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Abstract

Given the central role of simulation in procesor design
and research, an accurate, validated, and easily modified
simulation model is extremely desirable. Prior work pro-
posed a modeling methodology with the claim that it allows
rapid construction of flexible validated models. In this pa-
per, we present our experience using this methodology to
construct a flexible validated model of Intel’s Itanium 2 pro-
cessor, lending support to their claims. Our initial model
was constructed by a single researcher in only 11 weeks and
predicts processor cycles-per-instruction (CPI) to within
7.9% on average for the entire SPEC CINT2000 benchmark
suite. We find that aggregate accuracy for a metric like CPI
is not sufficient; aggregate measures like CPI may conceal
remaining internal “offsetting errors” which can adversely
affect conclusions drawn from the model. We then modi-
fied the model to reduce error in specific performance con-
stituents. In2 1

2 person-weeks, overall constituent error was
reduced from 3.1% to 2.1%, while simultaneously reducing
average aggregate CPI error to 5.4%, demonstrating that
model flexibility allows rapid improvements to accuracy.
Flexibility is further shown by making significant changes
to the model in under eight person-weeks to explore two
novel microarchitectural techniques.

1. Introduction

Simulation is the preferred method of measurement for
much of the computer architecture community. For sim-
ulation, computer architects would prefer to usevalidated
models of realized systems overnon-validatedmodels for
several reasons. First, a real system provides a golden stan-
dard which the community can use as a point of reference.
Second, the existence of the real system provides proof that
the model is implementable and suggests that reasonable
variants are implementable as well. Finally, and perhaps
most importantly, a validated model provides more confi-

dence in conclusions drawn using the model. Prior to vali-
dation, models often fail to represent important interactions
between different parts of the system and fail to capture sur-
prising corner case behavior. Previous works such as those
by Black and Shen [2], Gibson et al. [6], and Desikan et
al. [3] have shown that this effect can be significant and that
non-validated models can lead to incorrect conclusions.

Unfortunately, computer architects tend not to use val-
idated models for several practical reasons. First, vali-
dated models can be extremely time-consuming to con-
struct because constructing highly detailed models is dif-
ficult [2]. Second, even if simulators were easy to con-
struct, not enough information about a design may be pub-
licly available to decide what to construct [7]. Finally, val-
idated models are often so detailed that they may be too
time-consuming to modify for initial studies of many dif-
ferent design points [4]. This may impede innovation if it
becomes difficult to study design points not immediately
adjacent to the reference machine.

Prior work claims that validated models need not be hard
to construct and need not be difficult to modify to explore
wide areas of the design space. To support this claim, prior
work presented a modeling methodology (which we will
call the Liberty Modeling Methodology) [17, 16]. This
modeling methodology is centered around three modeling
principles:

1. structural modeling of the system
2. aggressive reuse of model components
3. iterative refinement of the model

They have also released a modeling framework con-
sisting of a structural modeling language and a simulator-
constructing compiler to support these principles called
the Liberty Simulation Environment (LSE). However, their
claims have not yet been substantiated with a complete val-
idated model.

In this paper, we present our experience building a vali-
dated Itanium 2 model using the Liberty methodology and
tools. This experience serves as an instance proof that it



is indeed possible to rapidly construct an easily-modifiable
validatedprocessor model. Using LSE, a lone computer ar-
chitect was able to construct an initial validated model of
Intel’s Itanium 2 processor in only 11 weeks including the
time to reverse engineer the physical hardware. This model
predicted hardware cycles-per-instruction (CPI) to 7.9%
with a maximum error of 20% across all SPEC CINT2000
benchmarks.

During this investigation, we discovered that traditional
metrics of validated modelquality are inadequate. This pa-
per shows that models validated against a single aggregate
metric, such as CPI, are insufficient for proper design-space
exploration since the model may still contain large inter-
nal error constituents. Withaggregate validation, internal
error constituents may simply offset each other. We show
that such errors exist in our initial model and that these
“offsetting errors” can lead to poor design decisions. To
correct these errors, we refined our model until it was val-
idated against the hardware for multiple constituent met-
rics. This refinement took an additional 2.5 person-weeks
and resulted in the currentconstituent-validatedmodel that
predicted CPI to within 5.4% across all SPEC CINT2000
benchmarks and contained far fewer offsetting errors.

To further assess the model’s flexibility, we constructed
two novel derivatives — an Itanium 2 with a variable la-
tency tolerance technique and an Itanium 2 CMP processor
with an unconventional interconnection mechanism [14].

