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Abstract

Even as modern computing systems allow the manipu-
lation and distribution of massive amounts of information,
users of these systems are unable to manage the confiden-
tiality of their data in a practical fashion. Conventional
access control security mechanismscannot prevent the il-
legitimate use of privileged data once access is granted.
For example, information provided by a user during an
online purchase may be covertly delivered to malicious
third parties by an untrustworthy web browser. Existing
information-flow security mechanismsdo provide this as-
surance, but only for programmer-specified policies en-
forced during program development as a static analysis on
special-purpose type-safe languages. Not only are these
techniques not applicable to many commonly used pro-
grams, but they leave the user with no defense against ma-
licious programmers or altered binaries.

In this paper, we propose RIFLE, a runtime information-
flow security system designed from the user’s perspective.
By addressing information-flow security using architectural
support, RIFLE gives users a practical way to enforce their
own information-flow security policy on all programs. We
prove that, contrary to statements in the literature, run-
time systems like RIFLE are no less secure than existing
language-based techniques. Using a model of the architec-
tural framework and a binary translator, we demonstrate
RIFLE’s correctness and illustrate that the performance
cost is reasonable.

1. Introduction

In modern computing systems, security is becoming in-
creasingly important. Computers store tremendous amounts
of sensitive information. Personal and business comput-
ers store private data such as tax information, banking in-
formation, and credit card numbers. Computers used for

military applications store extremely sensitive information
where confidentiality is critical. Since these computers are
often connected to potentially hostile public networks, such
as the Internet, security mechanisms to protect the confiden-
tiality of this data are vital.

Various discretionary access controlsecurity mecha-
nisms [14] are typically used to protect data. For each data
access, a policy (e.g. an access control list or file permis-
sions) is checked to see if the access is permitted, and if so,
the data is returned. While these mechanisms prevent unau-
thorized data accesses, once a program is granted access,
the data’s owner has no control over how the application
uses the data. Thus, access control security mechanisms
give data owners only two options: deny access to data al-
together or trust programs to keep data confidential.

Unfortunately, deciding which programs to trust is dif-
ficult. Web browser embedded applications such as Java
applets or Flash applications, for example, have made it
possible to download and immediately execute arbitrary
programs from untrusted sources on the Internet with lit-
tle to no user intervention. Even full applications explic-
itly downloaded by the user from untrusted sources can
be problematic as demonstrated by so-calledspywarepro-
grams [17] (programs that typically install with other pro-
grams and send data collected from the host computer back
to the program’s creator).

Unlike access control systems,information-flow secu-
rity (IFS) systems [7, 8, 12, 21, 23] allow untrusted applica-
tions to access confidential data while preventing them from
leaking this information to other programs or people with-
out explicit authorization from the data owner. The focus of
existing work on these systems has been on language-based
and static analysis mechanisms for implementing the secu-
rity policies. In these systems, programs are written in spe-
cial programming languages that contain security annota-
tions. During compilation, the compiler, assisted by source
code annotations, verifies that illegal information leaks as
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defined by the programmer cannot occur (except possibly
through a variety ofcovert channels[21, 28]).

Unfortunately, although these systems can enforce
information-flow security policies for programs written in
an IFS programming language, the user has no guarantee
of this safety since the compiler assures the programmer,
not the user, of a program’s safety. To the user, a binary
for a safe program is indistinguishable from one that is un-
safe. Use of a proof-carrying code (PCC) framework [24]
can overcome this problem by proving properties of the pro-
gram to the user. However, PCC frameworks, like the IFS
programming languages, suffer from a low adoption rate
and from their inability to deal with existing code.

Additionally, even if all programs were written in IFS
languages and validated by users with a PCC framework,
the user would still be at the mercy of programmer-defined
policies. This must occur in language-based systems since
policy enforcement occurs at compile-time. It is possible
to build run-time (as opposed to compile-time) IFS systems
which allow users to establish their own security policies.
However, few run-time systems have been studied because
run-time systems are believed to be inherently less secure
than language-based, static systems [21]. As a result, exist-
ing run-time systems are either not practical [27] or restrict
the user’s freedom in defining policy at compile time [31].
In this paper, we prove that, contrary to these beliefs, run-
time systems are no less powerful than static systems, and
we reestablish the feasibility of enforcing information-flow
security completely from the user’s perspective.

With this insight, we present RIFLE, a Run-time In-
formation FLow Engine capable of enforcing user-defined
information-flow security policies foranyprogram. In RI-
FLE, information-flow security policies are enforced using
a combination of binary translation and a modified archi-
tecture. Program binaries are translated from a conventional
instruction-set architecture (ISA) to an information-flow se-
cure (IFS) ISA. The translated programs are executed on
hardware that aids information-flow tracking, and the exe-
cuted programs interact with a security-enhanced operating
system that is ultimately responsible for enforcing the user’s
policy. This three part enforcement mechanism ensures that
confidential data is not leaked and provides users with com-
plete control over the confidentiality of their data.

The contributions of this work are:

1. The first description of the information-flow problem
from the user’s perspective.

2. A proof that, contrary to conventional wisdom,
language-based information-flow systems are less se-
cure than previously thought.

3. An architectural approach, called RIFLE, that

(a) is at least as powerful as language-based
information-flow systems.

(b) empowers users with the ability to set policies for
their data rather than relying on programmers.

(c) is language independent, supporting legacy
codes.

4. An evaluation of RIFLE for performance on compute
intensive benchmarks and a demonstration of its abili-
ties on applications of practical interest.

5. Insight that sets future research directions in user-
centric information-flow security including perfor-
mance opportunities, other uses for information-flow
tracking, and the utility of a declassification scheme.

