
Address register allocation for arrays in loops

of embedded programs

Guilherme Ottoni*, Guido Araujo

IC-UNICAMP, Cx. Postal 6176, Campinas, SP 13084-971, Brazil

Accepted 3 May 2003

Abstract

Efficient address register allocation has been shown to be a central problem in code generation for processors with restricted addressing

modes. This paper extends previous work on Global Array Reference Allocation (GARA), the problem of allocating address registers to array

references in loops. It describes two heuristics to the problem, presenting experimental data to support them. In addition, it proposes an

approach to solve GARA optimally which, albeit computationally exponential, is useful to measure the efficiency of other methods.

Experimental results, using the MediaBench benchmark and profiling information, reveal that the proposed heuristics can solve the majority

of the benchmark loops near optimality in polynomial-time. A substantial execution time speedup is reported for the benchmark programs,

after compiled with the original and the optimized versions of GCC.

q 2003 Published by Elsevier Science Ltd.
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1. Introduction

The increase in the size and complexity of embedded

system applications has induced designers to adopt

architectures that offer low power consumption, enhanced

performance and reduced cost. Processors that run

embedded programs range from commercial CISC

machines (e.g. Motorola 68000) to specialized Digital

Signal Processors (DSPs) (e.g. DSP16xx [25]), and

encompass a considerable share of the processors produced

every year.

Address computation takes a large fraction of the

execution time for most programs. Addressing can account

for over 50% of all program bits and 1 out of every 6

instructions for a typical general-purpose program [19].

In order to speedup address computation, most embedded

processors offer specialized addressing modes. A typical

example is the auto-increment (decrement) mode,

which enables the encoding of very short instructions.

All commercial DSPs and most CISC processors Instruction

Set Architectures (ISAs) have auto-increment (decrement)

modes. In fact, in order to reduce the instruction size,

many embedded processors do not allow the typical base-

register plus offset addressing mode frequently found in

general-purpose architectures. Even worse, very few

registers are available in these processors (typically

4–16), and addressing is usually performed only through

specialized address register.

This paper extends previous work [13,27] on Global

Array Reference Allocation (GARA), which is the problem

of allocating address registers to array references in loops

running on embedded processors. As an example,

consider the Control-Flow Graph (CFG) from Fig. 1(a),

where only the array references are shown. Solving GARA

on this code, with a single address register available,

produces the code in Fig. 1(b). In Fig. 1(b), all the array

references are performed through the single address register

(ar), and symbol þþ (22 ) following a reference implies
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that post-increment (post-decrement) addressing mode is

used. In addition, it is necessary to initialize, in the loop

pre-header, ar with the address of a½i0�; where i0 denotes

the initial loop value of i.

This paper describes two heuristics to GARA, present-

ing experimental data to support them. In addition, it

proposes an approach to solve GARA optimally which,

albeit computationally exponential, is useful to measure

the efficiency of the other methods. The experimental

results are very encouraging. Using the exact solution as

the baseline, the experiments based on profiling infor-

mation reveal that program loops in the MediaBench

benchmark [20] can be solved near optimality in

polynomial-time through the heuristics. An average

speedup of 14.3% is reported for the benchmark programs

after compiled with the original and optimized versions of

GCC.

This paper is divided as follows. Section 2 lists the

previous work on GARA. Section 3 describes, for the first

time, the Extended Single Reference Form (ESRF), which

is required to guarantee the optimality of the dynamic

programming algorithm proposed in Ref. [27].

Two heuristics for GARA are summarized in Sections 4

and 5 proposes a method to compute its exact solution.

Finally, Section 6 reports the experimental results when

our implementation in GCC compiles MediaBench

programs.

2. Previous work

Register allocation is a well-studied problem in

compilers. Many of the first problems in code

generation involved finding good algorithms for register

allocation [2,29,30]. Global register allocation is an

important problem in code generation which has been

extensively studied [8,11,12,18]. Other researchers

have considered the interaction of register allocation and

scheduling in code generation for RISC machines [7,17],

and inter-procedural register allocation [10]. The

allocation of local variables to the stack-frame, using

auto-increment (decrement) mode, has been studied in

Refs. [5,15,22–24,28].