The remainder of this paper is organized as follows. Sec-
tion 2 describes the Liberty Modeling Methodology. Sec-
tion 3 describes the Itanium 2. Section 4 then describes our
first experience using the Liberty Modeling Methodology to
build a validated model of the Itanium 2 and presents data
regarding the aggregate quality of the model. Section 5 de-
scribes why, despite low CPI error, an aggregate-validated
model may be unsuitable for microarchitecture research.
Section 6 describes how we refined our initial model us-
ing constituent validationto correct this shortcoming and
gives results. Section 7 describes experience modifying the
model to explore novel ideas. Section 8 concludes.

2. The Modeling Methodology

To build a validated model, one must be able to control
the sources of significant error in a system. Black and Shen
identify three such sources of error in performance mod-
els [2]. These sources of error are:

Specification errors One does not fully understand the sys-
tem being modeled and so models the wrong system.

Modeling errors Mistakes are made while incorporating
understood system behavior into the model. The model
does not do what one thinks it does.

Abstraction errors One deliberately decides not to model
some behavior accurately, either by leaving out the be-
havior entirely or by not modeling all of its details.

Prior work describes a modeling methodology, which we
will call the Liberty Modeling Methodology, with the claim
that it allows rapid construction of validated models [17,
16]. The Liberty Modeling Methodology is centered around
three modeling principles, each of which they claim has a
role in ensuring a reduced error rate and an improved time-
to-model. Here is brief summary of these principles and the
role they play:

Structural system modeling A hardware system design is
conceived as hierarchically composed concurrently ex-
ecuting blocks. Attempts to map this hierarchical and
concurrent system to another composition strategy, such
as composition via procedure invocation in C or C++,
naturally introduce modeling errors [17]. As a result, the
modeling environment should be concurrent and struc-
tural. This feature is also key to reducing model speci-
fication time because it simplifies the mapping of hard-
ware design to modeland because it is the key enabler
for component reuse [17].

Aggressive component reuseBy aggressively reusing
model components, the cost of building a component is
amortized across many different designs, reducing total
exploration time. Reuse also has the side benefit of re-
ducing error rates because basic behaviors are specified
once and validated in many different models. This limits
the source of modeling errors to incorrect component
usage and eliminates the component specification from
consideration in most cases.

Iterative model refinement In order to build an accurate
model rapidly one should iteratively refine the model.
This occurs by constructing a model for each hardware
component and insuring that it functions correctly when
added to the model. As the modeling effort proceeds,
hardware component models are refined and their accu-
racy validated. Once all hardware components are mod-
eled, the overall accuracy of the model is checked. The
model portions responsible for any error are identified
and the model is refined to the desired level of accuracy.

Prior work showed that the above principles require ex-
plicit tool support in practice, requiring both a structural
modeling language and a simulator-generating optimizing
compiler to generate anefficientsimulator [17]. Further-
more, for reuse to be practical, the system must simplify
the use of flexible components by inferring parameters and
avoiding overly redundant user specifications [16].

Note that the above methodology is focused on reduc-
ing modeling errors and model construction times. Elimi-
nation of specification and abstraction errors are left to the



architect. In the remainder of this paper, we will describe
our experience of managing and controlling abstraction and
specification errors as well as our experience of using the
Liberty methodology to control modeling errors.

3. Our Target: Itanium 2

The Intel Itanium 2 processor is a member of the Itanium
Processor Family (IPF) and implements the IA-64 instruc-
tion set architecture (ISA) [10]. Each IA-64 instruction has
a complexity similar to that of a single RISC instruction.
Three instructions are grouped into a 128-bit bundle, which
also containsstop bitswhich indicate which instructions
may not be issued together due to data dependencies. In-
structions have access to 128 architected general purpose
registers and 64 predicate registers and may be indepen-
dently predicated. The ISA also supports limited compiler
controlled renaming for procedure arguments, locals, and
return values reminiscent of the rotating register windows
in the SPARC architectureas well as rotating registers for
use in conjunction with software pipelining.

The Itanium 2 has an eight-stage in-order pipeline which
can issue up to two bundles per cycle (i.e., up to 6 RISC-like
operations per cycle). A diagram of the pipeline appears in
Figure 1. Bundles are fetched from the instruction cache
in the IPG stage and placed into an instruction buffer in
the ROT stage. Fetched instruction bundles are broken into
issue groups based upon the stop bits and functional unit
structural hazards in the EXP stage. Once an issue group is
formed, the group proceeds in lock-step down the pipeline
until reaching the DET stage. The REN stage implements a
Register Stack Engine which manages register stack frames
and inserts implicit register spill and fill instructions. The
REG stage detects and stalls on data hazards. The EXE
and DET stage and additional stages for floating-point and
memory operations execute instructions; all exceptions are
known in the DET stage. Branches are also resolved in the
DET stage. The WRB stage updates registers.