The next section gives context for IFS. Section 3 de-
scribes existing language-based IFS mechanisms which
have been studied heavily in the literature. Section 4 ex-
plores the challenges faced by language-independent, run-
time information-flow systems. Section 5 presents RIFLE,
and Section 6 evaluates the properties of it. Finally, the pa-
per concludes in Section 7.

2. Information-flow Security

Information-flow security (IFS) mechanisms allow users
to control or audit information even after programs have
been given access. This is a powerful ability with many
applications ranging from supporting compliance with new
laws mandating the auditing of medical records to alerting
users when spyware delivers sensitive information to a net-
work device. Here, however, the discussion of IFS begins
with a simple example.

2.1. An Information-flow Security Example

Consider the average home computer user, call her Al-
ice, who decides to upgrade her computer to Microsoft Win-
dows XP. At the conclusion of the upgrade process, Alice
must register her copy of Windows by sending a seemingly
random, possibly encrypted, sequence of numbers that was
computed by the installation software to Microsoft. Un-
fortunately, Alice has no idea what these numbers mean or
what information they encode. The software claims the sig-
nature is computed by hashing Alice’s computer hardware
configuration, but the sequence could contain sensitive in-
formation that was stored on Alice’s computer. While it
is likely that the signature is benign and contains only the
information the installation software claims, the computer
and the software running on it provide Alice no mechanism
to verify that this is in fact the case.

This situation is not restricted to the installation of Mi-
crosoft Windows XP. In general, any program Alice runs
will take input data and transform it into output data. Un-
fortunately, Alice does not know what parts of a program’s
input are encoded in the various outputs. Since the data
transformation effectively occurs in a black box, Alice is



unable to make an informed decision about how she can de-
liver the program data while maintaining the confidentiality
of her input data. Instead, she is forced to make her decision
on the basis of trust or necessity. In the Windows XP reg-
istration process, Alice would probably allow the signature
to be sent to Microsoft since she either trusts Microsoft or
realizes that her only other option is to delete Windows.

2.2. Ensuring Confidentiality with IFS

Information-flow security allows data confidentiality to
be ensured even in the presence of untrusted applications.
IFS policies are defined by a set of annotations, calledla-
bels, that are attached to all values and storage locations in
a program, and a set of legalflows, pairs of labels, that de-
termine how information can flow. If a value has labell1
and a storage location has labell2, the value can be stored
into that location only if the flowl1 → l2 is allowed by the
policy. To allow access to data while ensuring security, an
information-flow security mechanism’s goal is to verify that
a program only contains legal flows.

Returning to the Windows XP registration example, one
could imagine attaching the labelhardware to data describ-
ing computer hardware and labelprivate to confidential
data. When the installation software computes the hard-
ware signature, the label of the signature would inform the
user of what data was used to produce it. If the data la-
bel ishardware, the user (or the information-flow security
mechanism) would send the signature to Microsoft. On the
other hand, a label of{hardware, private} would indicate
that both hardware configuration informationandconfiden-
tial data were used to produce the signature. In such a case,
a user may be less inclined to reveal the signature.

Using simple named labels and explicit enumeration of
legal flows as described above is one example of how one
could define an IFS policy. More formal methods exist
including those which allow distributed declassification of
data [10, 22]. However, regardless of the specific label-
ing methodology, the mechanisms used for verifying an
information-flow policy remain unchanged.

IFS does not completely remove trust from the system
since a user must trust the enforcement mechanism. Fortu-
nately, the size of the trusted computing base can be small
and many techniques exist to establish a trusted comput-
ing base. There are various techniques to prove that pro-
cessors are trustworthy including Intel’s LaGrande [13],
Microsoft’s Next-Generation Secure Computing Base (Pal-
ladium) [20] and the Trusted Computing Platform Al-
liance [30]. Mechanisms to establish trusted memories have
also been proposed [18, 19, 34]. Finally, techniques to boot-
strap the trusted system to create a usable trusted base from
a small set of trusted components also exist [2, 3, 29].

3. Existing IFS Systems

To enforce an information-flow security policy, an IFS
mechanism must be able to identify the label of all data be-
ing processed by a program and verify that all data flows
in it are legal with respect to a specific policy. This sec-
tion will describe a compile-time approach, used by ex-
isting information-flow security mechanisms, for tracking
data labels and identifying illegal flows. These systems rely
on special information-flow secure programming languages
that allow programmers to annotate their programs with la-
bels. From these annotations, the compiler willstatically
compute the labels of all expressions in the program and
verify that all information flows are legal. Since these sys-
tems verify the security of a program at compile-time, they
are in a class we will callstatic information-flow security
mechanisms. This section describes the properties of these
existing systems and outlines their shortcomings.

3.1. Information Flow via Data Flow

The majority of statements in a program compute some
value based on one or more variables and then store the re-
sults into some other variable. For example, consider the
pseudo-codec = a + b . Clearly information is flowing
from the variablesa andb into the variablec . If a program-
mer were to annotate the variablesa, b, andc with labels
(which will be denoted asa, b, andc respectively), and if
the compiler knew the set of legal flows, then it could verify
that the flowsa → c andb → c were legal.

Rather than check these two flows independently, for
simplicity, the static analyses in the compiler define a la-
bel for each expression in the program. The compiler then
checks if the flow between the expression label and the des-
tination variable label is legal. To find the label for an
expression, the compiler computes thejoin (⊕) of all the
operands in the expression. For thec = a + b example,
the compiler would calculate a label for the expressiona +
b by computinga ⊕ b. The join operator combines labels
and produces the most permissive label that is at least as re-
strictive as both of its operands. If, for example, labels were
sets of users permitted to access some data, then the join
operator would be set intersection; only those users allowed
to read all data used in a computation should be able to read
the result of the computation.

