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ABSTRACT
High-level hardware modeling is an essential, yet time-consuming,
part of system design. However, effective component-based reuse
in hardware modeling languages can reduce model construction
time and enable the exploration of more design alternatives, lead-
ing to better designs. While component overloading and parametric
polymorphism are critical for effective component-base reuse, no
existing modeling language supports both. The lack of these fea-
tures creates overhead for designers that discourages reuse, negat-
ing any benefits of reuse.

This paper presents a type system which supports both compo-
nent overloading and parametric polymorphism. It proves that per-
forming type inference for any such system is NP-complete and
presents a heuristic that works efficiently in practice. The result
is a type system and type inference algorithm that can encourage
reuse, reduce design specification time, and lead to better designs.

Categories and Subject Descriptors:
D.3.3 Programming Languages: Language Constructs and Features–
Polymorphism
I.6.2 Simulation and Modeling: Simulation Languages

General Terms: Algorithms, Design, Languages

Keywords: Liberty Simulation Environment (LSE), component
reuse, polymorphism, component overloading, type inference

1. INTRODUCTION
Exploring the design space when designing a hardware system

is vital to realizing a well-performing design. Hardware complex-
ity has made building high-level system models to explore the de-
sign space an essential, yet burdensome and time-consuming, part
of system design. Since overall design quality improves as more
designs are explored, reducing the time to develop system models
can dramatically improve design quality. To reduce development
times, others have proposed high-level component-based modeling
systems supporting reusable components [3, 9, 11]. Reuse, how-
ever, is effective only if components are flexible enough to be used
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in a wide range of designs and if using flexible components does
not have an overhead so high it precludes their use in practice [11].

A common mechanism to increase the flexibility of components
is to use programming language techniques such as polymorphism.
Consider, for example, a component library that contains various
ALU models to handle different data types, such as integers and
several formats of floating point numbers. While it is possible for
the user to specifically select which ALU is appropriate for a pro-
cessor model being built, forcing the user to make this selection can
be cumbersome. Instead these components could be combined into
a single overloaded component. Thiscomponent overloading(also
known as ad-hoc polymorphism) allows the system to automati-
cally select an appropriate component implementation by analyz-
ing the relationship of the overloaded component’s supported data
types to the data types of components connected to it. This frees
designers from dealing with less important details regarding typing
and allows them to focus on high-level system design issues. Some
existing hardware modeling systems, such as Balboa [4], support
this type of polymorphism.

Component overloading reduces the overhead of using a compo-
nent, but it still requires the implementation of several ALU behav-
iors, one for each supported data type. A separate class of compo-
nents, such as queues, memories, and crossbar switches, have high-
level functionality that is independent of the data types they manip-
ulate.Parametric polymorphismfrees designers from unnecessary
reimplementation of these components by providing a mechanism
to build a single implementation for use with many data types. A
familiar example of this type of polymorphism is a SystemC [9]
component built using a C++ template. In general, a parametrically
polymorphic component usestype variables(in C++, template pa-
rameters) in place of concrete types in its definition. When such
a component is instantiated, the user provides a concrete type for
each type variable thus resolving the polymorphism. The compiler
uses this information to automatically specialize the component be-
havior to handle the specified concrete types. For example, a queue
model using parametric polymorphism could be instantiated in one
part of a system to queue instructions and thesamemodel could
be instantiated elsewhere to queue Ethernet packets. The compiler
would specialize the queue’s behavior to handle the different data
types without any user intervention.

Unfortunately, the excessive type instantiations needed when us-
ing many parametrically polymorphic components often discour-
ages their use in practice, thus nullifying the model development
time benefits they provide. Just as in the case of component over-
loading, it is possible to build a system that automatically identifies
type variable values [15] by using the system connectivity to iden-
tify what the values for the type variables should be. Clearly, if
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template
class queue<T> {

// input port
sc_in<T> in;
// output port
sc_out<T> out;
...

}

(c) SystemC code.

Figure 1: Port interface for a simple queue.

the output of an instruction fetch unit is connected to a queue, the
queue will be storing instruction data and not Ethernet packets.