The data cache unit is quite complex. The L1 data cache
is tightly integrated into the main pipeline. The L2 unified
cache operates independently from the main pipeline; it is
non-blocking and reorders transactions to avoid bank con-
flicts. A unified L3 cache and system bus controller handles
misses from the L2 cache. Data cache sizes are indicated in
Figure 1. For comparison, we use a HP workstation zx6000
with 2 900 MHz Intel Itanium 2’s running Redhat Advanced
Workstation 2.1. This system has 4GB of memory with a
minimum latency of 141 processor cycles.

4. Constructing the Initial Model

In this section, we describe how we applied the Liberty
Modeling Methodology to construct a validated model of

Intel’s Itanium 2 processor. Since the Liberty Modeling
Methodology is focused on modeling error, we also present
extensions to its iterative refinement principle that address
specification and abstraction errors.

4.1. The Modeling Process

Using iterative refinement, each pipeline stage or major
processor component of the model was developed in three
steps: investigating the system behavior, determining the
level of abstraction to use, and building a model for the
hardware. This process was repeated for each stage of the
pipeline moving from the front of the pipeline to the back.

The development activities for each week were (as
recorded in the modeler’s journal):

Week 1: Read documentation and decided on basic over-
all model structure. Modeled basic IPG and ROT stages
without branch prediction.

Week 2: Investigated branch behavior on short loops. Dis-
covered that branch predictor updates insert pipeline
bubbles in a complex fashion. Determined structure of
pipeline logic to use branch prediction results.

Week 3: Continued investigating branch behavior and
front-end bubble insertion.

Week 4: Finished investigation and modeling of branches
and front-end bubbles. Investigated and modeled the
EXP stage. Began investigating the REN stage, and dis-
covered that speculation of the bottom of the register
stack frame was required.

Week 5: Finished modeling the REN stage without specu-
lation. Implemented a simple scoreboard (REG stage)
w/o bypasses, EXE, DET, and WRB stages.

Week 6: Implemented REN-stage speculation. Added logic
for corner cases of predicate scoreboarding. Added sam-
pling support. Began debugging major benchmarks.

Week 7: Continued debugging. Added bypass logic.
Started investigating the data-cache unit (DCU) struc-
ture.

Week 8: Continued to investigate DCU structure.

Week 9: Implemented the DCU L1 data cache, advance
load address table (ALAT), and translation look-aside
buffers (TLBs).

Week 10: Added very abstract level two data cache (L2),
level 3 data cache (L3), memory models. Implemented
level 1 instruction cache (L1I), and instruction TLBs
(ITLBs).

Week 11: Cleaned up the model and added monitors to
match hardware counters. Continued debugging. Added
dynamic branch prediction and return address stack.
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Figure 1. Itanium 2 pipeline

Notice that in each phase of the iterative refinement we
strictly repeated three steps: each component was first sys-
tematically investigated, modeling decisions were made,
andthenthe model portion was constructed. This discipline
extends iterative refinement to act as our primary means of
controlling specification error in addition to modeling error.
A fourth step, evaluation of the overall model, was used
throughout the refinement process when appropriate. We
now describe each of these steps in more detail.

4.2. Investigation

In total, investigation took 5 of the 11 weeks. The pur-
pose of the investigation step at each phase of refinement
was to understand the behavior and structure of the proces-
sor to avoid specification errors. Two sources of informa-
tion proved to be useful: documents and experiments run
upon the actual hardware.

The documents used included processor manuals [9, 8],
slides from symposium presentations [15, 11], white pa-
pers [1], magazines [12], and academic publications [5].
The different kinds of documents served different purposes.
Slides, magazines, and white papers provided the basic
pipeline structure and the parameters of structures such
as caches. Processor manuals described instruction laten-
cies, structural hazards, interesting corner cases, and perfor-
mance counters. Academic publications clarified structural
details of the cache designs and integer bypass paths.