Local Array Reference Allocation (LARA) is the

problem of allocating address registers to array refer-

ences in a basic block such that the number of address

registers and instructions required to update them are

minimized. LARA has been studied in Refs. [4,16,21],

which are efficient graph-based solutions, when refer-

ences are restricted to basic block boundaries. Global

register allocation for array references, on general-

purpose architectures, has been studied before by Bodik

and Gupta [6] and Callahan et al. [9]. In Refs. [6,9] array

references are allocated to general-purpose registers. As

the loop iteration progresses, references are moved

among registers in a pipelined fashion. Unfortunately,

many embedded processors are highly constrained

architectures containing very few specialized registers,

what makes the application of these techniques

impossible.

In Ref. [13], a technique based on live range growth

and a variation of Static Single Assignment (SSA) Form

[14] was proposed. It consists of consecutively merging

pairs of live ranges until the number of ranges equals

the number of address registers in the target processor

architecture. A heuristic was used to decide which pair

of live ranges should be merged. The problem of finding

the minimal number of update instructions when

merging pairs of live ranges has been proved to be

NP-complete in general [27]. The difficulty of the

problem lies in choosing the best (minimum cardinality)

set of update instructions among a combinatorial number

of possible sets. The large number of sets results from

the need to keep correct, on every possible execution

path, the value of the address register for the array

references on the merged live range. Ottoni et al. [27]

proves the existence of an optimal dynamic program-

ming algorithm to find the minimal set of update

instructions, for a special case of live range topology.

Preliminary experimental results in Ref. [27] speculated

that this particular topology would be very common in

practice, although not enough benchmark data was

presented to support that. The experimental results

from Section 6 confirm this hypothesis to be true for

the MediaBench programs.

3. The extended single reference form

Any approach that aims at solving the GARA

optimization problem should be able to perform two central

Fig. 1. (a) CFG fragment; (b) Inserting auto-increment mode and update

instructions.
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tasks. First, it has to choose the points inside the code where

update instructions would be needed to adjust the address

registers. Second, it has to allocate an address register to

each array reference such that the cost of the required update

instructions is minimized. In order to achieve an optimal

GARA solution, both tasks have to be performed optimally.

In this section, we show how to solve the first part of the

problem optimally, i.e. deciding the points where update

instructions could be required. Notice that the need of an

update instruction, at some selected point, will depend on

how efficient is the algorithm that assigns address registers to

the array references, as discussed in Section 4.

In Ref. [13] it was realized that the problem of deciding

where update instructions are needed resembles the problem

of choosing places to insert f-functions in the SSA-Form

[14]. The points where to insert f-functions are those on the

Iterated Dominance Frontier [14] of the basic blocks that

contain array references. The program representation

resulting after f-functions are inserted was called Single

Reference Form (SRF). For example, Fig. 2(a) shows the

CFG of a loop body in SRF. However, SRF is not enough to

guarantee the optimality of the approach presented in

Ref. [27].

The problem with SRF is that it identifies the points

where more than one array reference reach, but not those

points that reach multiple array references (which is the case

of the point at the exit of B3 in Fig. 2(a), which reaches both

r1 and f5b). As a result, in SRF it is possible to have update

instructions that are not associated with any f-function,

although their values depend on the choice of addressing

modes. In order to fix this problem, we propose what we call

the ESRF. In this form, in addition to the f-functions

inserted at the beginning of the basic blocks that form

the Iterated Dominance Frontier (fb), we also insert

f-functions at the exit of the basic blocks that are on the

Iterated Post-dominance Frontier [26] (fe). But it is still

possible that the insertion of f-functions into one of the

dominance frontiers will require the insertion of f-functions

into the other one. In order to deal with this, another iteration

level is used to compute ESRF such that, at the end,

each array reference has only one reference in each of its

DU/UD-chains.

