
Enabling Efficient Alias Speculation

Soumyadeep Ghosh†

Princeton University
deep@princeton.edu

Yongjun Park†

Hongik University
yongjun.park@hongik.ac.kr

Arun Raman†

Qualcomm Research
arraman@qti.qualcomm.com

Abstract
Microprocessors designed using HW/SW codesign principles,
such as TransmetaTM EfficeonTM and the soon-to-ship NVIDIA
64-bit Tegra R© K1, use dynamic binary optimization to extract
instruction-level parallelism. Many code optimizations are made
significantly more effective through the use of alias speculation.
The state-of-the-art alias speculation system, SMARQ, provides
40% speedup on average over a system with no alias speculation.
This performance, however, comes at the cost of introducing new
alias registers and increased power consumption due to new checks
for validating speculation. Consequently, improving the efficiency
of alias speculation by reducing alias register requirements and ra-
tionalizing speculation validation checks is critical for the viability
of SMARQ. This paper presents alias coalescing, a novel tech-
nique to significantly improve the efficiency of SMARQ through
a synergistic combination of compiler and microarchitectural tech-
niques. By using a more compact encoding for memory access
ranges for memory instructions, alias coalescing simultaneously
reduces the alias register pressure in SMARQ by a geomean of
26.09% and 39.96%, and the dynamic alias checks by 20.73% and
33.87%, across the entire SPEC CINT2006 and SPEC CFP2006
suites respectively.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation, Incremental compilers

Keywords binary translator, alias speculation, code generation,
hardware/software co-design

1. Introduction
The industry is actively exploring microprocessor design using
HW/SW co-design through dynamic binary translation to get high
performance at low power. Commercial examples of such micro-
processors are TransmetaTM’s x86 EfficeonTM and NVIDIA 64-bit
ARM Tegra R© K1. In these designs, hot code is identified at run-
time and optimized by a dynamic binary translator, which deploys a
suite of low-overhead compiler optimizations to extract instruction-
level parallelism (ILP) in the code.

† This work was carried out while the authors were working at Intel Labs
in Santa Clara, CA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LCTES ’15, June 18–19, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3257-6//. . . $15.00.
http://dx.doi.org/10.1145/2670529.2754964

Memory disambiguation to discover unaliased memory oper-
ations and their dependent instructions is critical to extract maxi-
mum ILP. Memory disambiguation is usually done using alias anal-
ysis by a compiler. However, in a dynamic binary translator, the
cost of a full suite of alias analysis may be prohibitively large. And
in the general case, alias analysis is undecidable [12]; thus, even
the best analyses conservatively report may-alias relationships be-
tween memory instructions. To overcome these limitations, opti-
mization systems often use alias speculation to improve program
performance.

Alias speculation assumes that some may-alias memory instruc-
tions never alias with each other at runtime and speculatively sched-
ules these instructions out of order. At runtime, the speculated in-
structions write one or more “alias registers” with their memory
access ranges; these registers are subsequently checked to ensure
that speculation is valid. When speculation fails, misspeculation re-
covery mechanisms ensure correctness of execution. For efficiency,
alias speculation systems often have hardware support to check
speculation and recover swiftly from misspeculation.

Past alias speculation proposals [3, 4, 6, 7, 11, 13, 14, 18, 21]
either (i) encode memory access ranges (base address and size of
access) of instructions using a signature (e.g. a Bloom filter [15,
20]), or (ii) encode the memory access range of each instruction
individually in an “alias register”. While signature-based schemes
compute signatures agnostic to input code, these schemes often
result in too many false positives (leading to misspeculations) to
be practically viable.

On the other hand, alias register based techniques incur few (or
even no) false positives and achieve significant performance im-
provements. For instance, the state-of-the-art alias speculation sys-
tem, SMARQ [21] provides 40% speedup on average over a system
with no alias speculation. However, alias speculation systems like
SMARQ use at least one alias register to encode memory access
ranges for each memory instruction. This necessitates the introduc-
tion of a large number of alias registers to achieve any significant
performance gains. Additionally, these systems also require each
alias register to be individually checked to validate speculation.
This results in a large number of dynamic alias checks, which in
turn, increases the power requirements for these systems.

Thus, it is critical to reduce the alias hardware requirements of
an alias speculation system like SMARQ while retaining its perfor-
mance benefits. This work presents a novel HW/SW co-designed
alias speculation scheme called alias coalescing that achieves this
goal. Alias coalescing is premised on a key observation—memory
instructions in programs often access spatially proximate mem-
ory addresses. This spatial locality often manifests in programs as
memory instructions with the same base address but different im-
mediate displacements. Often, these instructions refer to different
fields of the same data structure.

Alias coalescing combines/coalesces the memory access ranges
of such instructions into one “alias register”, thus transforming con-
crete memory reference disambiguation into memory object disam-



biguation. This reduces the alias hardware requirement from one
alias register per speculated memory instruction to one alias regis-
ter per coalesced set of memory instructions. The number of checks
required to validate speculation also reduces from one check per
memory instruction to one check per coalesced set. Alias coalesc-
ing uses new algorithms to analyze code at run-time and identify
coalescent memory operations whose memory access ranges can be
effectively combined into a few alias registers and checked in a HW
alias checking structure. Thus, coalescing hits the sweet spot be-
tween signature-based and one-register-per-speculated-access ap-
proaches by getting the alias checking efficiency benefits of the
former and the finer checking granularity (and lower false positive
rates) of the latter.

We evaluate alias coalescing on top of the state-of-the-art alias
speculation system, SMARQ [21]. Alias coalescing reduces the
alias register pressure for SMARQ (using 28 alias registers) by a
geomean of 26.09% and 39.96% respectively for SPEC CINT2006
and SPEC CFP2006 benchmark suites. Further, it reduces the num-
ber of dynamic alias checks required by a geomean of 20.73% for
SPEC CINT2006 and 33.87% for SPEC CFP2006 workloads.

In summary, the contributions of this paper are:

• Alias coalescing, a technique to more efficiently encode mem-
ory access ranges and enable efficient alias speculation;
• Methods to identify memory operations suitable for coalescing,

interfaces to alias checking hardware for coalescing, methods
to allocate alias registers for coalesced memory operations, and
hardware design to perform coalesced alias checking; and
• A detailed evaluation of the effectiveness of alias coalescing in

reducing alias hardware requirements for rotating register file
based alias speculation.

2. Motivation
To illustrate the need for alias coalescing, consider how alias spec-
ulation in SMARQ [21] reorders memory instructions for the ex-
ample in Figure 1(a). The while loop calculates the sum of all ele-
ments in a linked list, and stores it in memory. Figure 1(b) shows the
sequence of memory instructions in this loop. Figure 1(c) shows a
speculative reordering of the memory instructions designed to hide
load latency and to allow the loads’ dependent instructions to be
scheduled earlier, thereby improving performance. This specula-
tive reordering is valid if and only if the memory access ranges of
the loads (LD2 and LD3) do not overlap with the memory access
range of the store ST3. To verify this assumption, SMARQ uses
alias protection and checking.

ST1 :	
 st  r3, [r4]!
LD2:	
 r2 = ld  0x8[r2]!
LD3:	
 r1 = ld  0x0[r2]!
!

(b) Original Sequence of 
Memory Instructions	


LD2:	
 r2 = ld  0x8[r2]!// protect 	

LD3:	
 r1 = ld  0x0[r2]!// protect 	

ST1 :	
 st  r3, [r4] !// check	

	


(c) Reordered Memory Instructions	


val = node->value;!

while (node) {!