3.2. Information Flow via Control Flow

Unfortunately, verifying the data flow of a program is
insufficient to verify that no illegal information flows occur
in the program. Consider the program shown in Figure 1. If
the variablesx andy are both Boolean variables, then at the
end of this segment of pseudo-code, the value ofy would
be equal to the value ofx . Clearly, there is information flow
betweenx andy , but this flow does not occur through data



1 if (x == true)
2 y = true;
3 else
4 y = false;
5 // Since y == x, the label of y should be
6 // at least as restrictive than the label of x

Figure 1. Information flow through control

flow. In the literature, this type of flow is called animplicit
flow to contrast it with theexplicit flowseen earlier [28].

To verify that no illegal implicit flows occur in a pro-
gram, for each statement, the compiler must identify which
branches control the statement. In this example, the condi-
tion x == true controls the statements on lines 2 and 4.
Thus when performing the data flow verification for those
statements, the compiler must also verify thatx → y is a
legal flow. Just as in the case of statements with multiple
source operands, in this example, the compiler can verify
the flowstrue ⊕ x → y and false ⊕ x → y . In gen-
eral constants are annotated with the least restrictive label
denoted⊥ and⊥⊕ n = n.

3.3. Flow Verification and Type Checking

Static systems function by having the compiler deter-
mine whether the information flows in the program are
compatible with the programmer’s label annotations. This
process of verifying flows by checking labels is very sim-
ilar to the process of type-checking [21, 22] a program.
Since the information-flow labels of variables are concep-
tually the same as types, performing “type-checking” of the
information-flow labels (for a type-safe language) will guar-
antee that no data with a given label will ever be transferred
into a variable with an incompatible label.

3.4. Shortcomings of Static Systems

While static systems do provide information-flow se-
curity they have several disadvantages stemming from the
programmer-centric approach. First, since policy enforce-
ment occurs at compile-time static IFS systems provide no
guarantee of security to users, but instead, provide them to
the programmer. Static IFS systems can be embedded into
a proof-carrying code framework (PCC) [24], where pro-
grammers provide users with compiler-generated security
proofs for programs. Unfortunately, the user is at the mercy
of the programmer to provide such a proof.

Even if a PCC framework is used, security policy deci-
sions are still made by the programmer. Recall that it was
the programmer who labeled program variables, and, since
flows were verified during compilation, it was the program-
mer who defined the set of legal flows. If the security policy
chosen by the programmer is too lax or overly conservative
for the user, the user must abandon use of the program or
take risks with its use.

Finally, static information-flow systems dramatically re-
duce the space of applications available to users since the

security can only be guaranteed for programs written in spe-
cific IFS languages. It is possible to extend an existing lan-
guage to support information-flow security [21], however
only those languages with strong type safety guarantees can
be extended in this way. Therefore, all legacy applications
cannot be checked for security and future applications de-
veloped in type-unsafe languages such as C or C++ also
cannot be checked for security.

4. The Dynamic Approach

Since policy determination and enforcement occur at
compile-time in static IFS systems, users are unable to set
and enforce individual policies and are at the mercy of pro-
grammers to provide guarantees of security. To provide IFS
from the user’s perspective, this section reconsiders the fun-
damentals of run-time solutions which have been largely
abandoned by IFS researchers. The run-time approach is
the core of RIFLE as described in later sections.

4.1. Tracking Information Flow Dynamically

Dynamic mechanisms track information flow at program
run-time rather than during compilation. In a dynamic
information-flow approach, instead of statically assigning
a label to each storage location, labels act as additional pro-
gram data that propagate through computation. When an
operation is performed, the labels, in addition to the data,
are read from the operation’s inputs. The join of these la-
bels is computed, and, in addition to the operation’s result,
the resulting label is stored in the target storage location.
Initial data labels are provided by the user along with the
program input. Consider the earlier example ofc = a +
b. If this code were executed with dynamic information-
flow tracking, rather than verifying that the flowa⊕b → c
is legal, the labelassignmentc := a ⊕ b would occur.

This data flow mechanismtracksinformation as it flows
through the system, but it doesnot provide any level of se-
curity. To enforce security, dynamic systems verify flows to
output channels (files, shared memory, etc.). Unlike storage
locations, output channels have a constant, user-defined la-
bel. When a program operation attempts to write data with
label l to an output channelC, rather than assigning the
output channel a new label, the system verifies that the flow
l → C is legal. If the flow is found to be illegal, the program
terminates. Otherwise, if the flow is legal, the data is copied
to the output channel and the program continues execution.

Just as in the static approach, it is necessary for a dy-
namic mechanism to track information through implicit
flows in addition to explicit ones. The naı̈ve approach
for handling implicit flows is to directly apply to dynamic
systems the control-flow technique used in static systems.
Static systems tracked implicit flows by joining the label
of controlling branches into the label that results from an



int secret_data; int i;

BB1: secret_data = ...;

BB2: for(i = INT_MIN; i <= INT_MAX; i++) {
BB2: if(i == secret_data)
BB3: work(); //throws an unchecked exception
BB4: printf("x");
BB5: }

(a) Termination channel attack program

START

BB1

BB2

BB3

BB4

BB5

FINISH

(b) Perceived CFG

START

BB1

BB2

BB3

BB4

FINISH

BB5

(c) Actual CFG

Figure 2. Termination channel attack

operation’s computation. In the static system, this label was
checkedagainst the label of the destination storage location,
while in a dynamic system, this label would beassignedto
the destination storage location. While this approach seems
secure, Section 4.2.2 will explain why it is inadequate.

