall the
edges in the USG and later summarize it during the post-processing
phase. Thus, even though the useful data – lifetime in this case –
is just 4 or 8 bytes per RDS instance, we would be collecting that
much dataper edge in the näıve algorithm. This would result in
a huge increase in the size of the trace when a program contains a
few RDS instances with a large number of nodes.

As we will see later, this problem can be avoided if we are able
to categorize the edges of the USG into the RDS instances to which
they belong, on the fly. We need to keep track of those connected
components of the USG that correspond to the RDS instances. Iden-
tifying connected components can be efficiently implemented using
union-find data structure [3]. We treat two nodes of the USG as
connected only if they have an edge between them and the corre-

1For the purpose of our algorithm, we do not consider a single node
without a self-loop as an SCC.

typedef struct _TREE {
int n; struct _TREE * left, *right;

} tree;

tree *make_tree (int depth){
if(depth >0){

tree *t = (tree *)malloc(sizeof(tree));
t->n = depth;
t->left = make_tree(depth-1);
t->right= make_tree(depth-1);

}
else{

return NULL;
}

}
int main(int argc, char **argv){

tree **arr = (tree **)malloc(10*sizeof(tree *));
arr[0] = make_tree(2);
arr[1] = make_tree(2);
return 0;

}

(a) Source code

make_tree:
...

1 cmp4.ge p6, p7 = 0, r32
2 (p6) br.cond.dptk .L32
3 br.call.sptk.many b0 = malloc

;static id : T

4 mov r33 = r8
...

5 br.call.sptk.many b0 = make_tree
6 adds r14 = 8, r33
7 st8 [r14] = r8

...
8 adds r33 = 16, r33
9 br.call.sptk.many b0 = make_tree
10 st8 [r33] = r8
.L32:

...
11 br.ret.sptk.many b0
main:

...
12 br.call.sptk.many b0 = malloc

;static id : A

13 mov r32 = r8
...

14 br.call.sptk.many b0 = make_tree
15 st8 [r32] = r8, 8

...
16 br.call.sptk.many b0 = make_tree
17 st8 [r32] = r8

...
18 br.ret.sptk.many b0

(b) Relevant portions of the IA-64 assembly code

Figure 2: A program that creates two trees and stores the pointers to the root in a dynamically created array

sponding nodes in the SSG belong to the same connected compo-
nent. For example, in Figure 1, even though the node labeledA and
a node labeledT have an edge between them, we don’t place them
in the same connected component as the corresponding SSG nodes
do not belong to the same SCC. So we also maintain the SCC in-
formation in the static shape graph along with the union-find data
structure. When a new USG edge is seen, the nodes of the edge are
mapped to the node(s) in the SSG by making use of the static id
component of the OID, and a corresponding edge is created in the
SSG if it does not exist already. Then, we check if those node(s) in
the SSG belong to the same SCC, in which case we use the union-
find data structure to do a join of the two nodes. On the other hand,
if the static nodes do not belong to the same SCC, then all we know
is that at this point in the program’s execution, we cannot conclude
that they are in the same SCC. But a later edge might make them
belong to the same SCC and so we have to remember these edges
without summarizing them. If a change occurs in the SCC of the
SSG, then these remembered edges are revisited to see if they have
to be merged.

This process is illustrated in Figure 3. The C code and the rel-
evant portions of the assembly code for that example are given in
Figure 2. Themain function allocates an array of tree pointers
dynamically, creates balanced trees of depth 2, and assigns the re-
sulting tree pointers to the the first two elements of the array. In
Figure 3, the left column shows the dynamic instruction trace of
this program, with only the instructions relevant to the tree creation
shown. The next column shows the assignment of unique dynamic
ids (dynid) to the result of alloc calls. In this calling convention,
the registerr8 contains the return value of the function calls. We
show the dynid corresponding to the registers that contain the heap
addresses. The next section shows how we implement this in our

