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Abstract

Explicitly Parallel Instruction Computing (EPIC) architectures
require the compiler to express program instruction level paral-
lelism directly to the hardware. EPIC techniques which enable the
compiler to represent control speculation, data dependence spec-
ulation, and predication have individually been shown to be very
effective. However, these techniques have not been studied in com-
bination with each other. This paper presents the IMPACT EPIC
Architecture to address the issues involved in designing processors
based on these EPIC concepts. In particular, we focus on new
execution and recovery models in which microarchitectural sup-
port for predicated execution is also used to enable efficient recov-
ery from exceptions caused by speculatively executed instructions.
This paper demonstrates that a coherent framework to integrate
the three techniques can be elegantly designed to achieve much
better performance than each individual technique could alone
provide.

1. Introduction

The performance of modern processors is increasingly depen-
dent on their ability to execute multiple instructions per cycle.
While mainstream microprocessors in 1990 executed at most one
instruction per cycle [5][7], those in 1995 had the ability to execute
up to four instructions per cycle [6]. By the year 2000, hardware
technology will be capable of producing microprocessors that ex-
ecute up to sixteen instructions per clock cycle. Such rapid, dra-
matic increases in hardware parallelism have placed tremendous
pressure on compiler technology. Without appropriate instruction
set architecture support, it can be very costly in terms of code size
and compile time for the compiler to expose sufficient amounts
of Instruction Level Parallelism (ILP) to the hardware. As a re-
sult, an increasingly important aspect of computer architecture is
to provide the compiler with means to control compile-time and
run-time costs while enhancing the amount of ILP visible to the
hardware.

The termExplicitly Parallel Instruction Computing(EPIC) was
coined recently by Hewlett Packard and Intel in their joint an-
nouncement of the IA-64 instruction set [10]. It refers to archi-

tectures in which features are provided to facilitate compiler en-
hancements of ILP in all programs. It is natural to expect that
the coming generation of EPIC architectures will have features
to overcome the worst impediments to a compiler's ability to en-
hance ILP: frequent control transfers and ambiguous memory de-
pendences. Three such features have been proposed and studied
in the literature. Predication allows the compiler to overlap the
execution of independent control constructs without code explo-
sion [12]. It also enables the compiler to reduce the frequency of
branch instructions, to reduce branch mispredictions, and to per-
form sophisticated control flow optimizations [16][19][23]. Pred-
ication does this at the cost of increased fetch utilization. Control
speculation allows the compiler to judiciously eliminate control
dependences at the cost of increased register consumption and in-
struction overhead [14][21]. Data dependence speculation enables
the compiler to overcome ambiguous memory dependences, also
at the cost of increased register consumption and instruction over-
head [8][12].

Although these three techniques have been studied individu-
ally, issues involved in synthesizing a coherent architecture that
supports all of them have not been addressed in the literature.
In [16], the benefit of predication support was studied with a pred-
ication compiler. However, the accompanying control speculation
model, based on silent instructions, did not precisely detect all ex-
ceptions. Sentinel speculation was introduced in [14] to provide
accurate detection of and recovery from exceptions; however, the
sentinel speculation model was not developed in the context of a
predicated architecture. [8] presented a compiler-directed data de-
pendence speculation model based on the Memory Conflict Buffer
(MCB). However, the model was not defined in the context of a
predicated architecture. Furthermore, it used silent instructions to
eliminate spurious exceptions caused by data speculative memory
loads and their dependent instructions, preventing accurate detec-
tion of and recovery from all exceptions.

The primary contribution of this paper is the new IMPACT
EPIC Architecture framework that elegantly supports all three fea-
tures. A machine based on the IMPACT EPIC Architecture frame-
work will allow the compiler to achieve several key improvements
surpassing the current state of the art. First, the compiler can spec-
ulate both control and data flow in predicated code without intro-
ducing spurious exceptions, data page faults, Translation Look-



aside Buffer (TLB) misses, or long latency cache misses. Second,
the microarchitectural support required by predicated instructions
can also be used to support inline recovery for both control and
data speculation. Third, a single recovery model can be used for
both control and data speculation, simplifying the compiler code
generation scheme.

