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ABSTRACT
As the industry moves toward larger-scale chip multiprocessors, the
need to parallelize applications grows. High inter-thread commu-
nication delays, exacerbated by over-stressed high-latency memory
subsystems and ever-increasing wire delays, require parallelization
techniques to create partially or fully independent threads to im-
prove performance. Unfortunately, developers and compilers alike
often fail to find sufficient independent work of this kind.

Recently proposedpipelined streamingtechniques have shown
significant promise for both manual and automatic parallelization.
These techniques have wide-scale applicability because they em-
brace inter-thread dependences (albeit acyclic dependences) and
tolerate long-latency communication of these dependences. This
paper addresses the lack of architectural support for this type of
concurrency, which has blocked its adoption and hindered related
language and compiler research. We observe that both manual
and automatic techniques createhigh-frequencystreaming threads,
with communication occurring every 5 to 20 instructions. Even
while easily toleratinginter-thread transit delays, high-frequency
communication makes thread performance very sensitive tointra-
thread delays from the repeated execution of the communication
operations. Using this observation, we define the design-space and
evaluate several mechanisms to find a better trade-off between per-
formance and operating system, hardware, and design costs. From
this, we find a light-weight streaming-aware enhancement to con-
ventional memory subsystems that doubles the speed of these codes
and is within 2% of the best-performing, but heavy-weight, hard-
ware solution.

1. INTRODUCTION
Chip multiprocessors (CMPs) have emerged as the predominant

organization of future microprocessors. CMPs overcome the clock
speed, power, thermal, and scalability problems plaguing aggres-
sive uniprocessor designs while continuing to provide additional
computing power using additional transistors provided by technol-
ogy scaling. While additional processors on the chip improve the
throughput of many independent tasks, they, by themselves, do
nothing to improve the performance of individual tasks. Worse still
for task performance, processor manufacturers are considering us-
ing simpler cores in CMPs to improve power/performance. This
trend implies that single task performance willnot improve, and
may actually degrade. Thus, performance improvement on a CMP
requires that programmers or compilers parallelize individual tasks
into multiple threads.

High inter-thread communication delays have made the notion

of thread extraction almost synonymous with the search for long-
running threads with minimal communication. While this strategy
has had some success for scientific applications, it has impaired
similar efforts for general-purpose applications (both manualand
automatic). Recently however, language and compilerstreaming
techniques (StreamIt [26, 6], Decoupled Software Pipelining [21,
15], and others [3, 4]) have shown promise as viable methods to
expose thread-level parallelism. They can handle more codes be-
cause they embrace inter-thread dependences (albeit acyclic depen-
dences) by partitioning applications into concurrent, long-running
producer and consumer threads. They place fewer demands on in-
terconnect latency because they easily tolerate long-latency inter-
thread communication by pipelining acyclic communication.

While streaming techniques show promise, current architectures
are without sufficient architectural and operating system support
for pipelined streaming. This lack of support excludes an entire
class of potential multi-threaded applications, discourages future
development of streaming techniques, and makes the programmer’s
and compiler writer’s job more difficult. To address this problem,
this paper contributes the following:

1. A characterization of existing pipelined streaming applica-
tions, revealing theirhigh-frequencynature with communi-
cation occurring every 5 to 20 dynamic instructions.

2. A comprehensive design space characterization of communi-
cation support for high-frequency streaming applications and
a detailed exploration of several interesting design points in
this design space, considering performance, hardware com-
plexity, and operating system costs.

3. The identification of a low-cost design point which provides
efficient support for high-frequency streaming applications,
yielding twice the performance of conventional memory sub-
systems with minimal design changes. This solution is within
2% of the best performing, but heavy-weight hardware solu-
tion.

This paper underscores the importance of letting application be-
havior guide the design of underlying support mechanisms to ob-
tain low-complexity high-performance solutions. For example, rec-
ognizing that fast inter-core communication is not critical to ef-
ficient streaming performance, the low-cost communication sup-
port mentioned above multiplexes on the already present on-chip
network for memory traffic. This allows available bandwidth to
be shared between application memory requests and inter-thread
operand traffic, enabling this design to efficiently support various
models of application parallelism.
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Figure 1: Transit and COMM-OP delays.

The remainder of the paper is organized as follows. Section 2
provides a characterization of high-frequency streaming applica-
tions and highlights how these applications react to the two dif-
ferent latency effects of inter-thread communication. Section 3
describes the design space explored and evaluated in this paper.
Section 4 evaluates the performance of these design points and an-
alyzes the results to identify the key attributes which lead to the
observed performance. Section 5 shows how to improve high-
frequency streaming performance without relying on dedicated in-
terconnects or storage. Finally, the paper concludes in Section 6.

2. HIGH-FREQUENCY STREAMING
This section first provides more precise definitions fortransit

delayandcommunication operation (COMM-OP) delay. Then, it
characterizes streaming programs and illustrates why transit delays
are tolerated and why reducing COMM-OP delays can increase ap-
plication performance. It extends Taylor, et al.’s treatment [25] of
communication latency components with a discussion of their re-
spective impact on streaming applications.

Transit delay refers to the amount of time necessary to commu-
nicate a data value from one processor core to another. This delay
is exclusiveof all the time necessary to produce a value or to initiate
communication, but rather measures the effects of signal propaga-
tion delay, bus contention, network routing latency, and the like.
This delay will tend to increase with the physical separation be-
tween cores or as wire delay increases.

COMM-OP delay, on the other hand, is a measure of the over-
head experienced by asinglecore due to communication. More
formally, the COMM-OP delay for a particular thread is the differ-
ence between the execution time of the thread with communication
operations and the execution time of the same thread when com-
munication operations have 0-latency and consume no resources.

For shared memory communication, for example, COMM-OP
delay is caused by the execution of additional instructions neces-
sary for communicating valuesand synchronizing threads. De-
pending on the code containing the communication and the imple-
mentation details of the memory subsystem, these extra instructions
can slow down a thread by occupying valuable processor resources
such as fetch bandwidth, functional units, and memory ports, and
by causing execution stalls due to memory fences and interconnect
contention.

