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Abstract

Recently, the microprocessor industry has moved toward
chip multiprocessor (CMP) designs as a means of utiliz-
ing the increasing transistor counts in the face of physi-
cal and micro-architectural limitations. Despite this move,
CMPs do not directly improve the performance of single-
threaded codes, a characteristic of most applications. In or-
der to support parallelization of general-purpose applica-
tions, computer architects have proposed CMPs with light-
weight scalar communication mechanisms [21, 23, 29]. De-
spite such support, most existing compiler multi-threading
techniques have generally demonstrated little effective-
ness in extracting parallelism from non-scientific applica-
tions [14, 15, 22]. The main reason for this is that such
techniques are mostly restricted to extracting parallelism
within straight-line regions of code.

In this paper, we first propose a framework that en-
ables global multi-threaded instruction scheduling in gen-
eral. We then describe GREMIO, a scheduler built using
this framework. GREMIO operates at a global scope, at
the procedure level, and uses control dependence analysis
to extract non-speculative thread-level parallelism from se-
quential codes. Using a fully automatic compiler imple-
mentation of GREMIO and a validated processor model,
this paper demonstrates gains for a dual-core CMP model
running a variety of codes. Our experiments demonstrate
the advantage of exploiting global scheduling for multi-
threaded architectures, and present gains in a detailed com-
parison with the Decoupled Software Pipelining (DSWP)
multi-threading technique [18]. Furthermore, our experi-
ments show that adding GREMIO to a compiler with DSWP
improves the average speedup from 16.5% to 32.8% for im-
portant benchmark functions when utilizing two cores, indi-
cating the importance of this technique in making compilers
extract threads effectively.

1 Introduction
In the last few years, the microprocessor industry has

been undergoing one of its most fundamental changes in
decades. Suddenly, hard physical limitations, aligned with
the diminishing returns of micro-architectural improve-

ments, have prevented the design of faster microprocessors.
Nevertheless, the number of transistors available on a chip
continues to increase exponentially over time. Combined,
these factors have directed all major microprocessor man-
ufacturers toward multi-core designs, also known as chip
multiprocessors (CMPs). Unfortunately, while CMPs in-
crease throughput for multiprogrammed and multi-threaded
codes, many important applications are single-threaded and
thus do not benefit from CMPs.

This change in paradigm has resulted in a tremendous
interest in parallel applications. Although ideally program-
mers could rewrite all applications in a parallel paradigm,
parallel programming has long been recognized as more
time-consuming, error-prone, and harder to debug than its
sequential counterpart. Furthermore, it is impractical to
rewrite all the existing applications. A less costly alterna-
tive would be to use parallelizing compilers to automatically
generate parallel code from sequential programs. Unfortu-
nately, despite decades of research on parallelizing compil-
ers, these have only proved effective in the restricted do-
main of scientific applications, which often have regular
array-based memory accesses and little control flow.

Computer architects have worked in at least three di-
rections in order to support thread-level parallelism (TLP)
extraction for general-purpose applications. First, vari-
ous hardware mechanisms to support transactional mem-
ory have been studied. Although transactions provide a
nice abstraction to express parallelism, the programmer is
still required to express the parallel sections of code. Sec-
ond, several mechanisms to exploit thread-level specula-
tion (TLS) have been proposed [27, 28]. Though effec-
tive in many cases, these techniques generally require ex-
pensive hardware support. Furthermore, these techniques
are complementary to non-speculative compiler techniques.
For example, the dependence analysis used in this paper
can be employed to guide thread spawning for TLS, or to
speed up individual iterations in a loop to which TLS is ap-
plied. Third, computer architects have proposed hardware
mechanisms to lower the inter-thread communication costs,
thus enabling the exploitation of fine-grained TLP found in
general-purpose applications [20, 21, 23, 29]. These mech-
anisms typically consist of an on-chip interconnect between
the processor cores and means to communicate scalar values



from one core to another. To the software, these communi-
cation mechanisms look like sets of queues with blocking
primitives to send and receive values, typically in the form
of special produce and consume instructions or register-
mapped queues. Extracting parallelism for these processors
consists of partitioning the computation into threads and
generating code to use the hardware communication sup-
port to satisfy inter-thread dependences. The parallelism
exposed by these processors is of finer granularity than what
is typically exploited by programmers of parallel systems,
making it even harder to manually exploit these opportu-
nities. Therefore, generating code that exploits this paral-
lelism is better performed by a compiler’s instruction sched-
uler.

Instruction scheduling techniques, akin to other com-
piler optimizations, can be classified according to the scope
of the regions they operate at a time. For the purpose
of this paper, we use the following classification: local
techniques, operating at basic blocks or traces; loop tech-
niques, operating at loops; and global techniques, oper-
ating at whole procedures. Many existing multi-threaded
scheduling techniques are mostly based on local schedul-
ing [14, 15, 22]. We call these techniques local multi-
threaded (LMT) scheduling. In these techniques, all threads
synchronously execute every basic block or trace, thus us-
ing threads to simply exploit instruction-level parallelism
within straight-line regions of code.

One of our key observations is that LMT scheduling
techniques do not take advantage of a main feature of multi-
threaded architectures: the ability to simultaneously follow
different execution paths in different processor cores. In
fact, several limit studies have shown that exploiting paral-
lelism beyond local regions of code and executing multiple
flows of control in parallel are necessary to extract reason-
able amounts of parallelism from most applications [13].
As an example, consider the sample C code in Figure 1.
Although these loops may run for a large number of iter-
ations, very little instruction-level parallelism is available
within each basic block. For such control-intensive codes,
LMT scheduling techniques cannot extract any parallelism.
Notice, however, that the computation in each loop is in-
dependent, and therefore they can be executed in paral-
lel. Nevertheless, in order to exploit such sources of par-
allelism, it is necessary to perform global multi-threaded
(GMT) scheduling.

