
Parallel Assertions for Debugging Parallel Programs
Daniel Schwartz-Narbonne, Feng Liu, Tarun Pondicherry, David August, Sharad Malik

Princeton University
{dstwo,fengliu,tpondich,august,sharad}@princeton.edu

Abstract—A parallel program must execute correctly even in
the presence of unpredictable thread interleavings. This interleav-
ing makes it hard to write correct parallel programs, and also
makes it hard to find bugs in incorrect parallel programs. A range
of tools have been developed to help debug parallel programs,
ranging from atomicity-violation and data-race detectors to
model-checkers and theorem provers. One technique that has
been successful for debugging sequential programs, but less
effective for parallel programs, is running the program using
assertion predicates provided by the developer.

These assertions allow programmers to specify and check their
assumptions. In a multi-threaded program, the programmer’s
assumptions include both the current state, and any actions
(e.g. access to shared memory) that other, parallel executing
threads might take. We introduce parallel assertions which allow
programmers to express these assumptions for parallel programs
using simple and intuitive syntax and semantics. We present
a proof-of-concept implementation, and demonstrate its value
by testing a number of benchmark programs using parallel
assertions.

I. INTRODUCTION

Debugging parallel programs is hard. A parallel program has
unpredictable thread interleavings, which creates new classes
of bugs. Standard sequential debugging tools are ineffective
against these concurrency bugs. There are a number of tools
that have been developed to help programmers debug parallel
programs. Ideally, these tools should provide maximal debug-
ging power with minimal programmer effort. In practice, there
is a trade-off between the specificity (minimization of false
results) and the programmer effort required to use it.

At the low specificity, low effort end of the scale are tools
which check for general properties that tend to be associated
with concurrency bugs, such as atomicity violations and data
races. These tools are good at detecting some types of bugs,
but do not utilize the programmer’s knowledge about their
code. Implicitly specified properties may not correspond to
real bugs. Not all bugs are data races or atomicity violations:
a program can be race free, but still calculate incorrect values
or corrupt data. Not all data-races are bugs: in fact, research
suggests that only 2–10% of data races are harmful [1]. The
advantage of an implicit specification is that the programmer
does not have to decide exactly what properties should be
checked; the disadvantage is that the programmer may not
know exactly what properties are being checked. Even within
the verification community, there is a lack of consensus about
the meaning of “data-race freedom” and “atomicity”: both
terms have multiple inconsistent definitions. For example,
“atomicity” can be used to refer to transactions with or without

indivisibility guarantees. The term “data-race” is similarly ill-
defined [2].

At the opposite end of the spectrum are formal verification
tools which provide high specificity at the cost of high
effort. These tools are powerful, but complex. They require
considerable skill to use correctly, limiting their utility for
ordinary programmers. For example, model checkers allow
programmers to specify properties on the concurrent execution
using temporal logic. Theorem provers require verification
conditions and often require interaction from the engineer. The
computational complexity of these tools limit their use either
to small programs, or to abstractions of large programs.

Running programs using user provided assertion predicates
falls in the middle of the spectrum, providing medium speci-
ficity in exchange for medium effort. A programmer writing
a piece of code has a set of assumptions about how the
program will execute. If these assumptions can be expressed
formally as assertions, they can be checked dynamically as
the program runs. Assertions are widely used in sequential
programming because they offer simple, intuitive predicates
that can be easily expressed and understood. Despite, or
perhaps because of, their simplicity, they have proven to be
effective debugging tools. Kudrjavets et al. [3] demonstrate
that the use of assertions is directly correlated to a decrease
in bugs in real world sequential programs.

However, standard assertions are not suitable for parallel
programming. In a single-threaded program, the only action
that can occur during an assertion check is the assertion check
itself. An assertion in a single-threaded program can therefore
be expressed as a predicate on the program state at that point.
In a multi-threaded program, the programmer’s assumptions
include both the current state, and any actions (e.g. access to
shared memory) that other threads might take. For example,
a programmer might assume that a given structure is not read
while it is being modified. This property is difficult to express
as a predicate on the system memory state at a single point in
time. Debugging parallel programs requires specification and
checking of both state and actions through time. Programmers
need a new form of assertions for parallel programs, which
provides a simple, understandable set of predicates that allows
testing of complex interleaved programs. This paper introduces
such an assertion mechanism, and a proof-of-concept proto-
type implementation. To distinguish between the two types of
assertions, we name the existing form sequential assertions
and our new form parallel assertions.

Tools are only useful if they are used; tools that are
simple and intuitive for programmers to understand and write

181978-1-4577-0118-4/11/$26.00 ©2011 IEEE

assertions for are more likely to be used. Our design provides
a small, simple language that allows programmers to express a
large range of important properties. We used these predicates
to annotate a number of parallel programs. Our experience
suggests that the small set of predicates we propose is a
powerful tool for debugging real-world programs.

Paper Contributions:
• We introduce parallel assertions, a new mechanism for

expressing correctness criteria in parallel code.
• We provide a formal semantics for these assertions.
• We present a proof-of-concept implementation.
• We evaluate the effectiveness of parallel assertions by

annotating a number of benchmark programs with parallel
assertions, and checking them using our implementation.

Paper Organization: We demonstrate the limitations of
sequential assertions in Sec. II. Sec. III introduces the Parallel
Assertion Statement, and Sec. IV describes its semantics both
formally and with examples. Sec. V describes a proof-of-
concept implementation. We tested the effectiveness of Parallel
Assertions on a number of programs, and report the results
in Sec. VI. Sec. VII discusses related work, and Sec. VIII
provides some concluding remarks.

II. LIMITATIONS OF THE SEQUENTIAL ASSERTION
STATEMENT IN PARALLEL PROGRAMMING

Sequential assertions are ineffective at debugging parallel
programs for two reasons. They are not evaluated at the right
time, and they do not check the right properties.