Figure 1 illustrates how COMM-OP delay and transit delay af-
fect the execution of a pair of threads communicating via a single
shared buffer (e.g. a shared-memory variable). To send a value
from thread A to thread B, thread A executes a code sequence
which ensures that the shared buffer is empty, then fills the shared
buffer with the value to be communicated. The time during which
this happens is labeled the COMM-OP delay for thread A. Thread
B will observe the value after the transit delay has elapsed. Thread
B executes a code sequence that ensures the shared buffer is full,

L

X

P C

P:      produce(ptr);

C:  while(ptr = consume()) {
X:      ptr−>val = ptr−>val + 1;
      }
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Figure 2: A pipelined streaming example.
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Figure 3: Effect of transit and COMM-OP delays on streaming
codes.

reads the value from the buffer, and finally marks the buffer empty.
Another value can be transferred using the same shared bufferonly
after the consumption notification from thread B reaches thread A
(shown as an acknowledge message in Figure 1).

Streaming codes execute as concurrent, long-running, commu-
nicating threads. Figures 2 shows a two-thread streaming pipeline
and its control-flow graph along with its inter-thread dependence.
A key aspect of such codes is that the dependences between threads
are acyclic; the threads form a pipeline with data flowing only in
the forward direction.

Figure 3a illustrates the execution of the program from Figure 2
using a single shared buffer (assuming that the “L” and “X” opera-
tions take zero time). Despite the streaming nature of the applica-
tion, in the näıve implementation, with only one inter-thread buffer
location, the COMM-OP delay for threads A and B plus two times
the full transit delay must be borne for every single stream value
communicated. Notice how the application is able to complete only
two iterations in the 150-cycle snapshot shown.

If, instead of a single buffer, a queue of buffers is used for com-
munication, the threads can execute more efficiently. This is illus-
trated in Figure 3b. In the figure, the number adjacent to a produce
(consume) operation identifies the inter-thread buffer location be-
ing written to (read from). With a queue of buffers, the COMM-OP
delay of each thread is overlappedand useful work can be done
during transit delays. The acknowledgments going from thread B
to thread A are shown with dashed arrows to indicate that they no
longer are on Thread A’s critical path. Other than the initial time
taken for the first value to arrive in thread B, transit delays do not
effect the timing of the system. Compared to the non-pipelined
situation with only a single buffer location, the throughput (mea-
sured as iterations per time unit) has increased by a factor of 3.5.
In Figure 3b, 7 iterations are executed in 150 cycles.



void produce(int value) {
// spin until tail empty
while(q[tail].full);
// q[tail].full == 0
q[tail].data = value;
q[tail].full = 1;
tail = (tail+1)%q_size;

}

int consume() {
// spin until head full
while(!q[head].full);
// q[head].full == 1
value = q[head].data;
q[head].full = 0;
head = (head+1)%q_size;
return value;

}

Figure 4: Produce and consume code sequences for shared-
memory based software queues.

While pipelining can remove transit delays from the critical path
by overlapping it with useful computation, COMM-OP delay re-
mains critical. As Figure 3 shows, the time taken to complete one
loop iteration is determined by the sum of computation time (zero
in the figure) and COMM-OP delay. Reducing COMM-OP delay,
therefore, can be a key enabler for improving the performance of
streaming codes, even more for high-frequency streaming codes.
Figure 3c shows that 14 iterations can be completed in 150 cycles
by reducing the COMM-OP delay from 20 to 10 cycles. Notice,
however, that to maintain peak throughput, 6 inter-thread buffer
locations are necessary, rather than the 4 that were previously nec-
essary.

Recognizing the distinction between COMM-OP delay and tran-
sit delay will serve as a guide when exploring the design space
of communication mechanisms. While not shown in the examples
in this section, certain designs can couple the transit delay of a
particular CMP to the COMM-OP delay experienced by streaming
threads. As will be discussed in Section 3, these designs should be
avoided to ensure the best performance of streaming codes.

3. DESIGN SPACE
In designing high-frequency streaming support for future CMPs,

architects will have to make trade-offs between hardware (area)
costs, design effort, and OS costs to come up with the best design
to meet desired performance goals. Any streaming support mech-
anism has four essential ingredients:communication operation se-
quencesto specify architectural reads and writes to inter-thread
queues, asynchronizationmechanism to prevent read (write) oper-
ations on empty (full) queues, intermediate storage for queue data
(queue backing store) before they are consumed, and anintercon-
nect fabric connecting processors and various backing stores. For
exposition purposes, we shall split interconnects into two sub-axes
dedicated interconnectsandpipelined interconnects. Although the
design choice for each of these axes is orthogonal, certain design
possibilities fit together more naturally than others.

3.1 Communication Operation Sequences
To avoid oversubscribing a processor core’s fetch and execu-

tion resources, the communication operation sequences cannot be
too long. Additionally, to avoid extending the loop critical path,
the dependence height of the sequence must also remain relatively
short. Finally, to enable decoupling between producer and con-
sumer loops, the code sequences must allow queuing behavior; se-
quences that use only a single buffer location for communication
should be avoided.

3.1.1 Software Queues Using Shared Memory
Producer/consumer communication and synchronization can be

implemented on conventional shared memory multiprocessors us-
ing software queues. Code for such an implementation is shown
in Figure 4. Since only a single thread will produce data into each
queue and only a single thread will consume data from each queue,

the head and tail pointers can be stored locally on the consumer and
producer cores respectively. Additionally, no mutexes are required
to protect the queue (although, the appropriate memory fence in-
structions are required to enforce the correct ordering of opera-
tions). Use of fine-grained condition variables allow an efficient
implementation of software queues [23]. The key advantage of this
methodology is that it requires no modifications to existing instruc-
tion set architectures (ISA) or microarchitectures. Its main draw-
back is that the code sequences to produce and consume a single
datum are quite lengthy. The C code shown in Figure 4 will likely
expand into many instructions. The COMM-OP delay overhead
resulting from these additional instructions and dependences may
offset any gains obtained by partitioning the original code among
multiple threads. Further, the presence of uncounted loops in these
code sequences make static ILP techniques inapplicable, and the
presence of memory fence operations limit dynamic ILP and leave
very little scope for performance improvements.

3.1.2 Produce and Consume Instructions
Producer/consumer communication can also be implemented by

augmenting an existing ISA with specialproduce andconsume
instructions [5, 18]. The hardware is responsible for delivering val-
ues between cores and for blocking the pipeline when attempting to
either write to full queues or read from empty queues. The specific
hardware used to implement this is independent of the ISA as long
as the queue semantics are guaranteed. This methodology over-
comes many of the shortcomings experienced by software queue
implementations. The produce and consume instruction sequences
are reduced from tens of instructions down to a single instruction,
resulting in smaller COMM-OP delays. The principal shortcoming
of this methodology is the need to augment the ISA and the core
microarchitecture. However, a concise expression of produce and
consume semantics may be well worth the incremental core design
and verification costs.

