
...

AUTOMATIC INSTRUCTION-LEVEL
SOFTWARE-ONLY RECOVERY

...

SOFTWARE-ONLY RELIABILITY TECHNIQUES PROTECT AGAINST TRANSIENT FAULTS

WITHOUT THE OVERHEAD OF HARDWARE TECHNIQUES. ALTHOUGH EXISTING LOW-

LEVEL SOFTWARE-ONLY FAULT-TOLERANCE TECHNIQUES DETECT FAULTS, THEY

OFFER NO RECOVERY ASSISTANCE. THIS ARTICLE DESCRIBES THREE AUTOMATIC,

INSTRUCTION-LEVEL, SOFTWARE-ONLY RECOVERY TECHNIQUES REPRESENTING

DIFFERENT TRADE-OFFS BETWEEN RELIABILITY AND PERFORMANCE.

......Microprocessor performance has
been increasing exponentially in recent
decades, due in large part to smaller and
faster transistors enabled by improved
fabrication technology. Although such
transistors enhance performance, their low-
er threshold voltages and tighter noise
margins make them less reliable,1–3 render-
ing processors that use them more suscep-
tible to transient faults. Although they
cause no permanent damage, transient
faults can result in incorrect program
execution by altering signal transfers or
stored values. Such faults have already
caused significant failures in commodity
processors. In 2000, Sun Microsystems
acknowledged that cosmic rays had in-
terfered with cache memories and caused
crashes in server systems at dozens of major
customer sites, including America Online
and eBay.4 More recently, Hewlett Packard
acknowledged that a large installed base of
a 1024-CPU server system in Los Alamos
National Laboratory has been crashing
frequently because of cosmic ray strikes
causing transient faults.5

Computer architects have typically ad-
dressed reliability issues by adding redun-

dant hardware, but these techniques are
often too expensive to be widely used.
Software-only reliability techniques have
shown promise in their ability to protect
against soft errors without any hardware
overhead (see the sidebar, ‘‘Hardware vs.
software solutions for fault detection and
recovery’’). In software solutions, the soft-
ware can direct the reliability level, reducing
costs by enabling fault detection only when
necessary. For example, a transient fault in
a movie player affecting a single frame of
a movie during playback will likely go
unnoticed. In this situation, a fault-toler-
ance technique that negatively impacts the
frame rate is much more onerous than
a single-frame fault would warrant. For this
scenario, a lightweight technique might be
most appropriate. However, if instead of
a rendering a frame in a movie, the user
were rendering a single high-quality image
for use in print, a fault in the image would
be unacceptable. This situation might
warrant a more reliable option. Regardless
of the specific reliability implementation,
the reconfigurability created by increasing
software reliability is extremely valuable to
system designers.

George A. Reis

Jonathan Chang

David I. August

Princeton University

IEEE Micro micr-27-01-reis.3d 13/4/07 13:30:22 36

...

36 Published by the IEEE Computer Society 0272-1732/07/$25.00 G 2007 IEEE

To truly be reliable, a system must be
able not only to detect faults, but also to
recover. Until now, all proposed low-level
software-only techniques that we’re aware of
have addressed only fault detection, not
fault recovery. Although this prevents faults
from corrupting data, it doesn’t let the
application correctly run to completion in
the presence of a fault.

We present three software-only recovery
techniques at the compiler level that offer
varying levels of protection with different
costs:

N Swift-R intertwines three copies of
a program and adds majority voting
before critical instructions, offering
near-perfect reliability for applications
that require it.

N Triple Redundancy Using Multiplica-
tion Protection (Trump) intertwines
the original program with an AN-
encoded version of the program.

N Mask, a more lightweight technique
than Swift-R or Trump, dynamically
enforces invariants that can be proved
true statically.

We implemented these techniques in a com-
piler and evaluated them in isolation, as well
as in hybrid combinations. Our results show
that these techniques offer a wide spectrum
of viable options for fault tolerance that
designers can use to increase reliability with
reasonable performance costs and without
having to design or deploy new hardware.

Fault model
Throughout this work, we assume the

commonly used single-event upset fault
model. In the SEU model, exactly one bit-
flip in one state element will occur
throughout a particular execution of the
program. Our techniques also tolerate a wide
variety of multibit errors, although we don’t
quantify this effect.

To evaluate a system’s reliability, we
classify faults according to their effect on
the program’s final output in the fault’s
presence. If the fault causes the execution to
be abnormally terminated because of a seg-
mentation violation, we categorize the fault
as SEGV. If the program completes execu-

tion, but doesn’t produce correct output, we
categorize the fault as a silent data corruption
(SDC). Finally, if the program completes
execution and the output is correct, we
categorize the fault as unnecessary for
architecturally correct execution (unACE).6

IEEE Micro micr-27-01-reis.3d 13/4/07 13:30:23 37

...