The secondary contribution of this paper is to present some
preliminary experimental results based on a prototype compiler for
the IMPACT EPIC Architecture and initial insights into the perfor-
mance characteristics of the architecture. These results will show
that combining control speculation, data dependence speculation,
and predicated execution into a coherent architecture provides a
significantly greater performance potential than any one of these
techniques alone could provide, and that an efficient mechanism
can be designed for detection of and recovery from speculative
exceptions in such an architecture.

2. Background and motivation

The three enabling features of the IMPACT EPIC
Architecture—control speculation, data dependence specula-
tion, and predicated execution—are examined in this section.
First, the individual merits of each feature are presented. Then,
the potential benefits of combining the features into a coherent
architecture are described. A running example consisting of the
if-then-else C statement shown in Figure 1a is used to focus the
discussion. In the example, a conjunction of three conditions
is evaluated to alternatively increment either the variableval5
or the variableval6. Note that the second condition evaluation
also has the side effect of updating the location pointed to by
ptr2. The corresponding, scheduled assembly code is presented
in Figure 1b. The processor model assumed for illustration
purposes is a 6-issue processor capable of executing one branch
per cycle, with no further restrictions on the combination of
operations that may be concurrently issued. Conditional branches
require separate comparison and control transfer operations. All
operations are assumed to have a latency of one cycle, with the
exception of memory loads which have a latency of two cycles.

Figure 1b shows that the schedule for this code segment is
rather sparse. The exact execution time through this code is depen-
dent on the fraction of time each branch is taken. Thus, two mea-
sures of execution time will be used for explanation: the longest
path length and the average schedule length given that each condi-
tional branch is taken 25% of the time. In this example, the longest
execution path is 13 cycles, and the average schedule length is
10.25 cycles.

2.1. Speculation

Compiler-controlled speculation refers to breaking inherent
programmatic dependences by guessing the outcome of a run-time
event at compile time. As a result, the available ILP in the program
is increased by reducing the height of long dependence chains and
by increasing the scheduling freedom amongst the operations.

Control speculation breaks control dependences which occur
between branches and other operations [4][14][22]. An operation
is control dependent on a branch if the branch determines whether
control flow will actually reach the operation during the execu-
tion of the program. A control dependence is broken by guessing
a branch will go in a particular direction, thereby making an op-
eration's execution independent of the branch. By breaking con-

trol dependences, the compiler is able to aggressively move op-
erations across branches and systematically reduce control depen-
dence height, which often results in a more compact schedule.

Data dependence speculation, to which we will refer as “data
speculation” throughout the remainder of this work, breaks data
flow dependences between memory operations. Two memory op-
erations are flow dependent on one another if the first operation
writes a value to an address and the second operation potentially
reads from the same address. Thus, the original ordering of the
memory operations must be maintained to ensure proper value
flow. Note that for a dependence to exist the operation need only
potentially read from the same address. Thus, if two memory op-
erations are not provably independent, they are dependent by def-
inition. Such memory dependences in which the dependence con-
dition is not certain are referred to asambiguous memory depen-
dences. A memory dependence is broken by guessing that the two
memory operations will access different locations, thereby making
the operations independent of one another.

Data speculation techniques can be classified in two major cat-
egories. The first category contains mechanisms that assist hard-
ware schedulers or hardware data prefetch techniques with re-
ordering memory operations [9][17]. The second category con-
tains mechanisms that assist compiler schedulers with reordering
memory operations [8][12]. This work focuses on the second cate-
gory. With data speculation support, the compiler is able to aggres-
sively reorder memory operations and effectively reduce memory
dependence height which again results in a more compact sched-
ule.