4.2. Static vs. Dynamic Mechanisms

Existing work has primarily focused on static
information-flow mechanisms because they are believed to
be inherently more secure than dynamic systems [22]. This
section first shows that this is, in fact, not the case. The
section then proceeds to discuss why an effective dynamic
scheme must handle certain attacks that are naturally
avoided by static systems. Later sections will illustrate how
RIFLE prevents these attacks.

4.2.1. Termination Channel Attacks

Static systems are believed to be more secure than dynamic
systems because dynamic systems are vulnerable to the fol-
lowing attack. A program is constructed that contains a se-
curity violation for certain input sets, but no violation for
others. Since security violations (in dynamic IFS systems)

cause program termination, observing whether or not this
program terminates abnormally provides information about
the program input. Static systems avoid this attack since se-
curity violations are identified at compile time and are input
independent.

This type of attack causes information to leak through
the program termination channelwhich is an example of
a covert channel[15, 28]. While static systems avoid
abnormal program termination due to security violations,
they also have termination channels since the channel exists
whenever a program can throw anunchecked exception(an
exception that causes program termination) such as an out-
of-memory exception or a null-pointer dereference. IFS vi-
olations are only one example of unchecked exceptions. It
is believed, however, that static systems are less vulnerable
to termination attacks because they can only leak one bit
of information per program execution [21] while dynamic
systems can leak an arbitrary amount of information per ex-
ecution. Unfortunately, this isnot the case, both systems
leak identical amounts of information.

Consider the pseudo-code shown in Figure 2(a). The
program in this example will output the value of the vari-
ablesecret data in unary. For example, if the value of
secret data is 7, then the program will output the char-
acter ‘x’ 6 times (“xxxxxx”)—the program terminates be-
fore the seventh ‘x’ is printed. The program iterates over all
possibleinteger values, in order, outputting an ‘x’ each
time secret data doesnot match the iterator. When a
match is encountered the program calls thework function
which intentionally causes an unchecked exception result-
ing in program termination.

Assuming that the variablesecret data was marked
with a label which should not be permitted to flow to
the output, then this program ought to be rejected by an
information-flow mechanism. Unfortunately, neither static
nor dynamic mechanisms will prevent this attack. The data
leak can be traced to a subtle, incorrect assumption about
the control-flow graph of the program. The naı̈ve control-
flow graph for the program is shown in Figure 2(b). The
node in grey marks the first node after BB2 that is con-
trol independent of the branch in BB2 (the immediate post-
dominator). Since BB4, the node containing the statement
which prints ‘x’, is not dependent on the conditional state-
ment in BB2 and since the print statement outputs a con-
stant, it is not dependent on any confidential data. Conse-
quently both static and dynamic information-flow security
mechanisms declare the program safe for execution.

Figure 2(c) shows a modified version of the control-flow
graph. An edge between BB3 and FINISH has been added
(shown as a dotted line). The new graph is a more accu-
rate representation of theactualrun-time control flow since
the unchecked exception in BB3 could cause the program
to terminate. In this new control-flow graph, BB4 (which



contains the print statement)is control dependent on BB3
and transitively on BB2. Therefore, although the print state-
ment is outputting a constant, an information-flow security
mechanism would forbid the output due to the control de-
pendence on confidential data.

Unfortunately, since dividing by zero, dereferencing a
null pointer, indexing an array out-of-bounds, or even ex-
hausting some system resource could cause an unchecked
exception, using the correct control-flow graph would cause
information-flow security mechanisms to reject most prac-
tical programs. It has been suggested that unchecked excep-
tions be forbidden [8], however such a scheme is also unre-
alistic. For many programs, there exists no suitable recov-
ery from anull pointer dereference, for example. There-
fore, even if the exception were checked, the program would
have no choice but to explicitly exit. The control-flow graph
of such a program is identical to the correct control-flow
graph for a program with unchecked exceptions. Conse-
quently, forbidding unchecked exceptions would also cause
most programs to be rejected by an IFS mechanism.

Despite this attack and other possible attacks through
covert channels, information-flow security is still valuable.
This particular attack for example, requires a computation
and output size that is exponential in the number of bits
leaked. Attacks similar to this one may not output data in a
unary format, but will also be similarly rate-limited. Thus,
these attacks cannot leak substantial amounts of informa-
tion in any reasonable amount of time.

4.2.2. Control-Flow Attacks

While both static and dynamic systems can both leak arbi-
trary amounts of information, the naı̈ve dynamic control-
flow management strategy (based on a straight-forward
translation of static systems) can do so at a rate linear in
the number of bits leaked.

Consider the effectiveness of the straight-forward dy-
namic control based information-flow strategy described
earlier on the program shown in Figure 3. The program
takes one Boolean input,a. Assuminga = secret at the
start of the program, Table 1 traces the values and labels
of all variables for the case whena = false and when
a = true .

Whena is false , the program follows the solid path in
the figure. When executing block W,c := true andc :=
a = secret since the condition in block V is based ona and
W is control dependent on block V. Execution continues in
block X where the program falls through to block Z leaving
all other variables unaffected. At the end of the execution,
b is equal toa, butb is less restrictive thana.

Whena is true , the program follows the dashed path
in the figure. The program falls through from block V to
X. From there control is transferred to block Y whereb :=

b = false
c = false

if (!a) c = true b = true
if(!c) print b

V W
X

Y
Z

Figure 3. Program demonstrating that dy-
namic information-flow security mechanism
must be insecure or overly restrictive

true and b := c = ⊥ since the condition in block X
is based onc and Y is control dependent on block X. The
program then completes execution in block Z. Once again,
at the end of the execution,b is equal toa, but b is less
restrictive than thea.