The Decoupled Software Pipelining (DSWP) tech-
nique [18] can be viewed as a restricted form of GMT in-
struction scheduling, which is only applicable to loop nests
in which pipeline parallelism is available. As shown in our
experiments, DSWP misses opportunities because it only
looks for pipeline multi-threading (PMT) and does not al-
low other forms of parallelism. GREMIO, the technique
proposed in this paper, generalizes DSWP in the sense that

s1 = 0;
s2 = 0;
for (p = head; p != NULL; p = p->next) {

s1 += p->value;
}
for (i = 0; a[i] != 0; i++){

s2 += a[i];
}
printf("%d\n", s1 * s1 / s2);

Figure 1. Example code in C.

it is applicable to arbitrary code regions and that it can ex-
tract other forms of multi-threading (MT) parallelism. Nev-
ertheless, our experiments demonstrate that each of DSWP
and GREMIO is able to extract parallelism that the other
is not. Therefore, they can play complementary roles in a
multi-threading compiler.

This paper:

1. Introduces the general concept of GMT instruction
scheduling.

2. Presents the algorithms used by GREMIO, a GMT in-
struction scheduler. These include a novel GMT list
scheduling heuristic, and an effective dynamic pro-
gramming algorithm to efficiently handle large code
regions composed of complex loop nests.

3. Discusses a general approach to generate multi-
threaded code from arbitrary partitions of the instruc-
tions among the threads, for any code region. This MT
code generation technique is used by GREMIO and
generalizes the one used for loop scheduling in [18]
to operate on arbitrary CFGs.

4. Shows promising initial experimental results targeting
a highly accurate dual-core Itanium 2 model.

The rest of the paper is organized as follows. Section 2
gives some background on Program Dependence Graphs
(PDGs), a key program representation used in this work,
and then discusses how PDGs are useful to enable general-
ized MT instruction scheduling. The scheduling algorithms
used by GREMIO are presented in Section 3. In Section 4,
we present experimental results. Finally, we discuss related
work in Section 5, and conclude in Section 6.

2 Program Dependences and
Multi-Threaded Instruction Scheduling

Program dependences constitute an important abstrac-
tion in compiler optimization and parallelization. This sec-
tion first provides some background on Program Depen-
dence Graphs (PDG), and then demonstrates how PDGs en-
able global MT instruction scheduling.



2.1 Program Dependence Graphs
Local scheduling techniques operate by constructing a

data dependence graph representing all data dependences
that must be respected. At a low-level representation,
data dependences can take two forms: register data depen-
dences, or memory data dependences. Furthermore, data
dependences can be of three kinds, depending on whether
the involved instructions read or write the data location:
flow dependence, which goes from a write to a read; anti-
dependence, which goes from a read to a write; and out-
put dependence, which goes from a write to another write.
Register data dependences can be efficiently and precisely
computed through data-flow analysis. For memory data de-
pendences, compilers typically rely on the result of pointer
analysis to determine which loads and stores may access the
same memory locations. Although computationally much
more complicated, practical existing pointer analysis can
typically disambiguate a large number of non-conflicting
memory accesses even for type-unsafe languages like C
(e.g. [2]).

The key addition from a local to a global scheduling
technique is the necessity of handling control flow. In other
words, in addition to the data dependences typically used
for local scheduling, it is necessary to add control depen-
dence arcs to the dependence graph. Although slightly dif-
ferent definitions of control dependence exist, the most gen-
eral one, stated in Definition 1 below, was introduced by
Ferrante et al. [6]. This definition is meaningful even at
lower-level program representations (typically used for in-
struction schedulers), since it is not based on the syntactical
structure of the program. Instead of syntactical construc-
tors, it uses the post-dominance relation [16].

Definition 1 (Control Dependence). Let G be a CFG, and
X and Y two nodes in G. Y is control dependent on X iff:

1. there exists a directed path P from X to Y with any Z

in P (excluding X and Y ) post-dominated by Y ; and
2. X is not strictly post-dominated by Y .

Cytron et al. [4] proposed an efficient algorithm to com-
pute control dependences according to this definition.

Dependence graphs including both data and control
dependences are generally called Program Dependence
Graphs (PDGs). PDGs are widely used in compilers as an
intermediate representation due to several important proper-
ties. In particular, Horwitz et al. [10] proved, using syntax-
based control dependences, the Equivalence Theorem. Ac-
cording to this theorem, two programs with the same PDG
are equivalent. Later, Sarkar [25] proved a similar result for
PDGs using control dependences according to Definition 1.

As an example, consider the low-level representation in
Figure 2(a) of Figure 1. Figures 2(b)-(d) illustrate the cor-
responding CFG, post-dominance tree, and PDG. In Fig-

ure 2(d), solid arcs represent register data dependences, and
the dotted arcs represent control dependences in the PDG.

2.2 PDGs and Multi-Threaded Instruction
Scheduling

Following Sarkar’s [25] result, every instruction schedul-
ing technique needs to preserve all dependences in a PDG.
For multi-threaded scheduling, this implies that instructions
to synchronize and communicate values among the threads
have to be inserted in the code in order to satisfy inter-thread
dependences.

For LMT instruction scheduling techniques, the preser-
vation of all program’s dependences is guaranteed in two
ways. First, the schedule of instructions inside basic blocks
or traces makes sure that data dependences are satisfied.
This requires explicit communication instructions to be in-
serted if the source and sink of a dependence are in different
threads. Second, all threads execute every basic block or
trace in synchrony. This is achieved by having the direction
of each branch communicated from the thread containing it
to all other threads [14, 15, 22].

The key to enabling global MT instruction scheduling
is in allowing the threads to concurrently execute different
regions of code, while guaranteeing that all data and con-
trol dependences are respected. The GMT scheduler should
be able to deal with arbitrary code regions, and should be
able to make any partition decisions while still generating
correct code.

Ottoni et al. [18] describe a MT instruction scheduling
technique to extract pipeline parallelism from loop regions.
Their technique chooses a partition of the code that will
form a pipeline of threads, and then applies a novel MT
code generation algorithm. Briefly, this code generation al-
gorithm has four main steps. For each of the threads speci-
fied by the partition, a new CFG is generated with only the
necessary basic blocks for this thread. Then, the instruc-
tions are inserted in the CFG for the thread to which they
were assigned. Next, the necessary inter-thread communi-
cation and synchronization instructions are inserted into the
code. Finally, branch and jump instructions are adjusted to
account for missing basic blocks in the new CFGs.

Even though the scheduling technique of [18] is limited
to loops, its MT code generation algorithm is more general.
In fact, it can be applied to any region with a reducible CFG.
Furthermore, what prevents their technique from being ap-
plicable to irreducible CFGs is the dependence graph they
use, and not the code generation algorithm itself.