  *sum+= val!

  node = node->next;!

  val = node->value;!

}!

(a) High-level Program	


[r4] represents sum, 
0x8[r2] represents 
node->next, 
0x0[r2] represents 
node->value	  

Figure 1. Hardware alias detection

The speculatively hoisted instructions first record their mem-
ory access ranges in their individual alias registers. This is called
the protect step, as these speculated instructions are being protected

from memory operations (typically stores) that occur earlier in orig-
inal program order. When the instructions occurring earlier in the
original program order are executed, they check their own mem-
ory access ranges against those of the speculatively hoisted instruc-
tions to verify that speculation is correct. An overlap detected by
the check step raises an alias fault indicating misspeculation. In re-
sponse to an alias fault, the system recovers by rolling back execu-
tion to an earlier, non-speculative state. Execution is then resumed
without reordering the instructions which caused the alias fault to
be raised. Figure 1(c) shows the protect and check operations asso-
ciated with the different memory instructions in the example.

Note that each speculated memory instruction in SMARQ re-
quires one alias register. Thus, the alias register pressure is directly
proportional to the number of speculated instructions. Furthermore,
during the check operation, each speculated instruction introduces
one dynamic alias check. This directly affects the latency to detect
the presence of an alias fault (more checks imply higher latency).
Other alias speculation schemes such as Advanced Load Address
Table (ALAT) in Itanium [3, 4, 13, 14] and static alias registers
in the TransmetaTM processors [6, 11] exhibit the same properties.
Thus, there is a need to introduce a more efficient and compact en-
coding of memory access ranges to improve the efficiency of alias
speculation—by reducing the alias register pressure and by reduc-
ing the number of dynamic alias checks. The proposed encoding
must strike a good balance between hardware requirements for alias
protection and checking, and precision and efficiency to identify
individual aliasing memory operations. Alias coalescing aims to
present such an efficient encoding.

Memory 
Objects 

node	  

sum	  ST1 

LD2 

LD3 

ST1 

LD2 

LD3 Memory	  

Alias	  HW	  
Entry	  

Alias	  HW	  
Entries	  

(a)	  Alias	  Specula8on	  without	  Coalescing	   (b)	  Alias	  Specula8on	  with	  Coalescing	  

Figure 2. Transformation of concrete memory reference disam-
biguation to memory object disambiguation due to alias coalesc-
ing for the code in Figure 1. Each color represents a separate alias
hardware entry.

3. Alias Coalescing
To understand the idea behind alias coalescing, consider again, the
code example in Figure 1(a) and the corresponding sequence of
memory instructions shown in Figure 1(b). LD2 and LD3 access
the fields next and value of the same memory object, node.
In existing alias speculation proposals, both these loads would
occupy their own entries in the alias hardware. However, one could
coalesce the alias hardware entries for these loads into a single
entry. As shown in Figure 2, coalescing the alias hardware entries
for these loads increases the granularity of memory disambiguation
from concrete memory references to memory objects.

While object-based representation of alias hardware entries en-
codes memory access ranges more compactly, it requires knowing
object layouts in memory, which is often difficult to determine at
the binary level. Thus, we need a simpler way to identify speculated
instructions whose alias hardware entries could be coalesced. One
option is to use memory profiling [2, 10, 19, 22] to determine spa-
tially proximate memory locations, which often lend themselves
to better encoding schemes. Further, one may use a Bloom fil-
ter [15, 20] to summarize these accesses. However, profiling in-



troduces its own set of overheads and requires representative in-
put sets. Similarly, using a Bloom filter may introduce less efficient
alias checking and insufficient precision to identify individual alias-
ing operations.

To address the above problems, we make the following key ob-
servation: programs often contain a number of memory instructions
accessing spatially proximate addresses. This often manifests in
code as memory instructions with the same base address but dif-
ferent immediate displacements. Often, these memory instructions
access different fields of the same memory object. Alias coalescing
coalesces the alias hardware entries for each of these speculated
memory instructions (with same base address but different imme-
diate displacements) into a single entry. Thus, the alias hardware re-
quirement falls from one entry per memory instruction to one entry
per coalesced set. Similarly, the number of dynamic alias checks re-
quired also reduces from one check per memory instruction to one
check per coalesced set. These reductions enable alias coalescing
to improve the efficiency of alias speculation.

3.1 Identifying Memory Operations for Coalescing
The first step for alias coalescing is to identify the memory op-
erations whose memory access ranges can be coalesced. This is
done by formally capturing the observation that spatially proxi-
mate memory accesses are often present in programs as memory
instructions with the same base address but differing in their dis-
placements. Two memory operations Mi and Mj are considered
candidates for coalescing, if their:

• base addresses, indexes, and scales are the same, and
• immediate displacements differ by not more than ε > 0.

After memory operations are identified as candidates for coa-
lescing, the memory access ranges for the coalesced set is obtained
as follows: Assuming that each memory operation Mi has the ad-
dress range [bi, ei], the memory access range of the coalesced set
is the less precise [B,E], where

B = min(bi), and E = max(ei); ∀i

3.2 Static vs Dynamic Coalescing
Once the coalesced sets of memory instructions are determined, the
next step is to decide when to coalesce the memory access ranges
of these instructions. Coalescing of memory access ranges may be
performed either by a representative memory operation in the coa-
lesced set, called static coalescing, or each memory operation indi-
vidually, called dynamic coalescing.
Static Coalescing: Consider the static coalescing example shown
in Figure 3(a). Subscripts indicate the order of memory operations
in the original program. Suppose ld4 is selected as the representa-
tive of the coalesced set {ld2, ld4, ld5}. Also, let imm1 and imm3
be the minimum and maximum displacements respectively for the
loads in the coalesced set. For the reordered sequence shown in
Figure 3(a), the first memory operation from the coalesced set is
marked for alias protection. The annotation COALESCE imm1 imm3
indicates the range of offsets to be added to the base register of the
associated memory operation. The range of offsets comprises the
minimum immediate displacement (-imm1) and the maximum im-
mediate displacement (imm3) in the candidate coalesced set. It must
be noted that static coalescing would require further changes to the
ISA (over the base alias speculation scheme) because we would
need to encode the range of offsets within the instruction itself.
Dynamic Coalescing: In contrast to static coalescing which sum-
marizes the memory address range of a coalesced set using a repre-
sentative memory operation, dynamic coalescing coalesces an alias
register as and when each member of the coalesced set executes.
Figure 3(b) shows an example of alias speculation with dynamic
coalescing. In this example, ld4 initially protects its alias hardware

ld4 imm1[r2] !// protect COALESCE 	

	
 	
 	
 	
 	
 	
   imm1 imm3	


ld2 imm2[r2] !!
st1 [r1] ! ! !// check	

ld5 imm3[r2]!
st3 [r3] ! ! !// check	


(a) Static Coalescing	
 (b) Dynamic Coalescing	


ld4 imm1[r2] !// protect	

	

ld2 imm2[r2] !// protect!
st1 [r1] ! ! !// check	

ld5 imm3[r2] !// protect!
st3 [r3] ! ! !// check	


Figure 3. Examples of Static and Dynamic Alias Coalescing

entry by writing its own memory access range. The subsequent
loads ld2 and ld5 update the same entry when they are executed,
each extending the entry to include its own memory access range.
Thus, when st1 executes, it checks the memory access range of
the coalesced set not including ld5, as the latter updates the alias
hardware entry dynamically after st1 has finished its checks. Since
dynamic coalescing extends memory access ranges incrementally,
fewer spurious alias faults (false positives) may occur, compared to
static coalescing. Another important distinction from static coalesc-
ing is that dynamic coalescing does not require any further changes
to the ISA. Due to these advantages of dynamic coalescing over
static coalescing, this work presents an evaluation of a dynamic co-
alescing system.