profiler. The third column shows the formation of the USG and the
next column shows how SSG evolves. The edges in the USG are
created when both the address and the value of a store instruction
are heap addresses. The action taken on edge creation is shown in
the fifth column, and the resulting set of RDS instances are shown
in the final column. On encountering the edge1 → 2, we connect
their corresponding SSG nodes, which is the same nodeT in this
case. Since this forms a SCC (trivially), we know that the nodes
1 and2 are of the same RDS type. We merge the profile informa-
tion from these nodes and keep track of the fact that the elements
1 and 2 belong to the same instance. This is shown in the last
column, where a set{1,2} is created and is treated as a separate
RDS instance. Similarly, when the edge1 → 3 is seen,1 and3
are merged together, and the set{1,2} is augmented to contain the
element3. When the edge0 → 1 is seen, we notice that the corre-
sponding static graph nodes of0 and1 (A andT) are in different
SCCs. Therefore, we do not merge these two nodes but instead put
that edge in a queue so that later, ifT andA become part of the
same SCC, we can merge the nodes0 and1. When the next edge,
4 → 5 is created, a new shape graph instance is created to contain
4 and5, since the corresponding static nodeT forms an SCC. Note
that these two nodes (4 and5) are not merged with the existing
set{1, 2, 3}, as there is no edge connecting elements from these
two sets. Similarly, the set{4, 5} is augmented to include6 after
the next store operation. The final store creates an edge between
0 and4, but since the corresponding static nodesA andT are still
in different SCCs, they are not merged. At the end of the example,
we are left with two sets of RDS instances-{1, 2, 3} and{4, 5, 6}.
These correspond to the two instances of the tree in the program,
which are the only two RDS instances in the program.

Instruction trace dynid USG SSG Action RDS
instances

12: br.call malloc dynid[r8] = 0
13: mov r32 = r8 dynid[r32] = 0
. . .
3: br.call malloc dynid[r8] = 1
4: mov r33 = r8 dynid[r33] = 1
. . .
3: br.call malloc dynid[r8] = 2
. . .
6: adds r14 = 8, r33 dynid[r14] = 1

7: st8 [r14] = r8

1

2

A

T

merge(1,2) since
both map to static
node T

{1,2}

. . .
8: adds r33 = 16, r33 dynid[r33] = 1
. . .
3: br.call malloc dynid[r8] = 3
. . .

10: st8[r33] = r8

1

2 3

A

T

merge(1,3) since
both map to static
node T

{1,2,3}

. . .

15: st8 [r32] = r8,8 1

2 3

0

A

T

add the edge (0,1) to
a queue since T and
A are not in SCC
yet

. . .
3: br.call malloc dynid[r8] = 4
4: mov r33 = r8 dynid[r33] = 4
. . .
3: br.call malloc dynid[r8] = 5
. . .
6: adds r14 = 8, r33 dynid[r14] = 4

7: st8 [r14] = r8 1

2

4

53

0
A

T
merge(4,5) {1,2,3},{4,5}

. . .
8: adds r33 = 16, r33 dynid[r33] = 4
. . .
3: br.call malloc dynid[r8] = 6
. . .

10: st8[r33] = r8

0

4

56

1

2 3

A

T
merge(4,6) {1,2,3},{4,5,6}

. . .

17: st8 [r32] = r8

0

4

56

1

2 3

A

T

add edge (0,4) to a
queue since T and A
are not in same SCC
yet

Figure 3: Example illustrating the working of our algorithm for an array of trees

3.3 Associating events with shape graphs
Once the RDS instances are identified, any metric of an event of

interest during program execution could be profiled at the granular-
ity of RDS instance if we could establish a mapping between the
event and an RDS instance. Let us consider the example of cache
misses during traversals of an RDS instance. The events of inter-
est are the execution of load operations whose address and data are
both heap memory locations. Since such a load traverses an edge
in the USG, it gets mapped to the RDS instance that contains this
edge, if any. The metric we are interested in is a boolean value in-
dicating if the event results in a cache hit or a miss. Since multiple
loads might be mapped to a single RDS instance, we also need a
function to aggregate this event in a suitable way. In this example,
the function is just asum function that adds the cache misses due
to different loads together. These aggregation functions are used to
combine the contents of the auxiliary data structure during the join
operation in the union-find data structure.