While all documents were helpful, their use was not
without difficulty. Documents sometimes lacked clarity or
organization, obscuring vital details. For example, some
elements of the second-level cache request queue are re-
served. This information is provided, not in the L2 section,
but rather in the L1 data cache section. Much useful infor-
mation was also omitted. For example, only one document
explicitly stated the write allocation policy of the L3 cache.
Even worse, sometimes when a single document provided
information, it was wrong. For example, the description of

the EXP stage rules for memory instructions in the proces-
sor reference manual [9] is incorrect with respect to usage
of load and store ports. Finally, documents were sometimes
contradictory. For example, the processor reference man-
ual [9] and the microarchitectural optimization manual [8]
make contradictory statements about how bank conflicts in
the L2 data cache delay accesses.

These difficulties led to the formulation of a general prin-
ciple: Quantitatively verify all documents.Documents are
good for making hypotheses about structure or behavior, but
they cannot be relied upon.

Experiments were used for two purposes: to test
hypotheses and to explore the behavior of the proces-
sor. Experiments were generally performed usingmicro-
benchmarks, as advocated by Black and Shen [2] and De-
sikan et al. [3], with Perfmon [13] used to provide mea-
surements of the Itanium 2 hardware performance counters.
The typical micro-benchmark consisted of a loop with the
code to be tested inside of it. The loop had a trip count
high enough to overcome fluctuations in the tools used to
measure hardware performance and other transients.

As an example of hypothesis testing, consider the contra-
diction in the documentation which was described earlier.
To test which document was correct, it was necessary to set
up a bank conflict between two loads which miss the first-
level data cache with a use of the second load following
immediately, as in Figure 2(a). The results from this mi-
crobenchmark indicated an 11 cycle latency, validating the
claims made in the microarchitectural optimization manual.

As an example of behavioral exploration, consider Fig-
ure 2(b). By varying the number of issue groups of nops
(no-operation instructions) inserted between the first and
second issue group, we discovered that the third load could
be caused to have a bank conflict with the second load’s re-
issue after its own bank conflict. Surprisingly, the latency
of the third load becomes 7, not 11 as would be expected
based on the previous experiment.

Detailed investigation and modeling of behavior proved



{ // 1st issue group
ld4.nt1 r20 = [r5] // forces L1 miss
ld4.nt1 r21 = [r5] ;; // will conflict

}
{ // 2nd issue group

add r2 = r21, r0 // to see latency
}

(a) Bank conflict micro-benchmark

{ // 1st issue group
ld4.nt1 r20 = [r5] ld4.nt1 r21 = [r5] ;; }

{ //2nd issue group
ld4.nt1 r22 = [r5] ;; // extra conflict }

//insert nop groups here
{ // 3rd issue group add r2 = r22, r0 }

(b) Three bank conflicts micro-benchmark

Figure 2. Micro-benchmarks

to be very beneficial for final accuracy, even when the ratio-
nale behind the behavior was initially unclear. For example,
we found that the Register Stack Engine sometimes issues
one spill or fill per cycle but at other times issues two, de-
pending upon the address at which the spill or fill begins.
This behavior was very easy to model, even though we did
not understand why it was happening. Later, as the data
cache unit was being modeled in more detail, we observed
that this behavior is precisely that required to avoid bank
conflicts in the second-level data cache.

4.3. Abstraction

Along the way, many decisions about the abstraction
level of the model needed to be made. Some of the ab-
stractions and approximations were:

• No instruction prefetch engine was implemented.

• The memory hierarchy beyond the L1 caches was ex-
tremely abstract: the model probed the caches, calcu-
lated a hit/miss latency, and then delayed the instruc-
tion by that many cycles.

• A constant value was charged for hardware page table
walks.

Note that these abstractions werenot validated using
quantitative measurements. As will be discussed in Sec-
tion 6, this mistake led to large abstraction errors. Based
on our experiences with this non-quantitative strategy, we
strongly discourage its use.

Of particular interest is that poorly chosen abstractions
canreduceflexibility. The Register Stack Engine was origi-
nally modeled by causing pipeline stalls proportional to the
number of registers to spill or fill, without actually perform-
ing memory accesses. This proved to require special case
logic in the scoreboard, which in turn made it difficult to

change pipeline organization. The time necessary to cor-
rect this poor abstraction choice (two weeks) is included in
the time needed to change the model in Section 7, though
the performance effects of the correction are included in all
reported results.

4.4. Modeling

The model was constructed using the Liberty Simulation
Environment (LSE) [17], which provides explicit support
for structural modeling, aggressive reuse, and iterative re-
finement. Recall that the investigation took 5 of 11 weeks,
meaning that the modeling activity required only 6 weeks in
total. The features of the LSE designed to support the three
Liberty Modeling Methodology principles were essential to
this rapid model development.

