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AUTOMATIC PARALLELIZATION HAS THUS FAR NOT BEEN SUCCESSFUL AT EXTRACTING

SCALABLE PARALLELISM FROM GENERAL PROGRAMS. AN AGGRESSIVE AUTOMATIC

THREAD EXTRACTION FRAMEWORK, COUPLED WITH NATURAL EXTENSIONS TO THE

SEQUENTIAL PROGRAMMING MODEL THAT ALLOW FOR A RANGE OF LEGAL OUTCOMES

RATHER THAN FORCING PROGRAMMERS TO DEFINE A SINGLE LEGAL PROGRAM OUTCOME,

WILL LET PROGRAMMERS ACHIEVE THE PERFORMANCE OF PARALLEL PROGRAMMING VIA

THE SIMPLER SEQUENTIAL MODEL.

......Processor manufacturers can no
longer rely on increasing uniprocessor clock
speed or microarchitectural improvements
to provide performance improvements that
continue past trends. Meanwhile, transistor
count continues to grow exponentially,
leading processor manufacturers to place
multiple cores on a die. Machines with four
or more cores are already shipping, and
tomorrow’s machines promise still more
cores (see, for example, http://www.intel.
com/pressroom/archive/releases/Intel_New_
Processor_Generations.pdf). Unfortunately,
most applications are not multithreaded—
neither manually nor automatically—so
adding cores leads to little if any perfor-
mance improvement.

As the many publications dealing with
decades-old issues of deadlock, livelock, and
so on testify,1–3 writing a parallel program
that is correct and that outperforms its
single-threaded counterpart is difficult.

Such manual parallelizations are often
hand-optimized to a specific number of
cores or a specific kind of machine. This
leads to performance that is tightly coupled
to an underlying architecture, making it
hard to port the application without
significant investment. Because of this, a
parallelization that is effective across a range
of architectures approaches the impossible.

Researchers have proposed many new
languages to reduce the difficulty of writing
a parallel program.4–6 These languages make
parallel programming easier than in the
past, allowing programmers to express high-
level parallelism without the need for low-
level primitives, such as locks. Unfortunate-
ly, because of the complexity of parallel
programming, programmers often extract
only the easy-to-obtain parallelism, leaving
large regions of sequential code. Because the
speedup of a parallel program is limited by
the execution of the longest sequential
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region, additional parallelization is required
for such programs to run efficiently,
particularly as the number of cores grows.

Given these issues and the large body of
single-threaded legacy applications, re-
searchers have pursued techniques to extract
threads from single-threaded programs
without programmer intervention. Unfor-
tunately, except in the scientific domain,
automatic parallelization techniques have
not proven successful enough for industry
adoption.

This article shows how to bridge the gap
between the simplicity of the sequential
programming model and the performance
potential of the parallel programming
model. We propose an aggressive, full-
featured compiler infrastructure for thread
extraction that uses the sequential program-
ming model. This infrastructure should
bring together many techniques from
compiler analysis and compiler optimiza-
tion, including those that require hardware
support, and apply them interprocedurally
to any loop in the program, particularly
outermost loops. To address the constraints
that have inhibited previous automatic
thread extraction techniques, we augmented
the sequential programming model with
natural, simple annotations that provide
information to the compiler. This informa-
tion lets the programmer specify that
multiple, legal outcomes of a program exist,
freeing the compiler from having to main-
tain the single correct output required by
the sequential programming model. This
article proposes two annotations, Y-branch
and Commutative, which let the compiler
extract scalable parallelism from several
applications without resorting to the use
of parallel concepts, making these annota-
tions easy for programmers to use.

As a case study of the potential of the
framework and annotations, we manually
parallelized the SPEC CINT2000 bench-
marks.7 Compiler writers familiar with the
technology performed the parallelization—
acting, when possible, as a modern paralle-
lizing compiler could be expected to
perform. We present several applications
from the SPEC CINT2000 benchmark
suite to illustrate how an aggressive paralle-
lization framework and annotations to the

sequential programming model facilitate
automatic thread extraction.

A framework for automatic parallelization
An aggressive parallelization framework

can produce scalable parallelism without
changes to the programming model. This
framework includes a compiler infrastruc-
ture to identify and extract parallelism in
sequential code, plus hardware to efficiently
execute the parallelized code.