4. IMPLEMENTATION
We now describe our framework (Figure 4) to collect the RDS

profile. The profiler is built using Pin [9], an instrumentation frame-
work for IA-64 binaries.

To track the nodes of the USG, we instrument the program by
insertingnop instructions that have special meaning to the emula-
tor. Thesenop instructions convey information about the type of
the alloc call (malloc , realloc etc.) and the static id of that
alloc call to the emulator. When the alloc call executes, the em-
ulator associates an OID with the address generated by the alloc.
If the contents of a storage element (register or memory location)
has an OID associated with it, it implies that the storage element
contains an address in the heap region. This OID information is
used during the execution of stores to determine if the stores create
the edges of the USG and during the execution of loads to deter-
mine if it is a pointer-chasing load. To obtain the OIDs correspond-
ing to the operands of the loads and stores, two approaches could
be followed. One is to let the OIDs flow along the datapath, as
illustrated in the example in the previous section. This could be
implemented by maintaining a shadow register file with OIDs and
keeping track of heap addresses stored in memory. The other ap-
proach is to maintain a mapping between the heap locations and
the OIDs in a suitable data structure and query the structure dur-
ing load and store instructions to obtain their OIDs. The second
approach is much simpler to implement than the first one, though
it has a minor drawback: the contents of a storage element might
not have been obtained by an alloc call, but still resemble a heap
address whose OID information is stored. For example, this could
happen when a large immediate value loaded in a register lies in
the range of heap addresses. But this has a low probability of oc-
currence, especially in architectures with 64 bit addressing, and so
we choose the second approach and use a balanced binary tree to
map the addresses to the object ids. For the applications we have
chosen, we have verified that no spurious edge is introduced in the
SSG by this method.

Our profiler framework (Figure 4) consists of two components:

• the OID manager

• the profile builder

The OID manager and the profile builder closely interact with each
other to produce the RDS profile. We now describe these two com-
ponents, their functionalities, and the interactions between them.

INSTRUMENTATION

EMULATOR

OID MANAGER

PROGRAM OUTPUT

EXECUTABLE INPUT

EVENTS PROFILE

BUILDER

SHAPE PROFILE

Figure 4: Block diagram of the profiler

4.1 OID manager
The function of the OID manager is to manage the OIDs gen-

erated by the alloc call. The OIDs are generated by instrumenting
the system calls that allocate memory from the heap:malloc ,
calloc , andrealloc or any other user-defined alloc call. The
immediate field of thenop instruction provides the static id part of
the OID, while the dynid is generated by a counter incremented af-
ter every alloc call. On everymalloc andcalloc (or the equiv-
alent call) the current value of the counter is used to form the OID
and then the counter is incremented. Since arealloc merely
alters the size of an existing object and does not create a new “logi-
cal” object, it reuses the counter value from the OID corresponding
to its input heap address. The mapping between the heap locations
and the OIDs are maintained in an AVL tree. Each node of this tree
contains the heap address generated by some alloc call, the number
of bytes allocated by that call, its OID and its dynamic instruction
count. We use the dynamic instruction count as a representative of
the execution time.

On a store instruction, the OID manager obtains the OIDs corre-
sponding to both the store address and the store value from the AVL
tree. If both the address and the value have a valid OID, it generates
theedgeaddevent in the profile builder that indicates that a USG
edge has been created. The source and destination OIDs and the
offset of the source node at which the link originates are passed to
the profile builder along with this event. On a load instruction, if
the load address and the loaded value have a valid OID, the OID
manager generates theedgetraverseevent passing the same values
as in the case ofedgeadd. On a call to thefree routine, which
is also appropriately instrumented, the OID manager generates the
nodedeleteevent passing the OID of the deleted node. Thus the
OID manager maintains the OID information, determines if a USG
edge is created or traversed or if a USG node is deleted, and triggers
appropriate events in the profile builder.