Unfortunately, building a modeling system which automatically
infers type instantiations for parametrically polymorphic compo-
nents while also selecting implementations of overloaded compo-
nents is non-trivial. In this paper, we propose a type system for
high-level hardware modeling systems that supports both paramet-
ric polymorphism and component overloading. We show that the
type inference problem for this type system is NP-complete. We
then present a heuristic type inference algorithm that automatically
infers the type instantiations for parametrically polymorphic com-
ponents and automatically selects the appropriate implementation
for overloaded components. We show that this algorithm has rea-
sonable run-times for models seen in practice.

The remainder of this paper is organized as follows. Section 2
describes the type system, including examples of how the features
may be used. Section 3 describes how this type system can be
applied to existing systems. Section 4 presents the type inference
problem for this type system and a proof of its NP-completeness.
Section 5 presents our heuristic type inference algorithm and Sec-
tion 6 presents an evaluation of the type system and inference algo-
rithm. Section 7 summarizes the contributions and concludes.

2. THE TYPE SYSTEM
In this section, a type system that supports both component over-

loading and parametric polymorphism will be constructed by ex-
amining the common usage paradigms for these features. The type
system is presented in the abstract since it can be used with many
different modeling languages. For clarity, the examples occasion-
ally compare these abstract concepts to concepts in SystemC.

Consider a very simple queue whose port interface is shown
in Figure 1(a). In the interface definition of this component, one
would like to specify anin port and anout port1. Data received
on the in port is enqueued, the item at the head of the queue is
transmitted on theout port and dequeued. As shown, this queue
component can only handleint s (denoted by the:int in the dec-
laration). Instead ofint , the queue could have been written to
support other basic data types such asbool , arrays, structures, or
lower-level types such as bits orieee std logic vector .

Since the high-level behavior of the queue is independent of the
data type stored in it, the queue is an ideal candidate for parametric
polymorphism. The interface for a polymorphic queue component
replaces the explicit type specified on thein andout ports with
a type variable. This is shown in Figure 1(b). In the example, this

1Clock and control signals are omitted from the diagrams for sim-
plicity. In fact, some high-level modeling systems abstract these
interfaces away [14].

data_out:’a

rt:request_type; // read or write

addr:uint32_t;

write_data:’a;

request:struct {

}

Memory

Figure 2: Port interface for a simple memory.

type variable is denoted’a (type variables are prefixed with a’ )
and is common to both ports. Since thein andout ports share
the same type variable, they are constrained to have the same type.
The interface shown in the figure is equivalent to the SystemC code
shown in Figure 1(c) where the template argumentT takes the place
of type variable’a .

From this example, we see that our type system should have
type variables so that ports, state, etc. in a model can be paramet-
rically polymorphic. Additionally, the type system should allow
more complex data types, such as structures, to be built using type
variables. For example, consider a memory component, as shown
in Figure 2. This component could have a request port to access
memory and output data port to return the results of read requests.
As shown, therequest port needs to have some fields with fixed
types for addressing and identifying the type of request, and then a
data field, whose type is specified with a type variable, to carry the
data for any write requests. Just as before, this same type variable
can be used on thedata out port to ensure that the data written
to the memory has the same type as the data that is read out. From
this example it is clear that one should be able to use a type variable
wherever one could use a regular type in a port interface definition.

The legal types in this type system are described by the following
grammar:

Basic Types τ ::= int | . . . | τ [n] |
struct{i1 : τ1; . . . in : τn; }

Type Variables α, β, γ ::= ’ identifier
Type Schemes τ∗ ::= α | τ | τ∗[n] |

struct{i1 : τ∗
1 ; . . . in : τ∗

n; } |
(τ∗

1 | . . . | τ∗
n)

Here, the basic types are the standard programming language types
(theτ [n] notation is an array of the given type) that would be com-
municated over ports at model runtime. The type schemes (other
than the last one) are the collection of basic types, type variables,
and basic types containing references to type variables. Given a ba-
sic type for all unbound type variables in any these type schemes,
we get a valid basic type that is an instantiation of the type scheme.
As will be shown, the last type scheme, thedisjunctive type scheme,
is used to support component overloading.