The Dependence Graph (DG) used in [18] contains
both data and control dependences, much like a PDG.
For control dependences, however, the DG also includes
loop-iteration control dependences (Section 2.3.1 in [18]).
The authors argue that, because communication queues are
reused every loop iteration, these dependences are neces-



(A) B1: move r1 = 0 ;; r1 contains s1
(B) move r2 = 0 ;; r2 contains s2
(C) load r3 = [head] ;; r3 contains p
(D) B2: branch r3 == 0, B4
(E) B3: load r4 = [r3] ;; load p->value
(F) add r1 = r1, r4
(G) load r3 = [r3+4] ;; load p->next
(H) jump B2
(I) B4: move r5 = @a ;; r5 pts. to a[i]
(J) B5: load r6 = [r5] ;; load a[i]
(K) branch r6 == 0, B7
(L) B6: add r2 = r2, r6
(M) add r5 = r5, 4
(N) jump B5
(O) B7: mult r7 = r1, r1
(P) div r8 = r7, r2

(a) Low-level IR (b) CFG (c) post-dom.
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Figure 2. For the example in Figure 1: (a) low-level IR, (b) CFG, (c) post-dominance tree, and (d) PDG.

sary to avoid mixing values from two different loop itera-
tions. The limitation in that paper is that loop-iteration con-
trol dependences are defined in terms of loops in the pro-
gram. For this reason, in an irreducible CFG, cyclic regions
of code that are not loops would cause a problem.

However, it turns out that these loop-iteration control de-
pendences are only necessary because of the notion of con-
trol dependences used in [18], which is the one used in the
IMPACT compiler [26]. IMPACT’s control dependences do
not contain loop-carried control dependences, which natu-
rally exist using Definition 1. Ferrante et al.’s control depen-
dence definition not only gives the smallest set of control
dependences that need to be respected in a program [25], but
is also defined for arbitrary CFGs. Therefore, substituting
the control dependences in Ottoni et al.’s DG by Ferrante et
al.’s control dependences enables the code generation algo-
rithm of [18] to be used on arbitrary regions of code.

Theorem 1. The Multi-Threaded Code Generation in [18]
preserves all the dependences in a PDG.

Proof. In interest of space, we just provide a sketch of this
proof. Intra-thread data dependences are trivially satisfied
because the instructions are inserted into the new CFGs in
the same relative order as in the original code. The trickiest
part is proving that control dependences are preserved af-
ter adjusting the branch targets to the closest relevant post-
dominator (step 4 in Section 2.2.3 of [18]). This can be
demonstrated by showing that the post-dominance relation
is preserved among corresponding blocks in the new CFGs.
From that, inter-thread data dependences are satisfied be-
cause the condition of execution of each instruction is pre-
served, and the data communication is inserted right after
the source of the dependence.

From Theorem 1, the correctness of the multi-threaded
code generation algorithm then follows immediately:

Theorem 2. The Multi-Threaded Code Generation in [18]
preserves the semantics of the original code.

Proof. From Theorem 1, all PDG dependences are pre-
served. Therefore, using the Equivalence Theorem [25], the
semantics of the original program is preserved.

According to Theorem 2, combining Ottoni et al.’s MT
code generation with Ferrante et al.’s PDG provides a
framework to perform GMT instruction scheduling in gen-
eral. With it, any partitioning heuristic can be applied to the
PDG, and the MT code generation algorithm will produce
correct code. In this framework, the DSWP technique [18]
can effectively be regarded as a partitioning algorithm that
only extracts pipeline MT parallelism from loops. In the
following section, we present a more general MT partition-
ing technique called GREMIO, which is not limited to loops
and that can extract other kinds of MT parallelism. For ex-
ample, for the PDG in Figure 2(d), GREMIO partitions the
code into two threads as depicted by the vertical dashed line.
This partition corresponds to scheduling each loop of Fig-
ure 1 into a separate thread.

3 Global Multi-Threaded Instruction
Scheduling Algorithms

This section describes GREMIO’s algorithms in detail,
and illustrates them on the example of Figure 1. Although
a MT instruction scheduler can be combined with a tradi-
tional single-threaded scheduler, we opted not to do so in
this work. One reason for this is that the MT code gener-
ated by GREMIO can be further optimized before the actual
assembly code generation. Additionally, exposing all the



machine details to GREMIO would make its implementa-
tion more complex. Instead, we preferred to keep GREMIO
simpler by providing it with just a few key characteristics of
the target processor, namely the number of threads and the
issue-width of the processor. A latency of one cycle is as-
sumed for most instructions (except for function calls), and
no information about structural hazards is used.

GREMIO uses the PDG as an intermediate representa-
tion not only for MT code generation, but also for schedul-
ing decisions. Using the PDG to guide scheduling deci-
sions is attractive because it makes explicit the communi-
cations that will be incurred. In other words, scheduling
two dependent instructions to different threads will require
an inter-thread communication. A problem that arises from
using a PDG for scheduling decisions is the presence of cy-
cles. The PDG for an arbitrary code region can have cy-
cles due to loops in the CFG and loop-carried dependences.
Scheduling cyclic graphs is more complicated than schedul-
ing acyclic graphs. This is because the goal of a scheduler is
to minimize the critical (i.e. longest) path through the graph.
Although scheduling of acyclic graphs in the presence of
resource constraints is NP-hard, at least finding the critical
path in such graphs can be solved in linear time, through a
topological sort. For cyclic graphs, however, even finding
the longest path is NP-hard [8].

Given the inherent difficulty of the global scheduling
problem for cyclic code regions, GREMIO uses a simplify-
ing approach that reduces it to the acyclic scheduling prob-
lem, for which well-known heuristics based on list schedul-
ing [16] exist. In order to reduce the cyclic scheduling prob-
lem to an acyclic one, GREMIO uses two simplifications
to the problem. First, when scheduling a given code re-
gion, each of its inner loops is coalesced to a single node,
with an aggregated latency that assumes its average number
of iterations (based on profiling or static estimates). Sec-
ondly, if the code region being scheduled is itself a loop, all
its loop-carried dependences are disregarded. To deal with
the possibility of irreducible code, a loop hierarchy that in-
cludes irreducible loops is used [9]. It is important to note
that these simplifying assumptions are used for partitioning
decisions only; the MT code generation algorithm takes all
dependences into account to generate correct code.