4.2 Profile builder
The profile builder receives the edges of the USG from the OID

manager and uses them to reconstruct shape graphs and collect the
profile. The OID manager triggers theedgeadd, edgetraverseand
the nodedeleteevents, signifying addition of edges, traversal of
edges and removal of nodes on loads, stores, and calls tofree
respectively. These events are implemented as procedure calls in
the profile builder.

The profile builder maintains and updates the static shape graph.
It also maintains the connected component information using the
union-find data structure. The basic union-find data structure is
modified so that each node is also associated with a pointer to an
auxiliary data structure that is used for the purposes of profile col-
lection, as described in 3.3

On anedgeadd event, the profile builder obtains the static id
information of the two nodes from the OIDs and creates an edge
between the nodes with these static ids in the SSG, if an edge does
not exist already. Note that the static nodes corresponding to the
two dynamic nodes can be the same, in which case the resulting
edge creates a self loop in the SSG. Then the profile builder checks
to see if the nodes belong to the same SCC in the static shape graph.
Identifying strongly connected components in a graph can be done
in O(|V | + |E|) time [3]. Typically, the SSG is of a small size
and so the cost of identifying SCCs by this method will not be
high. But we can do better than this since the graph changes only
incrementally, one edge at a time. We use the online algorithm for
finding SCCs given by Pearce and Kelly ([12]). By maintaining
certain information, the algorithm ensures that only a section of the
graph has to be searched for the presence of a new SCC when a
new edge is added. This algorithm has a complexityO(δ log δ),
whereδ is proportional to the size of the section of the graph that
has to be searched when this edge is inserted. After updating this
SCC information, we check if the two static nodes belong to the
same SCC. If so, we merge these two nodes using the union-find
data structure. We also merge the the auxiliary information of the
two nodes appropriately.

On anedgetraverseevent, the representative node correspond-
ing to the two nodes is found from the union-find data structure.
The metrics of interest associated with this event are suitably com-
bined with the contents that already exist in the auxiliary data struc-
ture.

On thenodefree event, the profile builder updates the fact that
a particular node has been removed. This is used in computing
the RDS lifetime information. This event could also be used to
reduce the space requirement by using the union find with delete [6]
structure.

5. SCOPE OF RDS PROFILING
In this section we discuss a subset of metrics of RDS instances

that can be collected using RDS profiling. These metrics reveal
useful information about RDS and their memory access pattern that
are not revealed by existing profiling techniques.

Lifetime of an RDS instance.The lifetime of an RDS instance
is the time between its creation and destruction. There are many
ways of defining the creation and destruction of an RDS instance.
We consider the time when the first node in the RDS is allocated
as the creation time and the time when the RDS instance is last tra-
versed as the destruction time. The lifetime of an RDS instance is
an important criterion in estimating the cost/benefit trade-offs in-
volved in applying any dynamic optimizations at RDS granularity.

Edge properties. We can collect various metrics involving the
RDS edges. For example we classify the edges as forward or back-

ward edges depending on whether the source of the edge is older
than the destination or vice-versa. This property provides an under-
standing of how the RDSs are created. An RDS instance with lots
of backward edges is created bottom up. This information could be
used while designing cache prefetchers for linked data structures.
For example a stride based prefetcher might use negative strides
while traversing RDS instances created bottom-up.

Operations involved in RDS creation.When the oid manager
triggers events to the profile builder, it can also pass information on
the static instruction in the program that triggered the event. This
helps to collect all the instructions involved in the creation, traversal
and deallocation of the nodes and edges in an RDS instance.