Hardware vs. software solutions for fault detection
and recovery

Designers frequently introduce redundant hardware1–3 to detect or recover from transient

faults. For example, storage structures, such as caches and memory, typically include extra

information in the form of parity or error-correcting codes (ECC), which let these hardware

structures detect and recover from such faults. However, protecting all transistors,

particularly those used in combinational logic, is difficult without significant area, power, and

performance penalties. Researchers have also proposed higher-level techniques, such as

lock-stepping or redundant multithreading,4 for full-processor fault detection; however, these

techniques still require moderate to significant changes to the hardware design, and possibly

even to the operating system, significantly increasing validation time and often incurring

performance penalties.

Software-only approaches to fault detection5–7 and recovery can significantly improve

reliability without requiring hardware modifications, and are therefore cheaper and easier to

deploy. Because hardware-only techniques are too expensive to use in the field, researchers

compensate with software-only approaches. Deployment of redundancy techniques in the

field is important because designers might incorrectly estimate the soft-error rate or the

machine’s usage condition might change. Changes to the hardware’s operating environment

can noticeably affect reliability and require the deployment of software redundancy

techniques. For example, the soft-error rate from atmospheric neutrons is 4 to 5 times higher

in Denver than in New York City because of Denver’s higher altitude.8

References

1. R. W. Horst, R.L. Harris, and R.L. Jardine, ‘‘Multiple Instruction Issue in the

NonStop Cyclone Processor,’’ Proc. 17th Int’l Symp. Computer Architecture,

ACM Press, 1990, pp. 216–226.

2. T.J. Slegel et al., ‘‘IBM’s S/390 G5 Microprocessor Design,’’ IEEE Micro, vol.

19, no. 2, Mar. 1999, pp. 12–23.

3. Y. Yeh, ‘‘Triple-Triple Redundant 777 Primary Flight Computer,’’ Proc. 1996

IEEE Aerospace Applications Conf., vol. 1, IEEE Press, 1996, pp. 293–307.

4. S.K. Reinhardt and S.S. Mukherjee, ‘‘Transient Fault Detection via Simultan-

eous Multithreading,’’ Proc. 27th Ann. Int’l Symp. Computer Architecture,

ACM Press, 2000, pp. 25–36.

5. N. Oh, P.P. Shirvani, and E.J. McCluskey, ‘‘Error Detection by Duplicated

Instructions in Super-Scalar Processors,’’ IEEE Trans. Reliability, vol. 51, no.

1, Mar. 2002, pp. 63–75.

6. G.A. Reis et al., ‘‘Swift: Software Implemented Fault Tolerance,’’ Proc. 3rd

Int’l Symp. Code Generation and Optimization, IEEE Press, 2005, 242–254.

7. R. Venkatasubramanian, J.P. Hayes, and B.T. Murray, ‘‘Low-Cost On-line Fault

Detection Using Control Flow Assertions,’’ Proc. 9th IEEE Int’l Online Testing

Symp., IEEE CS Press, 2003, pp. 137–143.

8. J.F. Ziegler and H. Puchner, SER–History, Trends, and Challenges: A Guide for

Designing with Memory ICs, Cypress Semiconductor Corp., 2004.

..

JANUARY–FEBRUARY 2007 37

We refer to a system’s reliability as the
percentage of faults that are unACE, because
SEGV and SDC faults are both deleterious.

Swift
The Swift-enabled compiler duplicates

a program’s instructions and schedules them
along with the original instructions in the
same execution thread.7 The original and
duplicate versions of the instructions are
register-allocated so they don’t interfere
with each other. At certain synchronization
points in the combined program, the
compiler inserts validation code to ensure
that the data produced by the original and
redundant instructions are equal.

Because program correctness is defined
by the program’s output, we insert valida-
tion checks before any instruction that
might potentially generate output. There
are two principal methods for user-level
code to produce output: memory-mapped
I/O and system calls.

If a program produces all output via
memory-mapped I/O, it has executed
correctly if all of its loads and stores have
executed correctly. Under this conservative
assumption, data must be validated before
all loads and stores. By the same token, the
redundancy must also avoid adding any
extra stores and loads, lest any unwanted
I/O take place. The lack of software
redundancy in memory doesn’t often sig-
nificantly impact reliability, because error-
correcting code (ECC) typically protects
memory and caches against transient faults.

Figure 1 shows a sample code sequence
before and after the Swift fault-detection
transformation. The Swift-enabled compiler
duplicates the add instruction and inserts it

as instruction 3. The duplicate instruction
uses redundant versions of the values in
registers r2 and r3, denoted by r29 and r39,
respectively. The result is stored in r1’s
redundant version, r19.