This program clearly has a flow of information from
a to b, but the näıve dynamic information-flow tracking
mechanism is not appropriately updating variable labels.
If the flow a → stdout is illegal, then this program
will avoid the policy by hiding the information flow. This
attack against dynamic information-flow mechanisms was
originally proposed by Fenton [9], and it demonstrates that
building a safe dynamic scheme is nontrivial.

The attack is possible because the naı̈ve dynamic
information-flow tracking mechanism only modifies the la-
bels of storage locations when something is assigned to that
storage location. Unfortunately, information flows can oc-
cur because instructions arenot executed. For example,
skipping the execution of block W communicates the value
of a to c just as executing block W does.

In order to address this problem it seems as though a dy-
namic scheme would need to analyze the paths of execution
not taken to see what storage locationscouldpotentially be
written. However, such schemes are impractical because the
size of the not-taken path can grow exponentially if it con-
tains many branches. Further, looking at the not-taken path
may not reveal the accessed storage locations because they
are hidden behind pointer computation. In general identi-
fying what memory locations could possibly be accessed is
undecidable [16, 26].

Given that fully examining and analyzing the full
control-flow graph is not feasible dynamically, a workable
dynamic scheme must somehow ensure information-flow
security in the presence of incomplete information. Any
such dynamic scheme must be overly restrictive in that it
will consider some secure programs insecure, as shown by
the following theorem.

Theorem 1. Any information-flow security mechanism that
cannot know what state is modified by code that is not exe-
cuted is either insecure or overly restrictive.

We say that an information-flow security mechanism is
secureif no information-flow policy is violated (a mech-
anism is secure if violations are detected and prevented



a = false a = true
Block Label a a b b c c a a b b c c

V false secret false ⊥ false ⊥ true secret false ⊥ false ⊥
W false secret false ⊥ true secret
X false secret false ⊥ true secret true secret false ⊥ false ⊥
Y true secret true ⊥ false ⊥
Z false secret false ⊥ true secret true secret true ⊥ false ⊥

Table 1. Execution trace of program from Figure 3

dynamically). An information-flow security mechanism is
overly restrictiveif some legal flow is prohibited. With
these definitions, the theorem follows directly from the un-
decidability of determining semantic dependences between
program statements [25].

4.3. Dealing with Undecidability

Theorem 1 clearly states that in order for an information-
flow mechanism to be secure, itnecessarilymust be overly
restrictive. This necessity stems from the undecidability of
determining semantic dependence between two statements
in a program. While this undecidability does preclude aper-
fect information-flow security system, it doesnot preclude
the existence of restrictive systems that rely onconservative
solutions to the semantic dependence problem. In practice,
conservative solutions to many undecidable problems are
used in lieu of perfect solutions. For example, compilers
regularly use conservative pointer alias analyses to facili-
tate optimizations. The optimizations are successful, and
correct, despite the undecidability of pointer analysis.

The challenge, therefore, in building a dynamic
information-flow security system is identifying which ap-
proximate solutions to the semantic dependence problem
yield secure enforcement mechanisms that are nottoo re-
strictive in practice. The remainder of the paper will discuss
a dynamic information-flow security mechanism which is
secure, butadaptsto information obtained from static anal-
ysis to become as permissive as possible. To allow the pro-
posed mechanism to be independent of the language a pro-
gram is written in, it consists of architectural component
to track information flow, a binary translation component
to guide the architecture, and an operating system compo-
nent to determine and enforce policy. Since the mechanism
requiresno annotations from the programmer, it not only
supports future programs written in arbitrary languages, but
can be directly applied to existing applications.

5. RIFLE

RIFLE works by translating a normal program binary
into a binary that will run on a processor architecture that
supports information-flow security. To avoid the pitfalls
dynamic mechanisms encountered while tracking implicit
flows, the binary translation will convertall implicit flows
to explicit flows. The RIFLE architecture is then responsi-
ble only for tracking explicit flows. Since access to all out-

put channels in a program pass through the operating sys-
tem, the operating system will be augmented to use the la-
bels tracked by the architecture to ensure that no illegal flow
occurs. The translation is not intended to eliminate covert
channels (such as timing channels) [15, 35], but to identify
implicit flows in a program. Solutions found in the litera-
ture to address covert channels [35] are directly applicable
to this system.

This section will first present an abstract architecture that
can track information flow through explicit flows. The sec-
tion then describes the binary translator which augments
programs with new instructions to convertall implicit flows
into explicit ones. The section then gives a brief explanation
of considerations for the operating system.

5.1. Abstract Information-Flow Architecture

To enforce information-flow security, our mecha-
nism will convert programs targeted for a conventional
instruction-set architecture (ISA) to programs for an
information-flow security (IFS) ISA. The IFS ISA aug-
ments all state defined in the base ISA with space to store a
label; this includes augmenting both registers and memory.
Additionally, for each instruction in the base ISA, there is
an instruction in the IFS ISA. The semantics of the IFS ISA
instruction are identical to that of the base ISA instruction
with respect to the state defined by the base ISA. Converted
programs, therefore, will have identical semantics to that
of the original program. In addition to these base seman-
tics, each instruction in the IFS ISA will use the augmented
state to track explicit information flows. To allow translated
programs to track implicit flows, the IFS ISA also defines
additional security registers to hold auxiliary labels and in-
structions to manipulate these security registers and the la-
bels affixed to general purpose registers. Since the original
program does not have access to the security state and since
the binary translation is trusted, attacks using the security
state are impossible.