To distinguish from a full PDG, we call the dependence
graph for a region with its inner loops coalesced and its
loop-carried dependences ignored a Hierarchical Program
Dependence Graph (HPDG). In a HPDG, the nodes repre-
sent either a single instruction, called a simple node, or a
coalesced inner loop, called a loop node. Figure 3(a) il-
lustrates the HPDG corresponding to the PDG from Fig-
ure 2(d). The nodes are labeled by their corresponding
nodes in the PDG, followed by their estimated execution
latency. There are only two loop nodes in this example:
DEFG and JKLM.

(a) HPDG

(b) Clustered HPDG
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Figure 3. Operation of GREMIO on the exam-
ple from Figure 2.

Another complication intrinsic to MT scheduling is that
the generated threads need to communicate to satisfy de-
pendences, and so it is necessary to take the communica-
tion overhead into account while making scheduling de-
cisions1. For instance, even though two instructions can
be executed in parallel on different threads, this might not
be profitable due to the overhead to communicate their
operands. To address this problem, GREMIO uses a clus-
tering pre-scheduling pass on the HPDG, which takes into
account the inter-thread communication overhead. The goal
of this pass is to cluster together HPDG nodes that are likely
to not benefit from schedules that assign them to differ-
ent threads. Section 3.1 explains the clustering algorithm
used by GREMIO, and Section 3.2 describes its partition-
ing heuristic.
3.1 Clustering Algorithm

There exist a variety of clustering algorithms in the paral-
lel computing literature. These algorithms are used for task
scheduling, being applicable to arbitrary directed acyclic
graphs (DAGs). Therefore, because we reduced the orig-
inal cyclic scheduling problem (on a PDG) to an acyclic
problem (on a HPDG), we can rely on previous research on
DAG-clustering algorithms.

We chose to use the Dominant Sequence Clustering
(DSC) algorithm [32], which has been shown to be very ef-
fective and efficient. Efficiency is important here because,

1This complication also arises in single-threaded instruction scheduling
for architectures with partitioned register files.



given the fine granularity of the nodes in a HPDG, their
number can be very large (on the order of thousands).

DSC, like other clustering algorithms, groups nodes in
clusters so that nodes in the same cluster are unlikely to
benefit from executing in parallel. Therefore, all nodes in
the same cluster should be scheduled on the same processor
(thread here). DSC also assumes that each cluster will be
executed on a different processor. Later, the scheduling pass
can assign multiple clusters on the same thread to cope with
a smaller number of processors.

Briefly, DSC operates as follows. In the beginning, each
node is assigned to its own cluster. The critical path passing
through each node of the graph is then computed, consider-
ing both the execution latencies of nodes and the communi-
cation latencies. The communication latency is assumed to
be zero if and only if the nodes are in the same cluster. DSC
then processes each node at a time, following a topologi-
cal order prioritized by the nodes’ critical path length. At
each step, the benefit of merging the node being processed
with each of its predecessors is analyzed. The advantage of
merging a node with another cluster is that the communica-
tion latency from nodes in that cluster will be saved. The
downside of merging is that the nodes assigned to the same
cluster are assumed to execute sequentially, in the order they
are added to the cluster. Therefore, the delayed execution
after a merge may outweigh the benefits of the saved com-
munication. The node being processed is then merged with
its predecessors’ cluster that reduces this node’s critical path
the most. If all such merges increase the critical path, this
node is left alone in its own cluster. For our running exam-
ple, Figure 3(b) illustrates the clusters resulting from DSC
assuming a 2-cycle communication latency.

3.2 Global Multi-Threaded List Scheduling
After the clustering pass on the HPDG, the actual

scheduling decisions are made. Here again, because of the
reduction to an acyclic scheduling problem, we can rely
on well-known acyclic scheduling algorithms. In particu-
lar, GREMIO uses a form of list scheduling with resource
constraints, with some adaptations to better deal with our
problem. This section describes list scheduling and the en-
hancements used by GREMIO.

The basic list scheduling algorithm assigns priorities to
nodes and schedules each node following a prioritized topo-
logical order. Typically, the priority of a node is computed
as the longest path from it to a leaf node. A node is sched-
uled at the earliest time that satisfies its input dependences
and that conforms to the currently available resources.

GREMIO uses a variation of list scheduling to partition
the HPDG into threads. Even though the HPDG is acyclic,
control flow still poses additional complications to GMT list
scheduling that do not exist in local list scheduling. When
scheduling a basic block, local schedulers have the guaran-

tee that all instructions will either execute or not. In other
words, all instructions being scheduled are control equiv-
alent. Therefore, as long as the dependences are satisfied
and resources are available, the instructions can safely be is-
sued simultaneously. The presence of arbitrary control flow
complicates the matters for GMT scheduling. First, con-
trol flow causes many dependences not to occur during the
execution. Second, not all instructions being scheduled are
control equivalent. For example, the fact that an instruction
X executes may not be related to the execution of another
instruction Y, or may even imply that Y will not execute. To
deal with the different possibilities, we introduce three dif-
ferent control relations among instructions, which are used
in GREMIO’s list scheduling.

Definition 2 (Control Relations). Given two HPDG nodes
X and Y , we call them:

1. Control Equivalent, if both X and Y are simple nodes
with the same input control dependences.

2. Mutually Control Exclusive, if the execution of X im-
plies that Y does not execute, or vice-versa.

3. Control Conflicting, otherwise.

To illustrate these relations, consider the HPDG from
Figure 3(a). In this example, A, B, C, I, O, and P are all
control equivalent. Nodes DEFG and JKLM are control
conflicting with every other node. No pair of nodes is mu-
tually control exclusive in this example.

Although GREMIO uses list scheduling simply to decide
the partition and applies the MT code generation later, it still
builds a schedule of HPDG nodes to cycles. This schedule
is not realistic in that it includes all the nodes in a HPDG,
even though some of them are mutually control exclusive.
For this reason, we call it a virtual schedule, and we say the
nodes are scheduled on virtual cycles.