The compiler inserts instructions 1 and 2
to validate and replicate the load instruction
data. Instruction 1 ensures that the sub-
sequent load’s address matches its duplicate
address. Furthermore, the compiler doesn’t
insert a redundant load instruction because
the load might be uncacheable, so, to set
r39, the technique must find an alternative
to redundantly executing the load. In this
case, instruction 2 simply copies the load
instruction’s result into its duplicate regis-
ter.

We use r1 and r2 values at the store
instruction at the end of the example.
Because we must avoid storing incorrect
values into memory and storing values to
incorrect addresses, the technique checks
that both the address and value match their
redundant copy. If it detects a difference,
a fault has occurred, and it notifies the
system via instruction 4 or 5. Otherwise, the
store proceeds normally.

Although in this example program, an
instruction is immediately followed by its
duplicate, an optimizing compiler (or dynamic
hardware scheduler) can schedule the instruc-
tions to use additional available instruction-
level parallelism (ILP), thus minimizing the
transformation’s performance penalty.

Checking at loads and stores will protect
against many faults. However, programs can
also generate output via system calls, or
more generally, via external libraries. Be-
cause external code might not have any
protection, the best Swift can do is verify
that all of the inputs to the function or
system call are correct. Just as the compiler
inserts checks to compare the input to each
store instruction against its redundant copy,
the compiler inserts check instructions for
register arguments before function calls.

Unfortunately, checking at these points
alone—namely, before loads, stores, and
function calls—won’t protect against faults
that affect branch outcomes. If a fault
occurs on a data slice that only feeds
a branch, the application might take an
incorrect execution path and execute in-

IEEE Micro micr-27-01-reis.3d 13/4/07 13:30:27 38

Figure 1. Swift duplication and validation: original code (a) and Swift

code (b).

...

TOP PICKS

...

38 IEEE MICRO

correct loads and stores, although no fault
will be detected. To protect against this,
Swift also verifies the input registers to any
branch predicate.

Figure 2 demonstrates this protection.
Instructions 3 and 4 check that the source
registers to the conditional branch are
correct. Instruction 1 checks that the input
parameter register P0 is equal to its re-
dundant version before making the external
function call to otherFunc. The function
call is similar to a load instruction not only
in that the inputs must be checked, but also
that they can’t be safely duplicated. So, to
produce a redundant copy of the return
value, here given as R0, the compiler must
insert instruction 2.

Swift, like all software-only reliability
techniques, has some vulnerabilities. Pre-
vious work has described these vulnerabil-
ities in detail and has shown that software-
only techniques effectively detect most
faults in many parts of the system.7,8

Swift-R
The Swift transformation can be seen as

a double-modular redundancy implemented
in software. Double redundancy provides
detection but not recovery. Swift-R achieves
reliability with recovery by using triple-
modular redundancy.

Instead of creating one redundant copy,
as in Swift, the Swift-R transformation
creates two redundant copies. Having three
copies means that, should a fault corrupt
any one version’s computation, two other
versions will still have the correct compu-
tation. By using a simple majority voting
scheme, the system can correct any single-
bit fault.

Figure 3 shows the Swift code from
Figure 1 in Swift-R. Instruction 4 duplicates
the previous add instruction, just as in
Swift. However, the Swift-R transformation
also inserts instruction 5, a third version of
the add instruction that uses a third set of
registers, here denoted by r10, r20, and r30.
Similarly, after the load instruction, instead
of a single move instruction (instruction 2),
Swift-R also inserts a second move in-
struction (instruction 3).

We also replaced Swift’s fault-detection
code with recovery code at instructions 1, 6,

and 7. The recovery code is simply
a majority voting procedure: if two versions
of a register, r1 and r19, for example, have
the same value, but the third version, r10,
doesn’t, we set r10 to the value in r1 and r19,
correcting the corrupted value of r10.

Trump
AN-codes form the theoretical backdrop

for the Trump technique. They allow a more
compact representation of redundancy,
ultimately letting Trump contain Swift-R’s
redundant data in two registers instead of
three. Although Trump’s AN-encoding is
less general than Swift-R’s triple-modular
redundancy, rendering it unable to protect
certain portions of programs, Trump’s
redundant computation is much less oner-
ous. Thus, it provides an alternative for
applications that can’t afford Swift-R’s
performance penalty, but could benefit
from moderate protection.

AN-codes
AN-codes are a class of arithmetic codes

(codes that are preserved across arithmetic
expressions) in which the code word is

IEEE Micro micr-27-01-reis.3d 13/4/07 13:30:31 39

Figure 3. Swift-R triplication and validation: original code (a) and Swift-R

code (b).

Figure 2. Swift branch and function-call validation: original code (a) and

Swift code (b).

..