The augmentations described above can be applied to
any conventional ISA. However, for clarity, the remainder
of this section will discuss how information-flow security
can be implemented with the abstract ISA shown in Table 2.
This table shows the base ISA instructions and their seman-
tics. These instructions represent the common instructions
found in a general purpose RISC ISA. Notice that all regis-
ter to register instructions have been condensed into a sin-



Base ISA Instruction Base ISA semantics IFS ISA Instruction Augmented ISA semantics

regop R[a]=R[b],R[c] R[a] := R[b] op R[c] <S[j],. . .>regop R[a]=R[b],R[c] R[a] := R[b] ⊕ R[c] ⊕ S[j] ⊕ ...
load R[a]=[R[b]] R[a] := Mem[R[b]] <S[j],. . .>load R[a]=[R[b]] R[a] := Mem[R[b]] ⊕ R[b] ⊕ S[j] ⊕ ...
store [R[a]]=R[b] Mem[R[a]] := R[b] <S[j],. . .>store [R[a]]=R[b] Mem[R[a]] := R[a] ⊕ R[b] ⊕ S[j] ⊕ ...
(R[a])branch T if(R[a] ) jump to T (R[a])branch T -
- - <S[j],. . .>join S[a]=S[b],S[c] S[a] := S[b] ⊕ S[c] ⊕ S[j] ⊕ ...

Table 2. Abstract machine instructions: R[i] refers to general register i, S[i] refers to a security
register i, Mem[a] refers to the memory location specified by the address a, and X refer to the label
of the data element X

1 // Assume R[1] contains a
2 // b will be stored in R[2]
3 // c will be stored in R[3]
4 mov R[2] = 0
5 mov R[3] = 0
6 (R[1]) branch .L1
7 mov R[3] = 1
8 .L1: (R[3]) branch .L2
9 mov R[2] = 1

10 .L2: store [R[5]] = R[2]

(a) Program from Figure 3 translated into the base ISA

1 // Assume R[1] contains a
2 // b will be stored in R[2]
3 // c will be stored in R[3]
4 mov R[2] = 0
5 mov R[3] = 0
6 mov S[1] = labelof(R[1])
7 (R[1]) branch .L1
8 <S[1]> mov R[3] = 1
9 .L1: <S[1]> mov S[3] = labelof(R[3])

10 (R[3]) branch .L2
11 <S[3]> mov R[2] = 1
12 .L2: <S[3]> store [R[5]] = R[2]

(b) Program from Figure 3 translated into the IFS ISA

Figure 4. Example of IFS ISA tracking implicit
flows

gle instruction. For each base ISA instruction, the table
also shows the IFS instruction and its augmented seman-
tics. Except for the branch instruction, all IFS instructions
take additionalsecurity register operandswhich are used to
help track implicit flows (these operands are listed in angle
brackets before an instruction). Finally, the IFS ISA has one
additional instruction that computes the join of two labels.

Before describing how automatic binary translation can
be used with an IFS ISA to track implicit information flows,
consider how the program shown in Figure 3 could be trans-
lated to the IFS ISA to prevent information leaks. The pro-
gram has been translated into the base ISA and is shown in
Figure 4(a). The print at the end of the original program has
been replaced with a store instruction. The IFS ISA trans-
lation is shown in Figure 4(b). Two security register defines
have been added to the program on lines 6 and 9. The de-
fine ofS[3] on line 9 will compute the joinR[3] ⊕S[1] .

When the store is performed on line 12, since it uses se-
curity operandS[3] , the stored data will have the label
R[5] ⊕ R[2] ⊕ S[3] . SinceS[3] is more restrictive
thanS[1] andS[1] containsR[1] , the flow fromR[1]
to the memory location will be correctly identified.

5.2. Automatic Binary Translation

Since the IFS architecture only tracks explicit flows, an
input program must be converted into a program where all
implicit flows are made explicit. As was described in the
last section, this can be accomplished by translating an in-
put program binary into a secure binary by adding the ap-
propriate instructions and security operands. This section
will describe how these transformations can be performed
automatically by a binary translator. The binary translator
will leverage static analysis to make the information-flow
secure binary as permissive as possible.

5.2.1. Basic Translation

Since all implicit flows occur due to control transfer instruc-
tions, the binary translator must first define a security reg-
ister based on the predicate of the branch. Each branch in-
struction of the form:

(R[ a] )branch T

gets replaced with the following pair of instructions:

join S[ c] = R[ a] ,⊥
(R[ a] )branch T

Prior to this transformation,S[ c] should be an unallocated
security register that is not related to any state in the base
ISA. Additionally, for every instruction which is control
dependent on the branch in the original program, the bi-
nary translator addsS[ c] to the instruction’s list of security
operands.

If only this transformation were applied, the translated
program would be equivalent to the naı̈ve translation from
static IFS to dynamic IFS discussed earlier.



cmp.gt R[1] = R[2], R[3] // R[1] := R[2] > R[3]
(R[1]) branch .end
store [R[2]] = 7 // Mem[R[2]] := 7

.end: ... // Rest of program...

Figure 5. Code conditional variable store.

5.2.2. Handling Implicit Flows

Consider the attack (shown in Figure 3) on the naı̈ve trans-
lation discussed earlier. Using the currently defined transla-
tion, at node X, the register containing the variablec would
have the labela only if the path through node W is taken.
As was described earlier, the variablec contains the com-
plement of the variablea regardless of which path was tra-
versed. Therefore, our translation needs to ensure that the
variablec has the labela regardless of which path is tra-
versed.