3.1.3 Register-Mapped Queues
The instruction and dependence height overhead of produce and

consume operations can be further reduced using register-mapped
queues [7], similar to what is used in the Raw microprocessor [24].
Rather than modifying the ISA by adding produce and consume op-
erations, a certain portion of the register address space is reserved
to refer to inter-core queues rather than traditional registers. The
microarchitecture is free to implement the underlying operand net-
work [25] using any mechanism. The main benefit is that, since
any instruction can deposit its result into a communication queue
and any instruction can read an operand from the communication
queues, loops will contain fewer instructions and have lower depen-
dence height than the corresponding loops with produce and con-
sume operations. This reduced instruction count and dependence
height may prove critical in resource-bound loops. On the flip side,
this methodology shares its shortcomings with the explicit produce
and consume instruction methodology described earlier. It addi-
tionally creates increased architectural register pressure since the
register address space needs to be split between architectural reg-
isters and register-mapped queues. Consequently, for loops with
a large number of live values, decreased performance due to addi-
tional spill and fill code may outweigh the advantages of eliminat-
ing produce and consume instructions.

3.2 Dedicated Interconnects
Good interconnect design is key to streaming performance. For

operations consuming data or synchronization information over the
interconnect, any time spent stalled due to interconnect contention



adds directly to the COMM-OP delay for that operation. Similarly,
for operations producing data or synchronization information, in-
terconnect contention may cause operations to backup in the pro-
cessor pipeline, adding to the COMM-OP delay of those opera-
tions. Ideally, high-frequency streaming support should not require
new routing resources, but rather, should be efficiently multiplexed
with other requests on existing interconnects. However, depending
on the application being run, high contention for the shared inter-
connect may cause communication operations to stall more often
(increasing COMM-OP delays) than on a dedicated interconnect.

3.3 Pipelined Interconnects
While the transit delay of the interconnect is not important, the

rate at which it can accept new requests directly affects COMM-
OP delay. Pipelined interconnects increase the rate at which new
requests can be serviced by the interconnect. For a non-pipelined
interconnect with anN cycle latency, only one request can be car-
ried by the interconnect everyN cycles. However, anM-stage
pipelined interconnect can initiate a new request everyN

M cycles.
This increased throughput reduces contention for the interconnect
reducing COMM-OP delay (and also improving the performance
of other operations sharing the interconnect). This disparity be-
tween pipelined and non-pipelined interconnect will become more
pronounced as we move to larger scale CMPs. Of course, this
improved performance does not come for free. Pipelined inter-
connects are more complex to build than non-pipelined intercon-
nects. Furthermore, memory systems using pipelined intercon-
nects must use coherence protocols more sophisticated than simple
snoop-based protocols to deal with multiple inflight requests in the
interconnect.

3.4 Synchronization
Concurrently executing threads require a synchronization mech-

anism to determine when it is permissible to read from or write to
a queue entry. The time from when a produce (consume) operation
begins execution to when it can actually write (read) data to (from)
the queue entry is calledsynchronization delay. Since every com-
munication operation has to synchronize before reading or writing
data, this delay directly affects the COMM-OP delay. The key to
reducing synchronization delay for a communication operation is
to ensure that the necessary synchronization information is deliv-
ered to its processor core well ahead of the operation’s execution.
Recall from Section 2 that pipelining communication (i.e. commu-
nicating using a queue of buffer locations rather than a single buffer
location) increases the time between successive synchronizations
on a single buffer location. This pipelining offers synchronization
mechanisms the necessary slack to deliver synchronization infor-
mation before it is read by a synchronization operation. The syn-
chronization design options, discussed in this section, vary in the
amounts of software and hardware logic, the backing store used for
synchronization data and the level of OS support.

3.4.1 Software Techniques
A detailed description of software synchronization was given in

Section 3.1.1. The synchronization data consists of an array of
full-empty (FE)condition variablesthat are set and reset by pro-
duce and consume operations respectively. Since both produce and
consume operations modify the same memory locations, with tra-
ditional caching mechanisms, synchronization delays will be sig-
nificantly increased due to frequent cache misses; the first access
to a particular queue slot will incur a compulsory miss and subse-
quent operations will incur coherence misses. (The producer and
consumer may benefit from spatial locality if multiple queue en-

tries are located in a single cache line.) To avoid such penalties,
the condition variables for a queue slot should be moved from the
core that writes it to the core that reads it well ahead of the read
operation. Prefetching and other microarchitectural optimizations
(described below) may be able to mitigate these shortcomings.

Other software queue implementations that track global queue
occupancy rather than individual slot occupancy are possible. How-
ever, such mechanisms require a coarse-grain lock that guards ac-
cess to the entire queue data structure. Consequently, produce and
consume operations cannot occur simultaneously even if they are
accessing separate portions of the queue. Such implementations
will incur costly synchronization delays, since significant contention
for the queue lock will exist and cache lines that store the queue
occupancy must ping-pong between the producing and consuming
cores.

3.4.2 Hardware Techniques
Just as in software techniques, the key to low synchronization

delay is to ensure that synchronization data is maintained as close
as possible to the processor core in which it isread. For exam-
ple, maintaining full-empty (FE) bits close to the consumer core
may reduce consume synchronization delay, but will increase pro-
duce synchronization delay by forcing produce operations to go all
the way to the consumer core to read FE bits. Keeping the bits in
a centralized location will affect both produce and consume syn-
chronization delays. Instead, if the FE bits are replicated and one
copy is maintained at the producer and consumer cores, we can
achieve low produceandconsume synchronization delays. In such
a replicated setup, the two copies may be out of step with each
other due to delays in propagation of updates from one core to an-
other. However, such delays will not affect correctness (since the
out-of-date information is conservative), nor will it affect perfor-
mance provided there are enough empty (full) queue slots to write
(read) data to (from).