JANUARY–FEBRUARY 2007 39

simply the original data multiplied by
a constant, A. The fact that AN-codes are
arithmetic codes is evident using standard
algebra:

(Ax) z (Ay) ~ A(x z y) ð1Þ

(Ax) | k ~ A(x | k) ð2Þ

You can use AN-codes to detect errors by
verifying that the code word is divisible by
A. Precisely, C is a valid code word only if C
; 0 (mod A). The choice of A significantly
impacts the implementation cost as well as
the resulting code’s reliability. A 5 2n 2 1
is a particularly good choice with respect to
both of these.

First, consider the reliability ramifica-
tions of this choice. You can consider any
single-bit fault to a code word as either an
addition or subtraction of 2k for some k.
Observe that 2k ? 2n 2 1 for any n . 0.
So,

C + 2k : +2k (mod A) =: 0 (mod A)

This proof guarantees that the faulty AN
code word won’t be divisible by A, so A will

be able to detect any single-bit faults to the
code word. Although we don’t prove it here,
this choice of code word can also protect

against numerous multibit faults.

A 5 2n 2 1 is also a convenient
implementation for performance because
you can compute multiplication by A as

simply a shift left by n and a subtraction,
specifically, Ax 5 (x % n) 2 x.

The choice of A also determines how
many bits you’ll need to represent the code

word. For A 5 2n 2 1, you’ll need n extra
bits to represent the code word. In our

implementation, we choose the smallest
nontrivial n, namely n 5 2 and A 5 22 2

1 5 3, to minimize the additional bits

necessary for storage.

Trump transformation
In Trump, we exploit AN-codes to

implement software-only recovery more
efficiently than in Swift-R. As we noted

previously, an AN-code with A 5 3 is
sufficient to detect any single-bit error. We
can extend this detection capability to

recovery by adding one extra, non-AN-
encoded version.

Trump essentially has two copies of every
value, similar to Swift. However, unlike

Swift, one copy of the data is AN-encoded.
Under this scheme, the program detects

a fault whenever the original copy multi-
plied by A doesn’t match the AN-encoded
copy. If they don’t match, Trump can

recover the code by inferring which copy is
correct. If the AN-encoded copy is divisible

by A, we can surmise that the fault struck
the original copy. If it isn’t, the AN-encoded
copy was struck and the original is correct.

Figure 4 shows pseudocode for this recovery
sequence.

Although this might be costly because of
the division and modulo operations, Trump

executes these instructions only during fault
recovery, which is relatively rare.

Figure 5 illustrates the Trump trans-

formation. We denote the redundant
Trump registers by appending a t to the
register’s name. Although we show code

with multiplications here for brevity, we
implement multiplications with the faster
combination of shifts and adds.

IEEE Micro micr-27-01-reis.3d 13/4/07 13:30:38 40

Figure 4. Trump recovery pseudocode.

Figure 5. Trump transformation: original code (a) and Trump code (b).

...

TOP PICKS

...

40 IEEE MICRO

As implemented in previous software-
only reliability techniques, the Trump-
enabled compiler must validate the load
address before load instructions. Instruction
1 performs this check by ensuring that three
times the original value is equal to the
redundant value. If a mismatch occurs, the
system will execute the recovery code shown
in Figure 4. Similarly, before the store
instruction, instructions 4 and 5 check the
store operands.

Also similarly to previous software-only
reliability techniques, the compiler must
copy the load instruction result into the
redundant register, as in instruction 2. In
Trump, instead of a simple move, we
perform a multiplication to ensure that the
redundant copy is properly AN-encoded.
Finally, instruction 3 performs a redundant
add instruction. Recall that AN-codes are
arithmetic codes, which means that code
words are preserved through arithmetic
operations. Therefore, we don’t need to
alter this instruction in any way from the
Swift version.

Thus, Trump offers recovery similar to
Swift-R, but only requires two independent
versions.

Applicability
In addition to the vulnerabilities of all

software-only recovery schemes, Trump has
two primary limitations.

First, AN-codes don’t propagate through
many logical operations, such as and and
or,9 and therefore can’t be applied to certain
dependence chains.

Second, a register can never assume
a value greater than 2M/A, where M is the
number of bits in that register. If it does, the
AN-encoded version of the register will
overflow. To avoid this situation, we only
apply Trump on dependence chains whose
values never exceed 2M/A. If the compiler
can’t statically prove that a certain de-
pendence chain has this property, it must
leave it at least partially unprotected.

Fortunately, restrictions on valid memory
addresses on most architectures provide
ample spare bits for the Trump trans-
formation to be applied to pointers. Also,
code written in languages with primarily
32-bit data types, such as C, typically don’t

use many bits when executed on 64-bit
architectures. These two phenomena make
Trump applicable on most applications.

Mask
Mask is a very low-cost reliability

technique. It enforces statically known
invariants to eliminate faults that can be

reasoned away. Using these invariants, Mask
can remove faults that would otherwise be
deleterious, thus increasing reliability with-
out redundant execution.