3.3 Interfering Instructions

Instruction	


ld3!0x1000[r1] !// protect	


ld4! 0x500[r1] !// protect	


st1!0x2000[r1] !// check	


ld2!0x3000[r1] !// protect	


Immediate Continuum corresponding	

to base [r1]	


{ld2}	  {ld3}	  

{ld2}!

{ld2}	  {ld3,ld4}	  

0x2000!

0x2000!

Figure 4. Coalescing with interfering instructions

The memory access range of a coalesced instruction is the same
as the memory access range for the entire coalesced set. However,
this loss in precision may result in spurious alias faults. Consider
the instruction sequence in Figure 4. The subscript of a memory
operation indicates its position in the original, unoptimized, pro-
gram order. Loads are hoisted speculatively and must be checked
by stores past which they have been reordered. In the example, as-
suming single-byte memory accesses and r1 = 0, the memory ac-
cess ranges of ld2 and ld3 are [0x3000, 0x3000] and [0x1000,
0x1000] respectively. If the two loads were to be coalesced, the
memory access range of the coalesced set is [0x1000, 0x3000].

When st1 is subsequently executed, the memory access range
of the store [0x2000, 0x2000] overlaps with the alias register
written by the speculated loads, i.e. [0x1000, 0x3000], raising
a spurious alias fault. The fault would not have arisen had ld3 not
been coalesced with ld2 and they had each written a separate alias
register. We call st1 an interfering instruction since it interferes
with alias coalescing.

To avoid such spurious faults, the system must not coalesce
loads that may be analyzed to have interfering instructions. We em-
ploy hole-based alias register allocation to eliminate such spurious
faults. Alias coalescing may be viewed as operations on an “im-
mediate continuum” (see Figure 4) induced by instructions sharing
the same base, index, and scale but different immediates. At the



beginning, the immediate continuum corresponding to base r1 is
empty/unallocated. After ld2, the continuum consists of just ld2
and an alias register is assigned to ld2. When ld3 is considered for
coalescing, it adds any interfering instructions that have been de-
termined via analysis by the binary translator (described later in
Section 4.2) as holes in the immediate continuum. In this case, st1
is an interfering instruction and introduces a hole (shown in black
in Figure 4) effectively splitting the continuum, and thereby pre-
venting ld3 from being coalesced with ld2 since they fall on either
side of the hole. This causes ld2 to be assigned a different alias reg-
ister. Subsequently, ld4 is coalesced with ld3 since they fall on the
same side of the hole and ld4 writes the same alias register as ld3.
After st1, the hole is removed; since st1 is the youngest instruction
past which the loads were hoisted, the two allocated alias registers
may be freed, and the continuum returns to its initial empty state.

4. Implementation

Application Code	


Dynamic Binary Optimizer	


CPU	


Runtime Monitor	
 Optimizer	
 Optimized Code in 
Atomic Regions	


Atomicity HW	
Alias Hardware	


Checkpoint	


Rollback	


Alias Fault	


Δ	
 Ω	


Δ Alias Fault Feedback	
 Ω Optimized schedule after alias speculation	


Figure 5. Dynamic optimization system with HW/SW co-
designed alias speculation with coalescing

Our target architecture is a HW/SW co-designed research
VLIW processor, where the alias hardware consists of a rotating
alias register file. The base alias speculation system is SMARQ [21]
and we implemented dynamic coalescing on top of SMARQ. Dur-
ing execution, the application code is first optimized by a dynamic
binary optimizer. Since it is expensive and difficult to perform tra-
ditional alias analysis during execution [5], the dynamic optimizer
performs simple alias analysis and relies on alias speculation to
improve the effectiveness of speculative optimizations.

The optimized code is organized into atomic regions for specu-
lative execution [17]. These atomic regions are single-entry, multi-
exit superblocks with arbitrary control flow inside including condi-
tionals, loops, and function calls. During execution, the atomicity
hardware in the CPU creates a checkpoint at the entry point of each
speculative region. These checkpoints are used to rollback execu-
tion in case of an alias fault. The runtime monitor in the dynamic
optimizer catches any alias faults and subsequently invokes the op-
timizer to re-optimize the speculative region. The reoptimization
step is more conservative and is based on the assumption that the
two memory instructions that triggered the alias fault always alias
with each other. All the memory consistency violations, hardware
interrupts and exceptions are also caught by the runtime monitor to
trigger rollbacks of speculative regions [8].

4.1 Alias Checking Hardware
The alias checking hardware consists of a bank of alias registers
(ARs), organized as a rotating alias register file (Figure 6(a)). It
has a pointer to the oldest memory operation in a separate AHPTR
register. Figure 6(b) shows the format of a single alias register,
which consists of five fields: (1) a valid bit to indicate if the entry
in the alias register is in use; (2) a load/store bit to indicate if the

memory instruction using the alias register is a load or a store
instruction; (3) the physical page number (PPN) for the memory
locations accessed; (4) begin offset for storing the start of the
memory access range; and (5) end offset for storing the upper
end of the memory access range. Both begin and end are encoded
relative to the physical page number. For a 48-bit address space,
this scheme reserves 36 bits for the PPN and 13 bits each for the
begin and end entries. Thus, the size of each alias register is 64 bits.

To handle cases where instructions in a coalesced set may span
non-consecutive pages, we introduce a small set of auxiliary reg-
isters called Page Crossing Structures (PCS). Each PCS register
(Figure 6(c)) has a six-bit entry for alias register number (AR#) in
addition to the fields of an alias register in the rotating alias register
file. Whenever page crossing cannot be encoded using the 13 bits
of the begin and end fields of an alias registerA in the main rotating
register file, the hardware allocates a PCS register and sets the AR#
field to be A. The other fields in the PCS are set using the mem-
ory access ranges for the new physical page that has been accessed.
During a check operation, the hardware now checks the registers in
the rotating alias register file, as well as the corresponding PCS reg-
isters (indexed using the AR# values). When a PCS register cannot
be allocated because all are in use, the hardware raises an excep-
tion in response to which the code is retranslated without alias co-
alescing. Table 1 shows the various actions performed by the alias
hardware in response to a protect, check, or rotate operation.

4.2 Changes to the Dynamic Binary Optimizer
For correct alias speculation, the dynamic binary optimizer must
implement the desired checking relationship among program loads
and stores by assigning them protect (P) and check (C) bits along
with the appropriate order. For efficient alias speculation, the as-
signment must minimize the number of checks and the number
of spurious alias faults. Finally, the algorithms employed must be
fast. We employ a fast, topological sorting based register alloca-
tion algorithm, built on top of the SMARQ alias register alloca-
tion algorithm. Unlike general-purpose register allocation, there is
no hardware support for alias register spilling. Consequently, alias
register allocation is integrated with the instruction scheduler. Alias
speculation is throttled appropriately to prevent memory operation
reordering (and therefore use of alias registers) when there is a
paucity of alias registers.