To see how such a framework would
extract parallelism, consider the 256.bzip2
application from the SPEC CINT2000
benchmark suite. This application com-
presses or decompresses a file using the
Burrows-Wheeler transform and Huffman
encoding. Here, we focus only on the
benchmark’s compression portion. Each
iteration of the compressStream func-
tion, shown in Figure 1a, compresses an
independent block of data. The data from
the file passes through a run-length encod-
ing filter and is stored in the global block
data structure. Because of this, the block
array contains a varying number of bytes per
data block, indicated by last. Assuming
data bytes exist to compress, the doRe-

versibleTransform and generate-
MTFValues functions compress them
before sendMTFValues appends them
to the output stream.

Versions of the bzip2 algorithm that
compress independent blocks in parallel
have been implemented in parallel-program-
ming paradigms (see http://compression.ca/
pbzip2). The parallelization performed man-
ually with mutexes and locks decomposes the
original loop in compressStream into
three separate loops, shown in Figure 1b.
The first stage reads in blocks to compress,
followed by a stage to compress, finishing
with a stage to print the compressed blocks in
order. Most of the parallelism extracted
comes from executing multiple iterations of
the second stage in parallel.

The same pipelined parallelism extracted
manually can also be extracted by the
decoupled software pipelining (DSWP)
technique.8,9 Unfortunately, in its base
version, this technique cannot extract the
DOALL, or iteration-level, parallelism pre-
sent in the manual parallelization, because it
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only partitions the static body of a loop. In
the case of 256.bzip2, DSWP could extract
a four-stage pipeline, placing doRever-

sibleTransform and generate-

MTFValues in their own pipeline stages.
However, in practice this limits the speedup
achievable to about 23 because doRe-

versibleTransform takes about 50
percent of the loop’s runtime. Instead,
because no loop-carried dependencies exist
in the Compress stage, it can be replicated
several times, allowing multiple iterations to
execute in parallel. This extension to
DSWP, called parallel stage DSWP (PS-
DSWP), allows the extraction of DOALL-
like parallelism.10

Unfortunately, although the compress
stage doesn’t contain any actual loop-carried
dependencies, the compiler is unable to
prove this. In particular, the compiler can’t
prove that the accesses to block are limited
by last, and must conservatively assume
that writes from a previous iteration can
feed-forward around the back edge to the
next iteration. Adding speculation to DSWP
lets the compiler break these dependencies.
In speculative DSWP (SpecDSWP), the
compiler speculates dependence recurrences
in general, and loop-carried dependencies in
particular.11 To avoid excessive misspecula-
tion, the framework uses a memory profiler
to find memory dependencies that rarely—
or, in the case of block, never—manifest
themselves. Because breaking loop-carried
dependencies is the key to PS-DSWP, the
memory profiler profiles memory dependen-
cies relative to loops, letting it determine if a
dependence manifests itself within an itera-
tion or between iterations.

Memory locations reused across iterations,
such as the block array, present another
problem because the same memory location
is read and written during every iteration,
leading to many loop-carried, false memory
dependencies. To break these false depen-
dencies, the framework places each iteration
in a separate ordered memory transaction,
similar to an epoch in STAMPede.12

Finally, the parallelization technique
must parallelize not just a loop but also
the functions called, directly or indirectly,
from that loop. In 256.bzip2, the read and
print phases are the bsR (bitstream read)
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Figure 1. Parallelization diagram: pseudocode for compressStream from

the SPEC CINT2000 256.bzip2 application (a), static dependencies (b),

dynamic execution plan (c), and multithreaded speedup for 256.bzip2 (d).
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and bsW (bitstream write) functions, re-
spectively. These functions are found deep
in the call tree, making it hard to expose the
code inside for parallelization. Inlining until
all calls to these functions are visible at the
outermost loop level is not practical,
because the loop quickly becomes too large
to analyze. Because the base DSWP tech-
nique uses a program dependence graph
(PDG) to facilitate parallelization, the
system dependence graph (SDG)13 can be
used to facilitate interprocedural paralleliza-
tion. Whole-program optimization tech-
niques can also solve this problem.14

The framework can extract a paralleliza-
tion that executes according to the dynamic
execution plan shown in Figure 1c. As the
number of compress-stage threads increases,
performance increases, as Figure 1d shows.
The only limitations on the speedup
obtained are the input file’s size and the
compression level. Because the file size is
only a few megabytes and the compression
level is high, there are only a few indepen-
dent blocks to compress in parallel. After 11
threads, 256.bzip2 contains no more work
to perform in parallel.