To specify component interfaces for overloaded components, a
port on the interface is annotated with a disjunctive type scheme.
These type schemes enumerate a list of type options. When a com-
ponent is instantiated, one of these options isstatically selected
and becomes the type of the entity which carried the disjunctive
type scheme. Thisdisjunctivetype scheme is denoted astype1
| ...| typen . The following rule is added to the type system’s
grammar to allow this type scheme. Note that the disjunctive type
scheme is different than a union type, since union-typed entities
may have a value of one type from a pre-specified list, but this type
may change at run time. Accordingly, union types do not facilitate
component overloading.

To understand how this type scheme facilitates component over-
loading, recall the overloaded ALU discussed in Section 1. Assum-
ing the overloaded component supported both theint andfloat
data type, then, in this type system, one would assign a common
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Figure 3: Connected Components

type variable to the ALU’s input and output ports and then con-
strain the type variable to be equal toint | float .

3. EXISTING MODELING SYSTEMS
In this section we show how the previously described type sys-

tem can represent the port-interface type systems in some existing
high-level modeling languages. The section will also discuss what
forms of type inference the systems support if any.

SystemC. SystemC is a structural modeling system built as a
library for C++. Components are C++ objects and component in-
terface definitions are in the corresponding C++ classes. Ports and
connections are created using the SystemC library. SystemC sup-
ports parametric polymorphism through the use of C++ templates,
but requires manual resolution of this polymorphism rather than
using type inference. SystemC does not support component over-
loading, nor does it recognize subtyping when considering if two
ports have the same type.

The template arguments for a SystemC component correspond to
type variables. Basic C++ data types correspond to the basic types
presented earlier. Template classes’ templatized port interfaces can
be characterized using the type schemes presented. Classes can
be represented by adding function pointers to the basic types and
representing classes asstruct s that contain function pointers.

Balboa. Balboa is a framework to compose components
built in otherwise incompatible systems, including SystemC com-
ponents. Components are connected and their interface specified
via an interface definition language (IDL). The IDL allows over-
loading where each component has a set of legal types for its port
interface. Each legal interface has a corresponding implementation
of the component for use during execution. Before beginning sim-
ulation, the system performs type inference to select the appropri-
ate implementation based on the port connectivity. However, Bal-
boa’s type inference algorithm does not support parametric poly-
morphism since the IDL does not support it (parametrically poly-
morphic SystemC components must be preinstantiated with a fixed
range of types before being used with Balboa).

Basic IDL types in Balboa correspond to the basic types in the
type system presented in Section 2. Overloaded components’ port
interface signatures can be constructed using the same method de-
scribed previously for the overloaded ALU.

Ptolemy II. Ptolemy II is a modeling environment designed
to support multiple models of computation. It has a type system
that supports type inference in the presence of parametric polymor-
phism and subtyping, but unfortunately, it does not support compo-
nent overloading [15].

Types in Ptolemy II correspond to types in Section 2’s type sys-
tem similarly to SystemC. Section 2’s type system does not handle
subtyping, but can be extended to do so.

4. THE TYPE INFERENCE PROBLEM
To automatically resolve the polymorphism for the type system

described in Section 2, a type inference algorithm must identify
a basic type for all type variables and ensure that a single type is
selected from every disjunctive type scheme. When making such
selections, the algorithm must respect each port’s type scheme and
ensure that connected ports share a common type. For example,

consider the two components in Figure 3. Here, thein port on
component B has the type schemeint | bool . Type inference
must assign it the basic typeint or the basic typebool . The port
out on component A has type schemeint and thus can only be
assigned typeint . Furthermore sincein andout are connected,
they must have the same type. In this case, the type inference al-
gorithm, because of the equality constraint, must assign basic type
int to port in . Sinceint is a basic type that corresponds to the
type schemeint | bool , all conditions are satisfied and a valid,
unique type assignment has been found.