4.2.1 Preliminaries
Alias register allocation is done when instructions are considered
for scheduling, by building a checking graph that precisely specifies
the alias checks to be performed by the hardware. Figure 7 specifies
the various types of edges added to instruction nodes. A loadAmay
be reordered past multiple stores Ai, such that MAY ALIAS(A,
Ai) and therefore CHECK(Ai, A) are true. All such stores must
check (C) the alias register written for protection (P) by the load—
for such stores, C(Ai) is true, and for the load, P(A) is true. The
liverange of the alias register begins at the load and ends at the last
store in the reordered program order. The order associated with
the load A, and consequently the alias register allocated to it, is
determined by the last store Ai that checks it. The alias register
associated with the load A may be deallocated and used for a
different load after the last store Ai has checked A.

In addition, anti-checking edges (as defined in Figure 7) must
be added to the checking graph. Section 4.2 in [21] details the need
for anti-checking edges. ANTI-CHECK(Aj , Ai) prevents Ai from
checking Aj by ensuring that Aj is assigned a higher order than
Ai. This avoids alias faults that are unnecessary for correctness
of optimization; in the absence of anti-checking edges, spurious
alias faults may be raised due to multiple choices in the topological
sorting of the checking graph. Note that from the perspective of the



LD/ST	   PA[47:12]	   Begin[11:0]	   End[11:0]	  

V	
 S	
 PPN	
 Begin	
 End	
 0	

V	
 S	
 PPN	
 Begin	
 End	
 1	

V	
 S	
 PPN	
 Begin	
 End	
 2	


Check Memory Operation	


V	
 S	
 PPN	
 Begin	
 End	
 N-2	

V	
 S	
 PPN	
 Begin	
 End	
 N-1	


Rotating Alias Register Bank	


≥	  
≤	   =	   AH_FAULT	  

Check	  Enable	  
	  

(AHPTR	  +	  
ORD)	  %	  N	  

	  
(AHPTR+N-‐1)	  

%	  N	  

ORD	  [5:0]	  

Alias Packet	


… ……

1	  

AR#	
 V	
 S	
 PPN	
 Begin	
 End	
 0	

AR#	
 V	
 S	
 PPN	
 Begin	
 End	
 1	


2	
 V	
 S	
 PPN	
 Begin	
 End	
 2	


Page Crossing Structures (PCS)	


Alias	  Fault	  
due	  to	  PCS	  

Valid	  
[63:63]	  

Load/Store	  
[62:62]	  

Physical	  Page	  Number	  (PPN)	  
[61:26]	  

Begin	  
[25:13]	  

End	  
[12:0]	  

AR#	  
[69:64]	  

Valid	  
[63:63]	  

Load/
Store	  
[62:62]	  

Physical	  Page	  Number	  (PPN)	  
[61:26]	  

Begin	  
[25:13]	  

End	  
[12:0]	  

(a)	  	  

(b)	  	   (c)	  	  

Figure 6. Alias Checking Hardware. (a) Rotating alias registers, PCS, and the alias fault checking mechanism (b) A rotating alias register
(c) A page crossing structure (PCS) register

Operation Intent Actions performed by Alias Hardware
protect ord Update alias x = (AHPTR + ord) % N

register with if V(ARx) = 0: V(ARx) = 1, PPN(ARx) = p, begin(ARx) = b, end(ARx) = e
memory access if V(ARx) = 1 and PPN(ARx) = p: begin(ARx) = min(begin(ARx), b), end(ARx) = max(end(ARx), e)
range if V(ARx) = 1 and PPN(ARx) != p:

Allocate PCSi; V(PCSi) = 1, PPN(PCSi) = p, begin(PCSi) = b, end(PCSi) = e
check ord Compare valid for all alias registers ARi with i ∈ [(AHPTR+ord) % N, (AHPTR+N-1) % N]:

alias registers if V(ARi) = 0: no alias fault
with memory if V(ARi) = 1: if PPN(ARi) != p, no alias fault
access range if PPN(ARi) = p: if b < end(ARi) and e > begin(ARi), raise alias fault else no alias fault

repeat above checks for all PCSj with AR#(PCSj ) = i where i ∈ [(AHPTR+ord) % N, (AHPTR+N-1) % N]
rotate n Invalidate n V(ARi) = 0, for i ∈ [AHPTR, AHPTR + n - 1]

alias registers V(PCSj ) = 0, for all PCSj with AR#(PCSj ) = i, where i ∈ [AHPTR, AHPTR + n - 1]
starting at AHPTR AHPTR = AHPTR + n

Table 1. Actions performed by the alias hardware on protect, check and rotate operations. AHPTR points to the oldest live alias register. N
is the total number of alias registers. The memory operation in question accesses addresses [b,e] within the physical page p.

MAY_ALIAS (Aj , Ai ) if:	

•  Ai precedes Aj in program 

order	

•  Ai and Aj may access the 

same memory location	

•  Ai or Aj is a store	


CHECK (Ai , Aj ) if:	

•  MAY_ALIAS (Aj , Ai )	

•  Aj precedes Ai after scheduling	


ANTI-CHECK (Aj , Ai ) if:	

•  MAY_ALIAS (Aj , Ai )	

•  Aj precedes Ai after scheduling	

•  not CHECK (Aj , Ai )	

•  P(Ai ), and	

•  C(Aj )	


INTERFERE (Ai , Aj ) if:	

•  COALESCENT (Ai , Aj )	

•  Ai precedes Aj in original 

program order	

•  Aj precedes Ai in optimized 

program order	

•  Ai is a store and Aj is a load	


COALESCENT (Ai , Aj ) if:	

•  scales, indexes and base 

addresses of Ai and Aj are the 
same [SIB(Ai ) = SIB(Aj )], 
and	


•  Immediate displacements of 
Ai and Aj differ	


Figure 7. Definitions of types of edges used to construct the checking graph for alias register allocation

checking graph and the alias register allocation algorithm, an anti-
checking edge ANTI-CHECK(Aj , Ai) is equivalent to a checking
edge CHECK(Aj , Ai).

Interference edges (also defined in Figure 7) are used to perform
hole-based alias register allocation to eliminate the effect of inter-
fering stores as discussed in Section 3.3. Each memory operation
M is associated with a tuple <scale, index, base> or SIB(M ) con-
taining value numbers for each register, obtained via a global value
numbering pass [16]. As shown in Figure 7, COALESCENT(Ai,
Aj) if SIB(Ai) equals SIB(Aj). The algorithm maintains a con-
tinuum for each SIB, CONT(SIB), which is initialized to [-∞,
∞]. The continuum consists of fills and holes, with holes intro-
duced by interfering stores, and fills having a representative load
that may be coalesced with by other loads. REP(CONT(SIB(M )),
RANGE(M )) retrieves the representative load, if any, of the fill
in the continuum in which memory operation M falls, where
RANGE(M )=[imm(M ), imm(M )+size(M )].

Note that INTERFERE(Ai, Aj) needs to exist only if C(Ai) ∧
P(Aj). However, the decision to coalesce Aj with an earlier load
Ak may potentially have to be made before Ai acquires checking.
Consequently, the algorithm conservatively adds interference edges
a priori before scheduling/alias register allocation. While this may
result in unnecessary splitting of a continuum and lost coalescing
opportunities, in practice, most such stores Ai acquired checking.

4.2.2 Alias Register Allocation Algorithm
Algorithms 1-5 explain the procedure for allocating alias registers
to speculated memory operations. The input to the alias coalescing
and allocation algorithm is the list of instructions in the superblock,
since the algorithm is embedded inside the instruction scheduling
compiler pass. The instructions are annotated with metadata rele-
vant for building the may-alias and interference graphs in the alias
coalescing algorithms; the metadata is accumulated over the dy-
namic compilation steps prior to scheduling.