We call this approach Combined Dominance Frontier

(CDF) and describe it in Algorithm 1. To illustrate how

Algorithm 1 works, consider Fig. 2(b), ignoring the

f-functions shown. Table 1 shows the value of the sets S,

IDF and IPF as they are computed in Algorithm 1.

For example, in step 3, S is set to {1,4,5,6}, and so the

iterated post-dominance frontier in step 4 is calculated as if

there were array references in all of these basic blocks.

At the end of the algorithm, IDF ¼ {1,4,5,6} and

IPF ¼ {1,2,3,6}. The resulting code in ESRF is shown in

Fig. 2(b), with the corresponding f-functions inserted.

In ESRF, as an array reference can only precede one

array reference or f-function, it holds the important

property that one of two cases can happen. First, if the

array reference precedes another one, its choice for

addressing mode can be locally solved in an

optimal fashion. Otherwise, the array reference precedes

a f-function and so its choice for addressing mode will

be embedded in this f-function’s cost. As the variables

of our optimization problem are the values to be

chosen for the f-functions, this is a fundamental

Algorithm 1

Combined dominance frontier

(1) function CDF(Ref_BBs: Set_of_BBs)

(2) var IDF, IPF: Set_of_BBs;

(3) S ˆ Ref_BBs;

(4) do

(5) S0 ˆ S;

(6) IDF ˆ Iterated_Dominance_Frontier(S);

(7) S ˆ S < IDF;

(8) IPF ˆ Iterated_Postdominance_Frontier(S);

(9) S ˆ S < IPF;

(10) while S – S0;

(11) return (IDF, IPF);

Fig. 2. (a) CFG in SRF; (b) CFG in ESRF.

Table 1

CDF computation for the code from Fig. 2(b)

Step CDF line S IDF IPF

1 3 4,6

2 6 1,5,6

3 7 1,4,5,6

4 8 1,2,3,6

5 9 1,2,3,4,5,6

6 6 1,4,5,6

7 7 1,2,3,4,5,6

8 8 1,2,3,6

9 9 1,2,3,4,5,6
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property that guarantees the optimality of the algorithm

described in Ref. [27].

4. GARA heuristics

In this section we summarize the methods proposed in

Refs. [13,27]. Both techniques are based on merging live

ranges. Initially, each array reference from the loop being

optimized is assigned to a separate live range, and then a

sequence of live range merge operations is performed,

until the number of live ranges reaches the number of

address registers available on the target processor. In both

approaches, the choice for the pair of live ranges to be

merged, at each step, is performed by computing the cost of

all live ranges obtained by pairwisely merging the current

live ranges, and then choosing the least costly one. The two

approaches differ on the way the cost for a live range is

computed: Ref. [13] uses a heuristic called Tail–Head (TH),

while Ref. [27] uses an optimal dynamic programming

algorithm called Leaves Removal Order (LRO) whenever

the topology of the live range allows, resorting to TH

otherwise. We call this combined approach LRO-TH.

In order to illustrate both methods, we use a loop

from the pegwit program in MediaBench. Fig. 3

shows the CFG representation of this loop and its

corresponding array references. The loop has nine

references (r1 to r9), associated to two arrays (a and

b), and the loop step is 2. The edges are labeled with

the corresponding estimated execution frequencies. When

an update instruction is needed, we use the estimated

execution frequency on the edge or basic block where it

will be inserted as its corresponding cost. This way, our

goal becomes to minimize the total estimated execution

frequency for the required update instructions, instead of

simply minimizing the number of update instructions as

in Refs. [13,27].

4.1. The tail–head heuristic

In this section we shortly describe how the Tail–Head

(TH) heuristic is used to estimate the cost of a merge

operation during GARA. For further details the reader

should refer to Ref. [13].

When GARA starts, the live range growth approach takes

place, merging at each step the pair of current live ranges

that leads to the best total cost. Hence, at each merge

operation the cost of the new live range must be determined.