If no valid type assignment is possible (e.g. if thein port on
component B has type schemefloat | bool ) then the system
is said to beover-constrained. It is also possible to have a sys-
tem with multiple valid type assignments (e.g. if theout port on
component A also had the type schemeint | bool ). Such sys-
tems are said to beunder-constrained. Over-constrained or under-
constrained systems are considered malformed systems and the type
inference algorithm that will be presented will report an error if
such systems are encountered.

The type inference problem can be formalized as solving a set of
constraints involving equality of type schemes. First, a type vari-
able is created for every port in a system. Second, a core set of
constraints is formed stating that these new type variables must be
equal to the type scheme for the respective port. Third, the core set
of constraints is augmented with constraints formed by equating
the type variables for any two ports that are connected. The legal
constraints in the type system are given by the following grammar:

Constraints φ ::= > | τ∗
1 = τ∗

2 | φ1 ∧ φ2

> is the trivially true constraint,τ∗
1 = τ∗

2 is a constraint asserting
the equality between two type schemes, andφ1∧φ2 is the conjunc-
tion of the sub-constraintsφ1 andφ2.

The type inference engine must resolve all the type schemes to
basic types and assign basic types to all type variables according
to the constraints. The constraint is constructed and evaluatedat
oncefor the entire model. Thus, the inference engine may reject
constraints with multiple solutions (i.e. an underconstrained sys-
tem) since the model is ill-defined in this case. Constraints with no
solution obviously correspond to a malformed model.

THEOREM 1. The type inference problem is NP-complete.

PROOF. A sketch of the proof showing the problem is in NP is
as follows. For each disjunctive type scheme, non-deterministically
choose which of the type schemes in the disjunction to use. After
this resolution of disjunctive type schemes, the problem reduces
to that of unification which is in P [10]. Thus the type inference
problem is in NP.

To show the problem is NP-hard, we show how to reduce any in-
stance of the monotone 1-in-3 SAT problem, a known NP-complete
problem [5], to the type inference problem. 3-SAT is a SAT prob-
lem where one must decide if there exists an assignment of truth
values to a set of boolean variables,B, such that each clause in
a set of disjunctive clauses,C, with exactly 3 literals per clause,
is satisfied. Monotone 1-in-3 SAT is a 3-SAT problem where each
member ofB only appears in non-negated form and only one literal
in each clause may have a truth value of ‘1’.

The reduction proceeds as follows. Let the typeint correspond
to the truth value ‘1’, and letbool correspond to ’0’. For each
variablebi ∈ B create a type variableαb,i. For each clause,c ∈ C,
create a type variableαc. Each clause has the form(bi, bj , bk)
wherebi, bj , bk ∈ B. The only satisfying assignments for each



clause areS0 = (1, 0, 0), S1 = (0, 1, 0), andS2 = (0, 0, 1). Let
′S0 = struct { x:int; y:bool; z:bool; }
′S1 = struct { x:bool; y:int; z:bool; }
′S2 = struct { x:bool; y:bool; z:int; }

For each clause add the constraintαc =′ S0 | ′S1 | ′S2. This
constraint ensures that each clause has a legal satisfying value,S0,
S1, or S2. To ensure that boolean variables in the clause get the
appropriate value based on which satisfying assignment is chosen,
add the following constraint for each clause:

αc = struct { x: αb,i; y: αb,j ; z: αb,k; }

If the inference problem for this set of constraints has a solution,
the corresponding monotone 1-in-3 SAT problem is satisfiable. If
not, the problem is unsatisfiable. Thus, solving the inference prob-
lem solves the corresponding monotone 1-in-3 SAT problem.

The type system and inference problem presented here is very
similar to the type system and inference problems in languages
such as Haskell. However, the Haskell problem is undecidable in
general [13]. There exist restricted versions of the type system that
are decidable [8, 12]. Unfortunately, of these, the restrictions that
yield acceptable computational complexity [8] are not desirable in a
structural modeling environment since they forbid common port in-
terface typings. For other restricted versions of the type system, we
know of no heuristic algorithms that are appropriate for instances
of the problem that arise in the structural modeling domain.

The type inference problem also seems easily mapped to SAT.
However, a straight-forward mapping with a bounded width binary
encoding for each type that is uniform across all problem instances
is not possible. This is because one can arbitrarily neststruct s
and arrays leading to an unbounded number of types across all
problem instances. It should be possible to identify a finite set of
types that can occur in a particular problem instance, however, this
is also non-trivial and left to future work.