A. When is the assertion checked

After a sequential assertion has been checked, code that
follows it should be able to rely on the fact that the assertion
condition is true. However, sequential assertions are evaluated
at one point in time, but the property they guarantee is used
at a different point in time. Since sequential assertions are not
atomic with the code they aim to protect, other threads can
be scheduled between the check and the use. Thus, sequential
assertions have no way of guaranteeing that the property they
check will continue to hold. Each of these examples shows two
threads with the position of the program statement indicating
when it is executed.

1) Interference Problem: For example, consider a program-
mer who wishes to ensure that a shared pointer is non-null
before using it. It is always possible for another thread to
modify the variable between the check and its use.
Thread A Thread B
assert(buffer != NULL)

buffer = NULL;
copy_to_buffer(str,buffer)
ERROR: buffer is null

Example I-a. Interference Problem

B. What properties can be checked

Sequential assertions are predicates over the memory state
of a system. However, the state of a multi-threaded system
includes both the current memory state and the actions that

other threads are taking. Parallel code makes assumptions
about what events are possible while the code is executing.
These assumptions might be as simple as that a statement
executes atomically (Example II-a), or as complex as the
ordering requirements in a lock-free data structure (Example
IV-a). Example III-a shows how an error can occur even when
the other thread does not modify shared state. In each of these
cases, there is no way to specify such events with a standard
sequential assertion.

1) Statement Atomicity Problem: A programmer writing
parallel code has an expectation that certain statements will ex-
ecute atomically. However, even a simple increment instruction
may actually be executed as a series of loads and stores, with
a potential for interference and incorrect execution. The case
below is particularly difficult to debug because each thread
sees a memory state that started at x = 0, and ends at x =
1, which is correct from its point of view. The error here
occurs due to conflicting accesses — no one thread could add
a sequential assertion that the new value should be x = 2 if
both threads have executed their statements.

Initially x = 0;
Thread A Thread B
x++; x++;

COMPILES TO:
load r1,x load r2,x
inc r1 inc r2
store r1,x store r2,x
ERROR: x = 1 (expected x = 2)

Example II-a. Statement Atomicity Problem

2) Thread Safety Problem: Programmers may add locks
in an attempt to make accesses atomic. However, locks only
work if every thread in the program always follows the
correct locking discipline. Locking violations can even occur
in cases where the offending thread only reads the variable.
For example, thread B violates the lock and reads inconsistent
state from the buffer, but this is not reflected by any direct
change to global state by thread B. This makes it difficult for
any assertion running on thread A to detect the error.
Thread A Thread B
lock(buf.lock); //Cheating thread didn’t
buf.val = foo; //acquire lock

tempSize = buf.size;
tempVal = buffval;

buf.size = foosize;
unlock(buf.lock);
ERROR: Thread B read inconsistent state

Example III-a. Thread Safety Problem

3) ABA Problem: Locks are a fundamental bottleneck for
parallel programs because they force the conservative seri-
alization of potentially parallel operations. Instead, modern
non-blocking algorithms [4] observe an initial state, specu-
latively prepare an update, and then only apply that update
if the initial state still holds, using atomic instructions like
compareAndSet. The programmer’s intuition is that if an
object has the same value at the end of the computation as at
the beginning, no conflicting updates have occurred, and it is
safe to commit the changes. Unfortunately, compareAndSet

182

Example IV-a. The ABA Problem

cannot distinguish between objects that have remained unmod-
ified since last read, and ones that have been modified twice,
leading to a subtle bug called the ABA Problem [4].

For example, consider a non-blocking algorithm that main-
tains a sorted list, shown in Example IV-a. Thread A wants to
add the value 4 to this list. First it finds the insertion point,
which is the node with value 1, and records that the next node
is the node with value 5 (highlighted with a heavy border).
Ideally, it would then use compareAndSet to atomically
insert a new node with value 4, maintaining the sorted list
property.

Unfortunately, thread B can delete the node with value 5,
and then legally reinsert it with the value 3. Thread A still
sees that the insertion point has a next pointer which points to
the node with the heavy border, and so makes the insertion,
violating the sorted list property.

An assertion to catch this error needs to check that the
compareAndSet succeeded only if the list was in the
correct unmodified state at the precise point where the
compareAndSet occurred. Since sequential assertions are
not atomic with respect to the code they protect, they can
miss this bug.

III. THE PARALLEL ASSERTION STATEMENT

Sequential assertions are widely used because they offer
simple, intuitive predicates that can be easily expressed and
understood. Our design philosophy is to minimally extend se-
quential assertions, adding simple new constructs to solve the
two limitations of sequential assertions in the parallel context.
Other, more complicated assertions are possible. However,
our experience annotating parallel programs suggests that the
extensions we propose can cover a large range of properties
of interest for parallel programs.

A parallel assertion has two parts that address the two limi-
tations of sequential assertions in debugging parallel programs:

1) A parallel assertion defines a scope throughout which
the assertion must hold. The parallel assertion scope
solves the first problem with sequential assertions —

they are checked at the wrong time — by unifying the
assertion and the code it protects. The semantics of the
parallel assertion scope are defined in Sec. IV-D.

2) It extends the assertion condition by providing vari-
ables that express the read and write actions by threads,
lifting the second limitation of sequential assertions, i.e.
what they check. These variables and their definitions
are defined in section IV-E.

Syntactically, a parallel assertion looks much like a standard
sequential assertion, except that instead of an assertion being
located at a particular point in code, an assertion is specified
with a scope associated with a thru { . . . } statement. The
basic form of the parallel assertion is language agnostic; par-
allel assertions can be specified in any multithreaded language
with syntactic scopes. This paper simplifies the presentation
of the syntax by focusing on C language examples and
implementation.