Shape of the RDS.In our experiments, rather than maintain-
ing the shape graph in its entirety, we only store the information
about the connected components. If we retain the RDS instance as a
graph, we could identify the actual shape by some post-processing.
But some of the edges in this graph may be transient. For exam-
ple, a list reversal routine might produce cycles in an RDS instance
even though the list may not have cycles otherwise. One heuristic
to alleviate this problem is to add an edge to the shape graph only
if it is not replaced by another edge that originates from the same
node at the same offset within a particular interval. Choosing the
interval appropriately will remove the transient edges.

Traversal patterns. Another interesting application of shape
profiling is to identify the traversal patterns of RDSs. For a given
RDS instance, we try to find correlation between successive traver-
sals of that instance. As an example, if an accessu → v is followed
by u′ → v′, we can categorize this sequence based on whether
v = u′ or u = u′ or no relationship exists between the vertices.
This helps determine whether a DFS or a BFS is the more likely
traversal of the graph.

Memory performance of RDS instances.RDS profiling cap-
tures the memory performance of RDS instances. Data layout op-
timizations can use this information to layout only those RDS that
incurs significant memory access latencies. The performance of
different memory allocators can also be compared based on this
metric.

RDS stability factor. An important property of an RDS is a
measure of theirstability. The notion of stability is an useful metric
for doing list linearization [2, 10]. For linearization to give maxi-
mum benefits, the pointer fields of the list must not change after the
list is linearized.

A stable structure is one where the relative positions of the RDS
elements is unchanged once the edges are created for the first time.
Thus, stability measures howarray like an RDS is as the relative
positions of the elements are never changed in an array. As an
example, a linked list in which an element is never inserted is con-
sidered stable.

To quantify this notion of stability, we propose a new metric
called stability factor. In order to compute this metric, we first
divide the lifetime of the instance by markingn alteration points
along its lifetime, where an alteration point is a program point
where a new edge is added to the RDS instance or an edge is re-
moved from the instance. We denote the number of accesses be-
tween the pointsi andi+1 asa(i). The RDS Stability Factor (RSF)
s is defined as

s = min(k|(
X

j∈i1,i2...ik

a(j)) ≥ t.A)

whereA is the total number of pointer chases in that instance and
t is some threshold close to 1. In our experiments, we sett to
be0.99. An RDS with a stability factor of1 indicates that atleast
99% of all its pointer chasing loads take place in an interval where

L1D 16K, 4 way associative, 1 cycle latency
L2 Unified 256K, 8 way associative, 6 cycle latency
L3 1.5M, 12 way associative, 13 cycle latency
Memory 100 cycle latency

Table 1: Details of the cache hierarchy

there are no stores to the pointer field of any of the RDS nodes in
that instance. An RDS with a lower RDF is a better candidate for
applying linearization.

6. EXPERIMENTAL RESULTS
The profiler is implemented using Pin [9] for IA-64 binaries. The

experiments were conducted on a 900MHz Itanium 2 machine with
2GB RAM running RH7.1 Linux. For the experiments that involve
measuring the memory access latency, we use a cache simulator de-
veloped using the Liberty Simulation Environment (LSE) [15]. The
simulator models a four-level functional hierarchy and emulates
IA-64 binaries. The details of the memory hierarchy are shown
in Table 1.

We ran the RDS profiler on a mix of SPEC2000, Olden and two
other benchmarks –ks, an implementation of a graph partitioning
algorithm, andtree puzzle, which implements a fast tree search al-
gorithm – that use recursive data structures. The dynamic instruc-
tions executed by the applications are given in Table 2. We first
show the performance of the profiler in terms of its space and time
overhead. Then we show some characteristics of the benchmarks
themselves that are revealed by RDS profiling.

6.1 Profiler performance
For each benchmark, time taken to emulate the benchmark with

and without the RDS profiler. The values are given in columns 2
and 3 of Table 2.