Quite a few implementations for such mechanisms exist, and
they are often influenced by the choice of queue backing store.
For example, StreamLine [2] uses distributed occupancy counters
to track memory accesses to special stream pages. The Synchro-
nization Array [21] maintains distributed head and tail pointers
to a dedicated circular buffer. By using dedicated synchroniza-
tion storage specialized for streaming communication, these tech-
niques avoid problems that stem from using the generic memory
subsystem. However, in these schemes, the additional hardware
synchronization state has to be added to the OS context and needs
to be saved and restored on context switches. Additionally, special
ISA and microarchitectural extensions and/or OS support may be
needed to identify queue read/write operations to the synchroniza-
tion hardware.

3.5 Queue Backing Store
The time from when a consume operation requests data from the

backing store to when it receives the data contributes directly to
COMM-OP delay. Just as with synchronization, this delay can be
minimized by ensuring that data is stored as close as possible to the
processor core that will consume the data and by ensuring that the
backing store is not oversubscribed. Conversely, adding new, dedi-
cated backing stores to a CMP design increases both the amount of
die area dedicated to streaming communication and the amount of
OS support required for context switches and virtualization. This
section will discuss various design choices for the queue backing
store in the context of this trade-off. Note, while this section dis-
cusses design options for queue data storage, the issues and mech-
anisms described here apply equally to synchronization storage.
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Figure 5: Two queue layouts for memory backing stores.

3.5.1 Shared Memory Store
The memory subsystem serves as a natural store for data being

communicated between threads. Architectures and operating sys-
tems already provide mechanisms to share data through memory,
and most memory systems are equipped with caches to buffer data
close to a processor core reducing access time. Streaming com-
munication, however, does not exhibit the same locality as tradi-
tional memory accesses. Consequently, designers must decide how
streaming accesses should interact with the traditional memory hi-
erarchy. Since streaming accesses exhibit poor temporal locality
(producing and consuming threads stride across the queue, rather
than access the same element multiple times), certain caches in the
hierarchy may want to avoid caching streaming data since caching
streaming accesses may lead to eviction of useful data.

While there is poor temporal locality within a core, writes to
queue locations are soon followed by reads to the same location
by other cores. Consequently, caching lines for queue storage in
private caches increases coherence traffic between cores producing
and consuming values. Worse still, the delay introduced by these
coherence requests contribute directly to COMM-OP delay since
the request is demand initiated by the consume operation. Unfortu-
nately, avoiding caching in private caches requires that every pro-
duce or consume operation access a shared level of the memory hi-
erarchy creating contention for its ports. Since access times to cen-
tralized caches are already typically quite large, forcing all produce
and consume operations to contend for few ports will likely lead
to large COMM-OP delay in addition to affecting normal memory
accesses.

Streaming accesses do, however, exhibit spatial locality. Stream-
ing produce and consume operations stride across the queue data.
Consequently, caching queue storage in a core’s private cache can
reduce COMM-OP delay. For a consumer thread, the first access
to a line will incur a large access delay, but successive consumes
will be cache hits. Furthermore, if there is sufficient decoupling
between a producer thread and consumer thread (i.e. they are writ-
ing to and reading from distinct cache lines), then coherence traffic
occurs at the cache line granularity rather than for each produce and
consume operation.

Unfortunately, in situations with little or no decoupling, false
cache-line sharing occurs since the producer and consumer threads
will be accessing nearby queue entries that fall in a single cache-
line. This false sharing can create significant coherence traffic and
significantly increase COMM-OP delay. Different cache-line lay-
outs can mitigate this problem at the expense of wasted space in the
caches. Two possible layouts are shown in Figure 5. In the figure,

synchronization and queue data are co-located to improve locality
of accesses. The layout at the top of the figure places 8 queue en-
tries on a single cache line and can suffer from false sharing. The
queue layout on the bottom of the figure, conversely, pads the size
of each queue entry so that there is only entry per cache line. By
construction, this layout will not experience any false sharing, but
wastes large portions of the cache. The layout can be made as dense
or sparse as desired. We refer to the number of queue entries per
cache line as thequeue layout unit(QLU).

Prefetching and Write-forwarding. Typically, consume op-
erations (at least ones accessing the first queue entry on a cache
line) miss in the local cache and have to fetch data from a remote
cache. Such remote data fetches increase the consume COMM-
OP delay compared to a local cache hit. In order to bring down
this latency, two mechanisms have been proposed in the literature
- remote prefetching and write-forwarding. In remote prefetching,
the consumer thread issues prefetch instructions before it actually
needs the data and tries to overlap the remote data fetch latency
with other useful work. The consumer, however, must determine
when to issue the prefetch, as overly eager prefetchers may pre-
maturely steal cache lines from the producer’s cache. This may
cause the producer to slow down appreciably. The second tech-
nique, write-forwarding [14, 17, 20, 1], addresses this problem by
making the producer thread forward shared cache lines to the con-
sumer’s cacheafter it is done producing its data. This way, the
timing of inter-core data transfer can be optimized so that neither
thread suffers any unnecessary slowdown. Write-forwarding could
either be implemented with special completers on store instruc-
tions or in processors (e.g. MIPS) that support software-installable
TLBs, the OS could mark certain pages as “streaming” and the
memory subsystem could be modified to appropriately deal with
accesses to such pages. Other mechanisms have been proposed
to eagerly transfer lines from a producer’s cache to a consumer’s
cache [19], however, the short time spans between lock access and
data access present in high-frequency streaming codes makes them
inappropriate for this domain.

Here, we propose a streaming-specific optimization to standard
write-forwarding schemes. Stream instructions exhibit strong lo-
cality when accessing a cache line since accesses are made to con-
secutive stream locations. The optimization ensures that this spatial
locality is not damaged by write-forwarding. Rather than forward-
ing the cache-line after each queue entry is filled, the cache con-
troller forwards a line afterN queue entries on the line are filled.
Typically, the parameterN is set equal to the QLU so that a line
is forwarded only after all queue entries on the line are filled. The
implementation cost within the cache controller is minimal since it
need only be parameterized with the valueN and the size of each
queue entry. Since accesses to successive queue entries will oc-
cur in order, accesses to certain regions of each line will initiate
write-forwarding. This optimization will help reduce the average
COMM-OP delay by ensuring the maximum number of cache hits
possible to a line before forwarding it.

3.5.2 Dedicated Store
A backing store implemented with dedicated hardware is another

possibility. Having a dedicated backing store is advantageous as it
does not pollute the memory subsystem with short-lived streaming
data. It also helps avoid all streaming related coherence traffic. By
ensuring that streaming traffic does not contend with shared mem-
ory requests, dedicated stores can prevent normal memory traffic
from increasing COMM-OP delays (or streaming operations from
decreasing the performance of normal memory operations).