Algorithm 1 schedule()
1: MAY ALIAS = compute may alias()
2: INTERFERE = compute interference()
3: num alloc regs = 0, num delay regs = 0
4: delayed = {}, AHPTR = 0
5: repeat
6: Ai = Pick unscheduled instruction
7: Aic = try coalescing(Ai) // refer Algorithm 2
8: for Aj ∈MAY ALIAS(∗, Ai) do
9: if ¬ SCHEDULED(Aj) then

10: C(Aj) = true
11: if ¬ P(Ai) then
12: P(Ai) = true
13: delay alias reg (Ai) // refer Algorithm 3
14: end if
15: CHECK(Aj , Aic) = true
16: else
17: if P(Aj) ∧ C(Ai) ∧ AR(Aj) is NONE ∧

¬CHECK(Aj , Aic) ∧ ¬COALESCED(Aj) then
18: CHECK(Aj , Aic) = true // anti-checking edge
19: end if
20: end if
21: end for
22: if (C(Ai) ∨ P(Ai)) then
23: alloc alias reg (Ai) // refer Algorithm 4
24: end if
25: SCHEDULED(Ai) = true
26: Remove Ai from holes in CONT(SIB(Ai))
27: until all instructions are scheduled
28: allocate coalesced alias reg() // refer Algorithm 5

Initialization (Algorithm 1, lines 1-3): Compute the may-alias
relationship among memory operations. Initialize the total number
of loads that have been assigned alias protection (P (Ai) is true)
and assigned order (num alloc regs) or not assigned order as yet
(num delay regs) at any point in the algorithm.
Scheduling loop (Algorithm 1, lines 4-27): On each iteration of
the loop, the algorithm picks an instruction to schedule based on
some scheduling algorithm, e.g. list scheduling. If the instruction
is a memory operation, then it attempts to assign an alias register
if alias protection or checking is needed. It reduces the number of
alias registers simultaneously in use by coalescing when possible.
Alias Register Coalescing (Algorithm 2): All stores Ai which
interfere with the load attempting to be coalesced A, are processed
to add holes in the continuum CONT(SIB(A)). When a hole is
added, it splits the range represented by a load in two, with the
load originally representing the whole range now representing only
a subrange. Holes and fills are merged when possible—this detail
is elided from the algorithm for simplicity. After holes relevant to
load A have been added, the continuum is checked to see if there is
a valid representative with which A may be coalesced. If so, then
the algorithm coalesces A with the representative Aj , and returns
Aj ; else, the algorithm returns A. With coalescing, Algorithm 1
constructs the checking graph with Aj acting as a proxy for A; all
checking and anti-checking edges which would have been incident
on A are instead incident on Aj .
Incremental Construction of Checking Graph (Algorithm 1,
lines 8-21): Checking edges go backwards in the schedule while
anti-checking edges go forward. Therefore, unscheduled instruc-
tions are inspected for checking edges while instructions already
scheduled are inspected for anti-checking edges. Note that an anti-
checking edge is not added if load Aj has been coalesced; this is
because Aj protects itself and later loads from intervening stores
which may alias, and the precedence relationship (Aj precedes Ai

after scheduling) no longer holds.
Alias Register Delay (Algorithm 3): When a memory operation

Algorithm 2 try coalescing (A), called by schedule()
1: for all Ai ∈ INTERFERE(∗,A) do
2: rep = REP(CONT(SIB(A)), RANGE(A))
3: if rep is not NONE then
4: if [l, r] = range of CONT(SIB(A)) represented by rep

then
5: if RANGE(REP(rep)) ¡ RANGE(REP(A)) then
6: REP(l, imm(A)) = rep
7: REP(imm(A)+size(A), r) = REP(r, ...)
8: else
9: REP(imm(A)+size(A), r) = rep

10: REP(l, imm(A)) = REP(..., l)
11: end if
12: end if
13: end if
14: CONT(SIB(A)) = CONT(SIB(A)) \ RANGE(A)
15: end for
16: Aj = REP(CONT(SIB(A)), RANGE(A))
17: if Aj is not NONE then
18: COALESCED WITH(A) = Aj

19: COALESCED(Aj) = true
20: return Aj

21: end if
22: return A

Ai is marked as requiring alias protection, P (Ai) is true, it is added
to the delayed list. An alias register cannot be assigned toAi since
its order will be known only after later checking stores have been
allocated. If there is no representative of the range in the continuum
accessed by Ai, it is marked as the potential representative of that
range.
Alias Register Allocation (Algorithm 4): The algorithm assigns
alias registers to memory operations by topologically sorting the
checking graph—when a memory operation has no incoming
checking edges, it is allocated an alias register. The alias regis-
ter assigned (line 6) is an offset with respect to the oldest mem-
ory operation in the machine which has order AHPTR. Note that
if a memory operation W has been coalesced, it is assigned an
alias register in a post-pass because it should be assigned the same
alias register as the operation with which it was coalesced. When a
memory operation is assigned an alias register, all outgoing check-
ing edges are deleted. This could make other instructions in the
delayed list become ready for allocation and they are then allo-
cated alias registers. Since an alias register is assigned only when
the last instruction which checks it has been scheduled (i.e. the last
checking edge has been removed), the alias register’s liverange is
closed at that point and it may be reclaimed. Register reclamation
is performed via rotation of AHPTR. Finally, a memory operation
W that has been allocated an alias register is removed from the
delayed list, and if it was a representative of a range in the contin-
uum, it is marked as not representing the range anymore since later
memory operations cannot be coalesced with it.

Alias Register Allocation Post-pass (Algorithm 5): A memory

Algorithm 3 delay alias reg (A), called by schedule()
1: num delay regs += 1
2: delayed = delayed ∪ A
3: AR(A) = NONE
4: if REP(CONT(SIB(A)), RANGE(A)) is NONE then
5: REP(CONT(SIB(A)), RANGE(A)) = A
6: end if

operation A that has been coalesced with an earlier one W writes
the same alias register as W . However, between W and A, there
may have been rotation of AHPTR to reclaim other alias registers;
consequently, AR(A) is offset by an amount equal to the difference



Algorithm 4 alloc alias reg (A), called by schedule()
1: AHPTR AT(A) = AHPTR
2: if |CHECK(∗, A)| == 0 then
3: work = work ∪ A
4: for all W in work do
5: if P(W ) ∧ COALESCED WITH(W ) is NONE then
6: AR(W ) = AHPTR + num alloc regs - AH-

PTR AT(W )
7: num alloc regs += 1
8: num delay regs -= 1
9: else

10: if C(W ) then
11: AR(W ) = AHPTR + num alloc regs - AH-

PTR AT(W )
12: end if
13: end if
14: work = work \W
15: for all Ai ∈ CHECK(W , Ai) do
16: CHECK(W , ∗) = CHECK(W , ∗) \ CHECK(W , Ai)
17: if (C(Ai) ∪ P(Ai)) ∧ (|CHECK(∗, Ai)| == 0) then
18: work = work ∪ A
19: end if
20: end for
21: end for
22: end if
23: if num alloc regs > AHPTR then
24: ROT(Ai) = num alloc regs - AHPTR
25: AHPTR = num alloc regs
26: num alloc regs -= 1
27: end if
28: for all W ∈ delayed do
29: if AR(W ) is not NONE then
30: delayed = delayed \W
31: Remove W if it is REP(CONT(SIB(W )), RANGE(W ))
32: end if
33: end for

in AHPTR values at the time W and A were respectively scheduled.
This ensures that W and A access the same physical alias register.