In C code the assertion condition passert_expr is a
standard side-effect free Boolean C expression, which may
include the special variables defined in section IV-E.
thru {

stmt;
... ;
stmt;

} passert (passert_expr)

Figure 1. Parallel assertion scope and condition

IV. SEMANTICS OF PARALLEL ASSERTIONS

An assertion semantics should have several features. First
and foremost, any bugs detected by an assertion should be real
bugs in a real program execution. Secondly, assertion seman-
tics which are simple, clear, and close to the semantics of the
program they protect, are easier for programmers to reason
about. Thirdly, assertions should only modify the execution of
the program under test in limited ways. It should be possible
to remove assertions from production builds without affecting
the correctness of the program. A programmer should ideally

183

be able to use a slow debug build to test their program, and
then ship a faster production build.

A. Observed Program Execution Timeline

A parallel assertion evaluation is the result of a real program
execution. A parallel program consists of a set of threads, each
of which generates a set of events, such as reads and writes. A
program execution is an ordered interleaving of events caused
by threads. A Timeline is an observed total ordering of these
events for a particular execution of a parallel program. We
ensure such a total order by placing several requirements on
any implementation of parallel assertions. In many cases, these
requirements will be guaranteed by the underlying hardware;
in cases where they are not, a parallel assertion checking
implementation must ensure they hold throughout the imple-
mentation. It is possible that this implementation may preclude
certain errors from being detected by this framework, e.g.
those related to errors in memory consistency assumptions.

Requirement 1: Events appear to occur atomically. For
some actions, like writes to single words, this will be guaran-
teed by the underlying hardware; in cases where it is not, a
parallel assertion implementation must ensure atomicity at the
software level, perhaps by using locks.

Requirement 2: All threads must observe the same con-
sistent ordering of events, i.e. there is a single total order. If
thread 1 observes event A as occurring before event B, then
every thread in the timeline must observe event A before event
B. This property is inherently true on systems with sufficiently
strict memory models; on other systems, a parallel assertion
implementation may need to add appropriate memory fences to
ensure a consistent ordering of events across multiple threads.

Requirement 3: There can be no intra-thread instruction
reordering across a thru scope boundary. Scope begin/end must
have acquire/release semantics — i.e. have implicit memory
fences at both the hardware and programming language level.

These requirements restrict intra-thread optimizations, and
may change the timing of a program, potentially changing
its output. This “probing effect” is inherent to a debugging
system — the act of observing a system changes its potential
output. Even in a sequential program, an assertion must
access the variables it references, forcing the compiler to
avoid optimizations to those variables that cross the assertion
boundary. The existence of a sequential assertion can even
cause a program to change its memory layout, potentially
hiding the effects of a buffer overflow bug. However, any
bug that is found by a parallel assertion should be a real
bug, representing a condition that can actually occur during
program execution.

Requirement 4: Event ordering must respect program
semantics. Let P be a program, PA the same program with
assertions, and T a timeline for PA. Then there must be some
legal execution of P in which every read and every write occur
in the same order, on the same threads, to the same locations,
and have the same values as the read and write events in T .

Requirements 1–3 may require a stricter memory model
than required by the underlying program semantics, potentially

requiring fences and synchronization around some operations.
As a strict memory model is a valid implementation of a weak
memory model, an implementation can achieve requirements
1–3 without violating requirement 4.

1) Timeline Events: Given these requirements, we can now
define timestamped events on a timeline. In addition to reads
and writes, there are other possible events that need to be
recorded on a timeline.

Formally, an event is a tuple
〈EventType,EventData, tid〉. EventType is one of
four possible types listed below. EventData represents
auxiliary information that given event types may need to
store. tid is the thread id of the thread causing the event.

A location loc is a tuple 〈address, V ariableType〉 where
address is a memory address and V ariableType is a type
in the underlying implementation, such as int or struct
foo*. A location can be thought of as a set of bytes,
ranging from [address, address + sizeof(V ariableType)].
Two locations are equal if they have the same address and
type. Two locations intersect if any of their bytes overlap.

The following four types of events are sufficient to allow
the evaluation of Parallel Assertions.
• 〈READ, 〈loc, val〉, tid〉 A read by thread tid returned

value val from location loc.
• 〈WRITE, 〈loc, val〉, tid〉 A read by thread tid stored

value val into location loc.
• 〈BEGIN_PASSERT, φ, tid〉 A parallel assertion with

condition id φ has been triggered, i.e. entered its scope.
• 〈END_PASSERT, φ, tid〉 The parallel assertion with

condition id φ has completed, i.e. exited its scope. Note
that BEGIN and END must form pairs in the execution
trace.

All actions should be atomic as per requirement 1. For
accesses to native data types such as int, this is true by
default. However, extended types such as long long may
be accessed non-atomically. A parallel assertion checking im-
plementation may treat these accesses as atomic, and raise an
error if a conflicting update occurs that violates this atomicity,
since this likely violates the programmer’s assumptions.

2) Timestamps: Requirements 1–3 together ensure that ev-
ery program execution has a consistent total ordering of events.
Given a timeline, every event can be uniquely associated with
a timestamp Time(event) which is its order in the timeline.
Thus, Time(ea) < Time(eb) iff ea happened before eb.

B. Instrumented State

On the one hand, it is more convenient and natural to
describe an assertion as a Boolean predicate over the state of a
program than as an assertion over a sequence of events. On the
other hand, the correctness of a parallel program depends on
both state and actions. We resolve this difficulty by defining an
Instrumented State which includes both the memory state at a
time t, as well as variables describing the events occurring at
that time t. Although for clarity we describe augmented state
as unbounded arrays of variables, any implementation that can
simulate these arrays is valid. An implementation which can

184

use static or dynamic analysis to determine that only some
portion of the total state is necessary to evaluate an assertion,
needs to track only that portion of the state.

The state S of an instrumented program at any time t,
denoted St, consists of three kinds of variables. We write St.v
for the value of variable v at time t.