Applying speculation to the code in Figure 1 results in the
tighter schedule shown in Figure 1c, in which<CS> and<DS>
denote operations which have been speculated with regard to con-
trol or data. The resultant increase in ILP is achieved primarily
by applying speculation to two of the loads (operations 4 and 8).
In the original code segment, operation 4 is control dependent on
operation 3. However, control speculation enables the compiler to
break that control dependence and move load operation 4 to the top
of the block. Operation 8 is control dependent on both operations
3 and 7, as well as memory dependent on operation 5. The mem-
ory dependence is an ambiguous memory dependence because the
compiler cannot prove thatptr2 does not point to the same location
asptr4. By applying both control and data speculation to operation
8, all three dependences are broken allowing it to move to the top
of the block as well. The net result is that the dependence height
of the code segment is cut nearly in half. Thus, the longest path
length is reduced from 13 to 7 cycles and the average schedule
length is reduced from 10.25 to 6.31 cycles.

Due to the breaking of control dependences, speculated oper-
ations execute more frequently than their non-speculated counter-
parts in the original code. For this reason, exceptions generated by
speculated operations can either be genuine, reflecting exception
conditions present in the original code, or spurious, resulting from
unnecessary execution of speculative operations.

Suppression of spurious exceptions is required for both correct
program execution and high performance. Speculative operations,
like ordinary operations, may cause non-terminal exceptions that
are time consuming to repair. Page faults, TLB misses, long la-
tency cache misses, and other such exceptions could cost hundreds
of cycles to service. While it would be possible to handle such an
exception immediately on execution of the speculative operation,
when the speculative operation is not necessary, time is wasted re-
pairing a spurious exception. The performance effects of spurious
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Figure 1. C-source code (a), its initial schedule (b), with speculation alone (c), and with predication alone (d).

speculative exceptions are quantified in Section 4.

To eliminate spurious exceptions, delayed exception handling
is required [14]. This can be accomplished by taking exceptions
only when the results of speculative operations are used non-
speculatively, indicating that the speculated code would have ex-
ecuted in the original program. A symbolic operation, called a
check, is responsible for detecting any problems that occurred in
previous speculative execution. When an error is detected by a
check instruction, either an exception is reported or repair is ini-
tiated. By positioning the check at the point of the original op-
eration, the error detection and repair is guaranteed only to occur
when the original operation would have been executed by a non-
speculated version of the program.

For data speculation, repair is necessary when an actual data
dependence existed between the speculated load and one or more
stores presumed to be independent at compile time. The check
queries the hardware to detect if a dependence actually existed for
this execution and initiates repair if required.

In Figure 1c, operations 40 and 80 are the previously discussed
symbolic check operations. There are two important points worth
making regarding check operations. First, the presence of a sym-
bolic check does not necessarily indicate the presence of a real
check operation. This is dependent on the speculation model and
will be addressed in the next section. Second, speculative oper-
ations that the compiler can prove will cause no undesirable side
effects do not require a symbolic check. For this example, opera-
tions 6 and 9 are control-speculative, but are certain to cause no ex-
ceptions, so no check is provided. In general, all data-speculative
and all potentially excepting control speculative operations require
checks.

2.2. Predication

Predicated execution is a mechanism that supports condi-
tional execution of individual operations based on Boolean guards,
which are implemented as predicate register values [11][20]. With
predication, the representation of programmatic control flow can
be inherently changed. A conventional processor requires that all
control flow be explicitly represented in the form of branches be-
cause that is the only mechanism available to conditionally execute
operations. However, a processor with support for predicated exe-
cution can support conditional execution either with conventional
branches or with conditional operations. As a result, the compiler
has the opportunity to physically restructure the program control
flow into a more efficient form for execution on a wide-issue pro-
cessor.

A compiler converts control flow into predicates by applying
if-conversion. If-conversion translates conditional branches into
predicate defining operations and guards operations along alterna-
tive paths of control under the computed predicates [1][16][18].
A predicated operation is fetched regardless of its predicate value.
An operation whose predicate is TRUE is executed normally. Con-
versely, an operation whose predicate is FALSE is prevented from
modifying the processor state. With if-conversion, complex nets
of branching code can be replaced by a straight-line sequence
of predicated code. There are many benefits associated with ap-
plying if-conversion. First, a compiler can eliminate problematic
branches from the program. In doing so, all overhead associated
with these branches, including misprediction penalties, penalties
for redirecting sequential instruction fetch, and branch resource
contention, is removed [15][23]. In addition, predication increases
ILP by allowing separate control flow paths to be overlapped and
simultaneously executed in a single thread of control.
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Figure 2. Scheduled code example with predication, control speculation, and data speculation applied.