Algorithm 5 allocate coalesced alias reg (A), called by sched-
ule()

1: for all A ∈ memory operations do
2: if P(A) then
3: W = COALESCED WITH(A)
4: if W is not NONE then
5: AR(A) = AR(W ) - (AHPTR AT(A) - AH-

PTR AT(W ))
6: end if
7: end if
8: end for

4.2.3 Example
Figure 8 illustrates the alias register allocation algorithm. Load ld5
has been speculatively eliminated with forwarding from ld2. Loads
ld6, ld3, and ld2 have all been speculatively hoisted above one or
more stores. After scheduling ld6, the algorithm adds the checking
edge CHECK(st4, ld6), assigns P(ld6) and C(st4), and delays alias
register allocation for ld6. It also opens a continuum for r0 and
marks ld6 as the representative of that continuum. The algorithm
handles the interference edge INTERFERE(st1, ld2) by splitting
the r0 continuum into [-∞, 0x0) and [0x4, +∞], with the former
having ld6 as its representative and the latter not having any rep-
resentative. After scheduling ld3, the algorithm adds the checking
edge CHECK(st1, ld3), assigns P(ld3) and C(st1), and delays alias
register allocation. It also opens a continuum for r1 with ld3 as the
representative. After scheduling ld2, the algorithm fails to coalesce

Checking	  edge	   An,-‐checking	  edge	  

Interference	  edge	  

ld6!-0x8![r0]!

ld3! ![r1]!

ld2 ! 0x4![r0]!

st1! ![r0]!

ld7!0x20[r0]!

st4! ![r1]!

ld5 ! 0x4[r0]!

Op	   AHPTR_AT	   reg	   AHPTR	   ORD	   AR	  

P	   0	   0	   0	   1	   1	  

P	   0	   0	   0	   0	   0	  

P	   0	   0	   0	   2	   2	  

C	   0	   1	   1	   0	   0	  

P	   1	   1	   1	   1	   2	  

C	   1	   3	   3	   0	   1	  

*	  reg:	  num_alloc_regs	  

Figure 8. Alias register allocation example
Architectural Parameter
Features
8-wide VLIW 2 INT units, 2 FP units, 2 MEM units

1 BRANCH unit, 1 ALIAS unit
L1 I-Cache 8-way 32 KB, 1 cycle latency
L1 D-Cache 6-way 24KB, HW prefetch
L2 Cache 8-way 256KB, 3 cycle latency,

HW prefetch
L3 Cache 16-way 8MB, 25 cycle latency
Memory 1GB, 104 cycle latency

Table 2. Architectural Parameters
ld2 with ld6 since even though COALESCENT(ld2, ld6), ld6 is
not REP(CONT(SIB(ld2)), RANGE(ld2))—this is the effect of the
interfering store st1. ld2 is now marked as REP(CONT(SIB(ld2)),
RANGE(ld2)). When st1 is scheduled, it has no incoming edges
and is therefore assigned order 0 (meaning it will check all valid
alias registers 0 and above). Outgoing edges are removed, resulting
in ld3 being assigned order 0 after which num alloc regs is incre-
mented to 1. After st1, the algorithm rotates out the alias register
with order 0, and increments AHPTR to 1. ld7 is then successfully
coalesced with ld2, with its alias register allocation delayed. After
st4 is scheduled, it obtains an order 0 but with AHPTR 1, st4 will
check alias registers 1 and above. All outgoing edges are deleted
and loads ld6 and ld2 are now assigned alias registers. ld7 must
update the same register as ld2, however, its order is assigned in a
post-pass to account for any freeing rotations in between ld2 and
ld7 (a rotation of 1 in the example shown after st1).

5. Evaluation
5.1 Methodology
Our target architecture is a VLIW processor similar to Transmeta
Efficeon [11]. The dynamic binary translation framework shown in
Figure 5 translates and optimizes x86 binaries into internal VLIW
instructions. The CPU is modeled by a production-quality cycle-
accurate simulator, which supports atomic region execution [8, 17]
with up to 56 rotating alias registers (number of registers limited by
encoding constraints in the ISA). Various significant architectural
parameters of the VLIW processor are listed in Table 2.

Programs are first executed via interpretation. The system si-
multaneously identifies hot basic blocks. Once the basic blocks
cross a hotness threshold, the dynamic optimizer forms a su-
perblock region [11] along hot paths. Once a region is formed, the
x86 code is translated into an internal representation (IR). At this
stage, the optimizer performs alias analysis as well as the following
optimizations: if-conversion, copy propagation, dead code elimina-
tion, loop invariant code motion, constant propagation, and com-
mon subexpression elimination. Finally, the optimizer performs
register allocation and instruction scheduling.



-60

-40

-20

 0

 20

 40

 60

 80

p
erlb

en
ch

b
zip

2

g
cc

m
cf

g
o
b
m

k

h
m

m
er

sjen
g

lib
q
u
an

tu
m

h
2
6
4
ref

o
m

n
etp

p

astar

x
alan

cb
m

k

C
IN

T
 2

0
0
6

b
w

av
es

g
am

ess

m
ilc

zeu
sm

p

g
ro

m
acs

cactu
sA

D
M

leslie3
d

n
am

d

d
eallII

so
p
lex

p
o
v
ray

calcu
lix

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

C
F

P
 2

0
0
6

P
er

ce
n
t 

R
ed

u
ct

io
n
 (

%
)

Benchmarks

Alias Register Pressure Number of Dynamic Alias Checks

Figure 9. Reduction in alias register pressure and number of dynamic alias checks due to coalescing for 28 alias registers

 0

 20

 40

 60

 80

 100

p
erlb

en
ch

b
zip

2

g
cc

m
cf

g
o
b
m

k

h
m

m
er

sjen
g

lib
q
u
an

tu
m

h
2
6
4
ref

o
m

n
etp

p

astar

x
alan

cb
m

k

C
IN

T
 2

0
0
6

b
w

av
es

g
am

ess

m
ilc

zeu
sm

p

g
ro

m
acs

cactu
sA

D
M

leslie3
d

n
am

d

d
eallII

so
p
lex

p
o
v
ray

calcu
lix

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

C
F

P
 2

0
0
6

W
ei

g
h
te

d
 S

ta
ti

st
ic

Benchmarks

Number of loads per atomic region Extent of coalescing

Figure 10. Average number of loads and number of coalesced loads per atomic region for 28 alias registers

 0

 500

 1000

 1500

 2000

p
erlb

en
ch

b
zip

2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sjen
g

lib
q

u
an

tu
m

h
2

6
4

ref

o
m

n
etp

p

astar

x
alan

cb
m

k

C
IN

T
 2

0
0

6

b
w

av
es

g
am

ess

m
ilc

zeu
sm

p

g
ro

m
acs

cactu
sA

D
M

leslie3
d

n
am

d

d
eallII

so
p

lex

p
o

v
ray

calcu
lix

G
em

sF
D

T
D

to
n

to

lb
m

w
rf

sp
h

in
x

3

C
F

P
 2

0
0

6

N
u

m
b

er
 o

f 
al

ia
s

fa
u

lt
s

Benchmarks

Alias speculation, no coalescing
Alias coalescing, no holes

Alias coalescing

4573	  
4375	  

5942	  
3815	   3061	   3993	  

2325	   1991	  
7925	  3472	   2033	   10199	  5306	  3290	  

4075	  
2412	   3595	   5198	   2581	  

Figure 11. With 28 alias registers, alias coalescing results in very few spurious alias faults due to imprecise access information.