When the TH heuristic is used to compute the cost, the

following operations take place. Initially, the loop is

transformed to SRF, in order to determine the points

where f-functions are required. Then, the f-functions are

solved, starting at the loop tail toward the loop head. For

each f-function, the solution is chosen among the values of

all references in its UD/DU-chains, ignoring the f-functions

which have not been solved yet. The cost of the merged live

range is given by the summation of the expected execution

frequency of the update instructions required to set the

address registers correctly. Zero cost auto-modify

addressing modes are used whenever possible.

As an example, Fig. 4 shows the live range formed by

merging references r3, r7 and r8. The UD/DU-chains

Fig. 4. The live range formed by references r3, r7 and r8 in SRF.Fig. 3. The control-flow graph for a loop example from pegwit.
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for the f-functions associate to these references are also

shown. First, f8b is solved, resulting in a[i] (the only

value in its UD/DU-chains). Then, f6b results in a[i],

for the same reason. Finally, f1b is solved, and in this

case two solutions are possible: a[i], because of r3 and

because it is the solution for f6b and f8b; and a[i 2 1],

because of the reference r8 from the previous loop

iteration (note that a[i þ 1] from the previous iteration

is a[i 2 1] in the current one, as the loop step is 2.

a[i] is chosen because it leads to cost zero, with the

insertion of a post-increment addressing mode at

reference r8.

4.1.1. Example: GARA using the TH heuristic

We now illustrate the GARA solution using the TH

heuristic. Consider the code from Fig. 3. Table 2 shows the

initial set of live ranges. For each live range, this table

presents the basic blocks where f-functions are

required when transforming it to SRF (column 2), and

the live range cost (column 3) calculated using the Tail–

Head heuristic.

As GARA progresses, the live range growth approach

takes place, starting with the ranges in Table 2. Table 3

shows the sequence of merge operations that are

performed. In column 2, the resulting set of live ranges

after each merge is illustrated, with the just merged range

highlighted. The third column contains the basic blocks

where f-functions are required for the just formed range,

and column 4 shows the cost of the merge operation,

computed using the Tail–Head heuristic. The last column

lists the total cost of all current live ranges at this step of

the execution.

The merging of live ranges is performed until two

ranges remain (step 7 in Table 3). These ranges cannot

be merged, as they refer to different arrays (a and b),

and thus cannot share the same address register.

Assuming that three address registers are available

(which is the case of the target processor we used), we

have two possibilities: either using two address registers

(one for each final live range), or using three address

registers (one for each live range after step 6). We

choose the last alternative, as it leads to a smaller

total cost (18,914). The final allocation and the update

instructions inserted are shown in Table 4.

4.2. The leaves removal order algorithm

The LRO approach for computing a live range cost, in

opposition to the Tail–Head heuristic, guarantees that the

optimal solution is found for the values of the f-functions,

although it does not apply to every code in ESRF.

Fortunately, the experimental results in Section 6 show

that the cases to which this method applies are indeed very

common in practice.

In Ref. [27] we introduced the concept of f-Dependence

Graph (DGf). This is an undirected graph in which there is

one vertex for each f-function, and an edge between two

vertices if and only if the solution to one of the f-functions

depends on the solution to the other. The DGf can be

constructed using an algorithm similar to reaching defi-

nitions and DU/UD-chains [3] on the f-functions. In order

to illustrate the concepts of ESRF and DGf; Fig. 5(a)