Figure 1d illustrates an if-conversion of the code segment from
Figure 1b. The conjunction of the three conditions results in a
relatively complex control structure that can be restructured effec-
tively using predication. The predicate for each operation is shown
within angle brackets. For example, operation 4 is predicated on
p1. The absence of a predicate indicates that the operation is al-
ways executed.

Predicates are computed using predicate define operations,
such as operation 2. The semantics for the predicate defines are de-
scribed in the IMPACT EPIC 1.0 Architecture and Instruction Set
Reference Manual [2]. Predicate define operations compute one
or two predicates. The letters after a destination predicate indicate
the type of predicate assignment being performed. In this example,
three predicate types are utilized:unconditional-true(ut), or-false
(of), andand-true(at). For operation 2,p1 is anut predicate and
is set to TRUE ifr11 == 0 evaluates to TRUE. Otherwise, it is
set to FALSE. The other destination for operation 2,p4, is anof
predicate which is set to TRUE ifr11 == 0 evaluates to FALSE.
Otherwise, the value ofp4 is not modified. Note that operations 6
and 9 also possibly setp4, making it TRUE if any of the operations
write a TRUE value. Hence,p4 is the logical OR of the conditions
specified by operations 2, 6, and 9. And-type predicates through a
similar behavior compute the logical AND of multiple conditions.
A requirement of using or-type and and-type predicates is that they
are explicitly initialized to 0 (operation 14), and 1 (operations 15
and 16), respectively.

The predicated code is significantly different from the original
code. All four branches are removed by applying if-conversion,
resulting in a single sequential stream of predicated operations.
With the branches removed, all mispredictions and other run-time
branch penalties are eliminated. Furthermore, ILP is increased by
overlapping the execution of the “then” and “else” paths of the
original code. Operations 11 and 13 are executed concurrently
with the appropriate one taking effect based on the predicate val-
ues. After full if-conversion, all instructions are fetched, yielding a
schedule length independent of branch conditions. Therefore, the
longest and expected paths, respectively 13 and 10.25 cycles in
the original code, are both reduced to 10 cycles. This effect, com-
bined with elimination of runtime overhead, shows some benefits
of predication.

2.3. Combining speculation and predication

Up to this point, speculation and predication have been exam-
ined in isolation. Each technique on its own provides an effec-
tive opportunity to increase ILP. However, the previous examples
show that their means of improving performance are fundamen-
tally different. Speculation allows the compiler to break control
and memory dependences, while predication allows the compiler
to restructure program control flow and to overlap separate execu-
tion paths. The problems attacked by both techniques often occur
in conjunction; the techniques can, therefore, be mutually benefi-
cial.

To illustrate the use of speculation and predication in combina-
tion, the previous example is continued in Figure 2. As one would
expect, the resultant code exhibits characteristics of both previ-
ous examples. If-conversion removes all four branches, resulting
in a sequential stream of predicated operations. As before, data
speculation breaks the dependence between operations 5 and 8.
Even though no branches remain in the code, control speculation
is still useful to break dependences between predicate definitions
and guarded instructions. In this example, the control dependences
between operations 2 and 4, operations 2' and 8, and operations 6
and 8 are eliminated by removing the predicates on operations 4
and 8. These instructions as a result execute more frequently and,
thus, are in effect speculative. This form of control speculation in
predicated code is calledpromotion. As a result of this specula-
tion, the compiler can hoist operations 4 and 8 to the top of the
block to achieve a more compact schedule. The result is that the
maximum and expected schedule lengths through the code seg-
ment are reduced to 4 cycles without any branch-related overhead.
Ignoring branch-related overhead while considering expected path
performance, predication is only 1.03 times faster and speculation
is only 1.63 times faster than the original code segment. However,
the final code segment is 2.56 times faster than the original code.
This is much more than the speed improvement one would ex-
pect from multiplying together the speedups obtained by applying
predication and speculation separately.