We evaluate alias coalescing on the SPEC CPU2006 suite
(both INT and FP), compiled using icc at -O3 enabling aggressive
static optimizations that use data dependency and alias analyses. A
benchmark is automatically divided into representative checkpoints
for simulation. From each checkpoint, a benchmark is functionally
simulated for 4 billion x86 instructions to warm up the dynamic
optimizer, for 5 million x86 instructions to warm up the microar-
chitectural state, and simulated cycle-accurately for 25 million x86
instructions to gather performance data. Please note that the base-
line for evaluation is SMARQ without alias coalescing.

5.2 Alias Register Pressure
Alias register pressure is measured by calculating the maximum
number of valid alias registers required per atomic region, weighted
by the hotness of the atomic region. Figure 9 shows that when 28
alias registers are available for allocation, alias coalescing reduces
the average alias register pressure by a geomean of 26.09% and
39.96% respectively for the SPEC CINT2006 and SPEC CFP2006
benchmark suites. This reduction can be better placed into context
when considering the extent of coalescing, defined as the weighted
average of the number of memory operations coalesced into a sin-

gle alias register, weighted by the hotness of the atomic region. The
greater the extent of coalescing, the greater is the expected reduc-
tion in alias register pressure. Figure 10 shows the extent of coa-
lescing for each of these benchmarks. The extent of coalescing is
much larger for SPEC CFP benchmarks than SPEC CINT bench-
marks, which explains why SPEC CFP benchmarks showed greater
reduction in alias register pressure.

The only exception was 456.hmmer, where we observed a
9.26% increase in the alias register pressure. For this benchmark,
the hot region consists of a loop, which the dynamic binary trans-
lator failed to capture as a single region due to paucity of alias
registers in the baseline. As a result of the loop being split into
multiple regions, the amount of alias speculation in each region
was limited. However, with alias coalescing to the extent shown in
Figure 10, the effectively increased alias register file size allowed
the binary translator to capture the entire loop in a single region
and unroll it multiple times – atomic region size in 456.hmmer
increased on average by 51.54% compared to the baseline. This
greater scope allowed the binary translator to perform increased
alias speculative load hoisting, resulting in greater alias pressure
visible in Figure 9.



-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80

4
0

0
.p

erlb
en

ch

4
0

1
.b

zip
2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

er

4
5

8
.sjen

g

4
6

2
.lib

q
u

an
tu

m

4
6

4
.h

2
6

4
ref

4
7

1
.o

m
n

etp
p

4
7

3
.astar

4
8

3
.x

alan
cb

m
k

C
IN

T
 2

0
0

6

4
1

0
.b

w
av

es

4
1

6
.g

am
ess

4
3

3
.m

ilc

4
3

4
.zeu

sm
p

4
3

5
.g

ro
m

acs

4
3

6
.cactu

sA
D

M

4
3

7
.leslie3

d

4
4

4
.n

am
d

4
4

7
.d

eallII

4
5

0
.so

p
lex

4
5

3
.p

o
v

ray

4
5

4
.calcu

lix

4
5

9
.G

em
sF

D
T

D

4
6

5
.to

n
to

4
7

0
.lb

m

4
8

1
.w

rf

4
8

2
.sp

h
in

x
3

C
F

P
 2

0
0

6

In
cr

ea
se

 (
%

)

Benchmarks

Atomic Region Size a/x Ratio

Figure 12. Increase in scheduling freedom in terms of average number of x86 instructions in each atomic region (Atomic Region Size) and
average number of VLIW sub-instructions per x86 instruction (a/x Ratio) for the configuration with 28 rotating alias registers.

 0.96

 0.98

 1

 1.02

 1.04

 1.06

p
erlb

en
ch

b
zip

2

g
cc

m
cf

g
o
b
m

k

h
m

m
er

sjen
g

lib
q
u
an

tu
m

h
2
6
4
ref

o
m

n
etp

p

astar

x
alan

cb
m

k

C
IN

T
 2

0
0
6

b
w

av
es

g
am

ess

m
ilc

zeu
sm

p

g
ro

m
acs

cactu
sA

D
M

leslie3
d

n
am

d

d
eallII

so
p
lex

p
o
v
ray

calcu
lix

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

C
F

P
 2

0
0
6

N
o
rm

al
iz

ed
 I

P
C

Benchmarks

28 regs+No Coalescing 56 regs+No Coalescing 28 regs+Coalescing 56 regs+Coalescing

Figure 13. IPC gains due to coalescing with 28 and 56 alias registers, normalized with respect to IPC with 28 alias registers without
coalescing. Graph shows how alias coalescing effectively makes the 28 alias register file appear twice as large.

5.3 Number of Dynamic Alias Checks
Reducing the number of dynamic alias checks per checking in-
struction reduces the latency to detect the presence of an alias fault
which is necessary to retire an atomic region. As described pre-
viously, coalescing reduces the number of dynamic alias checks
required from one check per speculated memory instruction to
one check per coalesced set. This translates to a geomean of
20.73% and 33.87% reduction for the SPEC CINT2006 and SPEC
CFP2006 benchmarks suites respectively (Figure 9). Note that
while alias register pressure tracks the maximum number of si-
multaneously live alias registers in an atomic region, the number of
dynamic alias checks tracks the average number of alias registers
live and checked at each checking point in the program. The graph
shows that alias coalescing effectively reduces both.

5.4 Reduction in Spurious Alias Faults
Alias coalescing may introduce spurious alias faults due to the im-
precision of stored memory access information. Figure 11 shows
the number of alias faults in the baseline without alias coalescing,
and the increase due to alias coalescing, over the entire duration
of benchmark execution (both warmup and performance measure-
ment phases). The figure shows how highly effective hole-based
alias register allocation (Section 3.3) is in reducing the number of
spurious alias faults due to interfering instructions.

5.5 Instruction Scheduling Freedom
As described in Section 4, the optimized code is organized into
speculative atomic regions by the dynamic optimizer. All optimiza-
tions listed in Section 5.1 are applied within an atomic region. Thus,

the size of the atomic regions is critical to the effectiveness of op-
timizations. One factor affecting atomic region size is the avail-
ability of alias registers. If an atomic region required more alias
registers than the total number available, it is split by the optimizer
into smaller regions which are then reoptimized individually in the
hope that they have reduced alias register pressure. As coalescing
reduces alias register pressure, the effective size of the alias reg-
ister file is now increased, allowing larger atomic regions to be
successfully optimized speculatively. Figure 12 shows the increase
in the average sizes of the atomic regions (in terms of number
of x86 instructions) for each benchmark, weighted by the hotness
of the atomic region. Mostly FP benchmarks benefit; 410.bwaves,
433.milc, 436.cactusADM, and 459.GemsFDTD show a consider-
able increase to the tune of 40% in the average atomic region size.
As discussed in Section 5.2, 456.hmmer is the one INT benchmark
to benefit greatly. These were precisely the benchmarks where the
size of the hot atomic regions was constrained primarily a paucity
of alias registers. In some of these benchmarks, loops which were
earlier split into multiple regions are now successfully translated
and optimized in a single region.

Another useful statistic to consider is the number of packets in
a VLIW instruction (sub-instructions within a large VLIW instruc-
tion) per x86 instruction (we call this the a/x ratio). This ratio con-
veys the efficiency of the VLIW schedule generated for the proces-
sor. The higher the number, the better is the utilization of the pro-
cessor resources. As can be seen in Figure 12, coalescing improves
the a/x ratio for most benchmarks. There is a direct correlation be-
tween the increase in region sizes for benchmarks and the observed
a/x ratio. This validates the intuition that the processor has greater
scheduling freedom if more instructions are available to schedule.