5. THE INFERENCE ALGORITHM
The substitution algorithm used for type inference in languages

such as ML [7] can be extended for the presented type system by
modifying the algorithm to handle the disjunctive type scheme.
This section presents such an extension and proves the correct-
ness of the approach. The extended algorithm generates a typing
context that maps type variables to basic types for all satisfiable
constraints. Since the simplest extension of the algorithm has pro-
hibitively large run times, this section will also present heuristics
that make run-times reasonable for models seen in practice.

5.1 Basic Algorithm
The basic ML-style substitution algorithm works by simplify-

ing each term in the constraint,φ, and then eliminating it. As the
constraints are simplified, the algorithm will create a new simpler
constraint and then recursively process this new constraint. Dur-
ing this simplification, the algorithm builds up a typing context,T ,
that maps type variables to type schemes. The recursion occurs
based on the structure of the constraint. Therefore, there must be a
rule that handles each production in the grammar defining the con-
straint. The typical rules are shown in Table 1. If the constraint has
the form shown in the left column of the table, then the action on
the right hand column is taken (only the first matching rule, starting
from the top of the table, is applied). Each of these rules operates
by simplifying the constraint based on the definition of equality for
the type schemes. Recall thatτ denotes basic types,τ∗ denotes

type schemes, andα, β, γ, ... denote type variables. The notation
[y/x]Z means: substitute every occurrence ofy in Z with x. Note
that the state of the algorithm at any step can be summarized by
the pair(Ti, φi) whereTi is typing context andφi is the simplified
constraint. The initial state is(∅, φ).

The disjunctive constraint requires a new, atypical, rule and a
modification to the form of constraints, since disjunctive type schemes
are forbidden from the rule in the third row of the table. The rule
on the third row of the table forbids disjunctive type schemes to
ensure that the typing context,T , always maps type variables to
concrete types, if all type variables had values. Allowing the dis-
junctive type scheme in the typing context would violate this prop-
erty. We can avoid this difficulty by replacing every disjunctive
type scheme with a type variable and adding a constraint asserting
that the type variable is equal to the disjunctive type scheme. This
simplified constraint involving disjunctive type schemes is handled
by the following new rule. If the constraint is of the form(τ∗ =
τ∗
1 | . . . | τ∗

n) ∧ φ, thenn inference problems are created each
starting in the state(Told, φi ∧ φ), whereφi ≡ (τ∗ = τ∗

i ). Each
problem is solved by recursively applying the algorithm. When the
algorithm terminates for each subproblem, it reports thatφi∧φ was
unsatisfiable or returns a typing contextTi. If, ∀i, j, 1 ≤ i, j ≤ n,
φi ∧ φ andφj ∧ φ were satisfiable andTi 6= Tj , then the system
is under-constrained. The algorithm terminates if this is detected
since only unique solutions are acceptable.

For the extended algorithm to be correct, two things must be true.
First, the algorithm must terminate. Second, the algorithm must
incrementally build a solution to the inference problem in each step.
The next two theorems formally state these two properties.

THEOREM 2. The algorithm’s state sequence is finite.

PROOF. To each state(T, φ), we will assign a pair(n, s), where
n is the number of type variables inφ ands is the sum of the num-
ber of type schemes inφ. If (Ti, φi) is satisfiable, each rule shown
in Table 1 takes(Ti, φi) and converts it into a state(Ti+1, φi+1)
whereni+1 < ni or bothni+1 = ni andsi+1 < si. Consider
each row of the table. The first row, removes two type schemes
from φi. The third row reduces the number of type variables by
one. The fourth row, removes two type schemes fromφi, as does
the fifth row. All rows decrease eithers (without increasingn) or
decreasen. Thus, the sequence of states form a strictly decreasing
sequence of ordered pairs of integers (the pairs(n, s)). Since the
sequence is lower bounded (n ≥ 0 ands ≥ 0), the sequence will
converge in a finite number of steps.