The Mask technique is best illustrated
through an example. Consider the code in
Figure 6, loosely culled from adpcmdec, an
adaptive pulse-code modulation (PCM)
decoder benchmark from MediaBench.10

In this snippet, the otherFunc function is
called every other iteration of the loop, via
the guarding register r3. Any faults on the
lowest bit of this register will be detrimental
to the program, causing it to execute or not
execute otherFunc erroneously for every
subsequent iteration. Furthermore, any fault

on any of the other bits of register r3 will
cause otherFunc to be erroneously executed
every iteration, instead of every other
iteration as originally intended. On a 64-
bit system, 63/64 of the faults will be of this
latter type while only 1/64 of the faults will
be of the first type. Mask attempts to resolve

the latter and more common type of fault.

By statically analyzing the code, the

compiler can know that all but the lowest-
order bit of r3 must necessarily be zero. The
Mask technique enforces this invariant by
adding the boldfaced instruction shown in
Figure 6. Faults occurring to any of the bits
that should be zero will be masked out and
won’t affect any subsequent computation.

IEEE Micro micr-27-01-reis.3d 13/4/07 13:30:47 41

Figure 6. Mask transformation: original code (a) and Mask code (b).

..

JANUARY–FEBRUARY 2007 41

This will increase register r3’s reliability by
a factor of 64.

The Mask technique reduces the total
number of live bits in the system, thereby
increasing the system’s resilience against
faults—any fault to a dead bit can’t cause
the system to produce incorrect output.
Although we only evaluate masking with
and instructions to enforce known-zero bits,
we could easily extend the technique to use
or instructions to enforce known-one bits,
or sign-extensions to enforce known-sign
bits. We could also eventually extend the
technique to account for higher-level se-
mantic information and programmer anno-
tations.

Hybrid techniques
In our evaluation, we also consider four

hybrid combinations of Swift-R, Trump,
and Mask. The Trump/Swift-R hybrid
technique uses Trump protection when
applicable and Swift-R for those instruc-
tions left uncovered by Trump, such as bit-
manipulation operations. Similarly, the
Trump/Mask hybrid technique protects
with the Trump technique when appropri-
ate and applies Mask on the remaining
unprotected instructions. These are often
exclusive, because it’s typically difficult to
prove that any of the bits in the instructions
that Trump can protect—namely arithme-
tic operations—are zero, whereas it’s usually
much easier to prove that bits are zero in
instructions that Trump can’t protect, such
as logical and and or.

We don’t evaluate the Swift-R and Mask
combination because it would simply
consist of full Swift-R protection with
additional Mask instructions inserted.
However, because Mask provides only
a strict subset of Swift-R’s protection, the
Mask instructions would provide no re-
liability benefits. For the same reason, we
also don’t evaluate the Trump/Swift-R/
Mask hybrid.

Evaluation
To evaluate the techniques, we imple-

mented each of them as a pass in the gcc
compiler, version 3.4.1, targeted for the
PowerPC 970. Our additional compilation
phase occurs in the compiler’s back end

immediately before register allocation and
scheduling. We evaluated the techniques on
a variety of benchmarks taken from SPEC
CPU2000, MediaBench, and other bench-
mark suites. All binaries were compiled with
the 2O2 level of optimization and run on
an Apple Xserve G5 with a dual-core
PPC970FX.

Reliability
We performed fault-injection experi-

ments to evaluate the techniques’ reliability.
In accordance with the SEU model, we
inserted exactly one fault per execution. We
inserted the fault into a uniformly randomly
selected bit in a uniformly randomly
selected integer register at a uniformly
random dynamic instruction in the pro-
gram’s execution. We performed 250 such
runs for each benchmark for each technique
and recorded each run’s outcome. We
injected faults into the register file because,
as researchers have shown, it’s a leading
contributor of soft errors.11 The proposed
techniques also protect against most errors
to other structures, such as the arithmetic
logic unit, which are expensive to protect
with ECC, because errors to these structures
will often manifest themselves similarly to
register file faults.

Figure 7 shows the reliability evaluation’s
results. The percentage of unACE bits in
the baseline code with no added fault
tolerance (NOFT) is quite high at 74.18
percent, demonstrating that the unprotected
code already contains numerous dynamical-
ly dead registers and masked bits. The
SEGV percentage for NOFT is 18.00
percent, much higher than the SDC
percentage, at 7.82 percent. This indicates
that faults in registers are much more likely
to cause segmentation violations than to
corrupt data, suggesting that a great deal of
computation for most benchmarks feeds the
addresses of memory accesses rather than
the data itself.

As expected, Swift-R, with its triple-
modular redundancy, greatly reduces the
SEGV and SDC—to 1.93 percent and 0.81
percent, respectively. Furthermore, it is
consistently low across all benchmarks,
indicating universal applicability. The
amount of SEGV and SDC is still nonzero,

IEEE Micro micr-27-01-reis.3d 13/4/07 13:30:51 42

...