For traditional, single-threaded instruction scheduling,
the resources correspond to the processor’s functional units.
To simplify the discussion, although GREMIO can be ap-
plied in general, we assume a CMP with each core single-
threaded. In this scenario, there are two levels of resources:
the target processor contains multiple cores, and each core
has a set of functional units. Considering these two lev-
els of resources, instead of simply assuming the total num-
ber of functional units in all cores, is important for many
reasons. First, it enables us to consider the communica-
tion overhead to satisfy dependences between instructions
scheduled on different cores. Furthermore, it allows us to
benefit from key opportunities available in multi-threaded
scheduling: the simultaneous issue of control-conflicting
instructions. Because each core has its own control unit,
control-conflicting instructions can be issued in different
cores in the same cycle.



Thread-level scheduling decisions are made when
scheduling the first node in a cluster. At this point, the best
thread is chosen for that particular cluster, given what has
already been scheduled. When scheduling the remaining
nodes of a cluster, GREMIO simply schedules them on the
thread previously chosen for this cluster.

The choice of the best thread to schedule a particular
cluster to takes into account a number of factors. Broadly
speaking, these factors try to find a good balance between
two conflicting goals: maximizing the parallelism, and min-
imizing the inter-thread communication. For each thread,
the total overhead of assigning the current cluster to it is
computed. This total overhead is the sum of the following
components:

1. Communication Overhead: this is the total number of
cycles that will be necessary to satisfy dependences
between this cluster and instructions in clusters al-
ready scheduled on different threads. This accounts for
both overhead inside the cores (extra produce and
consume instructions) and communication delay.

2. Conflict Overhead: this is the estimated number of cy-
cles by which the execution of this cluster will be de-
layed when executing in this thread, considering the
current load of unfinished instructions in clusters al-
ready assigned to this thread. This considers the both
resource conflicts in terms of functional units, as well
as control conflicts among instructions.

Once GREMIO chooses the thread to schedule a HPDG
node to, it is necessary to estimate the virtual cycle in which
that node can be issued in this core. The purpose of assign-
ing nodes to virtual cycles within a thread is to guide the
scheduling of the remaining nodes.

In order to find the virtual cycle in which a node can
be issued in the chosen thread, it is necessary to consider
two restrictions. First, it is necessary to make sure that
the node’s input dependences will be satisfied at the cho-
sen cycle. For inter-thread dependences, it is necessary to
account for the communication latency and corresponding
consume instructions overhead. Second, the chosen cy-
cle must be such that there are available resources in the
chosen core, given the other nodes already scheduled on it.
However, not all the nodes already scheduled on this thread
should be considered. Resources used by nodes that are mu-
tually control exclusive to this one are considered available
since these nodes will never be issued simultaneously. On
the other hand, the resource utilization of control equivalent
nodes must be taken into account. Finally, the node can-
not be issued in the same cycle as any previously scheduled
node that has a control conflict with it. This is because each
core has a single control unit, but control-conflicting nodes
have unrelated conditions of execution. Notice that for tar-
get cores supporting predicated execution, however, this is

not necessarily valid: two instructions with different execu-
tion conditions may be issued in parallel. But even for cores
with predication support, loop nodes cannot be issued with
anything else.

We now show how GREMIO’s list scheduling algorithm
works on our running example. For illustration purposes,
we use as target a dual-core processor that can issue two
instructions per cycle in each core (see Figure 3(c)). The list
scheduling algorithm processes the nodes in the clustered
HPDG (Figure 3(b)) in topological order. The nodes with
highest priority (i.e. longest path to a leaf) are B and I. B is
scheduled first, and it is arbitrarily assigned to core 1’s first
slot. Next, node I is considered and, because it belongs to
the same cluster as B, the core of choice is 1. Because there
is an available resource (issue slot) in core 1 at cycle 0, and
the fact that B and I are control equivalent, I is scheduled
on core 1’s issue slot 1. At this point, either nodes A, C,
or JKLM may be scheduled. Even though JKLM has the
highest priority, its input dependences are not satisfied in the
cycle being scheduled, cycle 0. Therefore, JKLM is not a
candidate node in the current cycle. So node A is scheduled
next, and the overheads described above are computed for
scheduling A in each thread. Even though thread 1 (at core
1) has lower communication overhead (zero), it has higher
conflict overheads. Therefore, core 0 is chosen for node A.
The algorithm then proceeds, and the remaining scheduling
decisions are all cluster-based. Figure 3(c) illustrates the
final schedule built and the partitioning of the instructions
among the threads.

3.3 Handling Loop Nests
Although GREMIO’s scheduling algorithm follows the

clusters formed a priori, an exception is made when han-
dling inner loops. The motivation to do so is that inner
loops may fall on the region’s critical path, and they may
also benefit from execution on multiple threads.

GREMIO handles inner loops as follows. For now, as-
sume that it has an estimate for the latency to execute one
invocation of an inner loop Lj using a number of threads i

from 1 up to the number N of threads on the target proces-
sor. Let latencyLj

(i), 1 ≤ i ≤ N , denote these latencies.
Considering Lj’s control conflicts, the algorithm computes
the cycle in which each thread will finish executing Lj’s
control-conflicting nodes already scheduled on it. From
that, the earliest cycle in which a given number of threads i

will be available for Lj can be computed, being denoted by
cycle availableLj

(i), 1 ≤ i ≤ N . With that, the algorithm
chooses the number of threads k on which to schedule this
loop node such that cycle availableLj

(k) + latencyLj
(k)

is minimized. Intuitively, this will find the best balance be-
tween the wait to have more threads available and the ben-
efit from executing the loop node on more threads. If more
than k threads are available at cycle availableLj

(k) (i.e., in



case multiple threads become available at this cycle), then
the algorithm picks the k threads among them with which
the loop node has more affinity. The affinity is computed
as the number of dependences between this loop node and
nodes already scheduled on each thread.

The question that remains now is: how are the
latencyLj

(i) values for each child loop Lj in the HPDG
computed? Intuitively, this is a recursive question, since the
same algorithm can be applied to the child loop Lj , target-
ing i threads, in order to compute latencyLj

(i). This natu-
rally leads to a recursive solution. Even better, dynamic pro-
gramming can efficiently solve this problem in polynomial
time. However, since this constrained scheduling problem
is NP-hard, this dynamic programming approach may not
be optimal because the list scheduling algorithm applied to
each node is not guaranteed to be optimal.