If some state in the sequence is unsatisfiable, then the algorithm
terminates, and thus the theorem is trivially true.

Upon encountering a disjunctive constraint, the algorithm recur-
sively applies itself to many subproblems. Each subproblem con-
tains one less type scheme and thus, by the metric introduced ear-
lier, is simpler than the current problem. Therefore, by induction,
no subproblem will lead to an infinite sequence of states. Thus, the
algorithm’s state sequence is finite.

The next theorem will show that the final typing contextT pro-
vides a solution to the initial constraint, however some useful no-
tation will be introduced first. The application of a typing context,
S, to a type scheme,φ involves recursively substituting all the type
variable to type scheme mappings in the type contextS into the
type schemes ofφ. This operation will be denoted byS(φ). Next,
we will write S |= φ if the typing contextS satisfies the constraint



Constraint form Operation

(τ∗ = τ∗) ∧ φ Tnew ← Told, φnew ← φ
(α = struct { x1: α; . . . xn: τ∗

n; }) ∧ φ System is unsatisfiable
(α = τ∗) ∧ φ, τ∗ contains no disjunctive type schemesTnew ← [α/τ∗]Told ∪ (α 7→ τ∗), φnew ← [α/τ∗]φ
(τ∗

1 [n] = τ∗
2 [n] ) ∧ φ Tnew ← Told,φnew ← (τ∗

1 = τ∗
2 ) ∧ φ

(struct { x1: τ∗
1,1; . . . ; xn: τ∗

1,n; } =

struct { x1: τ∗
2,1; . . . ; xn: τ∗

2,n; }) ∧ φ

Tnew ← Told, φnew ← (τ∗
1,1 = τ∗

2,1) ∧ . . . ∧ (τ∗
1,n = τ∗

2,n) ∧ φ

> Constraint satisfiable, Solution inT

Table 1: Simple Substitution Algorithm

φ. Formally, this relation is inductively defined as follows:

S |= > iff always

S |= τ∗
1 = τ∗

2 iff S(τ∗
1 ) ∩ S(τ∗

2 ) 6= ∅
S |= φ1 ∧ φ2 iff S |= φ1 andS |= φ2

In the second rule, we treat type schemes like sets. The type scheme
τ∗
1 | . . . | τ∗

n is considered to be the set{τ∗
1 , . . . , τ∗

n}. Other type
schemes are considered to be singleton sets. Finally, given a state
(T, φ), we callS a solution for(T, φ) if S = T ∪ U andS |= φ
for someU whose domain is disjoint from the domain ofT .

THEOREM 3. If the algorithm transitions from(T, φ) to (T ′, φ′),
thenS is a solution for(T, φ) iff S is a solution for(T ′, φ′).

PROOF. We will prove this statement by induction on the struc-
ture of the transitions. The transitions presented in Table 1 are al-
most identical to those for programming languages such as ML and
the truth of this theorem is well known for those transitions [6].

For a transition based on the disjunctive rule, we haveφ =
(τ∗ = τ∗

1 | . . . | τ∗
n) ∧ φ′′ andφ′ = >. Assume thatS is

a solution to the state(T, (τ∗ = τ∗
1 | . . . | τ∗

n) ∧ φ′′). Since
S |= (τ∗ = τ∗

1 | . . . | τ∗
n) ∧ φ′′, thenS |= τ∗ = τ∗

i ∧ φ′′ for
somei by the definition of the|= relation. ThereforeS is also a so-
lution to the state(T, τ∗ = τ∗

i ∧φ′′). The algorithm will transition
in many steps from the state(T, τ∗ = τ∗

i ∧ φ′′) to (T ′,>). By the
inductive hypothesis,S is also a solution to the state(T ′,>).

Now, assume thatS is a solution to the state(T ′,>). We must
show thatS is also a solution to the state(T, (τ∗ = τ∗

1 | . . . | τ∗
n)∧

φ′′). Without loss of generality, we will assume that the algorithm
will transition in many steps from the state(T, τ∗ = τ∗

1 ∧ φ′′) to
(T ′,>). By the inductive hypothesis, we have thatS is a solution
to the state(T, τ∗ = τ∗

1 ∧ φ′′). This implies thatS = U ∪ T for
some disjointU and thatS |= (τ∗ = τ∗

1 ∧φ′′). By the definition of
the|= relation, this implies thatS |= (τ∗ = τ∗

1 | . . . | τ∗
n)∧φ′′.