The memory requirements for the profiler consist of three major
components. The first component is the space required to store the
AVL tree that tracks the OID. The number of nodes is bounded by
the maximum number of allocs at any point in time. The second
component is the size of the union-find data structure. The number
of entries in this structure is also bounded by the maximum number
of allocs. The third component is the size of the structures for stor-
ing the profile information for individual RDS instances. Unlike
the other two components, the size of this is proportional only to
the number of the shape graphs, which is usually a much smaller
value than the number of allocs.

The memory requirement is given in the fourth column of Ta-
ble 2. We note that most of the benchmarks have a very low space
requirement (<1MB). In contrast, treepuzzle takes up to 153 MB
of memory. The memory requirement depends on the RDS usage
of the applications.

6.2 Memory characteristics of applications
We now discuss the memory characteristics of the different ap-

plications we have used in this experimental setup. The properties
of the RDS that we measure are tabulated in Table 3. The bench-
marks in our suite show a wide range of RDS properties. This
wide range of behavior among pointer intensive routines illustrate
the need for further understanding their behavior by techniques like
RDS profiling.

The first property we quantify is thetypeof RDS. As discussed
earlier, the type of the RDS corresponds to a strongly connected
component in the static shape graph. There are a small number
of RDS types in many of the programs. Most of them have just

0

25

50

75

100

R
D

S
in

st
an

ce
s

0 20 40 60 80 100

Lifetime(normalized)

olden-bh
olden-mst
130.li
175.vpr
188.ammp
197.parser
253.perlbmk
ks
tree-puzzle

Figure 5: Cumulative distribution of RDS lifetimes

100

102

104

106

#
R

D
S

In
st

an
ce

s

0 20 40 60 80 100

Time(normalized)

olden-bh
olden-mst
130.li
175.vpr
188.ammp
197.parser
253.perlbmk
ks
tree-puzzle

Figure 6: Time vs # RDS instances

one or two RDS types, with197.parserhaving a maximum of 31
RDS types. But each type might have multiple instances created
at runtime. The number of RDS instances show a large variation
between the benchmarks. Among the SPEC benchmarks, on one
side of the spectrum197.parsercreates more than a million RDS
instances, while130.li has just one RDS instance. In the next two
columns we partition the edges in the shape graphs into forward
and backward edges as defined in the previous section. Such a
categorization indicates whether the data structures are created in a
top-down fashion or a bottom-up fashion. The next column shows
the average size of an RDS instance measured in number of edges.
The average size in number of edges of an RDS instance also shows
a lot of variance ranging from 5 in175.vprto more than 3 million
in 130.li. The table also shows the total accesses of the edges of
the shape graph and the average latency to traverse an edge for the
given cache model. As expected, long-running benchmarks with
a few long-lived shapes have low average access latency per RDS
instance, due to high locality.

6.2.1 Distribution of RDS lifetime
We now take a detailed look at the lifetime of RDS instances.

Figure 5 shows the cumulative distribution frequency of the life-
times. The X axis shows the time normalized with respect to the
total execution time of the program and the Y axis shows the cu-
mulative distribution frequency (cdf) of the RDS instances for the
lifetime given by the X coordinate. A common behavior across al-
most all benchmarks is that at least one of the RDS instances tend
to be alive almost throughout the program. This is evident from the
fact that when the cdf reaches a value of 100%, the X co-ordinate
is close to 100%. This conveys the fact that programs tend to have
one “core” RDS that is created during the initialization phase and
is live almost till the end. Another view of the distribution of the
RDS instances over time is given by Figure 6. In this figure we plot
the normalized life time in the X axis and the number of live RDS

Benchmark # Dynamic Instructions Time (Baseline) Time (with Profiling) Memory Usage
in billions in secs in secs in MB