5.6 Performance
Figure 13 shows performance of alias coalescing for two alias reg-
ister file sizes (28 and 56 alias registers). The baseline is SMARQ
with 28 alias registers (i.e. without coalescing). Recall that in our
study speculative load chain hoisting is the only optimization us-
ing alias speculation. Figure 13 shows that coalescing provides a
modest 0.85% IPC geomean improvement for FP benchmarks with
28 rotating alias registers. Note that this performance improvement
is an additional gain over product-quality dynamically optimized
code generated by SMARQ (which claims an average speedup of
40% over systems with no alias speculation). Some benchmarks
see 2%-5% gains with coalescing owing to the increased scope of
optimization due to an increased effective alias register file size.
Two benchmarks exhibit slight performance drop because of spu-
rious faults that suppress the hoisting of critical loads. Notably,
the performance using 28 alias registers with coalescing is at par
with the performance of 56 alias registers without coalescing. Thus,
alias coalescing enables the system to retain the performance gains
obtained due to SMARQ, while using a smaller register file (half
in size) and much fewer dynamic alias checks. The number of
dynamic alias checks for coalescing with 28 registers is 28.90%
and 45.41% less for CINT and CFP benchmarks respectively than
SMARQ without coalescing for 56 registers.

6. Related Work
Prior proposals make use of an alias register mechanism for alias
detection in hardware [3, 6, 9, 11, 18, 21]. For instance, Itanium
uses the Advanced Load Address Table (ALAT) [3] for memory
alias detection. It requires stores to automatically check memory
access ranges for all alias registers set by reordered loads.

In the context of dynamic optimization systems, Transmeta
Efficeon [11] implements hardware alias detection through the use
of static alias registers and uses a bit-mask in instructions to specify
the individual alias registers whose memory access ranges need
to be checked. Due to the limited space available for encoding
instructions, this scheme restricts the size of the alias register file to
16 registers. This, in turn, limits the size of the regions for applying
speculative optimizations.

Wang et al. [21] adopt the concept of order-based memory alias
detection [9] to propose SMARQ. Rong et al. [18] propose an ef-
ficient register allocation scheme for such a rotating alias register
file-based memory alias detection technique that formulates reg-
ister allocation as a software pipelining problem. This work im-
plements alias coalescing on top of the SMARQ alias register al-
location algorithm. However, alias coalescing can also be used to
improve the efficiency of most other alias speculation systems.

DeAliaser [1] enables alias speculation using the speculative
bits available in modern hardware systems that implement trans-
actional memory. Compared to alias coalescing and other rotating
alias register based proposals, DeAliaser requires greater hardware
cost, since all cache lines are now extended by a few bits. Also,
DeAliaser requires checking against all speculative memory opera-
tions. These extra checks increase the energy consumption require-
ment for the DeAliaser memory alias speculation system.

7. Conclusion
Alias coalescing is an effective technique to simultaneously reduce
alias register pressure and the number of dynamic comparisons per-
formed per alias check, without decreasing performance. This pa-
per contributed methods to identify memory operations suitable for
coalescing, interfaces to alias checking hardware for coalescing,
methods to allocate alias registers for coalesced memory opera-
tions, and hardware design to perform coalesced alias checking.
As research in microprocessors using dynamic binary translation

gains steam, we expect the methods and insights presented in this
paper to be of great interest to system designers.

8. Acknowledgements
We would like to thank the many outstanding engineers at Intel
Labs for their comments on this work. We thank the anonymous
reviewers for their insightful comments. We also thank Nick John-
son, Feng Liu, Taewook Oh, Jordan Fix, Harshad Deshmukh, and
Sergiy Popovych for their feedback on various drafts of this paper.

References
[1] W. Ahn, Y. Duan, and J. Torrellas. DeAliaser: Alias Speculation Using

Atomic Region Support. In ASPLOS, 2013.
[2] D. A. Connors. Memory Profiling for Directing Data Speculative

Optimizations and Scheduling. Master’s thesis, University of Illinois,
Urbana, IL, 1997.

[3] J. Crawford. Guest Editor’s Introduction: Introducing the Itanium
Processors. IEEE Micro, 20(5):9–11, Sept. 2000.

[4] X. Dai, A. Zhai, W.-C. Hsu, and P.-C. Yew. A General Compiler
Framework for Speculative Optimizations Using Data Speculative Code
Motion. In CGO, 2005.

[5] S. Debray, R. Muth, and M. Weippert. Alias analysis of executable
code. In POPL, 1998.

[6] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, and
J. Mattson. The Transmeta Code Morphing Software: Using Speculation,
Recovery, and Adaptive Retranslation to Address Real-life Challenges.
In CGO, 2003.

[7] M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for
Dynamic Reordering of Memory References. IEEE Transactions on
Computers, 45(5), May 1996.

[8] M. Herlihy and J. E. B. Moss. Transactional Memory: Arch. Support
for Lock-free Data Structures. In ISCA, 1993.

[9] B. Holscher, G. Rozas, J. Van Zoeren, and D. Dunn. Systems and
methods for reordering processor instructions. US Patent.

[10] M. Itzkowitz, B. J. N. Wylie, C. Aoki, and N. Kosche. Memory
Profiling using Hardware Counters. In SC, 2003.

[11] K. Krewell. Transmeta Gets More Efficeon. Microprocessor report.
v.17, October 2003.

[12] W. Landi. Undecidability of static analysis. LOPLAS, 1992.
[13] J. Lin, T. Chen, W.-C. Hsu, and P.-C. Yew. Speculative Register

Promotion Using Advanced Load Address Table (ALAT). In CGO,
2003.

[14] J. Lin, T. Chen, W.-C. Hsu, P.-C. Yew, R. D.-C. Ju, T.-F. Ngai,
and S. Chan. A Compiler Framework for Speculative Analysis and
Optimizations. In PLDI, 2003.

[15] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing
sequential applications on commodity hardware using a low-cost
software transactional memory. In PLDI, 2009.

[16] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers Inc., 1997.

[17] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles.
Hardware Atomicity for Reliable Software Speculation. In ISCA, 2007.

[18] H. Rong, H. Park, C. Wang, and Y. Wu. Allocating Rotating Registers
by Scheduling. In MICRO, 2013.

[19] S. Rubin, R. Bodı́k, and T. Chilimbi. An Efficient Profile-analysis
Framework for Data-Layout Optimizations. In POPL, 2002.

[20] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W.
Keckler. Scalable hardware memory disambiguation for high ilp
processors. In MICRO, 2003.

[21] C. Wang, Y. Wu, H. Rong, and H. Park. SMARQ: Software-Managed
Alias Register Queue for Dynamic Optimizations. In MICRO, 2012.

[22] Q. Wu, A. Pyatakov, A. Spiridonov, E. Raman, D. W. Clark, and D. I.
August. Exposing Memory Access Regularities Using Object-Relative
Memory Profiling. In CGO, 2004.


	Introduction
	Motivation
	Alias Coalescing
	Identifying Memory Operations for Coalescing
	Static vs Dynamic Coalescing
	Interfering Instructions

	Implementation
	Alias Checking Hardware
	Changes to the Dynamic Binary Optimizer
	Preliminaries
	Alias Register Allocation Algorithm
	Example


	Evaluation
	Methodology
	Alias Register Pressure
	Number of Dynamic Alias Checks
	Reduction in Spurious Alias Faults
	Instruction Scheduling Freedom
	Performance

	Related Work
	Conclusion
	Acknowledgements