While dedicated stores can potentially improve performance, they



do not come without a cost. Dedicated stores consume valuable die
area possibly reducing available on-chip cache memory and nega-
tively impacting the performance of non-streaming sections of ap-
plications. Additionally, the contents of the dedicated store become
part of the OS context for a process. As such, OS and hardware sup-
port is necessary to context switch and virtualize these resources.

Centralized Dedicated Store. A centralized dedicated store
adds a single streaming-specific memory to the CMP. With this de-
sign all cores can share all the storage added to the CMP. Unfortu-
nately, this design suffers from scalability problems as more cores
try to access the single structure. Additionally, since the structure
is centrally located, for all but the smallest CMPs, the structure will
be farther from cores than the local caches. Consequently, the time
required to access the store will likely be larger than a local cache
hit. This translates to a comparatively larger COMM-OP delay.

Distributed Dedicated Store. Alternatively, streaming-specific
memories can be added to each core in the CMP, rather than adding
a single central structure. This design scales better than the cen-
tralized dedicated store since a single common structure does not
need to be accessed by all cores. Additionally, each piece of the
distributed store can be located close to the consuming processor
reducing the COMM-OP delay for consume operations (recall that
a distant backing store does not increase the COMM-OP delay for
produce operations). Unfortunately, this design prevents cores from
sharing the added storage. Consequently, more die area may be
consumed for the dedicated store.

3.5.3 Network Backed Queues
Intermediate nodes in an on-chip network, often buffer data to

implement pipelined interconnects. By preserving data ordering
they act as effective FIFOs [25]. They inherit all the advantages of
dedicated stores. Their distributed nature also makes them scalable.
Unfortunately, the amount of decoupling available to the executing
threads is directly proportional to the physical separation of their
cores on the chip. The larger the separation the more the available
decoupling. Relying solely on this storage can affect performance
as threads executing on nearby cores will not get sufficient decou-
pling to tolerate variable latency stalls in the individual threads.
Additionally, when network buffers are the sole carriers of inter-
thread architectural state, the OS overhead for context switches be-
comes more pronounced. While switching out a consumer thread,
the OS has to check network buffers along the paths from every
producer to this consumer before doing the switch. Alternatively,
every time data arrives at a node for a thread that has been switched
out, an interrupt could be triggered to make the OS append the in-
coming data to the swapped out context state.

4. EVALUATION
In this section, we select four important points from the design

space described in the previous section. These points represent de-
sign variants ranging from existing commercial processor designs
to designs leveraging heavy-weight dedicated streaming hardware
to maximize the performance of streaming codes. All selected de-
sign points ensure backward compatibility with legacy software.
Using these design points, we empirically illustrate that streaming
codes do, in fact, tolerate transit delay. We then evaluate how much
performance can be improved over existing commercially available
systems by streaming-aware designs. The results and analysis from
this section motivate optimizations described and analyzed in the
next section.

4.1 Systems Studied
The four design points explored were:
EXISTING. This design point is representative of existing

commercial CMPs. This design will serve as our baseline for mea-
suring the hardware cost and operating system impact of other de-
signs.

MEMOPTI. This variant will illustrate the efficacy of write-
forwarding, a low-impact memory subsystem optimization. This
design requires little additional hardware (cache modifications to
support write-forwarding). We do not write-forward to L1 caches
to avoid polluting it with short-lived streaming data.

SYNCOPTI. This variant will illustrate the benefits of opti-
mizing communication operation sequences and synchronization,
while still relying on the memory subsystem for queue backing
stores and core-to-core interconnect. Since this design point does
not resemble any design previously proposed in the literature, it
will be described in more detail in Section 4.2. The design requires
modifying core pipelines to executeproduce andconsume in-
structions, write forwarding logic (with the locality enhancements
described in Section 3.5.1) and synchronization counters in the pro-
cessor caches, and OS support to context switch the synchroniza-
tion counters. Here too, we avoid write-forwarding to L1.

While this design does introduce more hardware than the previ-
ous design, it remains fairly light weight. This design reuses the
L2-L3 memory bus, a critical component of CMP architectures,
rather than introducing a new network like HEAVYWT. Such an
approach makes optimal use of the available on-chip transistors; the
single on-chip network can be provisioned according to the total
system bandwidth requirements without regard to how such traffic
is generated (application memory requests or inter-thread operand
requests). This generality makes the solution appealing since it has
potential to support various models of application parallelism. Ad-
ditionally, use of memory as a backing store avoids introducing new
dedicated stores, allows flexible queue sizing,and greatly reduces
OS context-switch and virtualization costs.

HEAVYWT. This variant represents the performance achiev-
able by hardware-heavy mechanisms such as the FIFOs provided
by the scalar operand networks in Raw [25] or the synchronization
array (SA) [21] hardware. It combines the point along each de-
sign axis that should offer greatest performance without regard for
hardware cost or OS impact. In addition to core modifications to
executeproduce andconsume instructions, HEAVYWT intro-
duces additional dedicated distributed on-chip queue backing store
and a new interconnect network to connect processor cores to this
backing store. The contents of the backing store and in-flight data
buffered in the network must be part of a process’s context. Conse-
quently, this design variantalso requires OS modifications to con-
text switch this state. Since this state is concurrently updated by
multiple threads belonging to the same process, the OS implica-
tions will be more far reaching than for the other design variants.

4.2 SYNCOPTI Implementation
This design attempts to create an efficient streaming-tuned mes-

sage passing implementation atop a shared-memory CMP. Others
have proposed mechanisms to implement efficient message passing
in shared-memory multiprocessors [2, 5, 8, 11, 20]. However, mes-
sage setup overhead in these designs make them in appropriate for
high-frequency streaming applications.