The modeling of the EXP stage illustrates how LSE
language features were helpful in modeling. The EXP
stage takes two bundles of instructions from the Instruc-
tion Buffer (IB) as inputs and creates issue groups (i.e.,
groups of instructions that have no internal data dependen-
cies). The EXP stage routes each instruction in the issue
group up to the first stop bit to one of 11ports. Each kind
of instruction can be routed to only a subset of the ports;
over-subscription is possible, in which case the EXP stage
must “split” the issue group.

Figure 3 shows the structure of the EXP stage model.
The entire stage is modeled by instantiating, connecting,
and parameterizing modules (component templates in LSE)
from the standard module library. The parameterization sets
a few simple parameters on the components and uses spe-
cial userpoint parameters [17] to fill in the routing compu-
tation and the bundle-to-instruction conversion algorithms.
All of the work of actually manipulating signals and routing
instruction information is handled by the modules, saving
much time and effort.

The model of this stage has no global controller. This is
a result of LSE’s default flow-control semantics, which pro-
vide back-pressure from later stages automatically. LSE’s
default control semantics, together with a small piece of
stop-bit flow-control logic and the structure of the datapath
of the EXP stage model,automaticallyprevent instructions
after a stop bit from leaving the IB. Because so much be-
havior was implicit in the modules and LSE, this stage could
be modeled in only a few hours. Note however that, had the
implicit behavior been incorrect, LSE would have allowed
us to override the default control.

The EXP stage also illustrates another desirable outcome
of structural modeling in LSE: a separation of mechanism
from policy. The modules and their interconnections pro-
vide the mechanism, while the customizations (i.e., the pa-
rameter values) provide the policy. This makes it easy to
modify the policy during design-space exploration; only the
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Figure 3. EXP stage model

routing computation, described earlier, need be changed.
In the EXP stage example above, all of the components

came from the module library. In the complete model, 82%
of the 210 component instances were instantiated from 19
modules in the standard LSE module library. The remain-
ing instances were instantiated from hierarchical modules
created through composition and parameterization of com-
ponent instances. In all, 23,000 lines of composition and
parameterization code were written by the user and 293,000
lines of code were generated by LSE from the modules.
This indicates a high degree of reuse and is consistent with
data previously presented by Vachharajani et al. for non-
validated models [16].

4.5. Evaluation

Evaluation was carried out as new components of the
processor were added to the model. During the initial
phases of refinement, we used simple micro-benchmarks
to determine whether modeling errors had been introduced.
Benchmark programs were introduced during later phases;
their principal purpose was to ensure that the model exe-
cuted programs properly. After the full model was devel-
oped, performance accuracy was evaluated.

The initial model quality is shown in Figure 4, which re-
ports the percentage difference in CPI between the model
and the hardware. A positive difference indicates that the
model was slower than the hardware, while a negative dif-
ference indicates that the model was faster. The input sets
are the longest (in instruction count) “train” input (indi-
cated in the name of the benchmark) from each of the
SPEC CINT2000 benchmarks. Sampling using the Tur-
boSMARTS framework[18] was used during simulation,
with 10,000 to 20,000 samples per benchmark. The error
bars indicate 99.7% confidence intervals. Only user-mode
instructions are measured and modeled.

Overall error in this initial model was 7.9% with a maxi-
mum error of 20%, and it was constructed in 11 weeks. The
initial model’s accuracy compares favorably with with that
reported in the literature [2, 3]. For example, Desikan, et
al.’s validated model of the Alpha 21264 achieved an av-
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Figure 4. Initial CPI error

erage error of 18.19% on a selection of SPEC CPU2000
benchmarks with a maximum error of 43.0%. This expe-
rience supports the Liberty Modeling Methodology claim
that validated models can be constructed rapidly.

5. Aggregate vs. Constituent Error

It is important that models not only be accurate with re-
spect to a baseline, but also that they accurately report the
impact of changes to the hardware. In this section, we il-
lustrate that constituent error measurements serve as a bet-
ter measure of model validity than the pervasively reported
aggregate error. We then analyze constituent error in our
initial, aggregate-error validated Itanium 2 model.

5.1. An Illustrative Experiment

To evaluate the validity of the initial model, we ex-
plore its accuracy in reporting the impact of the addi-
tion of instruction prefetching to the hardware. Instruction
prefetching was selected because Itanium 2 controls instruc-
tion prefetching through software, allowing an exact hard-
ware measurement of the effect of enabling and disabling
prefetching. Prefetching is controlled by the.many and
.few completers on branch instructions. We wrote a sim-
ple tool that turned off prefetching by rewriting Electron-
generated binaries with.many branch completers into a
binary with only.few branch completers.