130.li 0.65 12 137 < 1
175.vpr 57.83 652 11295 1.5
188.ammp 102.8 3538 22171 3.5
197.parser 24.9 276 9377 122
253.perlbmk 105.9 2445 32221 85
oldenbh 2.51 28 170 < 1
oldenmst 0.56 5 113 88
ks .02 3 10 < 1
treepuzzle 163 1447 19126 152.6

Table 2: Execution time and space requirement

Benchmark #RDS Types #RDS #Fwd. #Bkwd. #Avg. Size #Avg. Lifetime Total Avg.
Instances Edges Edges (normalized) Accesses Latency

oldenbh 2 5 1666 511 435 98.26 130175 1.86
oldenmst 1 2048 0 14208 6 47.27 32117 2.77
130.li 1 1 2697460 561356 3258816 99.99 9678408 3.67488
175.vpr 2 877 4742 0 5 0.121 28821 4.45
188.ammp 7 8 3723951 16027 467497 95.7713 636186339 4.14577
197.parser 31 1409099 28533225 37991142 47 0.28 707958303 3.92
253.perlbmk 4 29 520 236 26 24.12 26156678 1.00568
ks 3 646 14155 14385 44 99.9 1480740810 1.07221
treepuzzle 3 3 36 31 22 57.01 527833 1.30975

Table 3: Characteristics of RDS

instances in the Y axis. At time 0, the number of RDS instances
is 0. In most of the benchmarks, the number of RDS instances
reaches a non-zero value soon and remains non-zero almost till the
end of program execution. This does not contradict our hypothe-
sis that there is at least one RDS instance that is created early and
remains alive till the end. Another type of interesting behavior is
shown by197.parser. This benchmark has the maximum number
of RDS instances among all the benchmarks we have profiled. In
Figure 5, the line for parser shows a steep increase immediately af-
ter time 0, and stays slightly less than 100 almost near the end. This
implies that an overwhelming fraction of the RDS instances have
very short normalized lifetimes, but there is at least one instance
which is alive for almost the entire life of the program. These ob-
servations match well with the actual behavior of the benchmark as
seen from its source code. The application uses RDS to first cre-
ate a dictionary. Then, as it reads the input file, it creates a bunch
of data structures for each sentence and parses the sentence. Once
the sentence is parsed, it deletes the RDS instances corresponding
to that sentence. These RDS instances created for each of the sen-
tences are the short living RDS instances, while the RDS created
for the dictionary is alive throughout the entire program.

6.2.2 RDS stability factor
As stated in the previous section, we use the RDS stability fac-

tor (RSF) metric to quantify the stability of the RDS. In this section,
we show how stable are the RDS instances in our benchmarks. Fig-
ure 7 shows the cdf of the RSF. We plot the X axis (RSF) only up to
a value of 10. The Y axis shows the percentage of RDS instances
weighted by the pointer chasing loads within the given RSF. We
find that in many benchmarks, most pointer chasing loads belong
to RDS instances that have good RSF values (<= 2). On the other
side of the spectrum,188.ammphas a negligible fraction of loads
within a RSF of10, and in197.parser, only about35% of them
have a RSF within 2. In case of188.ammp, the major fraction of

0

25

50

75

100

R
D

S
in

st
.(

w
ei

gh
te

d
by

tr
av

er
sa

ls
)

0 2 4 6 8 10

RDS Stability Factor

olden-bh
olden-mst
130.li
175.vpr
188.ammp
197.parser
253.perlbmk
ks
tree-puzzle

Figure 7: Cumulative distribution of RDS stability factor

the pointer chasing loads occur in two lists : a list ofatoms and a list
of tethers. The program reads an input file, sometimes adds new el-
ements to one of these lists, and traverses the lists in between. Thus
the lists keep expanding as the input is read and hence the traversals
get distributed across several alteration points. On the other hand,
Oldenbenchmarks typically create some data structures and then
process them, thereby having a good RSF value.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduce a new profiling technique called shape

profiling. We describe how shape profiling identifies the logically
disjoint recursive data structure instances in a program, without re-
quiring a high level program representation or type information of
program variables. Using shape profiling, we were able to iden-
tify various properties of RDS in a set of benchmarks that are not
revealed by other profiling techniques. We also describe the no-
tion of stability of a shape and define a metric to quantify it. Our
implementation of the profiler had a manageable time and space

overhead.
The future work includes leveraging this technique to capture

more interesting properties of shapes. We plan to investigate com-
piler optimization techniques that could use this shape profile in-
formation to optimize at the granularity of data structure instances.