In this technique,produce andconsume instructions are dy-
namically renamed to unique memory addresses. Microarchitec-
tural stream address logic tracks accesses to all queues and assigns
consecutive stream addresses to all accesses to the same queue
number, modulo the queue size. The latency of this logic is entirely



overlapped with the L1 cache access latency. Per-queue hardware
occupancy counters maintained at the L2 controller provide syn-
chronization. A producer (consumer) core updates its occupancy
counters after successfully executing aproduce (consume ) in-
struction or after snooping occupancy updates from the bus. A
produce (consume ) instruction is allowed to access the L2 cache
if and only if the occupancy counter corresponding to its stream
does not indicate a full (empty) queue. Write-forward messages
are used by the consumer core to update its occupancy counters.
When the last queue item (“last” depends on the queue layout)
from a given streaming line is read by aconsume instruction,
the consumer core sends out a message on the bus to inform the
producer’s occupancy-tracker of how manyconsume instructions
were serviced from that particular line. When a streaming cache
line is evicted from an L2 cache, then the cache once again puts out
on the bus the number of queue items produced into (or consumed
from) the line for its counterpart to update its occupancy counters.
When the producer thread wraps around, it is stalled until all queue
items from the corresponding line have been consumed by the con-
sumer, to avoid damaging spatial locality in the consumer. Finally,
since no write-forward messages will be sent when a stream termi-
nates midway through a cache line,consume requests initiate an
L3 access after a time-out to elicit a writeback from the producer
core, to obtain the remaining queue items and avoid deadlock. Al-
though the proposed implementation is a bus-based one, through
simple modifications to the occupancy update protocol, this can be
adapted to network-based interconnects of future CMPs.

In order to cope with increased inter-thread streaming traffic due
to multiple threads or more complex communication patterns (for
example, scatter-gather), the memory network arbiter can be modi-
fied to favor application memory requests over inter-thread operand
traffic (a simple way to do this is to just look at the memory area
being accessed). While application memory performance remains
unaffected, pipelined inter-thread communication helps tolerate de-
lays due to increased contention.

4.3 Experimental Setup
Despite the difficulty of hand-partitioning applications and the

fact that automatic thread-pipelining is a relatively nascent research
area, we were able to find a good number of applications for our
experiments. The first set consisted of applications from SPEC-
CPU2000, Mediabench [13] and the Unix utility ‘wc’. The hottest
loop in each of these applications (given in Table 1) were automat-
ically parallelized with the DSWP algorithm [15] by a modified
version of OpenIMPACT [9]. All compilations were targeted for a
dual-core Itanium 2 CMP and hence the applications executed as
two threads. The second set consisted of two StreamIt [22] bench-
marks (with C source) that were each hand-parallelized into two
threads to mirror the corresponding StreamIt programs.

We use a shared-bus dual-core Itanium 2 CMP as the baseline
for our evaluation. Note that, even though the techniques have been
evaluated on a dual-core CMP, the pairwise nature of inter-thread
interactions in pipelined streaming codes means that the insight
and conclusions drawn from a dual-core setup are just as valid for
larger-scale CMPs of the future. Our simulation infrastructure was
built on top of a validated cycle-accurate Itanium 2 processor [10]
performance model (IPC accurate to within 6% of real hardware
for the benchmarks measured [16]) using the Liberty Simulation
Environment [27]. Note that all comparisons areonly for the multi-
threaded loops. Table 2 provides details about the baseline simula-
tion model.

All designs used 64 queues of depth 32 unless otherwise men-
tioned (not all queues were used by each application). For all de-

%
Exec.

Benchmark Function Time
wc cnt 100%
adpcmdec adpcm decoder 98%
183.equake smvp 68%
181.mcf refresh potential 30%
epicdec read and huffman decode 21%
179.art match 20%
256.bzip2 getAndMoveToFrontDecode 17%

Table 1: Benchmark Loop Information.

Core Functional Units - 6-issue, 6 ALU, 4 Memory,
2 FP, 3 Branch
L1I Cache - 1 cycle, 16 KB, 4-way, 64B lines
L1D Cache - 1 cycle, 16 KB, 4-way, 64B lines,
Write-through
L2 Cache - 5,7,9 cycles, 256KB, 8-way, 128B
lines, Write-back
Maximum Outstanding Loads - 16

Shared L3 Cache > 12 cycles, 1.5 MB, 12-way, 128B lines,
Write-back

Main Memory latency 141 cycles
Coherence Snoop-based, write-invalidate protocol
L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-

transaction bus with round robin arbitration

Table 2: Baseline Simulator.

signs using shared memory backing stores, the queue layout unit
was 8. Experiments were also conducted with QLU 1, but since
performance was uniformly better with QLU 8 (even with software-
based stride prefetching), the results have been omitted for brevity.
For all designs using write-forwarding, lines were forwarded only
to the cores’ private L2 caches and forwarding was initiated only af-
ter all queue entries on the line had been written. For configurations
with a dedicated backing store, the backing store was located in
the consumer core, but queue synchronization counters were main-
tained at both the producer and consumer core. The dedicated store
could service 4 concurrent operations per cycle and was connected
to remote cores by a dedicated pipelined interconnect. Within a
consuming core, the consume-to-use latency was 1-cycle. If not
otherwise mentioned, the interconnect latency was 1-cycle.

The code sequences for the load-store based produce and con-
sume operations have been highly tuned to contain the minimal
number of instructions possible. Despite that, the software over-
head for a communication operation was 10 instructions (6, 1 and
3 instructions for synchronization, data transfer and stream address
update respectively) with a dependence height of 4. The overhead
for the produce -consume instructions based versions was just
the one instruction for data transfer. On an in-order machine such
as the Itanium 2, we see that these overheads tend to contribute sig-
nificantly towards the overall execution time, especially for really
tight loops.

4.4 Results and Analysis
To understand the decoupling present in our applications and to

see the effect of transit delay on pipelined streaming communi-
cation, we present in Figure 6 a normalized execution time com-
parison of three HEAVYWT variants. They differ only in the
end-to-end latency of their dedicated streaming interconnects. The
leftmost bar corresponds to a 1-cycle end-to-end latency (default
HEAVYWT) and the middle bar to a 10-cycle latency. The right-
most bar corresponds to a 10-cycle interconnect latency with a 64-
entry queue. All other design parameters are held constant. Over-
all, we do not see much of a difference between the first two bars.
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Figure 7: Normalized execution times for each design point.

However, for256.bzip2 we see a significant slowdown (33%).
This is because the loop that is parallelized in this benchmark is ac-
tually a two deep loop-nest with both the inner and outer loops re-
quiring inter-thread communication. The reason for the slowdown
is because the outer loop’sconsume instructions (in the consumer
thread) tend not to get serviced quickly as the producer thread can
get to the corresponding outer loopproduce instructions only af-
ter it is done with all of its inner loop iterations. So, due to poor
decoupling at the outer loop level, the data transfers could not be
pipelined, leading to the slowdown. In179.art , 183.equake ,
and fir the 10-cycle latency turns out to be better because the
longer latency in a pipelined interconnect in effect becomes extra
storage on the network and this way the producer core does not stall
on queue full conditions as frequently. The slight slowdown in the
other benchmarks is caused by the extra delay for a synchroniza-
tion acknowledgment to go from the consumer core to the producer
core. This can be improved by making the queue size bigger as can
be seen from the rightmost bars.