Extending the sequential
programming model

Although an aggressive parallelization
framework can automatically extract
threads, the sequential programming model
constrains the framework to extract threads
while enforcing a single legal program
outcome. This limits performance in many
cases where the programmer wished to
allow a range of legal outcomes, but had
no means to communicate this to the
framework.

Nondeterministic branches
Many compression applications make a

fundamental trade-off between the amount
of compression achieved and the program’s
runtime performance. An example of this
class of applications is 164.gzip, also from
the SPEC CINT2000 benchmark suite.
The 164.gzip application uses the Lempel-
Ziv 1977 algorithm to compress and
decompress files. As with 256.bzip2, we
focus on the compression side. Unlike
256.bzip2, the choice in 164.gzip of when

to end compression of the current block and
begin a new block depends on various
factors related to the compression achieved
on the current block. This dependence
makes it impossible to compress blocks in
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Figure 2. Use of Y-branch in 164.gzip: pseudocode of manual parallelization of

164.gzip (a), pseudocode for deflate from 164.gzip (b), and multithreaded

speedup for 164.gzip (c).
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parallel, as in 256.bzip2, because the
compiler can’t predict the point at which
a new block of compression will begin.

Manually parallelized versions of the gzip
algorithm insert code to ensure that a new
block starts at fixed intervals, leading to a
parallelization similar to that extracted for
256.bzip2. When parallelizing this algo-
rithm by hand (Figure 2a), the developer
must make a choice that trades off parallel

performance with output quality. Instead,
this flexibility should be given to the
compiler, which is often better at targeting
the unique features of the machine for
which it is compiling. Inspired by Wang et
al.,15 we propose the use of a Y-branch
annotation in the source code. The seman-
tics of a Y-branch allow the true path of any
dynamic instance of the branch to be taken,
regardless of the condition of the branch.
The compiler is then free to generate code
that pursues this path when it is profitable
to do so. In particular, this lets the compiler
balance the quality of the output with the
parallel performance likely to be achieved.

Figure 2b illustrates how the Y-branch
annotation can be used. Rather than
inserting code to split the input up into
multiple blocks, as in Figure 2a, the Y-
branch communicates to the compiler that
it can control when a new dictionary is
started, allowing it to choose an appropriate
block size. This gives the compiler the
ability to break dependencies related to the
dictionary, and to extract multiple threads.
A probability argument informs the com-
piler of the relative importance of compres-
sion to performance. In the case of
Figure 2b, a probability of 0.00001 was
chosen to indicate that the dictionary
should not be reset until 164.gzip has
compressed at least 100,000 characters.
Determination of the proper probability is
left to a profiling pass or the programmer.

When we obtain this parallelization from
164.gzip, the only limitations to perfor-
mance are the same as those in 256.bzip2.
However, the block size is smaller than in
256.bzip, causing the better perfor-
mance scalability shown in Figure 2c.

Commutative functions
Parallelization is also inhibited by strict

enforcement of dependencies among func-
tions whose call sites the programmer meant
to be interchangeable, but which contain
internal dependences. An example of this
phenomenon occurs in the 197.parser
application, which parses a series of sen-
tences, analyzing them to see if they are
grammatically correct. The loop in the
batch_process function, shown in
Figure 3a, is the outermost loop, of which
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Figure 3. Use of Commutative in the 197.parser application: pseudocode

for batch_process (a) and memory allocation function xalloc (b) from

197.parser, and multithreaded speedup for 197.parser (c).

.........................................................................................................................................................................................................................

TOP PICKS

...........................................................................

16 IEEE MICRO



the parse function call dominates the
runtime of each iteration. Because each
sentence is grammatically independent of
every other sentence, all sentences can
undergo parsing in parallel.

Unfortunately, dependence recurrences
arising from the memory allocator prevent
such a parallelization. Figure 3b shows the
pseudocode of the memory allocator function
xalloc. Upon startup, the memory subsys-
tem allocates a 60-Mbyte chunk of memory,
portions of which are returned by xalloc.
The dependence recurrence on the current
variable causes a large DSWP stage that PS-
DSWP can’t replicate. This, in turn, prevents
the extraction of scalable parallelism.

Fortunately, xalloc, like many mem-
ory allocation functions, has the property
that multiple calls to it are interchangeable
even though it maintains internal state, so
long as each call executes atomically. Just as
we used the Y-branch annotation to give the
compiler more information about legal
execution orders, we now introduce another
annotation, Commutative, which informs
the compiler that the calls to xalloc can
occur in any order.