1) Program Variables: These are standard program vari-
ables.
• M[loc]: This is the program memory.
2) Observation Variables: These variables encode which

events are occurring at time t. Encoding events as indicator
variables allows the parallel assertion condition to be ex-
pressed as a simple Boolean predicate over the instrumented
state, making it easier and more familiar for programmers.
In the following, φk refers to the kth unique assertion in
the program. Since assertion scopes are dynamic, a single
syntactic assertion may be dynamically associated with several
distinct φk.
• R[loc, tid]: True if the event at time t was a read by

thread tid from location loc,false otherwise
• W[loc, tid]: True if the event at time t was a write by

thread tid to location loc, false otherwise
• LIVE[φk]: True at all time t between
〈BEGIN_PASSERT, φk, tid〉 and its corresponding,
〈END_PASSERT, φk, tid〉, false otherwise.

3) History Variables: Observation variables record the
events occurring at time t. An assertion may also depend on
the ordering between events: has one event occurred before a
second one? History variables allow assertions to reference a
limited amount of history. This variable records whether its
argument, a Boolean predicate θ(St), has ever been true. Our
experience suggest that such a history variable offers a good
trade-off between describing real-world program correctness
criteria, and limiting complexity.

A parallel program may contain multiple independent par-
allel assertions φk, each of which will need an independent
set of history variables. Each of these history variables will
be associated with a different Boolean predicate on the instru-
mented state θj . All history variables associated with φk are
reset to false when φk begins.
• H[φk][θj]: ∃τ : τ ≤ t ∧ θj(Sτ) ∧ Sτ .LIV E[φk]. True if
θj has ever been true in the past while φk was live.

C. Instrumented State Transition Function

The program begins with: R[loc, tid] = W [loc, tid] =
LIV E[φk] = H[φk][θj] = false for all loc, tid, φk, θj .

The instrumented state is updated atomically according to
a transition function T (Eventi,St) → St+1 (Fig. 2). This
function zeroes all observation variables, and then updates the
program, observation, and history variables.

D. Parallel Assertion Scope

A parallel assertion is associated with a defined block of
program code, which we refer to as the parallel assertion
scope. A parallel assertion is active from the first event that ex-
ecutes within the scope, until the last event that executes within

T(Event e, State St)
atomic {

St+1 = St;

foreach(l,t)

St+1.R[l,t] = St+1.W[l,t] = false;

switch(e)

case 〈READ, 〈loc, val〉, tid〉:
St+1.R[loc,tid] = true;

case 〈WRITE, 〈loc, val〉, tid〉:
St+1.W[l,t] = true;

St+1.M[loc] = val;

case 〈BEGIN_PASSERT, φk, tid〉:
St+1.LIVE[φk] = true;

case 〈END_PASSERT, φk, tid〉:
St+1.LIVE[φk] = false;

foreach(φ,θ)

St+1.H[φ][θ] = St.H[φ][θ]∨ (St+1.LIV E[φ]∧ θ(St+1));

return St+1;

}
Figure 2. Instrumented State Transition Function

the scope. Formally, the event 〈BEGIN_PASSERT, φ, tid〉
occurs immediately before the first statement on thread tid
that is within the scope i.e. there is no event on any thread
in the timeline between this event and the next event in this
thread. Similarly, the event 〈END_PASSERT, φ, tid〉 occur
immediately after the end of the last statement executed within
the scope on thread tid. This requirement refers to the last
statement executed, which may differ from the last statement
in program order if code exits the scope using a break
or return statement. No matter how the scope is exited,
END_PASSERT should be the unique exit to the scope.

A parallel assertion scope is dynamic — scopes can contain
function calls and loops. Intuitively, the lifetime of a parallel
assertion scope is similar to that of an automatic (stack)
variable which is defined in the first instruction of the scope,
and potentially used by the last instruction in the scope.

A parallel assertion holds if and only if its condition φ is true
for all times during which the assertion is active. Note that the
condition must hold at all times, not merely during the times
when statements within the assertion scope are executing. If
the thread that the assertion is associated with is swapped out
by the scheduler, the assertion must continue to hold until the
final statement within the assertion scope.

Every scope is associated with a thread, and variable ac-
cesses are defined relative to that thread. Multiple threads may
have active scopes, which may refer to the same sections of
program code. Parallel assertions can nest, both directly and
through calls to functions which themselves contain parallel
assertion scopes. There can therefore be many simultaneously
active parallel assertion scopes.

Important note: Inter-thread behaviour is unaffected by the
existence of a thru scope. A parallel assertion checks, but does
not enforce, ordering of events between program threads.

185

E. Parallel assertion condition

An assertion condition φ is a Boolean predicate over an
instrumented state, St, of a program at time t. As such, it
can be any side-effect free Boolean formula over the memory
state of the program at time t, St.M . In addition, we define the
following Boolean predicates that use the instrumented state,
and may be used as sub-formulas in φ. tid is the thread id of
the thread with the parallel assertion.
• LocalWrite(x) [Keyword LW(x)]
St.W (x, tid)
True if the asserting thread is writing the location x.

• RemoteWrite(x) [Keyword RW(x)]
∃thrd : tid 6= thrd ∧ St.W (x, thrd)
True if a thread other than asserting thread is writing the
location x.

• LocalRead(x) [Keyword LR(x)]
St.R(x, tid)
True if the asserting thread is reading the location x.

• RemoteRead(x) [Keyword RR(x)]
∃thrd : tid 6= thrd ∧ St.R(x, thrd)
True if a thread other than asserting thread is reading the
location x.

• HasOccurred(θ) [Keyword HASOCCURRED(expr)]
St.H[φ][θ]
HasOccurred functions as a latch — it takes a Boolean
predicate θ, and returns true if and only if θ is true now, or
has ever been true in the past while this dynamic instance
of the assertion was active.

F. Checking Parallel Assertions

An instrumented state St contains all information necessary
to evaluate a parallel assertion at time t. An assertion φ holds
if ∀τ : Sτ .LIV E[φ]⇒ φ(Sτ); it fails if otherwise.

What should happen when a parallel assertion fails depends
on the purpose of the parallel assertion system. An implemen-
tation may choose when and how to report the error.