Ideally, the binary translator would insert an instruction
on the direct path from node V to X to perform a label
join restricting the labelc . Unfortunately, if the variable
c is stored in memory (rather than a register), it may not be
known where the variablec is stored. For example consider
the code shown in Figure 5. In the figure, if the branch is
taken, memory is modified at the location given byR[ 2] .
If the branch is not taken, the value ofR[ 2] must bediffer-
ent than the value of the register had the branch been taken.
Therefore, inserting code to restrict the labelMem[R[ 2]]
if the branch is not taken will modify the label of adifferent
memory location than if the branch were taken. IfR[ 2] is
bimodal (i.e. it only takes on one of two values), then it will
still be possible to distinguish between what path was taken
by analyzing the appropriate location in memory.

To avoid this problem caused by memory indirection, in-
stead of inserting an instruction along the not-taken path of
a branch, the binary translator will append the security reg-
ister defined by the branch to the list of security operands
on all instructions thatpotentiallyuse values defined by in-
structions control dependent on the branch. For example,
recall the example Figure 4. The store instruction on line
10 in Figure 4(a) is control independent of the branch on
line 8. However, in the secured program the store on line 12
is annotated withS[3] , the security register for the branch
on line 9, since the store usesR[2] and there is a define of
R[2] control dependent on the branch.

Conceptually, this strategy restricts a value’s label when
it is usedrather than when it isdefined. This strategy is safe
sinceall instructions that could observe the result of a con-
ditional variable assignment, see the data with a restricted
label.

Deciding what instructions can observe values defined
by other instructions can be easily accomplished for register
based instructions using reaching-definitions analysis [1].
For memory load and store instructions more sophisticated
memory dependence analysis is necessary. The literature
describes various conservative alias analysis algorithms (i.e.

algorithms which may identify false dependences, but will
not omit any true dependence) which can be used to deter-
mine the set of store instructions which write to the same
address as a particular load instruction reads [5, 6, 11, 33].
While these analyses operate at the source level, other anal-
yses have been described which operate on program bi-
naries [4]. These analyses are able to reconstruct a pro-
gram’s control-flow graph (in the presence of register in-
direct jumps) and subsequently perform pointer analysis.
Notice that as the quality of memory dependence analysis
improves, fewer false dependences will be observed dur-
ing binary translation making the translated program less
restrictive.

5.2.3. Handling Loops

The translation described thus far will work for acyclic
code. However, if registers or memory locations are live
across the back edge of a loop, the translation for branch
instructions described earlier can potentially cause informa-
tion leaks. This occurs because the security register defined
as part of the translation may potentially be used by instruc-
tions after the back edge is crossed. If the branch instruction
redefines it, then values computed under earlier conditions
will be accessible under the new label stored into the secu-
rity register. Since the new label is potentially less restric-
tive than the old label, this may cause information leaks.
To avoid this potential leak, the security operand defined by
each branch instruction should be:

join S[ c] = R[ a] , S[ c]

By defining the security operand before each branch as the
join of the branch predicate and the previous value of the
security operand, the security operand does not lose the in-
formation it previously contained. Therefore this definition
will be secure even in the presence of loops. This instruc-
tion will cause the security operandS[ c] to monotonically
get more restrictive.

To avoid making security operands overly restrictive,
each security operand annotated onto an instruction due to
a conditional reaching definition, will be unique to that in-
struction. At each defining location, this security operand
will be set to the label⊥. This transformation remains se-
cure, since redefining a storage location destroys all infor-
mation that could have been learned due to assignments that
did not occur. Since this information is destroyed, we no
longer need to remember the security label of that informa-
tion. Redundant code introduced by using a unique security
registers for security operands will be eliminated through
compiler optimizations.

5.3. Security

While a formal proof of security is beyond the scope of
this paper, this section will assert a definition of security and



then sketch a proof of the soundness of the binary transla-
tion with respect to this definition.

Definition 1. A program is secure if, for any threshold la-
bel and any two program inputs which are identical for all
data values labeled with some label less restrictive than the
threshold label, the program outputs are identical for all
data values labeled with some label less restrictive than the
threshold label.

Intuitively, the definition states that a program is secure
if nothing can be learned about confidential inputs by look-
ing at public outputs. The binary translation guarantees this
through its management of security operands. Consider the
execution of the secured binary with the two program inputs
used in the definition of a secure program. Any instruc-
tion which produces output will be run in both programs or
will be control dependent on a label more restrictive than
the threshold. The control dependence implies the output
will carry a label more restrictive than threshold. If both
programs execute the output instruction, the data values are
equal or the data value is the result of an explicit or implicit
flow of information from inputs with labels more restrictive
than the threshold. Since the binary translator converts all
implicit flows to explicit ones, and the architecture tracks
explicit flows, the label of the data being output must be
more restrictive than the threshold. Therefore, the trans-
lated program running on a RIFLE architecture is secure.

6. Evaluation

To guide the design of an instantiation of the abstract
framework just described, we measure the properties of un-
modified assembly files from a type-unsafe language. Ita-
nium 2 assembly files were obtained from the IMPACT
C compiler using standard optimizations. These assem-
bly files were then annotated using the binary translation
techniques described earlier. Rather than using an arbi-
trary number of security operands per instruction, the ISA
was extended to support only one security operand. Ad-
ditional join instructions were inserted to combine security
operands on instructions that initially had more than one.
To reduce the number of inserted join instructions, we per-
formed classical compiler optimizations such as constant
folding, constant propagation, copy propagation, common
sub-expression elimination, and dead code elimination.

We evaluated the Unix utilitywc, thttpd , and several
C benchmarks from SPEC Integer 2000 and MediaBench
benchmark suites for correctness, conservatism, and perfor-
mance.

6.1. Verifying Program Security

To evaluate program correctness, all benchmarks were
run on our IA-64 functional simulator augmented with the

RIFLE architectural extensions. Each program processes
multiple files, each with a different security label. Rather
than defining labels for output streams and enforcing a par-
ticular policy, output files were annotated with labels at the
byte level. Program execution correctness was checked us-
ing real hardware. Information-flow correctness was veri-
fied by manual inspection.