More specifically, GREMIO’s dynamic programming
solution works as follows. First, it computes the loop hierar-
chy for the region to be scheduled. This can be viewed as a
loop tree, where the root represents the whole region (which
need not be a loop). The algorithm then proceeds bottom-
up on this loop tree and, for each tree node Lj (either a
loop or the whole region), it applies the GMT list schedul-
ing algorithm to compute the latency to execute one itera-
tion of that loop, with a number of threads i varying from 1
to N . The latency returned by the list scheduling algorithm
is then multiplied by the average number of iterations per
invocation of this loop, resulting in the latencyLj

(i) values
to be used for this loop node when scheduling its parent.
In the end, the algorithm chooses the best schedule for the
whole region by picking the number of threads k for the
loop tree’s root, R, such that latencyR(k) is minimized.
The corresponding partitioning of instructions onto threads
can be obtained by keeping and propagating the partition
partitionLj

(i) of instructions corresponding to the value
of latencyLj

(i).
We note that this dynamic programming approach can

be used in a general framework that considers other loop
parallelization and scheduling techniques, such as DOALL,
DOACROSS, and DSWP [18], besides the GMT list
scheduling described here. However, the evaluation of such
a general framework is beyond the scope of this paper.

3.4 Putting It All Together
After the partition into threads is chosen, the MT code

generator algorithm discussed in Section 2.2 is applied.
Figures 4(a)-(b) illustrate the generated code for the two
threads corresponding to the global schedule depicted in
Figure 3(c). As can be verified, each of the resulting
threads contains only its relevant basic blocks, the instruc-
tions scheduled to it, the instructions inserted to satisfy
the inter-thread dependences, and jumps inserted to con-
nect the CFG. In this example, there is a single pair of

(a) Code for thread 1. (b) Code for thread 2.

Figure 4. Resulting multi-threaded code.

produce and consume instructions, corresponding to the
only cross-thread dependence in Figure 2(d).

By analyzing the resulting code in Figures 4(a)-(b),
it is clear that the resulting threads are able to concur-
rently execute instructions in different basic blocks of the
original code, effectively following different control-flow
paths. The potential of exploiting such parallelization op-
portunities is unique to a global multi-threaded scheduling,
and constitutes its key advantage over local multi-threaded
scheduling approaches.

3.5 Complexity Analysis
This subsection analyzes the complexity of GREMIO’s

partitioning algorithms. We first analyze the complexity of
partitioning a single region with its inner loops coalesced,
and then analyze the complexity of the hierarchical algo-
rithm to handle loop nests. For the whole region’s PDG, we
denote n its number of nodes and e its number of arcs. By t

we denote the target number of threads. Finally, we denote l

the number of nodes in the HPDG tree, which is the number
of loops in the region plus 1, and ni and ei the number of
nodes and arcs in the HPDG for loop Li, 0 ≤ i ≤ l (i = 0
for the whole region).

For a given loop Li, the complexity of the DSC is O(ei+
log(ni)) [32]. GREMIO’s list scheduling, with checks for
conflicts with currently scheduled nodes, has a complexity
upper bound of O(n2

i ).
In the dynamic programming algorithm, each node in the

HPDG tree is processed exactly once. For each node, the
clustering algorithm is applied once, and the list schedul-
ing is applied t times, for each possible number of threads.
Since the complexity of the clustering and list scheduling al-
gorithms are more than linear, the worst case for the whole
region’s running time is when there are no loops. In this



Core Functional Units: 6 issue, 6 ALU, 4 memory, 2 FP, 3 branch
L1I Cache: 1 cycle, 16 KB, 4-way, 64B lines
L1D Cache: 1 cycle, 16 KB, 4-way, 64B lines, write-through
L2 Cache: 5,7,9 cycles, 256KB, 8-way, 128B lines, write-back
Maximum Outstanding Loads: 16

Shared L3 Cache > 12 cycles, 1.5 MB, 12-way, 128B lines, write-back
Main Memory Latency: 141 cycles
Coherence Snoop-based, write-invalidate protocol
L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-transaction

bus with round robin arbitration

Figure 5. Machine details.

Benchmark Function Exec. %
adpcmdec adpcm decoder 100
adpcmenc adpcm coder 100
ks FindMaxGpAndSwap 100
mpeg2enc dist1 58
177.mesa general textured triangle 32
179.art match 49
181.mcf refresh potential 32
183.equake smvp 63
188.ammp mm fv update nonbon 79
300.twolf new dbox a 30
435.gromacs inl1130 75
458.sjeng std eval 26

Figure 6. Selected benchmark functions.

case, there is a single node in the HPDG tree (l = 1), and
n0 = n and e0 = e. Therefore, the total complexity for the
whole region is O(e×log(n)+t×n2). This low complexity
enables this algorithm to be effectively applied in practice
to regions with up to several thousands of instructions.

4 Evaluation
We implemented GREMIO in the VELOCITY compiler,

a MT research compiler that targets Itanium 2. VELOC-
ITY uses IMPACT’s front-end to obtain an assembly-level
IR. All traditional code optimizations, and some specific
to Itanium 2, are performed in VELOCITY. GREMIO was
performed after traditional optimizations, before the code is
translated to Itanium 2’s assembly, where Itanium 2-specific
optimizations are performed, followed by register allocation
and the final instruction scheduling pass.

To evaluate the performance of the code generated by
VELOCITY, we used a validated cycle-accurate Itanium 2
processor performance model (IPC accurate to within 6%
of real hardware for benchmarks measured [19]) to build a
CMP model comprising two Itanium 2 cores connected by
the synchronization array communication mechanism pro-
posed in [21]. Figure 5 provides details about the simulator
model, which was built using the Liberty Simulation Envi-
ronment [30].

The synchronization array (SA) in the model works as
a set of low-latency queues. In our implementation, there
is a total of 256 queues, each one with 32 elements. The
SA has a 1-cycle access latency and has four request ports
that are shared between the two cores. The Itanium 2 ISA
was extended with produce and consume instructions
for inter-thread communication. These instructions use the
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Figure 7. Speedup over single-threaded.
(Note: no partition was chosen for three
benchmarks.)