presents, for the same example from Fig. 3, the live range

formed by references r1, r2 and r4 in ESRF. The

corresponding DGf is shown in Fig. 5(b). For example,

Table 3

Live range growth using the Tail–Head heuristic

Step LRs LR f-functions LR cost Total cost

0 [1][2][3][4][5][6][7][8][9] – – 85,686

1 [1][2][3][4][5,6][7][8][9] 1b 0 67,886

2 [1][2][3][4][5,6][7,8][9] 1b 0 50,086

3 [1][2][3,7,8][4][5,6][9] 1b,6b,8b 0 36,700

4 [1,2][3,7,8][4][5,6][9] 1b,8b 8900 26,700

5 [1,2][3,4,7,8][5,6][9] 1b,6b,8b 1114 18,914

6 [1,2][3,4,7,8][5,6,9] 1b 8900 18,914

7 [1,2,3,4,7,8][5,6,9] 1b,6b,8b 12,286 21,186

Table 2

Initial live ranges; costs computed using the Tail–Head heuristic

Ref. LR f-functions LR cost

[1] 1b 10,000

[2] 1b,8b 8900

[3] 1b,6b,8b 13,386

[4] 1b,8b 8900

[5] 1b 8900

[6] 1b 8900

[7] 1b 8900

[8] 1b 8900

[9] 1b 8900

Total cost 85,686

Table 4

The final allocation using TH

Address register References Update instructions

Instr. Edge Cost

ar0 r1:a[i þ 1]22

r2:a[i] ar0þ¼ 3 B10 ! B1 8900

r3:a[i]þþ

ar1 r4:a[i þ 1]22

r7:a[i]þþ ar1þ¼ 1 B3 ! B5 1114

r8:a[i þ 1]þþ

r5:b[i]þþ

ar2 r6:b[i þ 1]22 ar2þ¼ 2 B10 ! B1 8900

r9:b[i]
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there is an edge between f1e and f8b because f8b [ DU1e

(and so f1e [ UD8b).

Whenever DGf is a tree, a dynamic programming

algorithm can be used to solve the f-functions optimally

[27]. To achieve that, we must first find all possible

solutions for any f-function in ESRF. These values are

exactly the array references that appear in the loop, and the

references in the next loop iteration. In practice, the number

of possible solutions for the f-functions is usually restricted

to a few values. The dynamic programming algorithm

executes in a bottom-up fashion, following a LRO of the

DGf: For each tree leaf l; all the possible pairs of solutions

for l and its single adjacent vertex v are tested, and the best

costs are accumulated in v: Before, the costs related to other

vertices adjacent to l have already been accumulated in l:

This algorithm has a running time linear on the number of

f-function. More details on this algorithm are described in

Ref. [27].

4.2.1. Example: GARA using the LRO-TH approach

We now illustrate the GARA solution using the LRO-TH

approach. Consider again the code from Fig. 3. Table 5

shows the initial live ranges for the live range growth

approach. Column 3 shows whether the corresponding DGf

is a tree or not. Whenever DGf is a tree, the LRO algorithm

is used to compute the optimal cost of the range resulting

after merge. Otherwise, the Tail–Head heuristic cost

estimate is determined.

Table 6 shows the sequence of live range mergings,

similarly as in Table 3. Here again, two options for

allocation are possible: using either two or three address

registers. The best choice is again to allocate three

address registers to the live ranges in step 6 of Table 6.

This gives a total cost of 17,800, which is slightly better than

the cost achieved with the Tail–Head-only approach

(18,914). The final allocation is presented in Table 7.

5. The GARA exact solution

In this section, we present a method (EXACT) for

computing the exact, minimum cost GARA solution for a

given loop. This approach relies on the LRO algorithm

whenever possible. As the experimental results from

Section 6 show, LRO is applicable in the great majority of

Table 6

Live range growth using the LRO algorithm whenever possible, and the TH heuristic otherwise

Step LRs LR f-function DGf acyclic LR cost Total cost

0 [1][2][3][4][5][6][7][8][9] – – – 84,586

1 [1][2][3][4][5,6][7][8][9] 1b,10e Yes 0 66,786

2 [1][2][3][4][5,6][7,8] 9] 1b,10e Yes 0 48,986

3 [1][2][3,7,8][4][5,6][9] 1b,1e,2e,3e,4b,6b,8b,10e No 0 35,600

4 [1,2][3,7,8][4][5,6][9] 1b,1e,8b,10e Yes 8900 26,700

5 [1,2,4][3,7,8][5,6][9] 1b,1e,8b,10e Yes 8900 17,800

6 [1,2,4][3,7,8][5,6,9] 1b,10e Yes 8900 17,800

7 [1,2,3,4,7,8][5,6,9] 1b,1e,2e,3e,4b,6b,8b,10e No 12,286 21,186

Fig. 5. (a) The live range formed by references r1, r2 and r4 in ESRF.