During initial runs of the programs, we noticed that la-
bels became extremely restrictive. Analysis revealed that
this was due to the stack pointer becoming restricted upon
the execution of a branch guarding procedure calls. Using
additional analysis to show that the stack pointer is the same
after the execution of either path (with the exception of pro-
gram termination dealt with as described earlier), the more
aggressive, yet still conservative, system produced labels in
the output file as expected. For example, when thewc util-
ity was run on a variety of files each marked with different
labels, the output describing each file was marked with the
file’s label, while output describing summary data about all
files was marked with the join of all the files’ labels.

We will present an analysis of two applications, PGP and
thttpd, to illustrate how information-flow security can be
used in practice, show that RIFLE is not overly restrictive,
demonstrate potential security vulnerabilities, and identify
areas of future research.

6.1.1. PGP

Pretty Good Privacy (PGP) is an application for public key
cryptography. PGP maintains a public-key ring and private-
key ring. Users can request that a file be encrypted, de-
crypted, or digitally signed using one of the keys in either
ring. To test PGP, we created a pair of key rings and labeled
each key in the rings with a unique label. We also labeled
the input file with a unique label. We then ran PGP with
options so that it would encrypt and digitally sign a plain
text file. We examined the labels of the resulting output
file. We expected the output file to labeled with the join of
the input file label, the label of the public key used for en-
cryption, and the label of the private key used for the digital
signature. Initial experiments showed the output file being
labeled with the labels of not only the key used for encryp-
tion and signature, but also of all the keys that appeared be-
fore them in the keyrings. Examination of the code revealed
this to be the correct behavior. The code that read keys from
the keyring had to scan over the keyring until it found the
appropriate key. Each encountered key was checked to see
if it was the requested key, and if so, exited the loop. This
loop structure forced subsequent loop iterations to be con-
trol dependent on the exit condition of prior iterations.

To overcome this label creep, we relabeled our keyrings
making all key identifiers and key sizes share a single
unique label. Key sizes were relabeled since keys are vari-



able size and the size of the current key is needed to locate
the subsequent key. With these modifications, we reran PGP
and the new output possessed the expected labeling.

6.1.2. thttpd

thttpd is a tiny web server application. For the experiment
we configured the web server with two documents. Each
document was password protected. We exercised the web
server with four requests, two per file. One request per file
was submitted with the correct password, the other request
per file was submitted with an incorrect password. Each re-
quest and document was uniquely labeled. The password
file, which consists of user names followed by fixed length
passwords, had two unique labels per line; the user name
was labeled differently from the password. As expected,
running thttpd revealed that the responses to the unautho-
rized requests were labeled with all the user name labels
in the password file (since the whole file was scanned) and
the request label. For the authorized requests, the responses
were labeled with the the label of the request, the label of
the document, the labels of user names up to the authorized
user’s name, and the label of the password. While this ac-
curately characterizes the information that was examined to
produce the response, it may mislead a server administrator
to believe that responses are leaking passwords. In actuality,
only one bit of information about the password (whether the
password was correct) is leaked. Future work will examine
how to inform users of how much information is leaked and
study methodologies to allow declassification.

6.2. Performance

To evaluate the performance cost of implementing RI-
FLE, we measured the number of overlapping security reg-
ister live ranges prior to register allocation and the execution
time of secured programs relative to the original unsecured
programs. All performance measurements were run on a
validated cycle-accurate Itanium 2 model with RIFLE ex-
tensions built in the Liberty Simulation Environment [32].

Figure 6 shows the number of overlapping security reg-
ister live ranges. For a given number of overlapping live
ranges, the graph shows the percentage of execution time
spent in functions with fewer overlapping live ranges. As is
shown in the graph, for most benchmarks more than 70% of
the execution time is spent in functions with fewer than 100
security registers live. Future work on additional compiler
optimizations to reduce register live ranges may have the
potential eliminate register spill and fill code, and therefore
to significantly boost the performance of the system.

The execution speed of the secured programs, relative
to the base is shown in Figure 7. The first bar for each
benchmark shows the secured programs’ runtime normal-
ized to the runtime of the unsecured program running on a
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machine with all of the data caches for Itanium 2 duplicated
to store security labels. The second bar for each benchmark
shows the normalized runtime when the benchmarks were
run on a model whose data cache was partitioned into two
equally sized pieces whose total size is equal to that of the
Itanium 2. As the graphs indicate, the runtime performance
penalty for the system is relatively low. The additional se-
curity instructions do not incur a significant performance
penalty since these instructions are independent of the orig-
inal program instructions and therefore can be executed in
parallel, if sufficient resources exist. Additional compiler
optimizations will reduce this penalty even further.

7. Conclusion

Information-flow security allows users to maintain con-
trol of their data while still permitting untrusted applications
to access the data to perform useful computation. Typically,
these information flow security schemes are built as exten-
sions to type-safe languages where security is verified stati-
cally by the compiler. In such schemes, control over policy
decisions and policy enforcement is in the hands of the pro-



grammer. This approach has been the main research focus
because static information flow systems were believed to be
more secure than dynamic systems.

In this paper, we present RIFLE, a runtime information
flow mechanism that is as secure as existing static schemes.
However, unlike static schemes, security decisions are in the
hands of the user since RIFLE works with all programs (not
just those written in special languages) and policy decisions
are left to the user not to the programmer. We implemented
RIFLE and demonstrate the performance cost for security is
reasonable. Our implementation also demonstrates that RI-
FLE successfully tracks information flow and can be effec-
tively used by end-users to manage their confidential data.
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