Figure 7 shows the normalized execution times for the producer
threads of all benchmarks. From left to right, for each bench-
mark, the bars correspond to HEAVYWT, SYNCOPTI, EXIST-
ING and MEMOPTI respectively. Due to space constraints, we
omit the graphs for the consumer core. The overall performance
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Figure 8: Ratio of the # of dynamic communication instructions
to application instructions for producer and consumer threads.

of the consumer core was the same as for the producer, except
that its component breakdowns differed due to different computa-
tion and communication instructions. The component-wise break-
downs represent non-overlappable stalls that contributed directly
to the critical path delay in the respective sections of the machine.
Since we are dealing primarily with the memory subsystem, we ag-
gregate the delays for stages preceding (main pipe) and following
(L1 fill and writeback) the L2 cache intoPreL2andPostL2respec-
tively. L2, L3 and MEM represent the time spent in the L2, the
L3 and the main memory respectively,BUS is the total time spent
on the shared bus (including arbitration, snoops, requests, and data
transfers).

The figures show that HEAVYWT and SYNCOPTI perform
better than MEMOPTI and EXISTING for all benchmarks. It is
obvious from design why HEAVYWT is the best overall (since it
provides the lowest COMM-OP delay). SYNCOPTI closely trails
HEAVYWT across all the benchmarks. This is expected since
SYNCOPTI and HEAVYWT are identical is all respects, except
in their queue backing stores. However, there is still a small dif-
ference between the SYNCOPTI and HEAVYWT bars across all
benchmarks and in fact the difference is pretty significant inwc.
After a careful examination of the pipeline behavior of these bench-
marks, we identified the main reason for the slowdown. The aver-
ageconsume -to-use latency in SYNCOPTI is at least 6 cycles
(since synchronization happens in L2 following a 2-cycle stream
address generation), whereas it is 1 cycle in HEAVYWT. The
higher COMM-OP delay results in the consumer performing slower
in SYNCOPTI than in HEAVYWT. This in turn delays freeing
up of queue slots, thereby ultimately slowing down the producer
thread. Forwc, the reason why SYNCOPTI is almost twice as
slow as HEAVYWT is because the streaming loop is very tight.
With three consume operations per loop iteration, the overhead
turns out to be a significant factor.

While HEAVYWT incurs no memory system overhead (by de-
sign), SYNCOPTI does equally well too, as can be seen by the
L2 andBUScomponents. Since synchronization counters are ef-
ficiently maintained and updated in a distributed fashion, SYN-
COPTI avoids unnecessary cache line ping-ponging between cores.
The only extra memory traffic stems from uni-directional queue
line transfers and bulk ACK notifications for counter updates. How-
ever, since MEMOPTI and EXISTING have to explicitly mod-
ify condition variables and communicate them in both directions,
their memory system performances are significantly poorer. Since
SYNCOPTI, MEMOPTI and EXISTING all effect data transfers
through the memory subsystem, one might expect their breakdowns
to be somewhat similar. However, that is not the case, because, in
MEMOPTI and EXISTING, instructions recirculate through the
OzQ1 when they cannot issue because of port contention or to re-
spect memory fence semantics. Further, when a produce operation
tries to produce into a full queue, the spin lock instructions keep
flowing through the pipeline till the produce happens. Whereas, in
SYNCOPTI, aproduce instruction takes up one OzQ slot and
remains dormant till it goes past the synchronization phase in its
state machine. Often, this causes the OzQ to fill up leading to back-
pressure in the pipeline, resulting in a largerpreL2 component.
Finally, the greater intrinsic schedule height for software queues,
causes MEMOPTI and EXISTING to have largerpostL2compo-
nents than SYNCOPTI since fewer instructions execute and write-
back in SYNCOPTI. Hence the differences in the breakdowns.

For a number of benchmarks, EXISTING performs better than

1An ordered queue of outstanding transactions, in the Itanium 2’s
L2 controller, whose entries also serve as miss status holding reg-
isters (MSHRs).
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Figure 9: Speedup of optimized loops in HEAVYWT over
single-threaded execution.

MEMOPTI. When the number of write-forwarding instructions
(communication operations) is high, the OzQ in MEMOPTI fills
up with write-forwarding requests causing all regular requests to
run out of L2 ports as the earlier instructions actively recirculate
through the L2 and occupy ports (biggerL2 components for MEM-
OPTI in Figure 7). Further, the presence of a memory fence in-
struction per communication operation enforces in-orderness among
recirculating memory requests. In EXISTING, when a remote
core needs queue data, it elicits a writeback from the cache that
owns the line. Since the local L2 controller accords higher pri-
ority to external coherence requests (like writeback requests) over
local recirculates, the writeback requests are able to get cache ports
and complete the transfers quicker compared to write-forwarding in
MEMOPTI. This leads to lower average COMM-OP delays lead-
ing to improved performance. Note that this phenomenon is unique
to this particular implementation of the L2 controller. Other imple-
mentations could recirculate less aggressively, causing lower port
contention leading to improved performance.

Overall, a major factor contributing to the improved performance
of HEAVYWT and SYNCOPTI over MEMOPTI and EXIST-
ING is thepostL2component. MEMOPTI and EXISTING sim-
ply commit many more instructions due to the software overhead
for synchronization and address generation and this directly causes
them to perform worse than HEAVYWT and SYNCOPTI. Fig-
ure 8, which has a plot of the ratios of the dynamic counts of
communication and synchronization instructions to application in-
structions for both the producer and consumer threads for codes
with produce -consume instructions, shows that on the average,
a communication is required once every 5 to 20 dynamic applica-
tion instructions. Given this high communication frequency, the
10 instruction sequence, required per communication with soft-
ware queues, proves to be a significant overhead and detrimentally
affects software queue performance. The performance of SYN-
COPTI is in between that of the HEAVYWT mechanism and
the EXISTING and MEMOPTI mechanisms. On the average,
it has 1.6x speedup over EXISTING and MEMOPTI and a mod-
est 31% slowdown relative to HEAVYWT. Figure 9 shows the
speedup of HEAVYWT over single-threaded codes for the opti-
mized loops. Notice that the geomean speedup of HEAVYWT
over single-threaded codes is 29%. This means the communication
overhead for the other mechanisms actuallynegatesparalleliza-
tion benefits and causes multithreaded execution to performworse
than single-threaded execution. These basic experiments demon-
strate the importance of efficient communication support for high-
frequency streaming.