TOP PICKS

...

42 IEEE MICRO

however, due to the windows of vulnerabil-
ity.7,8 Because we didn’t specifically direct
the compiler to schedule for reliability, we
could further improve the reliability by
forcing the compiler to move the checks as
close as possible to the uses, possibly with
some performance cost.

Trump also significantly improves re-
liability over NOFT, albeit not as much as
Swift-R. Trump reduces the SEGV to 7.39
percent and the SDC to 4.88 percent while
increasing the unACE percentage to 87.73
percent. Trump improves SEGV much more
dramatically than SDC because Trump can
protect most pointer dependence chains but
few other types of dependence chains. There
are two principal reasons for this:

N Pointer ranges are limited to valid
memory addresses, so it’s easier to
verify that the AN-encoded values
won’t overflow.

N Pointer computations tend to be re-
stricted to simple arithmetic opera-
tions such as addition, which Trump
can protect.

As we’ll demonstrate in the next section,
the performance penalty incurred by Trump
is significantly less than that of Swift-R.
This characteristic, coupled with its re-
liability, makes Trump a promising middle

ground for designers who can’t afford Swift-
R’s performance penalty but who still need

significant reliability enhancement. Howev-
er, designers must keep in mind that Trump
doesn’t increase reliability uniformly across

all benchmarks. For benchmarks that are
dominated by arithmetic instructions that

Trump can protect, such as 183.equake and
mpeg2enc, Trump performs on par with
Swift-R. For benchmarks, such as 197.pars-

er, that are dominated by instructions
Trump can’t protect, such as logical opera-

tions, Trump’s reliability is significantly
lower than Swift-R’s.

The Mask technique doesn’t significantly
reduce SDC (7.61 percent versus NOFT’s

7.82 percent) or SEGV (17.89 percent
versus NOFT’s 17.89 percent) across all
benchmarks. In fact, in some benchmarks,

Mask’s reliability can be slightly worse than
NOFT’s, because of poorer schedules in

terms of reliability. However, in other
benchmarks, such as adpcmdec or mpeg2-
dec, the Mask technique makes a significant

difference. In adpcmdec, it lowers the SDC
from 17.30 percent to 12.87 percent, and in

mpeg2dec, it lowers the SEGV from 25.74
percent to 22.57 percent. This suggests that
by exploiting additional program invariants,

the Mask technique could enhance reliabil-
ity with practically no cost.

IEEE Micro micr-27-01-reis.3d 13/4/07 13:30:51 43

Figure 7. Reliability percentage for NOFT (N), Mask (M), Trump (T), Trump/Mask (K), Trump/Swift-R (R), and Swift-R (S). The

average is across all benchmarks.

..

JANUARY–FEBRUARY 2007 43

As you’d expect, combining the Trump
and Mask techniques yields reliability
similar to that of Trump. However, for
benchmarks where Mask makes a significant
difference, such as adpcmdec, the Trump/
Mask combination fares significantly better
than either Trump or Mask individually. In
fact, Trump/Mask reduces adpcmdec’s
SDC to 4.55 percent compared with 4.88
percent for Trump and 7.61 percent for
Mask. We attribute this additive effect to
the fact that Mask and Trump protect
different types of instructions. Trump
protects arithmetic instructions whereas
Mask protects instructions in which bits
can be proved to be zero, which are almost
always logical instructions.

Finally, the Trump/Swift-R technique
performs similarly to Swift-R, with a SEGV
of 2.14 percent and a SDC of 0.62 percent.
This implies that the Swift-R portions of
the code are successfully filling Trump’s
protection gaps, leaving windows of vulner-
ability on par with those in Swift-R.
However, Trump/Swift-R’s reliability is
slightly worse than Swift-R’s for some
benchmarks because adding the Trump
instructions can increase the total dynamic
number of instructions. This is because
transitions between Swift-R and Trump
require extra instructions, and Trump’s
verification sequence is longer than Swift-
R’s. This can ultimately increase register live
ranges and vulnerability window size. Thus,

the heuristics of when to apply Swift-R and
when to apply Trump, and how to
transition from one to the other within
a single dependence chain require additional
investigation, which we’re pursuing as
future work.

Performance
We collected performance results for each

technique using Linux’s OProfile when no
faults were injected. Figure 8 shows the
execution times for each of our techniques
normalized to a baseline build with NOFT.
Note that the bars are clipped at one. In
most cases, Mask’s performance is only
nominally above one, and in some cases,
Mask’s performance bests NOFT’s because
the inserted instructions cause slight
changes to the scheduling and register
allocation heuristics. Consequently, Mask
bars appear to be missing for many bench-
marks.