By the definition of solution, we have thatS is a solution to the
state(T, (τ∗ = τ∗

1 | . . . | τ∗
n) ∧ φ′′).

Theorem 2 proves that the algorithm always terminates. Fur-
ther Theorem 3 proves that each step of the algorithm constructs
an incremental solution to the inference problem. Therefore, if the
algorithm terminates with the constraint equal to>, then the typ-
ing context forms a solution to the initial state and thus to the initial
type inference problem. When the algorithm terminates with a con-
straint other than>, the terminating constraint is over-constrained
and thus by Theorem 3 so too is the initial state. Finally, we also
reject states where we detectmultiplesolutions. Theorem 3 tells us
that these multiple solutions are all valid for the initial constraint
also. Therefore, the initial constraint system is under-constrained.

5.2 Heuristics
The basic algorithm just described has prohibitively large run

times, which is not surprising given that the inference problem is

NP-complete. The large run-times are due to the subproblem ex-
ploration required by the disjunctive constraints. This section de-
scribes an additional rule and two heuristics, inspired by heuris-
tics for the DLL SAT algorithm [2], which dramatically reduce the
number of subproblems that need to be solved, which in turn dras-
tically reduces run-time. Note that these heuristics only affect run-
time, not the quality or correctness of the typing context produced.

5.2.1 Disjunctive Constraint Simplification
The additional rule simplifies disjunctive constraints without cre-

ating and solving subproblems. Consider a constraint of the form
((τ∗

1,1 | . . . | τ∗
1,n) = (τ∗

2,1 | . . . | τ∗
2,n)) ∧ φ. This constraint

can obviously be simplified by eliminating type schemes,τ∗
1,j , that

do not have a compatible type scheme inτ∗
2,k, and vice versa. Rec-

ognizing all incompatible type schemes is equivalent to the original
inference problem, but certain incompatibilities are easy to verify.
For example, any basic typeτ is only compatible with type schemes
τ andα. Two struct type schemes with differing element names
or with differing numbers of elements are also incompatible. Sim-
ilar rules can be constructed for arrays.

5.2.2 Processing Constraints Out-of-order
The first heuristic to reduce the number of subproblems to be

solved delays the creation of subproblems due to disjunctive con-
straints as long as possible. This allows terms that do not contain
disjunctive type-schemes (disjunctive terms) to be simplifiedbefore
creating subproblems to address a disjunctive term. These sim-
plifications may make the disjunctive-constraint-simplification rule
applicable, eliminating the subproblem creation entirely, or signifi-
cantly reduce the size of the subproblems by solving common terms
in the constraint only once.

The proposed heuristic to accomplish this causes the algorithm
to evaluate the simplification rules in multiple phases. In the first
phase, the constraint terms are treated as a list, and each constraint
term is simplified in-order. If any constraint has a leading disjunc-
tive term, the constraint is reordered to delay evaluation of the dis-
junctive term. This iteration over constraint terms proceeds until
no simplifications can be made without handling a disjunctive term
via subproblem creation. In the second phase, the leading disjunc-
tive term is handled via the subproblem creation used in the simple
algorithm.

5.2.3 Partitioning the Constraint
The second heuristic leverages the independence of subproblems

in type inference algorithm. Consider the following constraint:

(′a = int|bool) ∧ (′a = int|char) ∧ (1)

(′b = int|bool) ∧ (′b = int|char) ∧ (2)

(′c = int|bool) ∧ (′c = int|char) (3)

In this case there are six disjunctive type schemes with two possi-
ble types, thus the basic algorithm would need to solve26 = 64



subproblems. The heuristics presented thus far would reduce this
to 23 = 8 since half of the disjunctive type schemes can be han-
dled by disjunctive constraint simplification after subproblems are
created for the other half of the disjunctive type schemes. The num-
ber of subproblems can be reduced further still by recognizing that
constraint terms given by (1), (2), and (3) each refer to disjoint sets
of type variables and can thus be solved independently. Applying
this technique would yield22 +22 +22 = 12 subproblems without
disjunctive constraint simplification or2 + 2 + 2 = 6 subproblems
with disjunctive constraint simplification.