In general, the Commutative annotation
lets the developer leverage the notion of a
commutative mathematical operator, even
when, because of underlying dependences, a
function is not actually commutative accord-
ing to the traditional sequential program-
ming model. By declaring a function as
Commutative when it isn’t, the programmer
is allowing the program’s execution order to
change. In particular, Commutative allows
an execution order that leads to potentially
different values in different memory loca-
tions than the sequential version. By anno-
tating the function with Commutative, the
programmer indicates that such differences
are legal. Also, the programmer annotates
Commutative on the basis of the function’s
intended behavior, not its potentially many
implementations.

The semantics of the Commutative
annotation dictate that, outside the func-
tion, the function call’s outputs depend
only on that function call’s inputs. Any
internal dependence recurrences are ignored
during the process of parallelization. This
lets the compiler reorder calls to a Com-

mutative function without the internal
dependence getting in the way. The Com-
mutative function itself executes atomically
when called and, inside the function,
dependencies local to the function are
respected. This ensures that a well-defined
sequence of calls to the Commutative
function exists. For details about the use
of Commutative among multiple functions
that reference that same global variables or
its use in speculative execution, see our
original publication on this topic.7

Once the framework uses Commutative
to hide the dependence recurrence in
xalloc, it can achieve a parallelization
that scales well with the number of cores, as
Figure 3c shows. The biggest limitation
on the speedup is the variation among
sentence processing times, which can be up
to 100:1.

Parallelizing SPEC CINT2000
To explore the potential for parallelism,

we chose to parallelize the SPEC
CINT2000 benchmark suite, not because
it is considered amenable to automatic
parallelization, but because it is not.
Changing only 60 out of more than
500,000 lines of code, we achieved an
average speedup of 454 percent targeting a
32-core system. Figure 4 shows the maxi-
mum speedup achieved for each bench-
mark, and the minimum number of threads
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at which the maximum speedup was
achieved. The speedups are not an upper
bound on the maximum speedup obtain-
able, because usually only one loop in the
application was parallelized.

Table 1 presents the actual numbers for
Figure 4. Additionally, Table 1 gives the
historic performance trend, which details
the expected performance increase for the
number of transistors used. No statistics are
available that directly relate the doubling of
cores to performance improvement. How-
ever, historically, the number of transistors
on a chip has doubled every 18 months,
while performance has doubled every
36 months. Assuming that all new transis-
tors are used to place new cores on a chip,
each doubling of cores must yield approx-
imately 1.43 speedup to maintain existing
performance trends. Thus, the ‘‘historic
performance trend’’ column represents the
expected speedup for the number of
threads, calculated as (no. threads)485. The
final column gives the ratio of the actual
performance improvement to that required
to maintain the 1.43 speedup. The overall
performance improvement indicates that
the framework can extract sufficient
parallelism to make good use of the
resources of current and future many-core
processors.

Automatic parallelization techniques are
necessary to extract performance not

only for the large body of sequential
applications but also for the sequential
portions of parallel threads. Without these
techniques, performance on today’s and
tomorrow’s processors will suffer. A proper
framework allows the extraction of large
amounts of parallelism; we are currently
working toward making this framework a
reality. For applications that this framework
does not parallelize, simple additions to the
standard sequential programming model
will allow the framework to parallelize
them. Ultimately, the framework and
annotations will allow software program-
mers to develop within the simpler sequen-
tial programming model, while also obtain-
ing the performance normally associated
with a parallel programming model. MICRO
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Table 1. Relating speedup to historic performance trends.

Benchmark No. of threads Speedup

Historic performance

trend* Ratio**

164.gzip 32 29.91 5.38 5.56

175.vpr 15 3.59 3.71 0.97

176.gcc 16 5.06 3.84 1.32

181.mcf 32 2.84 5.38 0.53

186.crafty 32 25.18 5.38 4.68

197.parser 32 24.50 5.38 4.55

253.perlbmk 5 1.21 2.18 0.55

254.gap 10 1.94 3.05 0.64

255.vortex 32 4.92 5.38 0.91

256.bzip2 12 6.72 3.34 2.01

300.twolf 8 2.06 2.74 0.75

Geometric mean 17 5.54 3.97 1.39

Arithmetic mean 20 9.81 4.16 2.04................................................................................................................................................................................................................
* Speedup needed to maintain existing performance trends, assuming 1.43 speedup per doubling of cores
** Ratio of actual speedup to expected historic speedup
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