We compare the speedup achieved by instruction
prefetching in the benchmark 186.crafty for the actual hard-
ware and for two models: the initial model described in the
previous system, and a model modified to highlight the ef-
fects of large offsetting errors. The modified model has
higher instruction cache miss and lower data cache miss
penalties chosen specifically to offset each other in this
benchmark.



Table 1. CPI, speedup, and constituent errors of instruction prefetching for 186.crafty
Overall CPI CPI error for baseline / prefetching due to:

Model Baseline Prefetching Speedup Front End Stalls Load-Use Stalls Other
Actual Itanium 2 0.636 0.623 2.1 % —/— —/— —/—
Initial Model 0.649 0.597 8.7 % 6.2% / 1.2% -5.1% / -5.8% 0.9% / -0.5%
Modified Model 0.647 0.571 13.3 % 11.7% / 3.4% -11.0% / -12.4% 1.0% / 0.6%

Table 1 shows the overall CPI, speedup, and errors in
performance constituents (relative to hardware CPI) for
hardware and both simulation models. The measurement of
the performance constituent errors is described more fully
in the next section. The baseline overall CPI of both models
(first column) is extremely accurate; the modified model is
slightly more accurate.

Despite the CPI accuracy of the models for the baseline,
both predict too high a speedup (second and third columns)
for prefetching. To understand this, we examine the fi-
nal three columns of Table 1. Both models have too high
a penalty for instruction cache misses (here seen as front
end stalls) in the baseline case. This excessive cache miss
penalty is not seen fully in the overall CPI because it has
been “masked out” by offsetting errors in load-use stalls.
When the instruction cache misses are reduced through in-
struction prefetching, the error in front end stalls is also re-
duced, leaving the error in load-use stalls. This causes the
CPI predictions to be too low and the predicted speedup due
to instruction prefetching to be too high. Comparison of the
initial and the modified model shows that the larger the off-
setting errors, the larger the error in the predicted speedup,
even though in the baseline case, the model with larger off-
setting errors actually has a lower error in overall CPI.

The difference between the speedup reported by the
modified model and the speedup of the actual hardware may
adversely affect cost/benefit decisions made on proposed
hardware or erroneously overstate the impact of published
research results. This realization encouraged us to investi-
gate the constituent errors of our initial model in detail and
then refine our model to reduce these errors.

5.2. Initial Model Constituent Error Analysis

The Itanium 2 hardware includes performance counters
which are able to classify clock cycles as either cycles with
completing instructions or bubbles. Bubbles can be further
classified by where in the pipeline they originated. These
classifications can be used as performance constituents: the
total number of cycles is the total number of bubbles of all
kinds plus the number of cycles with a completing instruc-
tion. By implementing analogous performance counters in
the simulation model it is possible to compare the hardware
with the simulation model at the level of performance con-
stituents.

The performance constituents are:
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Figure 5. Initial model error constituents

FE - Front-end bubbles – mostly due to instruction cache
and instruction TLB misses.

RSE - Register Stack Engine bubbles – cycles in which reg-
ister spills and fills are being performed.

EXE - Data hazard bubbles – nearly always due to load-use
dependencies in these benchmarks.

L1D - L1 data cache pipeline bubbles – from a variety of
sources, including hardware page table walks, load-store
conflicts, and L2 back-pressure.

DET - Pipeline flush bubbles.

RET - Instruction retirement cycles.

Other - Unaccounted-for differences between the models –
due to sampling error and variations in hardware perfor-
mance between runs.

Figure 5 presents the errors in performance constituents
relative to overall CPI for all SPEC CINT2000 benchmarks.
In this figure, the size of a bar segment indicates the mag-
nitude of the difference of a constituent of CPI between the
two models, while its position (left or right) indicates the
sign of the difference. For each benchmark, the left-hand
bar contains constituents of CPI where the model is slower
than the hardware. The right-hand bar contains constituents
of CPI where the model is faster than the hardware. The
two bars are aligned at the top so that the distance between
the bottom of the rightmost bar and the zero axis indicates
the total error in the model. For example, for 181.mcf, the



error in the L1D constituent is approximately +7%, the er-
ror in the EXE constituent is about -24%, and the total error
is -20%.