One option is that a parallel assertions should be fail-stop. If
an event et with timestamp t causes the system to enter a state
where any active assertion fails to hold, then the system should
immediately stop. No event with timestamp t′ > t should
be executed. A system using parallel assertions to validate a
critical system might choose this approach, and enforce this
condition through runtime monitoring.

A relaxed condition might be that assertion violations must
be reported during the scope of the failed assertion. If assertion
φ is active between times tstart and tend, and φ fails, then no
event with timestamp t′ > tend should be executed. A system
which uses parallel assertions to check a computation before
doing IO could use this relaxed condition. There is a trade-
off between the latency of the checker in reporting an error,
and the efficiency of the checker. Because a relaxed checker is
synchronized at the assertion level, not the instruction level, it
is less likely to be on the critical path for program execution.

A third possible condition, useful for debugging, is that
any failed assertion should be reported when convenient for
the checking implementation. This decouples execution from

checking, and allows for full-speed execution. Since errors will
potentially be reported long after they occur, an implementa-
tion may choose to maintain state associated with detected
errors, such as a program counter trace or call stack, to aid
the programmer in characterizing the error.

G. Examples

1) Interference: Consider the thread interference bug in
Example I-a. The following parallel assertion would detect
this bug.
Thread A Thread B
thru {

buffer = NULL;
copy_to_buffer(str,buffer);

} passert(buffer != NULL);

Example I-b. Assertion to detect interference bug

2) Statement Atomicity: The atomicity violation in Ex-
ample II-a could be detected using the following assertion.
Parallel assertion semantics require begin/end and load/store
events to be atomic, but do not require atomicity at the
statement or block level. A parallel assertion implementation
could therefore still observe an atomicity violation in this case.

Initially x = 0;
Thread A Thread B
thru {

x++; x++;
} passert(!RW(x));

Example II-b. Assertion to detect statement atomicity bug

3) Thread Safety: The locking violation in Example III-a
can be detected using a simple check that no other thread read
or wrote the protected variables. Since this assertion checks
reads as well as writes, it allows the programmer writing thread
A to detect a violation even in the case where no shared
program state was modified.
Thread A Thread B
lock(buf.lock); //Cheating thread

//didn’t acquire lock
thru {

buf.val = foo;
tempSize = buf.size;
tempVal = buf.val;

buf.size = foosize;
}passert(!RR(buf)&&

!RW(buf));
unlock(buf.lock);

Example III-b. Assertion to detect thread safety bug

4) ABA Problem: To see the value of HasOccurred, con-
sider the ABA problem described in Example IV-a. In this
case, the program is correct if either no other thread modified
the pointer, or if that modification was detected and the
asserting thread aborted the write. This condition can be
expressed as follows. Notice that this example also shows why
we need LW in addition to the RW operator.

186

Thread A Thread B
cur = getInsertionPoint(4);
thru {

tempnext = cur->next;
delete(5);
add(3);

newnode = makeNode(4,tempnext);
compareAndSet(cur->next,

tempnext,newnode);
} passert(!LW(cur->next)
|| !HASOCCURRED(RW(cur->next)));

Example IV-b. Assertion to detect the ABA bug

H. Evaluation Example

Example III-b uses a parallel assertion to check whether
a buffer is accessed in a thread-safe manner. A possible
execution timeline, and the associated instrumented state, are
shown in Table I.

The assertion begins at time t = 2, following the acquisition
of the lock at t = 1 (a combined read/write event). Until time
t = 4, no other thread reads the buffer, and so the assertion
holds. At time t = 4, thread 2 reads the buffer, and the
assertion is violated, and similarly for time t = 5.

Note that at time t = 6, the assertion condition is once again
true, since no other thread is accessing the buffer. However,
this state is irrelevant since the assertion would have already
failed at time 4.

V. PROOF OF CONCEPT IMPLEMENTATION

We developed a proof-of-concept implementation as a mod-
ification to the LLVM compiler suite [5]. We implemented
the assertion statement as a new AST node in the clang
front-end. Assertion conditions are expressed in ordinary C,
and can contain any side-effect free, function call free C
predicate which can include predicates on observation and
history variables as discussed earlier.

Although the timeline was defined as a total order on
all events, the only events needed to evaluate the assertion
condition are the start and end of assertion scope, and the
read/write events on variables in the assertion condition. These
events are timestamped and logged during program execution.

For efficiency, we decoupled logging from checking by
using a per-thread log and a global hardware timestamping
mechanism. The timestamp, location, and value of all relevant
reads and writes are stored into a thread-local log. Using
multiple logs prevents the log from becoming a serialization
point, and the global timestamping mechanism allows events
to be ordered between threads.

We implemented the logger by modifying the assembly
generation stage of the LLVM compiler. Every read and
write of assertion condition variables is replaced by a call
to a logging function. This logging function acquires a per
variable lock, and then calls a hardware timestamping mech-
anism (RDTSC on x86 processors[6]) which guarantees a
monotonically increasing timestamp across multiple cores.
(Alternatively, the Lamport logical clock [7] could be used
for event timestamps.) The lock ensures that all events appear
atomically, fulfilling requirement 1. It also creates an implicit

memory fence, guaranteeing that the timestamp records a time
within the locked region. Since the hardware timestamp is
monotonically increasing and synchronized across all threads,
and since the access must occur atomically with the timestamp,
requirement 2 is fulfilled. This mechanism does not increase
the set of possible program behaviors, satisfying requirement
3.

In addition, every assertion scope event must be logged.
Since an assertion scope event must be atomic and ordered
with respect to the variables upon which it depends, the
logging function for an assertion scope event must acquire the
per-variable locks for all variables referenced in the assertion
condition. We acquire the locks in sorted order to avoid
deadlock. Since locks contain implicit memory fences, they
also serve a dual purpose of guaranteeing requirement 4.

The assertion condition is converted into a function. At the
beginning of an assertion scope, we dynamically calculate the
address and size of every variable mentioned in the assertion
condition, and record this information as well as a timestamp
and the address of the assertion condition function to the log.