(b) The corresponding DGf:

Table 5

Initial live ranges; costs computed using the LRO algorithm whenever

possible, and the Tail–Head heuristic otherwise

Ref. LR f-function DGf acyclic LR cost

[1] 1b,10e Yes 8900

[2] 1b,1e,8b,10e No 8900

[3] 1b,1e,2e,3e,4b,6b,8b,10e No 13,386

[4] 1b,1e,8b,10e No 8900

[5] 1b,10e Yes 8900

[6] 1b,10e Yes 8900

[7] 1b,10e Yes 8900

[8] 1b,10e Yes 8900

[9] 1b,10e Yes 8900

Total cost 85,686

G. Ottoni, G. Araujo / Microelectronics Journal xx (0000) xxx–xxx6

ARTICLE IN PRESS



the cases, and this is what makes the EXACT approach

feasible.1

Let R be the number of address registers in the target

processor which are available for allocation, and A be the

number of array references in a loop. First of all, we should

identify all the A array references inside the loop,

and partition them such that two references are put into

the same partition if and only if their indexing distance [31]

can be statically determined. We call K the number of

partitions inside the loop, and P1;…;PK the partitions

themselves.

It is clear that only references in the same partition are

eligible for sharing an address register, although references

in the same partition can be allocated to different address

registers. Therefore, one of the decisions that must be made

is how to divide the R address registers among the K

partitions. The second decision EXACT has to make is how

to sub-partition each partition Pj into live ranges. Finally, for

each live range, we should choose the best solution for the

f-functions in a way to minimize the update instruction

cost. Algorithm 2 describes a top-level pseudo-code for our

approach.

Procedure EXACT (Algorithm 2) is the entry point for the

pseudo-code. Its first step is to identify and partition

the array references inside the loop. Then, for each partition

Pj; it calls the procedure Compute_Minimum_Costs,

which fills in the jth column of the matrix C (Cij is the

minimum possible cost if i address registers are assigned

to partition Pj). In order to fill in this column, Compu-
te_Minimum_Costs exhaustively generates all the

possibilities of sub-partitioning the array references in Pj

in a number of live ranges that varies from 1 to R: For each

live range, the corresponding minimum update instruction

cost is computed using the LRO algorithm if possible, or a

brute force, exponential algorithm otherwise, which simply

tests all the combinations of solutions to the f-functions.

In addition, an estimate of the cost if no address register is

assigned to this partition is made. This estimate is dependent

on the target processor, and considers any other

addressing mode available, or the cost of spilling an address

register. Table 8 shows the C matrix computed for the loop

from Fig. 3.

Table 7

The final allocation using LRO-TH

Address register References Update instructions

Instr. Edge Cost

ar0 r1:a[i þ 1]22

r2:a[i]þþ ar0 þ¼ 3 B10 ! B1 8900

r4:a[i þ 1]22

ar1 r3:a[i]

r7:a[i]þþ – – –

r8:a[i þ 1]þþ

ar2 r5:b[i]þþ

r6:b[i þ 1]22 ar2 þ¼ 2 B10 ! B1 8900

r9:b[i]

Algorithm 2

GARA exact solution

(1) Procedure EXACT (L: loop)

(2) identify the array references in L; partitioning them

(3) in P1;…;PK ;

(4) for each Pj; 1 # j # K do

(5) Compute_Minimum_Costs(Pj);

(6) Optimal_AR_Distribution({P1;…;PK }; C);

(7)

(8) procedure Compute_Minimum_Costs(Pj)

(9) fill in C0j with the cost estimated if no address

(10) register is allocated to Pj;

(11) Cij ˆþ1; 1 # i # R;

(12) for each combination of partitioning the references

(13) in Pj in live ranges LR1;…; LRi; 1 # i # R do

(14) total_cost ˆ 0;

(15) for each LRk ; 1 # k # i; do

(16) build DGf for LRk;