Our techniques exhibit a wide range of
performance behaviors. The low-cost tech-
niques, Trump and Mask, have normalized
execution times of only 1.36 and 1.00,
respectively. The Trump/Mask technique
has the larger normalized execution time of
1.37. The higher coverage techniques,
Swift-R and Trump/Swift-R, have normal-
ized execution times of 1.99 and 1.98,
respectively.

Trump/Swift-R’s execution time is closer
to Swift-R’s than Trump’s. This implies

IEEE Micro micr-27-01-reis.3d 13/4/07 13:31:01 44

Figure 8. Execution time of Mask, Trump, Trump/Mask, Trump/Swift-R, and Swift-R normalized to NOFT. The geometric

mean is across all benchmarks.

...

TOP PICKS

...

44 IEEE MICRO

that Trump/Swift-R’s protection choices
track more closely with Swift-R than with
Trump—that is, Swift-R protects many
more instructions than Trump does. This
concurs with the reliability evaluation,
which showed that Trump/Swift-R’s re-
liability is much closer to Swift-R’s than to
Trump’s.

Much like its reliability, Trump/Swift-
R’s performance highly depends on the
trade-offs between Swift-R protection and
Trump protection. The Swift-R technique
is more expensive than Trump in terms of
redundancy because it requires two addi-
tional versions of the computation instead
of one. Trump, on the other hand, is more
expensive in terms of verification because it
must convert the AN-encoded and original
data to the same form for comparison.
Depending on the ratio of redundant
computation to comparison, a Trump de-
pendence chain might actually be more
costly than a Swift-R dependence chain,
which accounts for Swift-R occasionally
outperforming Trump/Swift-R.

Trump/Mask typically performs much
better than either Trump/Swift-R or Swift-
R, but significantly worse than Mask and on
par with Trump. This is to be expected
because Mask’s performance impact is
nearly negligible. The performance is slight-
ly worse than the simple sum of Mask and
Trump, because each technique alone can
use some of the previously unused re-
sources, but the processor doesn’t have
enough unused resources to support both
the Mask and Trump protections, thus
creating a superadditive performance pen-
alty. In some cases, most notably mpeg2dec,
Trump/Mask outperforms Trump, just as
Mask occasionally outperforms NOFT.
Once again, this is because of changes in
the scheduler and register allocator that
result from inserting extra instructions.

The normalized execution time of all of
our techniques, even Swift-R, averages far
less than 3, the time one might naively
expect after triplicating the code. In bench-
marks dominated by floating-point instruc-
tions that we don’t protect, such as 179.art,
we’d expect little difference in performance
between the various versions of the code,
and this is exactly the case. However, the

normalized execution time is also far less
than 3 for most integer benchmarks. All of
our techniques exploit the well-documented

existence of unused ILP resources in most
modern processors. Because most of the
instructions added in Swift-R and Trump are

independent of the original instructions, the
reliable code can typically use previously

unused ILP resources. This effect is especially
visible in benchmarks that already exhibit
poor ILP in NOFT, such as 181.mcf. The

181.mcf benchmark spends a large fraction
of its time in memory stalls; consequently,

our transformations have a small impact on
the performance. The variety in available ILP
leads to wide variations in the performance

cost for each benchmark.

In addition to the ILP effect, the in-
struction mix of the various benchmarks
affects the performance cost of added re-

liability. Recall that for both Trump and
Swift-R, the protection for most instructions

is simply replication. However, whenever
checks are needed, the reliable compiler inserts
another more complex sequence of instruc-

tions. Although the verification code differs
for each technique, in benchmarks with many

checks, such as 255.vortex (due to a pre-
ponderance of loads), the performance impact
is typically much higher than benchmarks,

such as 300.twolf, with fewer checks and more
time dedicated to pure computation.

In summary, Swift-R, which has a normal-
ized execution time of 1.99, can signifi-

cantly improve reliability, increasing un-

ACE to 97.27 percent. You should use this
technique when high reliability require-

ments warrant this level of performance
degradation. Moving to the hybrid tech-
nique Trump/Swift-R slightly improves the

performance of Swift-R.

When the system’s reliability require-
ments aren’t stringent enough to warrant
Swift-R or Trump/Swift-R, you can use

Trump or Trump/Mask. Trump has the
much lower normalized runtime of 1.36,

but still manages to increase the unACE to
87.73 percent versus 74.18 percent for
NOFT. Trump/Mask improves on this

slightly, increasing reliability further while
having a negligible impact on performance.

IEEE Micro micr-27-01-reis.3d 13/4/07 13:31:10 45

..