M pipeline, which is also used by memory instructions.
This imposes the limit that only 4 of these instructions (mi-
nus any other memory instructions) can be issued per cy-
cle on each core, since the Itanium 2 can issue only four
M-type instructions in a given cycle. While the consume
instructions can access the SA speculatively, the produce
instructions write to the SA only on commit. As long as
the SA queue is not empty, a consume and its dependent
instructions can execute in back-to-back cycles.

The highly-detailed nature of the validated Itanium 2
model prevented whole program simulation. Instead, de-
tailed simulations were restricted to the functions in ques-
tion in each benchmark. The execution was fast-forwarded
through the remaining sections of the program while keep-
ing the caches and branch predictors warm.

To demonstrate the potential of GREMIO, it was ap-
plied to important functions (at least 25% of the bench-
mark execution) of selected applications from the Me-
diaBench, SPEC-CPU, and Pointer-Intensive benchmark
suites. The benchmarks were restricted to those that cur-
rently go through our tool-chain, and for which our com-
piler statically estimated more than 10% speedup with ei-
ther GREMIO or DSWP. Figure 6 lists the selected appli-
cation functions along with their corresponding benchmark
execution percentages.

Figure 7 presents the speedups for the selected bench-
mark functions. For each benchmark, the two bars illustrate
the speedup on the selected function, as well as the corre-
sponding speedup for the whole application. The overall
speedup per function is 19.0% on average, with a max-
imum of 65.6% for ks. For three benchmarks, 181.mcf,
183.equake, and 188.ammp, the compiler decided not to
partition the selected function into multiple threads. The
458.sjeng and mpeg2enc benchmarks strongly benefited
from accumulator expansion. Several benchmarks benefited
from communication optimizations currently being devel-
oped to improve the MT code generation algorithm used in
this work.
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4.1 Comparison to Local MT Scheduling
In order to verify the amount of parallelism obtained by

GREMIO that can be extracted by LMT techniques, the
multi-threaded execution traces were analyzed and the cy-
cles classified in two categories. The first one corresponds
to cycles in which both threads are executing instructions
that belong to the same control block2 in the original code.
This is parallelism that can be extracted by LMT instruction
scheduling techniques such as [14, 15, 22]. The remaining
cycles correspond to the portion of the execution in which
GMT instruction scheduling is necessary in order to expose
the parallelism. Figure 8 illustrates the execution break-
down for the benchmarks parallelized by GREMIO. These
results illustrate that, for the majority of these benchmarks,
less than 2% of the parallelism obtained by GREMIO can
be achieved by LMT techniques. The function in the SPEC-
CPU 2006 FP 435.gromacs benchmark, which contains two
nested loops with no other control flow, is the only one in
which a good fraction (47%) of the parallelism extracted by
GREMIO is within control blocks.
4.2 Comparison to DSWP

Since the Decoupled Software Pipelining (DSWP) com-
pilation technique proposed in [18] is a loop MT schedul-
ing technique, it is natural to compare it with GREMIO.
For this purpose, we also implemented DSWP in the VE-
LOCITY compiler. Because DSWP is only applicable to
loops, the compiler applies it to the most important outer
loop in each of the selected benchmark functions. In fact,
due to some peculiarities in our experimental infrastructure,
GREMIO was also applied to the same outer loops in each
function.

Figure 9 compares the function speedups achieved by
GREMIO and DSWP. On average, DSWP achieves 16.5%
speedup, compared to 19.0% for GREMIO. As can be seen,
each of GREMIO and DSWP outperforms the other on half
of the benchmarks. For 435.gromacs, DSWP resulted in a
2.41× speedup, effectively benefiting from the doubled L2

2A control block, or extended basic block, is a sequence of instructions
with a single entry (the first instruction) and potentially multiple exits.
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Figure 9. Speedups for GREMIO and DSWP
over single-threaded execution.

Benchmark Type of Parallelism
adpcmdec CMT
adpcmenc PMT
ks PMT
mpeg2enc CMT
177.mesa CMT
179.art CMT
300.twolf PMT
435.gromacs CMT
458.sjeng PMT

Figure 10. Type of parallelism extracted by
GREMIO.

cache capacity (the cores have private L2). A similar be-
havior was not observed with GREMIO because it unluck-
ily kept the instructions responsible for most L2 misses in
the same thread. Figure 9 also shows a bar for each bench-
mark indicating the speedup of the best performing version.
This is the performance a compiler combining only these
two MT techniques can ideally obtain. This best-of speedup
averages 32.8%.

By the nature of DSWP, the parallelism it extracts is
Pipelined Multi-Threading (PMT). In PMT, the communi-
cation among the threads inside the loop is unidirectional,
and the parallelism extracted is generally across loop it-
erations. GREMIO, on the other hand, is not restricted
to a specific kind of parallelism. Nevertheless, the algo-
rithms described in this paper focus on hierarchically ex-
ploiting parallelism within loop iterations. In some cases,
this can result in PMT, but it may also result in Cyclic Multi-
Threading (CMT), with cyclic dependences among threads,
or, theoretically, in Independent Multi-Threading (IMT),
with no dependence among threads. In our experiments,
GREMIO produced CMT for five benchmarks, and PMT
for the other four. The table in Figure 10 shows the type
of parallelism extracted by GREMIO for each benchmark.
As can be noticed, CMT is superior to the PMT extracted
by DSWP in one case (adpcmdec), and is also applicable in
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Figure 11. Speedup over single-threaded for
different communication latencies.

cases where DSWP is not (mpeg2enc and 179.art). In other
cases, DSWP outperforms the CMT extracted by GREMIO
(177.mesa and 435.gromacs). In the cases GREMIO ex-
tracted PMT, it is better than the PMT extracted by DSWP
using the load-balancing heuristic described in [18] in some
cases (ks, 300.twolf, and 458.sjeng).
4.3 Sensitivity Analysis: Communication

Latency
Codes parallelized by DSWP have been shown to tol-

erate inter-core communication latencies [18]. This is due
to the unidirectional nature of inter-thread communication
in PMT. In order to assess the effect of communication la-
tency for code generated by GREMIO, we conducted exper-
iments with the inter-core communication latency increased
from 2 cycles in our base model to 10 cycles. Figure 11
contains the results for both GREMIO and DSWP. The
average speedup from GREMIO dropped from 19.0% to
14.9%, while DSWP is essentially unaffected. Not sur-
prisingly, the GREMIO codes that are affected the most
contain CMT-style parallelism (adpcmdec and mpeg2enc).
However, not all benchmarks with CMT were slowed down
by this increase in communication latency. In general, the
CMT loops with small bodies are affected the most, since
the communication latency represents a larger fraction of
the loop body’s execution.
4.4 Sensitivity Analysis: Queue Size