A checker thread reads the logs, and merges them into a
single timeline. For each event on that timeline, the checker
scans the list of currently active parallel assertions. If the
event is referenced by the assertion condition, then the checker
calls the associated assertion checker function. If the assertion
condition checking function returns true, then the assertion
holds for that timestamp. If it returns false, the assertion fails
at the timestamp, and an error is reported.

A. Preliminary Results

From our experiments, our implementation appears to run
10-20 times slower than native un-instrumented code. Such a
slowdown may be acceptable in some debugging contexts, but
is obviously non-ideal. However, much of this slowdown is a
result of our minimally optimized proof-of-concept implemen-
tation, not of the complexity of parallel assertions themselves.
We are working on a number of possible optimizations, which
we believe will dramatically increase the efficiency of our
checker. These optimizations and possible related architectural
support are beyond the scope of this paper.

VI. EVALUATION

One of the challenges to using either sequential or parallel
assertions is knowing which properties to assert. Sometimes,
the programmer knows the property that needs to hold, and
expects it to hold, but is not sure that it actually holds. In other
cases, the programmer may not know exactly which properties
will hold. They can build a mental model of the program, and
then use assertions to explore whether that model accurately
represents the actual program under test.

We tested the effectiveness of parallel assertions by annotat-
ing a number of programs. All annotated programs have been
successfully run through our tool.

187

TABLE I
INSTRUMENTED STATE FOR AN EXECUTION OF EXAMPLE III-B

t Event buf.lock buf.size buf.val LIVE[φ] W[buf,tidA] R[buf,tidB] RR[buf] RW[buf] φ
0 0 oldSize oldVal false false false false false true

1 〈READ, buf.lock,0,tidA〉
〈WRITE, buf.lock,1,tidA〉

1 oldSize oldVal false false false false false true

2 〈BEGIN_PASSERT,φ, tidA〉 1 oldSize oldVal true false false false false true
3 〈WRITE, buf.val,foo,tidA〉 1 oldSize foo true true false false false true
4 〈READ, buf.size,oldSize,tidB〉 1 oldSize foo true false true true false false
5 〈READ, buf.val,foo,tidB〉 1 oldSize foo true false true true false false
6 〈WRITE, buf.size,foosize,tidA〉 1 foosize foo true true false false false true
7 〈END_PASSERT,φ, tidA〉 1 foosize foo false false false false false true
8 〈WRITE, buf.lock,0,tidA〉 0 foosize foo false true false false false true

A. Microbenchmarks

We created a number of microbenchmarks based on exam-
ples from two standard references on parallel programming
techniques and bugs, including The Art of Multiprocessor
Programming [4], and Modern Operating Systems [8]. These
represent common multithreaded programming errors and thus
would benefit from parallel assertions.

1) Bounded Buffer: BoundedBuffer is a bounded buffer
implementation using semaphores [8]. We use assertions to
check that the same location is not accessed by two threads
simultaneously. We further check that the head and tail pointer
modification and data insertion is atomic. These conditions are
guaranteed as long as locking is done correctly.

2) Dual Stack: DualStack is a parallel stack implementation
using the reserve and fulfill technique [4]. The implementation
contains a subtle error that can lead to data corruption. If a
thread executes push in between the reserve and fulfill of
another thread’s push, a stack location is overwritten. We
check for this situation by asserting that no other thread writes
the location during the entirety of the push function. We also
check that no thread attempts to read the location until the
location is marked as full to check that the data is written
before it is read.

3) Fine Grained List: FineGrainedList is a fine grained
locking implementation of a list based set [4]. We added
assertions to check whether locks are acquired correctly when
traversing the list. This is done by asserting that once the add
function has read the pointer specifying the insertion point,
that pointer remains unwritten until completion of add. A
similar assertion checks that the pointer being altered during
remove is not accessed by any other thread.

B. PARSEC Benchmarks

PARSEC [9] is a well-known suite of parallel programs.
These programs are meant to be a representative sample of
modern workloads, and as such are therefore a further test
of whether parallel assertions can be used on real programs.
We are engaged in ongoing to work to add assertions to all
PARSEC benchmarks; here we report on the randomly selected
sample we have completed so far.

1) Black Scholes: Black Scholes uses do-all parallelism to
calculate the value of a set of options. It was remarkably easy
to annotate with assertions — we simply added assertions that

every privatized variable was neither read nor written by any
thread other than its owner.

2) Dedup: Dedup compacts a filesystem by replacing du-
plicated sections of files with pointers into a shared hash
table. Dedup uses a somewhat complicated locking structure.
Many concurrent accesses are not directly protected by locks,
instead, the code warns through comments that mutexes must
be held when calling these unprotected functions. We added
assertions to check that these operations proceeded atomically,
as specified in the comments.

In addition, elements are connected to mutexes through a
hash lookup. We added assertions that any accesses for which
a mutex had been acquired should be performed atomically.

3) Fluidanimate: Fluid animate is a numerical solver for
fluid mechanics. The simulation is divided into a number
of chunks, and each thread is responsible for calculating its
chunk. We added an assertion that no element is accessed by
more than one thread, and were surprised to find that this
assertion failed. Examination of the code revealed that the
boundaries between chunks are shared between two threads,
and can be modified by both. In this case, the use of parallel
assertions revealed that our assumptions about the parallaiza-
tion technique used were incorrect, and helped deepen our
understanding of the underlying program. In fact, we believe
that this may be a productive way for a programmer to explore
the concurrency model of a new program — add assertions that
reflect their understanding, and see which ones hold on real
executions.

4) Streamcluster: Streamcluster is a solution to the online
clustering problem in data mining. The data points are stat-
ically partitioned into thread workloads during the parallel
gain computation. The parallel gain computation iterates over
a subset of data points in the input data set several times.
We added assertions to check that on each iteration a thread
access to a data point has occurred, no other thread accesses
that point.