4.5 Sensitivity Study
In order to evaluate the sensitivity of the four techniques to in-

creased wire delays of future CMPs, we repeated the experiments

0

5

10

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

art mcf

equ
ake

2
bzi

p2

adp
cm

dec

epi
cde

c wc fir
ff t2

GeoM
ean

PostL2

MEM

L3

BUS

L2

PreL2

Figure 10: Effect of increased transit delay on pipelined and
unpipelined interconnects (transit delay = 4 cycles).
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Figure 11: Effect of increased increased interconnect band-
width (transit delay = 4 cycles, bus width = 128 bytes).

with a bus latency of 4 CPU cycles. For HEAVYWT, we increased
the end-to-end latency of the dedicated interconnect to 4 cycles as
well. The execution time breakdown is presented in Figure 10.
Benchmarks with tight loops (adpcmdec , wc andepicdec ) tend
to be affected the most due to the increase in bus latency. However,
even for relatively larger loops in181.mcf and 183.equake
the BUS component turns out to be pretty significant (due to in-
creased arbitration delays). This is not surprising, given that it takes

8 ( linesize(128)
buswidth(16) ) bus cycles for a line to be transferred on the bus.

With a bus latency of 4 CPU cycles, it takes 32 CPU cycles for line
transfers. This causes requests to backlog leading to large arbitra-
tion delays. Further,181.mcf and183.equake are memory-
intensive applications and tend to access the L3 cache frequently,
making them sensitive to bus delays.

To see if interconnect bandwidth is the problem, we ran another
set of experiments with a bus width of 128 bytes (equal to cache
line size) holding the latency at 4 CPU cycles (peak bandwidth
of 32 bytes per cycle). This change significantly eases contention
leading to lower arbitration delays as seen from theBUScompo-
nents in Figure 11. This highlights the importance ofinterconnect
bandwidthfor high-frequency streaming. Although building a 128-
byte-wide interconnect can be expensive, the same benefits can be
had by using a pipelined interconnect with equal bandwidth.

5. OPTIMIZATIONS
Section 4 shows that the performance of SYNCOPTI trails the

performance of HEAVYWT due to the largeconsume -to-use la-
tency that delayed the initiation of futureconsume instructions
causing the producer thread to eventually stall. Based on these ob-
servations, we evaluated two optimizations to SYNCOPTI. First,
in order to avoid frequent producer thread stalls due to queue-full
conditions, we increased the queue size to 64 entries (up from 32
entries), and increased the QLU to pack 16 8-byte queue items per
cache line (Q64). Second, in order to reduce the averageconsume -
to-use latency, we evaluated the use of a special fully associative
1KB stream cache (SC). Improving consumer performance indi-
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Figure 12: Effect of streaming cache and queue size on pro-
ducer (above) and consumer (below).

rectly improves producer performance by avoiding frequent queue
full stalls. While this cache does add additional storage to each
processor core, this storage amounts to less than 1% of the storage
used for the dedicated queue backing store. The proposed stream
cache works as follows. When cache lines mapped to queues are
forwarded from the producer’s L2 to the consumer’s L2, after fill-
ing the consumer’s L2, the memory address is reverse mapped to
a queue address (a two-tuple of queue number and queue slot) that
is used to fill the streaming cache. By using a different address
space,consume instructions are now able to access queue data,
without going through TLB lookup, memory address generation,
etc. Stream cache entries are invalidated byconsume instructions
that hit. If the stream cache is full, then write-forwarding fills are
ignored. In this modified SYNCOPTI design,consume instruc-
tions continue to go to the L2, even if they are serviced by the
stream cache, to ensure the synchronization counters are updated
and the producer core is informed of these updates. If aconsume
instruction misses in the streaming cache, then it is handled just as
it was in the original SYNCOPTI model.

Note that this optimization requires stream address generation
logic in the processor pipeline (akin to HEAVYWT) to rename
consume instructions to the correct queue addresses to index into
the stream cache. However, this is still better than HEAVYWT,
since SYNCOPTI shares the L3 bus, while HEAVYWT requires
extra interconnects connecting the cores to the synchronization ar-
ray, which can be expensive [12].

We evaluated both these optimizations in isolation and together.
Figure 12 presents the breakdown for the producer (above) and con-
sumer (below) cores. As we go from right to left, SYNCOPTIQ64
improves the producer by reducing stalls (smallerpreL2) and im-
proves the consumer by providing improved cache locality (smaller
L2) through a denser queue layout. Next, SYNCOPTISC lowers
consume -to-use latency and improves the performance of both
cores. SYNCOPTISC+Q64 combines the benefit of both by fur-
ther reducing stalls in the producer and lowering the consumer’sL2
component. It is able to achieve performance equaling HEAVYWT
at times even performing better, achieving a 2x speedup over EX-
ISTING and MEMOPTI mechanisms and bridging the gap with
HEAVYWT to just 2%.

6. CONCLUSION
Pipelined streaming has emerged as a viable technique for paral-

lelizing general-purpose programs. Its success, however, hinges on
efficient underlying support for inter-thread communication, par-
ticularly for high-frequencystreaming codes. We argued and quan-
titatively demonstrated that if communication is pipelined, high-
frequency streaming programs can tolerate growing transit delays.
Streaming codes, however, are extremely sensitive to COMM-OP
delays, the recurring intra-core overhead associated with commu-
nication.

Using this insight, the paper characterized the design space of
inter-core streaming communication mechanisms and quantitatively
evaluated four points from the design space which offer a trade-off
between implementation cost and application performance. The re-
sults showed that, SYNCOPTI enhanced with a streaming cache,
a novel design proposed in this paper, achieves 98% of the speedup
of a heavy-weight design (a speedup of 2.0 over existing commer-
cial CMPs) while using only 1% of the additional on-chip storage
hardware. This design exemplifies the value of optimizing commu-
nication systems to reduce COMM-OP delay while not expending
design effort to reduce transit delay.
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