We also conducted experiments to measure how sensitive
the parallelized codes are to the size of the communication
queues. Figure 12 shows the resulting speedups, for both
GREMIO and DSWP, on our base model, with 32-element
queues, and with the size of the queues set to 1 element.
The experiments show that most of the GREMIO codes are
not affected. On the other hand, most of the DSWP codes
are slowed down. The reason for this is that PMT can ben-
efit from larger communication queues to improve the de-
coupling among the threads. On the other hand, for loops
parallelized as CMT, one thread is never more than one loop
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Figure 12. Speedup over single-threaded for
different size of queues.

iteration ahead of the other. As a result, single-entry queues
are enough to obtain the maximum speedup in these cases.
This means that a cheaper inter-core communication mech-
anism, with simple blocking registers, is enough to get the
most parallelism out of CMT codes.

5 Related Work
There is a broad range of work on instruction schedul-

ing. We briefly describe the non-speculative techniques
most closely related to GREMIO, classifying them using
a unified taxonomy that includes two orthogonal character-
istics.
5.1 Scope of Scheduling

Instruction schedulers can be classified according to the
scope of the regions they operate at a time. This classifi-
cation includes: local techniques, operating at basic blocks
or traces; loop techniques; and global techniques, operating
at whole procedures. Classic examples of local schedul-
ing include local list scheduling [16] and its extensions
to traces [7] and superblocks [11]. Loop scheduling tech-
niques include various sorts of software pipelining [12, 18].
The more general global techniques must be able to si-
multaneously schedule instructions from arbitrary CFG re-
gions, potentially including the whole procedure. The spe-
cial case of simultaneously scheduling instructions from
control-equivalent basic blocks was studied in [1]. A more
general approach, based on integer linear programming and
combining scheduling and global code motion, was pro-
posed in [31]. Compared to local approaches, global sched-
ulers use a larger scope to help them making decisions, and
thus have potential to obtain a better schedule. In addi-
tion to data dependences, schedulers operating beyond basic
blocks must also preserve control dependences.
5.2 Single- versus Multi-Threaded Scheduling

Depending on the number of simultaneously executing
threads they generate, scheduling techniques can be classi-
fied as either single-threaded or multi-threaded. Of course,



Num. of Scope
Threads Basic Block Trace Loop Procedure

Single List Sched. [16] Trace [3, 5, 7] SWP GSTIS [1]
Superblock [11] [12, 17] ILP [31]

Multiple Space-time [14]
Convergent [15] DSWP GREMIO
DAE Sched. [22] [18]

Table 1. Instruction scheduling space.

this characteristic is highly dependent on the target archi-
tecture. Single-threaded scheduling is commonly used for
a wide range of single-threaded architectures, from sim-
ple RISC-like processors to very complex ones such as
VLIW/EPIC [3, 12] and clustered architectures [5, 17].

Besides scheduling the original program’s instructions
(the computation), multi-threaded schedulers must also
generate communication instructions to satisfy inter-thread
dependences. For clustered single-threaded architectures,
the scheduler also needs to insert communication instruc-
tions to move values from one register file to another. How-
ever, the fact that dependent instructions are executed in dif-
ferent threads makes the generation of communication more
challenging for multi-threaded architectures.

Multi-threaded instruction scheduling techniques have
been discussed earlier in the paper. The techniques pro-
posed in the context of the RAW microprocessor [14, 15]
are mostly based on local multi-threaded scheduling, using
the so-called asynchronous global branch scheme of com-
municating branch directions at the end of basic blocks or
traces. A similar approach is used by schedulers for de-
coupled access/execute architectures, which may even use
specialized queues to communicate branch directions [22].
The DSWP technique, against which GREMIO was com-
pared in our experiments, is a loop multi-threaded schedul-
ing technique [18].

Table 1 summarizes how various existing scheduling
techniques are classified according to our taxonomy. Hor-
izontally, the more a techniques is to the right, the more
general is its handling of control flow.

5.3 Comparison to MIMD Task Scheduling
Although operating at a different granularity, our work

shares some similarities with task scheduling for parallel
computers. Sarkar [24] describes general algorithms to par-
tition and schedule functional parallel programs on multi-
processors. In particular, the idea of using a clustering pre-
pass used here was inspired by Sarkar’s work. However, our
problem differs from his on a number of aspects, including
the granularity of tasks and the abundance of parallelism
in the source programs. Furthermore, our algorithms differ
from his in many ways. For example we use list scheduling
with a virtual schedule, which is very useful for the gran-
ularity of the parallelism we exploit, and our dynamic pro-

gramming approach allows GREMIO to handle larger re-
gions of code. Finally, our MT code generation algorithm
is key to enable parallelization at the instruction granularity,
by allowing multiple tasks to be assigned to a single thread.

6 Conclusion
This paper presented a general framework to extract non-

speculative thread-level parallelism from global regions in
general-purpose applications. Additionally, it described
the algorithms used by GREMIO, a global multi-threaded
scheduler built using this framework. GREMIO general-
izes Decoupled Software Pipelining (DSWP) [18], by al-
lowing the parallelization of non-loop regions and by not
being restricted to pipeline parallelism. Using a fully au-
tomatic compiler implementation and a dual-core simulator
built on top of validated Itanium 2 core models, GREMIO
achieves an average of 19.0% speedup on important bench-
mark functions (maximum of 65.6%), translating to an aver-
age of 11.2% speedup over whole benchmarks (maximum
of 65.6%). Our experiments also showed that a compiler
with both DSWP and GREMIO can achieve an average of
32.8% speedup on the same benchmark functions, com-
pared to 16.5% with only DSWP. In addition, when target-
ing more threads, we conjecture that GREMIO and DSWP
can be synergistically combined. For example, GREMIO
can be used to speed up the slowest stage in a DSWPed
loop, or DSWP can be used to obtain a better paralleliza-
tion for inner loops of a region to which GREMIO is ap-
plied. Exploring these opportunities is the subject of future
work.
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