5) Swaptions: Swaptions uses the Heath-Jarrow-Morton
framework to price a portfolio of swaptions. The array of
swaptions is divided into a set of blocks, and each blocks
is assigned to a thread. Each thread then uses a monte-carlo
simulation to determine the cost of the swaption. We added
assertions to check that swaptions were correctly privatized,
with only one thread reading and writing each element.

188

VII. RELATED WORK

There has been a wide variety of work on tools to help
programmers write correct parallel code.

Some of this work focuses on new languages and run-
time systems to ensure that parallel programs are correct
by construction. Work along this line includes transactional
memory systems, e.g. [10], concurrent functional program-
ming languages [11], stream programming [12], and automatic
parallelization techniques [13]. While this work is valuable, the
widespread adoption of threaded programming models, and the
large amounts of legacy code in imperative threaded languages
suggest the need for tools to verify multi-threaded C programs.

Verifying parallel programs is an active area of research,
and there is a wide range of related work. This work can be
categorized along two axes: What properties they check, and
how they check those properties.

A. What they check — Property Specification

In general, there is a trade-off between the completeness
of a program specification, and the ease with which that
specification can be developed. At one end of the scale are
verification tools that use implicit correctness criteria, and
simply check for conditions that often represent concurrency
bugs. Some of these tools, such as [14], [15], and [16] check
for race conditions. Others, such as the lockset algorithm [17],
check to ensure that locks are used in a standard, consistent
manner. Vlachos et al. [18] propose a tool that uses taint
analysis to check parallel programs for potentially dangerous
uses of unsanitized input. Lucia et al. [19] weaken the data-
race freedom condition and check for conflict freedom of
synchronization-free regions, which they argue can be effi-
ciently guaranteed at runtime.

These tools are useful for solving problems within their
domain. However, they both under and over specify. A race
free program does not imply a correct program. On the
other hand, a program with data races is not necessarily
an incorrect one. The canneal benchmark in the PARSEC
suite, for example, deliberately allows data races because its
probabilistic algorithm is capable of recovering from the errors
they introduce. In general, tools with implicit specifications do
well at catching standard bugs in standard programs. They do
less well on programs that use non-standard tricks to improve
performance. A lock-set algorithm, for example, cannot check
a modern non-blocking algorithm.

At the other extreme, approaches like Owicki-Gries [20]
require the programmer to specify Hoare triples and invariants
for all operations within their program. Elmas, Tasiran and
Qadeer [21] require the programmer to create an abstract
model of their program, and then check whether the program
undergoing testing is a correct refinement of the model. Theo-
rem provers, such as HAVOC [22], require the programmer
to provide function contracts and loop invariants. HAVOC
attempts to limit the need for programmer annotation by
attempting to infer and then prove possible additional contracts
from a partial specification. However, theorem proving tools
still require the programmer to provide a relatively complete

set of annotations. These are powerful tools in the hands of
verification engineers. However, they require a considerable
amount of skill and effort to use effectively, and it is unclear
how useful they are to ordinary programmers.

In the middle are tools which provide programmers with
a set of primitives that allow them to express common cor-
rectness criteria. Kovacs et al. [23] present a framework for
writing full temporal assertions on message passing programs.
Although these temporal assertions are powerful, they are also
complex. They require the programmer to write a Java class for
each temporal property they wish to assert. Since a temporal
logic property may depend on events that will happen in the
future, their semantics introduces the concept of a partial tree.
A temporal assertion which depends on future events will have
the value “unknown” (⊥) until these events occur, limiting the
use of temporal assertions for parallel runtime validation.

Vechev et al. [24] uses a set of Java primitives and the QVM
virtual machine [25] to allow programmers to assert properties
about object ownership in multithreaded programs. If a thread
knows that no other thread has a reference to an object, then
it can know that no conflicting accesses will be made to that
object.

JASS [26] extends Java by allowing programmers to express
parallel correctness conditions as conditions on objects. Object
method calls can be annotated with pre and post-conditions.
Objects can also be annotated with class invariants, trace
invariants, and refinement relations. Properties are checked
when the object is stable, i.e. not being modified by any
method call. These techniques are designed for systems like
Java, where accesses occur through method calls and where
data privatization and object synchronization is enforced by a
runtime system. They are less applicable in languages without
these features, like C.

B. How they check

Just as there is a trade-off in property specification between
completeness and programmer effort, there is a trade-off in
property checking between completeness and checker effort.
These two trade-offs are orthogonal — it is possible to check
whether a complicated temporal logic property holds on a
single trace, and it is possible to run a theorem prover to find
all possible data-races in a program.

At the one extreme, some tools are trace based. They
efficiently monitor single runs of a program. This limits their
observational power — they can only find bugs that manifest
in the observed execution trace. However, such tools can be
fast. Vlachos et al. [18] present a hardware assisted runtime
checker for parallel computations that can check for misuse
of tainted data with low overhead.

Trace based techniques can be extended in several ways.
Trace based tools can use predictive analysis [27] to determine
whether an error could have occurred on a given trace, even if
it did not actually do so due to non-deterministic scheduling.

Tools such as DMP [28] and CHESS [29] perturb the
execution of the program under test in ways that they hope
will cause more bugs to manifest.

189

Model checkers, such as SPIN [30], can explore the tran-
sition relation of a program, effectively testing all possible
execution traces at once. A model checker may have to
consider all possible thread interleavings over all possible
traces. STORM [31] reports good results using bounded model
checking to explore all execution traces that have less than k
context switches.

Theorem provers such as HAVOC [22] use contract based
reasoning to abstract complex code. Ideally, if the code is
modular and the contracts are well defined, HAVOC can
factor a large program as a set of smaller, more tractable
programs. HAVOC has been used to prove the correctness
of the synchronization protocol in a 300,000 line Microsoft
Windows component.

Our work adds a unique point to this spectrum by pro-
viding flexible user defined assertions that cover a range of
concurrent programming bugs. While we describe checking
parallel assertions on a single trace, either on or off-line, these
assertions could also be verified over all traces through model
checking/theorem proving.