One very common misconception is that there are fewer oppor-
tunities for control speculation after if-conversion because many
of the branches are eliminated. However, this is not true. If-
conversion merely converts control dependences to data flow de-
pendences. Therefore, operations are no longer sequentialized
with branches, but are dependent on the results of predicate define
operations. Speculation in the form of promotion overcomes these
predicate flow dependences. As shown in this example, specula-
tion, in the form of promotion, can have a greater positive effect
on performance after if-conversion than before.

The synergistic relationship of speculation and predication
makes combining them into a single architecture very attractive.
However, several issues must be addressed in designing an effi-
cient architecture based on these EPIC techniques.

3. The IMPACT EPIC execution model

The IMPACT EPIC Architecture exposes instruction-level par-
allelism through predicated execution and compiler-directed con-
trol and data dependence speculation. This section of the paper
presents the architectural features and semantics that enable these
technologies. As discussed in Section 2.1, an architecture which
supports speculation must provide mechanisms to detect poten-
tial exceptions on control-speculative operations as they occur,
to record information about data-speculative memory accesses as
they occur, and then to check at an appropriate time whether an
exception should be taken or data-speculative repair should be ini-
tiated. These functions are supported in the IMPACT EPIC Archi-



tecture by additions to operation encodings and to the register file
and by addition of the Memory Conflict Buffer, a device which
checks speculated loads for conflicts with subsequent stores.

First, it is important to distinguish speculative operations from
non-speculative operations, since operations which have not been
control speculated should report exceptions immediately and loads
which have not been speculated with regard to data dependence
need not interact with memory conflict detection hardware. This is
accomplished by the addition of a bit to each operation which can
be speculated, called theS-bit, and an additional bit to each load,
theDS-bit. The S-bit is set on operations which are either control-
speculated or are data dependent on a data-speculative load. The
DS-bit is set only on data-speculative loads.

Second, a mechanism must exist to record an exception on a
control-speculative operation until a check, located at the opera-
tion's original location in the control flow, examines the result of
the speculative execution. This is accomplished by the addition of
a single bit to each register, which is forwarded with its associated
register. This bit is called theE-tagand, when set, indicates that
an exception occurred in the generation of the value stored in its
register. By appropriately generating and propagating E-tags, the
machine maintains sufficient information about pending specula-
tive exceptions to report them if necessary. The delayed excep-
tion model presented for use in the IMPACT EPIC Architecture,
including the E-tags and S-bits, is an extension of the original Sen-
tinel scheduling model proposed in [14].

Third, a mechanism must be provided to store the source ad-
dresses of data-speculative loads until their independence with re-
spect to intervening stores can be established. This functionality is
provided by the Memory Conflict Buffer [8][13]. The MCB tem-
porarily associates the destination register number of a speculative
load with the address from which the value in the register was
speculatively loaded. Destination addresses of subsequent stores
are checked against the addresses in the buffer to detect memory
conflicts. The MCB is queried by explicit data speculation check
instructions, which initiate recovery if a conflict is discovered to
have occurred.

Finally, the architecture must be able efficiently to recover
from exceptions on control-speculative operations as well as from
conflicts encountered in data dependence speculation. Two ear-
lier approaches, write-back suppression [3] and instruction boost-
ing [22] both provide accurate recovery from excepting speculated
instructions, but at a limiting hardware cost. Write-back suppres-
sion requires the addition of fields to each instruction to identify
the instruction's home block and an additional recovery Program
Counter (PC) stack. Instruction boosting requires multiple shadow
register files in addition to similar instruction fields. Both models
are limited in the number of branches above which an instruction
can be speculated by these hardware cost considerations. Both
models are also limited to speculating along a single path of con-
trol. The IMPACT EPIC recovery model, based on the Sentinel
model, does not suffer from these limitations. In addition, in an
improvement to the original Sentinel recovery model, the IMPACT
EPIC Architecture adds an additional bit to each register, theR-
tag, which is used to selectively execute only data flow successors
of excepting speculative operations during recovery. One should
note that the benefits of this recovery model come at the cost of
increased register pressure and heightened compiler complexity as
compared to the write-back suppression and instruction boosting
methods.