The first observation to make from these results is that
the performance difference of individual constituents varies
widely by benchmark. This indicates that despite similar
CPIs among many of the benchmarks, they have quite dif-
ferent behavior (though the converse is not true, similar ac-
curacy does not imply similar behavior.) Some constituents
(e.g. L1D) are even positive in some benchmarks and nega-
tive in others. This probably indicates that there are offset-
ting errors within the L1D constituent.

The second observation to make is that there are both
positive and negative constituents of error for each bench-
mark; errors are offsetting, giving better overall results than
the individual constituents, indicating that the model qual-
ity is not as high as initially believed, despite validation.
The data shows that a model validated to a single aggregate
metric, in this case CPI, can seem accurate while having
substantial error in certain pipeline details.

6. Refining the Itanium 2 Model

Based on the error analysis in Section 5 we iteratively
refined the initial model to reduce FE, L1D, and EXE con-
stituent errors. As in the initial model development, the
steps consisted of investigating behavior, deciding upon a
(new) level of abstraction, updating the model, and evaluat-
ing the results.

6.1. Refinements

The largest FE error occurred in 252.eon. Inspection
of sub-event counters showed that the L1 instruction cache
miss rate was much higher in the model. Inspection of the
252.eon binary showed that it made heavy use of the stream-
ing prefetching hints provided in the ISA. One of the ab-
stractions in the initial model was to ignore the prefetch en-
gine. Thus this error was an abstraction error. The solution
to this abstraction error was to implement a simplified (i.e.,
still somewhat abstracted) prefetch engine. This required
less than a day to create a simple state machine to generate
prefetch requests, connect the requests to the cache hierar-
chy, change the L1 instruction cache LRU algorithm to bias
against prefetched data, and add some performance and de-
bug monitors.

L1D errors were significant in 255.vortex and 181.mcf.
Looking at the sub-events of L1D, we found that the TLB
miss rate was too high and the average cost of a miss was
too high. The miss rate was a specification error; we had as-
sumed a 4K page size instead of the proper 16K page size.
The average cost difference was due to an abstraction error;
we modeled TLB misses with a fixed cost. We corrected

the page size (a simple parameter change) and replaced the
fixed cost TLB-miss model with a less abstract one that per-
forms accesses to the page table. The TLB analysis and fix
took less than a day and required changes only to a small
portion of the memory hierarchy.

EXE errors were large in several benchmarks, and par-
ticularly large in 181.mcf and 300.twolf. Furthermore, af-
ter the TLB fix, these same benchmarks had large negative
L1D errors, which had been masked previously by offset-
ting positive TLB errors. Examination of the EXE sub-
events showed that it was nearly all due to load-use stalls,
while examination of the L1D sub-events showed errors in
L2 back-pressure and L2 tag re-reads. L1 data cache miss
rates were generally correct. Taken together, this evidence
indicated that the L2, L3, and memory models were causing
the errors. These errors are abstraction errors.

Reducing these error constituents required an under-
standing of the memory hierarchy beyond the L1 caches. As
before, documents and experiments were used to develop
this understanding. Eight days were spent in the investiga-
tion. This investigation took so long because the L2 cache
subsystem is non-blocking and is able to process requests
out of order to improve performance. Bank conflicts, data
bypasses, non-LRU cache replacement policies, re-reads of
the L2 tag array, and secondary miss processing all combine
to make it very difficult to determine what the latency of a
particular cache access should be. Furthermore, while the
cache controller is richly endowed with performance coun-
ters, the documentation of these counters is very limited.
Nevertheless, it was possible to understand much of the L2
cache behavior and some of the L3 behavior.

After the eight days of investigation, L2 cache behavior
was modeled with a high degree of detail. The total amount
of time used in creating the new L2 cache controller was
four days. The only changes needed in components other
than the L2 cache controller were some minor changes in
the L1 data cache to L2 cache interface. The L3 cache and
bus interface were modeled in less detail than the L2 cache,
but in more detail than in the initial model. Creating the new
L3 cache and bus interface model took one day and required
changes to no other components of the model.

Note that nearly all the constituent errors in the model
were due to specification and abstraction errors, lending
support to the claim that structural modeling helps prevent
modeling errors. Furthermore, all of the refinements de-
scribed in this section were achieved in an iterative fashion
over the course of 16 days. About half of that time was
spent investigating the behavior of the hardware. The rea-
son that modification time was small is due to the structural
modeling approach. We found that the natural hardware-
based partitioning of the model provided internal interfaces
at the locations where changes needed to be made. Thus
changes often consisted of simply creating a new portion of
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Figure 6. Current model CPI error
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Figure 7. Current model error constituents

the model and hooking it up to the rest of the design in place
of the logic it replaced, with no need to even look at other
portions of the model. In a few cases where information
from other parts of the model was needed, it was accessible
and merely needed to be routed to the new portion.