(17) if DGf is a tree then

(18) costˆ LRO_cost(LRk);

(19) else

(20) cost ˆ Brute_Force_costðLRkÞ;

(21) total_cost ˆ total_cost þ cost;

(22) if total_cost , Cij then

(23) Cij ˆ total_cost;

(24)

(25) procedure Optimal_AR_Distribution({P1;…;PK };C)

(26) min_cost ˆþ1;

(27) for each combination of values r1; r2;…; rK l
(28)

PK
i¼1 ri # R and ri $ 0 do

(29) cost ˆ 0;

(30) for k ˆ 1 to K do

(31) cost ˆ cost þ Crk ;k
;

(32) if cost , min_cost then

(33) min_cost ˆ cost;

(34)

(35) procedure Brute_Force_cost(LRk)

(36) /*Backtracking to generate all the combinations of

(37) solutions for the f-functions in the ESRF of LRk :

(38) Return the minimum cost among the costs for all

(39) of these combinations.*/

Table 8

The C matrix holding the best solution for each entry in the # ARs £

Partition space. Here each partition corresponds to one of the arrays from

Fig. 3

# ARs Partition

A(Array a) B(Array b)

Cost LRs Cost LRs

0 140,000 – 80,000 –

1 10,014 [1,2,3,4,7,8] 8900 [5,6,9]

2 8900 [1,2,4][3,7,8] 8900 [5,6][9]

3 14,400 [1,3][2,4][7,8] 26,700 [5][6][9]

1 By feasible here we mean that it requires a computational time that we

can deal with for the purposes of this research, although it may not be

practical to be performed inside a compiler.
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Having the C table computed, the EXACT procedure calls

the Optimal_AR_Distribution procedure, which is

responsible for choosing the best way to divide the R

address registers among the K partitions. This is another

brute force algorithm, which explores all the possibilities for

making this distribution. This procedure uses the

precomputed values previously stored in the C table,

in order to avoid recomputing the minimum costs at each

time. For our example, using the C matrix from Table 8, the

best possible solution is to attribute 2 ARs to partition A
and 1 to partition B, resulting in a total cost of 17,800.

Note that this is the same solution found by the LRO-TH

approach in Section 4.2.

6. Experimental results

In order to test the methods described in this paper,

we have implemented all approaches inside GCC version

3.0.2 [1]. The GARA optimization takes place right after

the traditional loop optimizations, making use of the loop

induction variable information available at this

point. Moreover, we used the GCC infrastructure for

profiling-driven optimizations to improve the update

instruction cost estimation (as described in Section 4).

The target processor for the experiments was the Lucent

DSP16xx [25], which has a total of four address registers

(one of which is used as stack-pointer), and post-increment

(decrement) addressing modes. The results presented here

are based on static profiling information. We measured

the expected execution cycles for inner-most loops from

MediaBench [20] applications. Only loops with any array

reference have been considered. Three set of experiments

have been performed. In the first set (Table 9), the speedup

between all approaches and the original GCC was

measured. The second set of experiments (Table 10)

aimed at comparing the compilation time between the

heuristics and the exact solution. The last set of experiments

(Table 11) computed the percentage of DGf graphs in the

loops which are trees.

Table 9 shows a comparison between the following

approaches: (a) live range growth using the Tail–Head

heuristic (TH); (b) live range growth using the combination

of the LRO algorithm and the Tail–Head heuristic

(LRO-TH); and (c) the exact solution (EXACT).

The speedup was measured with respect to the original

GCC implementation [1], which uses an efficient usage

count global register allocation algorithm with an

optimization pass to identify opportunities for using

post-increment/decrement addressing modes. Table 9

shows that the speedup achieved by LRO-TH approaches

the speedup of the time-consuming EXACT method

(average difference of 0.09%). In addition, the TH approach

also leads to a speedup close to the exact solution

(average difference of 0.54%), although not as good as

LRO-TH does.

Table 10 compares the execution time performance of

the GCC implementations of TH, LRO-TH and EXACT.