Given these architectural elements—one or two additional bits

in operation encodings, two bits added to each register, and the
Memory Conflict Buffer—the IMPACT EPIC Architecture can ac-
curately detect, report, and recover from exactly those exceptions
that would have occurred in non-speculated code, and can recover
from memory conflicts in data-speculative code.

3.1. Exception detection for control speculation

A control-speculative operation is executed more frequently
than its non-speculated counterpart in the original code. When
such an operation generates an exception condition, it is not known
whether or not the operation would have executed in the origi-
nal code, and therefore, whether or not the exception should be
reported. Thus it is necessary to suppress the exception while
recording sufficient information to report the exception if it is later
discovered to be genuine. This is accomplished using register E-
tags. When a speculative operation completes without exception,
its result is deposited into its destination register and the register's
E-tag is cleared to indicate successful completion. If, however,
an exception condition occurs, the destination register's E-tag is
set. If the destination is a non-predicate register, the excepting op-
eration's PC value is also deposited into the register for potential
use in recovery. Since the exception detection and recovery model
used in the IMPACT EPIC Architecture uses bits in the register
file to maintain pending exceptions, potentially excepting opera-
tions which do not write their results into a destination register
may not be speculated.

Results of excepting speculative operations are thus labeled by
set E-tags in the register file. If these tagged registers are used as
sources to other speculative operations, the E-tag and PC of the
originally excepting operation are copied to the destination regis-
ter. In this manner, a speculatively generated exception is prop-
agated via data flow through other speculated operations until a
non-speculative use is reached. A non-speculative use of specu-
latively generated data constitutes a check, which in the case of
control speculation can be anexplicit checkoperation or simply
any non-speculative operation that sources a non-predicate regis-
ter, called animplicit check. If the check sources a register with
a clear E-tag, indicating speculative execution completed without
exception, execution may continue normally. If, however, a source
E-tag is set, an exception occurred during speculative execution
and repair is required. Since the check executes only when the
speculated operation would have executed in the original code, this
guarantees that exceptions are taken only when a correct result of
program execution and not merely a side-effect of speculation.

Predicate registers and predicate define operations require
some extra consideration. Obviously, a predicate register cannot
accommodate a PC value in its single bit; however, since pred-
icate defining operations cannot themselves generate exceptions,
they have no need to save their PC in a result register. When
a predicate define operation propagates an exception on a source
operand by writing its destination predicate register, it sets the E-
tag, clears the R-tag and leaves the value in the predicate register
unchanged. Since or-type, and-type, and conditional-type pred-
icate defines are essentially self-anti-dependent operations which
cannot be split,1 the architecture must preserve the incoming pred-
icate value by suppressing any change to the predicate destination.
However, doing only this when the value of the predicate is TRUE

1The problem with self-anti-dependence is addressed with compilation
issues later in this section.



on an and-type predicate define might incorrectly cause many op-
erations to be executed. To prevent this situation, the predicate
define sets the destination's E-tag, and any operation guarded by
a predicate with its E-tag set is suppressed regardless of the pred-
icate's value. Since the predicate define cannot propagate recov-
ery PC values, accurate detection requires checks of speculatively
generated source operands to speculative predicate defining oper-
ations.

Taking advantage of a complete set of predicate defining oper-
ations, a conditional branch is implemented as a predicate-guarded
jump. Should a branch source a predicate with its E-tag set, that
branch is defined to fall through. The compiler needs to consider
this semantic in inserting checks.

3.2. Conflict detection for data speculation

The IMPACT EPIC Architecture detects data dependence be-
tween speculated loads and subsequent stores using a Memory
Conflict Buffer [8]. Data-speculative loads make entries in the
MCB consisting of the loaded register number and source memory
address to allow for comparison of their addresses with addresses
of subsequent store operations. An explicit check inserted in the
speculated load's original location in the code queries the MCB
entry for the load's destination register to determine if the mem-
ory location from which the register was loaded has been accessed
by an intervening store. If such a conflict exists, data speculation
has failed and recovery is indicated. Unlike in control specula-
tion, where the location of the excepting operation is propagated
through the register file, no information is preserved regarding the
location of the data-speculative load, now known to have con-
flicted. Thus the data speculation check must explicitly include
the location of the data-speculative load for re-execution; as a re-
sult, all instances of data speculation must be explicitly checked.