6.2. Current model

The results of the refinement are given in Figure 6. The
breakdown of performance constituents is given in Figure 7.
These figures show an overall reduction in error, down to
5.4% on average, but more importantly, the targeted con-
stituent errors have decreased significantly. Figure 8 shows
the average absolute constituent error across all benchmarks
for both the initial and the final model. The FE and EXE er-
ror constituents have been significantly reduced. L1D errors
have increased slightly because, as discussed before, there
were offsetting errors within this constituent. In the 16 days
of refinement, overall constituent error decreased by 34%.
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Figure 8. Constituent error change

7. Evaluating flexibility

While the refinement process provides evidence that the
Itanium 2 model is flexible, we further show that the model
can be used to explore a wider design space. We recount
here two independent user experiences.

The first user of the model, the model developer, used the
initial model as a starting point for studying modifications
to the Itanium 2 processor pipeline that involved adding a
limited degree of out-of-order behavior to the pipeline. In-
structions were allowed to issue while ignoring load-use de-
pendencies. These instructions would recirculate through
the pipeline until the dependencies were resolved. Creating
the model for this modified pipeline required modifications
only to the portions of the model most closely involved with
the changes in the pipeline: the scoreboard logic, the regis-
ter files, the data cache unit, and the branch resolution logic.
This overhaul of the pipeline organization with debugging
of the new technique was made in only 6 weeks (including
two weeks used to reduce the amount of abstraction used to
model the Register Stack Engine), indicating that the initial
model could indeed be modified rapidly.

The second user, unfamiliar with the model but familiar
with the LSE tools, used the constituent-validated Itanium 2
processor model to explore a novel chip-multiprocessor
interconnection mechanism called the synchronization ar-
ray [14]. This required that he instantiate two Itanium 2
cores and a synchronization array, connect the cores to a
shared L2/L3 memory hierarchy, and augment the Itanium
2 datapath to handle the sychronization array instructions.
This was accomplished in two weeks; this time includes
both the development/debugging time for the model config-
uration and time spent debugging errors in modified bench-
mark binaries.

8. Conclusions

Given the central role of simulation in modern processor
design and research, a validated baseline model upon which



credible studies can be based is extremely desirable. Unfor-
tunately, validated models are not used because it is widely
believed that these validated models are either too time-
consuming to develop [4, 2], too difficult to develop due
to lack of published information [7], or too time-consuming
to modify for wide ranging design-space exploration [4].
Some have claimed that the Liberty Modeling Methodol-
ogy [17, 16] addresses these issues.

In this work, we present our experience building a
validated model of Intel’s Itanium 2 processor using the
Liberty methodology and the Liberty Simulation Environ-
ment (LSE). Though not an ironclad proof or exhaustive
study, this experience shows that the Liberty Modeling
Methodology and supporting tools can be extremely effec-
tive. An initial model was constructed by a single modeler
in only 11 weeks. This model predicted hardware cycles-
per-instruction (CPI) to within 7.9%. This supports the
first set of prior work claims: validated models can be con-
structed rapidly.

We learned three lessons the hard way. First, we learned
that documentation is sometimes in error and often contra-
dictory and vague; any information gathered from it should
be validated with quantitative experiments. Second, all ap-
proximations should be supported with quantitative exper-
iments that support their validity. Third, and most impor-
tantly, we show in this paper that building a model that is
validated according to a single aggregate metric doesnot
necessarily provide an adequate model for exploring design
alternatives. We show that, despite having a high degree of
accuracy in an aggregate metric such as CPI, the model can
contain significant constituent errors that happen to offset
each other.

We were able to apply the Liberty Modeling Methodol-
ogy to refine our initial Itanium 2 model to reduce the con-
stituent errors with only2 1

2 additional weeks of effort. This
new model predicts overall CPI to within 5.4% with sub-
stantially reduced error for the targeted constituents. Fur-
thermore, these Itanium 2 models were modified to ex-
plore a novel multiprocessor communication mechanism
and novel pipeline organizations for EPIC machines. These
significant additional modifications were made in under 8
person-weeks in total. The speed with which these modi-
fications were made supports the second set of prior work
claims: validated models built using the Liberty Modeling
Methodology can be rapidly modified for design-space ex-
ploration.
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