8. REFERENCES
[1] CALDER, B., KRINTZ, C., JOHN, S.,AND AUSTIN, T.

Cache-conscious data placement. InProceedings of the 8th
International Symposium on Architectural Support for
Programming Languages and Operating Systems
ASPLOS’98(October 1998).

[2] CLARK , D. W. List structure: measurements, algorithms,
and encodings. PhD thesis, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, 1976.

[3] CORMEN, T. H., LEISERSON, C. E.,AND RIVEST, R. L.
Introduction to Algorithms. The MIT Press and
McGraw-Hill, 1992.

[4] GHIYA , R., AND HENDREN, L. J. Is it a tree, dag, or cyclic
graph? InProceedings of the ACM Symposium on Principles
of Programming Languages(January 1996).

[5] HACKETT, B., AND RUGINA , R. Region-based shape
analysis with tracked locations. InProceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages(2005), pp. 310–323.

[6] K APLAN , H., SHAFRIR, N., AND TARJAN, R. E.
Union-find with deletions. InProceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms
(2002), pp. 19–28.

[7] L ATTNER, C., AND ADVE, V. Automatic pool allocation for
disjoint data structures. InProceedings of the Workshop on
Memory System Performance(2002), ACM Press, pp. 13–24.

[8] L ATTNER, C., AND ADVE, V. Data structure analysis: A
fast and scalable context-sensitive heap analysis. Tech. Rep.
UIUCDCS-R-2003-2340, University of Illinois, Urbana,
Illinois, April 2003.

[9] L UK , C.-K., COHN, R., MUTH, R., PATIL , H., KLAUSER,
A., LOWNEY, G., WALLACE , S., REDDI, V. J., AND

HAZELWOOD, K. Pin: Building customized program
analysis tools with dynamic instrumentation. InProceedings
of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation(June 2005).

[10] LUK , C.-K., AND MOWRY, T. C. Memory forwarding:
Enabling aggressive layout optimizations by guaranteeing
the safety of data relocation. InProceedings of the 26th
International Symposium on Computer Architecture(July
1999).

[11] NYSTROM, E. M., JU, R. D., AND HWU, W. W.
Characterization of repeating data access patterns in integer
benchmarks. InProceedings of the 28th International
Symposium on Computer Architecture(September 2001).

[12] PEARCE, D. J.,AND KELLY, P. H. J. Online algorithms for
topological order and strongly connected components. Tech.
rep., Imperial College, September 2003.

[13] RUGINA , R. Quantitative shape analysis. InProceedings of
the 11th Static Analysis Symposium(2004).

[14] SAGIV, M., REPS, T., AND R.WILHELM . Solving
shape-analysis problems in languages with destructive
updating. InProceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL)(January 1996), pp. 16–31.

[15] VACHHARAJANI , M., VACHHARAJANI , N., PENRY, D. A.,
BLOME, J. A., AND AUGUST, D. I. Microarchitectural
exploration with Liberty. InProceedings of the 35th
International Symposium on Microarchitecture (MICRO)
(November 2002), pp. 271–282.

[16] WU, Q., PYATAKOV , A., SPIRIDONOV, A. N., RAMAN , E.,
CLARK , D. W., AND AUGUST, D. I. Exposing memory
access regularities using object-relative memory profiling. In
Proceedings of the International Symposium on Code
Generation and Optimization(2004), IEEE Computer
Society.