VIII. CONCLUSION

Parallel assertions provide a powerful and intuitive tool that
allows programmers to express their knowledge about their
code as parallel correctness criteria, using familiar syntax and
a minimal set of new predicates. Parallel assertions are efficient
to write, easy to reason about, and allow programmers to
detect many different types of errors that could previously
only be identified with specialized tools. They are also efficient
to implement, since the correctness of a parallel assertion at
a given time depends only on the instrumented state of the
program at that time. A parallel execution checker can run as
a concurrent monitor for a parallel program.

Our initial work explores some of the possible uses of par-
allel assertions. Our proof-of-concept implementation, and our
experience annotating programs with assertions, demonstrate
that parallel assertions can be effective at defining and catching
parallel bugs. One exciting possibility is that they may also
be able to help prevent them. A parallel assertion checker,
paired with an effective exception handling system, may allow
programs to detect and recover from concurrency bugs. The
optimizations necessary to make such a system efficient are the
subject of ongoing work. Parallel assertions are potentially a
powerful debugging tool with significant potential for future
applications.

REFERENCES

[1] W. Zhang, C. Sun, and S. Lu, “ConMem: detecting severe concurrency
bugs through an effect-oriented approach,” in ASPLOS ’10. ACM,
2010, pp. 179–192.

[2] R. H. B. Netzer and B. P. Miller, “What are race conditions?: Some
issues and formalizations,” ACM Lett. Program. Lang. Syst., vol. 1, pp.
74–88, March 1992.

[3] G. Kudrjavets, N. Nagappan, and T. Ball, “Assessing the relationship
between software assertions and faults: An empirical investigation,” in
ISSRE ’06, Nov. 2006, pp. 204 –212.

[4] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Morgan Kaufmann, Mar. 2008.

[5] C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimization,”
Master’s thesis, Computer Science Dept., University of Illinois at
Urbana-Champaign, Urbana, IL, Dec 2002.

[6] “Intel R© 64 and IA-32 architectures soft-
ware developer’s manual,” 2010. [Online]. Available:
http://developer.intel.com/Assets/PDF/manual/253667.pdf

[7] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, pp. 558–565, July 1978.

[8] A. S. Tanenbaum, Modern Operating Systems, 3rd ed. Upper Saddle
River, NJ, USA: Prentice Hall Press, 2007.

[9] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[10] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott, “Lowering the overhead of software
transactional memory,” in ACM SIGPLAN Workshop on Transactional
Computing, Jun 2006.

[11] J. Armstrong, “A history of Erlang,” in HOPL III. ACM, 2007.
[12] W. Thies, “Language and compiler support for stream programs,” Ph.D.

Thesis, MIT, Cambridge, MA, Feb 2009.
[13] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August, “Re-

visiting the sequential programming model for multi-core,” in MICRO
2007, dec. 2007, pp. 69 –84.

[14] T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: a race and transaction-
aware Java runtime,” SIGPLAN Not., vol. 42, pp. 245–255, June 2007.

[15] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detection,” in
PPoPP ’03. ACM, 2003, pp. 167–178.

[16] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas, “SigRace: signature-
based data race detection,” SIGARCH Comput. Archit. News, vol. 37,
pp. 337–348, June 2009.

[17] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: a dynamic data race detector for multithreaded programs,” ACM
Trans. Comput. Syst., vol. 15, pp. 391–411, November 1997.

[18] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B. Falsafi, P. B.
Gibbons, and T. C. Mowry, “ParaLog: enabling and accelerating online
parallel monitoring of multithreaded applications,” SIGARCH Comput.
Archit. News, vol. 38, pp. 271–284, March 2010.

[19] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm, “Conflict
exceptions: simplifying concurrent language semantics with precise
hardware exceptions for data-races,” in ISCA ’10, 2010.

[20] S. Owicki and D. Gries, “Verifying properties of parallel programs: an
axiomatic approach,” Commun. ACM, vol. 19, pp. 279–285, May 1976.

[21] T. Elmas, S. Tasiran, and S. Qadeer, “VYRD: verifying concurrent
programs by runtime refinement-violation detection,” in PLDI ’05.
ACM, 2005, pp. 27–37.

[22] T. Ball, B. Hackett, S. Lahiri, S. Qadeer, and J. Vanegue, “Towards scal-
able modular checking of user-defined properties,” in Verified Software:
Theories, Tools, Experiments. Springer, 2010, vol. 6217, pp. 1–24.

[23] J. Kovacs, G. Kusper, R. Lovas, and W. Schreiner, “Integrating temporal
assertions into a parallel debugger,” in Euro-Par 2002 Parallel Process-
ing. Springer Berlin / Heidelberg, 2002, vol. 2400, pp. 159–252.

[24] M. Vechev, E. Yahav, and G. Yorsh, “PHALANX: parallel checking of
expressive heap assertions,” in ISMM ’10. ACM, 2010, pp. 41–50.

[25] M. Arnold, M. Vechev, and E. Yahav, “QVM: an efficient runtime for
detecting defects in deployed systems,” SIGPLAN Not., vol. 43, pp. 143–
162, October 2008.

[26] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim, “Jass - Java with
assertions,” Electr. Notes Theor. Comput. Sci., vol. 55, no. 2, 2001.

[27] A. Farzan and P. Madhusudan, “The complexity of predicting atomicity
violations,” in Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2009, vol. 5505, pp. 155–169.

[28] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: Deterministic
shared-memory multiprocessing,” Micro, IEEE, vol. 30, no. 1, pp. 40
–49, jan.-feb. 2010.

[29] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing Heisenbugs in concurrent pro-
grams,” in OSDI’08. USENIX Association, 2008, pp. 267–280.

[30] G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual, 1st ed. Addison-Wesley Professional, Sep. 2003.

[31] S. K. Lahiri, S. Qadeer, and Z. Rakamaric, “Static and precise detection
of concurrency errors in systems code using SMT solvers,” in CAV, vol.
5643. Springer, 2009, pp. 509–524.

190