In general, any constraint can be partitioned into multiple con-
straints by placing terms of the original constraint into different sets
such that if two constraints are in different sets, they refer to non-
overlapping sets of type variables. Each of these sub-constraints
can be solved separately since its solution is only affected by map-
pings for type variables that it references. After performing such
a partitioning, if any of the sub-constraints are unsatisfiable, then
the whole system is unsatisfiable since no typing context which
contains mappings for the type variables in the sub-constraint will
solve the original constraint. If all the sub-constraints are satisfi-
able, a union of each sub-constraint’s typing context is the typing
context that solves the original constraint. In general the basic algo-
rithm will need to explorem·n subproblems if it contains a disjunc-
tive type scheme withm options and a disjunctive type scheme with
n options. If these type schemes are independent, after partition-
ing, onlym + n subproblems need be explored. Thus, the savings
due to partitioning increases exponentially with the number of inde-
pendent disjunctive constraints. Partitioning the constraint after re-
ordering but before attempting to solve any subproblems increases
the likelihood of finding independent disjunctive type schemes and
is the best place to perform partitioning.

6. EXPERIMENTAL RESULTS
The type system and inference algorithm described in this paper

are implemented in the Liberty Simulation Environment (LSE) [14],
a publicly available high-level hardware modeling tool. This sec-
tion measures the effectiveness of this work by evaluating several
LSE models created for other research and instruction.

To evaluate the effectiveness of type inference in easing the use
of polymorphism, the number of explicit type instantiations with
type inference is compared to that without type inference. The re-
sults are shown in Table 2. As can be seen from the table, far fewer
instantiations are needed with type inference thus significantly re-
ducing the burden on the user. In two of the models studied, only
8 out of approximately 100 type instantiations were user specified.
This shows how type inference can nearly eliminate any overhead
associated with polymorphism while preserving all of its benefits.

To determine if the inference algorithm presented is practical,
the run times of the algorithm with and without the heuristics pre-
sented in the previous section were measured. Table 2 also presents
these results. The model specification language compiler and type
inference algorithm are implemented in Java. The run times were
measured using Sun’s Java VM 1.4.102 on a 3.0GHz Pentium 4
machine with 2 GB of RAM running RedHat Linux 9 with RedHat
kernel 2.4.20-20.9smp. From the table, it is clear that the type in-
ference times without the heuristics are impractical often exceeding
12 hours. However the algorithm with heuristics executes in just a
few seconds, thus making it usable for models seen in practice.

7. CONCLUSION
In this paper, we presented a new type inference algorithm, in-

cluding heuristics to reduce run-time, for a new structural type sys-

Explicit Type Explicit Type Basic Run Time
Model Instantiations Instantiations Algorithm with
Name w/o Type Infer. w/ Type Infer. Run Time Heuristics

A 115 8 > 12 h 6.54s
B 116 8 > 12 h 6.58s
C 38 30 14.9s 0.12s
D 162 71 > 12 h 1.78s
E 147 63 > 12 h 4.72s
F 101 38 > 12 h 2.76s
A A Tomasulo Style machine for the DLX instruction set.
B Same as A, but with a single issue window.
C A model equivalent to the SimpleScalar simulator [1].
D An out-of-order IA-64 processor core.
E Two of the cores from D sharing a cache hierarchy.
F A validated Itanium II model.

Table 2: Experimental Results.

tem that supports parametric polymorphism and a disjunctive type
that allows component overloading. We show that, despite the NP-
completeness of the inference problem, our algorithm for type in-
ference has reasonable run-times (< 10 seconds) for systems seen
in practice. These contributions permit low-overhead use of para-
metric polymorphism and component overloading, increasing com-
ponent reuse in practice. This reduces model development times,
increases the number of designs that can be explored, and results in
better overall design quality.
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