JANUARY–FEBRUARY 2007 45

Finally, for systems that can tolerate
almost no performance degradation, you
can use the Mask technique. Although
Mask only sometimes improves reliability,

it’s essentially free in terms of performance
cost, so applying it is almost certainly
worthwhile. MICRO

Acknowledgments
We thank the entire Liberty Research

Group, Shubhendu Mukherjee, and the
anonymous reviewers for their support
during this work. The Intel Corporation

supported this work. Opinions, findings,
conclusions, and recommendations ex-
pressed throughout this work are not
necessarily the views of Intel Corporation.

..

References
1. R.C. Baumann, ’’Soft Errors in Advanced

Semiconductor Devices–Part I: The Three

Radiation Sources,’’ IEEE Trans. Device

and Materials Reliability, vol. 1, no. 1,

Mar. 2001, pp. 17-22.

2. T.J. O’Gorman et al., ’’Field Testing for

Cosmic Ray Soft Errors in Semiconductor

Memories,’’ IBM J. Research and Devel-

opment, Jan. 1996, pp. 41-49.

3. P. Shivakumar et al., ’’Modeling the Effect

of Technology Trends on the Soft Error

Rate of Combinational Logic,’’ Proc. 2002

Int’l Conf. Dependable Systems and Net-

works, IEEE CS Press, 2002, pp. 389-399.

4. R.C. Baumann, ’’Soft Errors in Commercial

Semiconductor Technology: Overview and

Scaling Trends,’’ IEEE 2002 Reliability

Physics Tutorial Notes, Reliability Funda-

mentals, 2002, pp. 121_01.1-121_01.14.

5. S.E. Michalak et al., ’’Predicting the Num-

ber of Fatal Soft Errors in Los Alamos

National Laboratory’s ASC Q Computer,’’

IEEE Trans. Device and Materials Reliabil-

ity, vol. 5, no. 3, 2005, pp. 329-335.

6. S.S. Mukherjee et al., ’’A Systematic

Methodology to Compute the Architectural

Vulnerability Factors for a High-Perfor-

mance Microprocessor,’’ Proc. 36th Ann.

IEEE/ACM Int’l Symp. Microarchitecture,

IEEE CS Press, 2003, pp. 29-42.

7. G.A. Reis et al., ’’Swift: Software Imple-

mented Fault Tolerance,’’ Proc. 3rd Int’l

Symp. Code Generation and Optimization,

IEEE Press, 2005, pp. 242-254.

8. G.A. Reis et al., ’’Software-Controlled Fault

Tolerance,’’ ACM Trans. Architecture and

Code Optimization (TACO), vol. 2, no. 4,

Dec 2005, pp. 366-396.

9. W.W. Peterson and M.O. Rabin, ’’On

Codes for Checking Logical Operations,’’

IBM J. Research and Development, vol. 3,

no. 2, 1959, p. 163.

10. C. Lee, M. Potkonjak, and W. Mangione-

Smith, ’’MediaBench: A Tool for Evaluating

and Synthesizing Multimedia and Commu-

nications Systems,’’ Proc. 30th Ann. Int’l

Symp. Microarchitecture, IEEE CS Press,

1997, pp. 330-335.

11. N.J. Wang et al., ’’Characterizing the

Effects of Transient Faults on a High-

performance Processor Pipeline,’’ Proc.

2004 Int’l Conf. Dependable Systems and

Networks, IEEE CS Press, 2004, pp. 61-72.

George A. Reis is a fourth-year PhD
student in the Department of Electrical
Engineering at Princeton University. His
research interests include computer reliabil-
ity and configurable techniques to mitigate
processor faults using combinations of
software and hardware implementations.
Reis has a BSE and an MA in electrical
engineering from Princeton University. He
is a student member of the ACM.

Jonathan Chang is a fourth-year PhD
student in the Department of Electrical
Engineering at Princeton University. His
research interests include natural language
processing and machine learning, as well
as computer architecture and fault toler-
ance. Chang has a BS in electrical and
computer engineering from the California
Institute of Technology and an MA in
electrical engineering from Princeton Uni-
versity. He is a student member of the
ACM.

David I. August is an associate professor in
the Department of Computer Science at
Princeton University, where he directs the
Liberty Research Group. The Liberty Re-
search Group is studying next-generation
architectures, code analyses, and code
transformations to enhance performance,

IEEE Micro micr-27-01-reis.3d 13/4/07 13:31:10 46

...

TOP PICKS

...

46 IEEE MICRO

reliability, and security. August has a PhD
in electrical engineering from the University
of Illinois at Urbana-Champaign. He is
a member of the IEEE and ACM.

Direct questions about this article to
David August, Department of Computer

Science, Princeton University, 35 Olden St.,
Princeton, NJ 08540; august@princeton.edu.

For more information on this or any

other computing topic, please visit our

Digital Library at http://computer.org/

publications/dlib.

IEEE Micro micr-27-01-reis.3d 13/4/07 13:31:10 47

..

JANUARY–FEBRUARY 2007 47