Table 9

Comparison in terms of speedup between the original GCC, the Tail–Head

(TH) approach, the Leaves Removal Order and Tail–Head (LRO-TH)

combined approach, and the EXACT solution

Program # of loops Speedup (%)

TH LRO-TH EXACT

adpcm 2 0.80 0.80 1.01

epic 6 10.24 11.24 11.50

g721 1 0.00 0.00 0.00

ghostscript 37 13.46 13.95 13.96

jpeg 32 13.86 14.42 14.44

mpeg2 7 13.13 13.13 13.93

pegwit 5 25.22 25.22 25.22

pgp 3 23.96 23.96 23.96

Average – 13.85 14.30 14.39

Table 10

Comparison in terms of compilation time between the original GCC, the

Tail–Head (TH) approach, the Leaves Removal Order and Tail–Head

(LRO-TH) combined approach, and the EXACT solution

Program Compilation time (s)

Baseline GCC TH LRO-TH EXACT

adpcm 0.800 0.800 0.790 0.800

epic 4.430 4.530 4.530 4.880

g721 0.790 0.750 0.760 0.760

ghostscript 41.400 40.980 41.830 273.470

jpeg 23.410 22.240 23.380 259.310

mpeg2 12.020 10.840 10.280 2.440

pegwit 6.160 4.000 4.540 38,933.750

pgp 4.690 4.330 4.320 4.620

Average 11.713 11.059 11.304 4935.004

Table 11

Proportion of DGf,s that are trees when applying the LRO-TH and the

EXACT approaches

Program LRO-TH EXACT

Trees Total % Trees Trees Total % Trees

adpcm 2 4 50.00 2 4 50.00

epic 33 45 73.33 59 113 52.21

g721 1 1 100.00 1 1 100.00

ghostscript 2259 2400 94.12 602,599 604,353 99.71

jpeg 2190 2329 94.03 583,676 585,426 99.70

mpeg2 21 23 91.30 24 26 92.31

pegwit 165 199 82.91 158,3239 1,584,209 99.94

pgp 7 7 100.00 10 10 100.00

Total 4678 5008 93.41 276,9610 2,774,142 99.84
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It shows that the TH and LRO-TH heuristics do not

increase the compilation time noticeably (in fact, they

reduced the average compilation time slightly). On the other

hand, the EXACT method demands a great amount of time

for loops with many array references, as in some

MediaBench programs (e.g. pegwit). This is due to the

intrinsic exponential time-complexity of EXACT. Notice

that for some programs (e.g. mpeg2), GARA improved the

compilation time, which could be due to simplifications

GARA performs over the code, accelerating other

optimizations.

Table 11 presents data regarding the topology of the

DGf’s, during the application of both the LRO-TH and the

EXACT techniques. The results show that the great majority

of the DGf’s are trees, meaning that the linear-time optimal

LRO algorithm for computing the cost of live ranges is

frequently executed in LRO-TH and EXACT. In LRO-TH,

the execution of LRO reduces the cost of the update

instructions by diminishing the number of times that the

Tail–Head heuristic is evoked. In EXACT, the optimal cost

for the live ranges can almost always be computed in linear

time by LRO, thus enabling EXACT to run in feasible time.

Finally, it is worth noting that, even though most of the

DGf’s happen to be trees, the results obtained by TH

approaches that of LRO-TH, meaning that even the simple

Tail–Head heuristic leads to a good solution to the GARA

problem.

7. Conclusions

In this paper we extended previous work on GARA.

We presented the ESRF, which is needed for the

optimality of the LRO algorithm [27]. We proposed an

exact, optimal algorithm for GARA, which uses the LRO

algorithm. The detailed experimental results show that

the LRO-TH approach generally achieves solutions close

to optimal. The average speedup of LRO-TH for the

loops of the MediaBench benchmark was 14.3%, when

comparing to the GCC’s original address register

allocation technique. In addition, we showed that the

great majority of DGf are trees, making it possible to the

exact technique to run fast for most of the loops, despite

its exponential time-complexity.
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