3.3. Exception recovery model

A major contribution of the IMPACT EPIC Architecture is the
addition of a selective inline recovery mechanism for repair of
speculatively generated exceptions or data dependence memory
conflicts. The original Sentinel speculation recovery model ex-
ecuted all operations between the speculated operation and the
check during recovery; it was the responsibility of the compiler
to ensure that these operations could be re-executed as necessary
to repair from genuine exceptions while producing the correct re-
sult. This required saving all register operands until checks, or
“Sentinels,” verified that no exceptions had occurred in specula-
tive execution. The compiler accomplished this by either extend-
ing register lifetimes or by inserting move operations. However,
this practice significantly increased register pressure, lowering the
overall performance of speculation. The IMPACT EPIC Archi-
tecture adds an additional bit to each register, the R-tag, which is
used during recovery to identify operations which are data flow de-
pendent on the excepting speculated operation. Under this model,
only branches and speculative operations (marked with set S-bits)
which are data flow dependent on values newly generated in re-
covery (indicated by their register R-tags being set) are executed
until the check is reached.

Recovery mode begins in one of two ways. First, if a spec-
ulatively generated operand indicating an exception is used non-
speculatively, a genuine exception is indicated; that is, resolution
of the exception and re-execution of dependent operations are re-
quired for correct program function. Second, if a data specula-

tion check determines that the address from which a speculative
load occurred conflicted with an intervening store, re-execution
of the load and dependent operations is required. In either case,
the recovery predicate (pR)is set to indicate that recovery is un-
derway, the operation at the recovery point is re-executed non-
speculatively, and any exception generated is taken immediately.

The registerpR is an implicit predicate operand to all opera-
tions. WhenpR is clear, operations execute according to normal
semantics. WhenpR is set, instructions execute according to re-
covery semantics. During recovery, all speculative operations de-
pendent on the originally excepting operation must be executed
until the check operation which initiated recovery is reached. The
set of dependent speculative operations is determined using R-
tags in the register file. When speculative operations (including
the original excepting operation) commit results during recovery
mode, the R-tags on their destination registers are set. Following
the non-speculative execution of the originally excepting instruc-
tion (and exception handling, if required), recovery proceeds with
re-execution of flow dependent speculative operations. During this
phase, only branches and speculative operations with one or more
R-tags set on source registers execute. Thus, while the inline re-
covery method obviates recovery blocks, it requires fetching a po-
tentially large number of operations which may not be executed.
Nonetheless, this selective reuse of code for recovery has more
desirable instruction cache effects than does the recovery block
method. As a result, the IMPACT EPIC Architecture has been
designed to perform inline recovery.

Since branch execution is required to maintain the original con-
trol flow path, or trajectory, branches must always execute, regard-
less of the value ofpR. The consequence of this is that the branch
predicate must have the same value in recovery as it did in the
original execution of the code. To achieve this, the live range of
the branch predicate is extended to the sentinel, as it is for other
registers used as source operands on speculated operations.

Recovery executes branches and dependent speculative opera-
tions until an R-tag on a non-predicate register2 source operand
reaches a non-speculative use, indicating that the home block of
the originally excepting speculative operation has been reached.
At this point, if no pending exception is indicated by source
operand E-tags, the original exception or conflict has been re-
paired,pR is cleared, and execution continues normally. During
recovery, generation and propagation of E-tags occurs as in nor-
mal execution; if E-tags are set when a non-speculative use of an
R-tagged register is reached, an additional exception occurred dur-
ing recovery from the initial exception, so recovery restarts from
the new excepting location.

3.4. IMPACT EPIC compilation issues

The compiler has several important responsibilities in the IM-
PACT EPIC control speculation model. First, the compiler must
ensure that a check is present for every potentially excepting op-
eration that is speculated. The check must directly or indirectly
source the speculative operation's destination register, and it must
be located in the speculative operation's home block. Data specu-
lation checks must be explicit, as they need to specify a recovery
address, and an unique check is required for each data-speculative

2Predicate registers, which cannot initiate recovery, should not indicate
that recovery has completed. Thus, only non-predicate registers' R-tags
can terminate recovery mode.



LD [size, DS-bit, S-bit] dest, base, offset, pred

if (PR[pred].val && !PR[pred].E)
if (!PR[pR].val k (PR[pR].val && IR[base].R))

if (!IR[base].E)
address = IR[base].val + offset;
exceptioncode = validaddress(address, size);
if (!exceptioncode)

IR[dest].val = memload(address);
IR[dest].E = 0;
if (S-bit)

IR[dest].R = PR[pR].val;
else

IR[dest].R = 0;
PR[pR].val = 0;

if (DS-bit)
add MCB entry(dest, address);

else
if (S-bit)

IR[dest].E = 1;
IR[dest].val = PC;

else
initiate exception(exceptioncode);

else
if (S-bit)

IR[dest].E = 1;
IR[dest].R = PR[pR].val;
IR[dest].val = IR[base].val;

else
PC = IR[base].val;
PR[pR].R = 1;

Figure 3. Execution semantics for Load Integer
Register. (PR is the predicate register file, IR is
the integer register file.)

load. Control speculation checks can be either explicit check op-
erations or implicit effects of ordinary, non-speculative operations
which source speculatively generated operands. Second, the com-
piler must correctly set the S-bits and DS-bits on operations as
required to indicate control or data speculation. Finally, the com-
piler must preserve any program variables that are required for use
during recovery from a speculative exception until after the check
is performed. This includes all source operands in the flow de-
pendent chain of operations between a speculative operation and
its check. In addition to extending register live ranges, self-anti-
dependent operations in this speculative chain must be split. For
example,r1 = r1 + 1, must be split into two operations. The
first, r2 = r1 + 1, is placed before the check, and the second,
r1 = r2 , is placed after the check. This ensures that the value of
r1 remains unchanged until after the check.

3.5. Architecture summary

Sections 3.1, 3.2, and 3.3 have described in detail the IMPACT
EPIC execution model. Figure 3 shows as an example a pseu-
docode representation of the execution semantics for a “load inte-
ger register” operation, which is capable of both control and data
speculation. This figure concisely shows the interaction of the fea-
tures described earlier in this section. Examining the conditions
shown, we see that under normal semantics the operation has an
effect when its guard predicate is TRUE and without exception.
Under recovery semantics, an additional restriction, that at least
one source register R-tag must be set, is imposed. Examining
the example further, one can see the mechanisms for generating
and propagating exceptions and for preparing the MCB to identify

memory conflicts. A complete description of execution semantics,
as well as a wealth of other architectural information, is available
in [2].

The IMPACT EPIC Architecture supports predication, control
speculation, and data speculation. Predicated execution is sup-
ported by the predicate register file, which stores values and excep-
tion flags for predicates; the predicate squash logic, which prevents
instructions with false predicates from committing their results;
and predication aware bypass/interlock logic, which forwards re-
sults based on the predicate values associated with the generating
instructions. Finally, the IMPACT EPIC Architecture adds a spe-
cial predicate, therecovery predicate, or pR, the value of which
indicates whether the currently executing instruction should be ex-
ecuted under normal semantics or recovery semantics.

A modified Sentinel speculation model is used to implement
delayed exception reporting. The original Sentinel speculation
model proposed two architectural mechanisms in support of de-
layed exception detection [14]. First, each architectural register is
extended to contain an additional field called theexception tag, or
E-tag. The E-tag indicates that the operation which most recently
deposited a value in the register, or some flow dependence pre-
decessor of it, generated an exception. An E-tag exists on every
predicate and regular register and is forwarded with the value of
its associated register. Second, each opcode that can be speculated
incorporates an additional bit to differentiate between speculative
and non-speculative uses. This S-bit is set when the operation is
speculative and is clear when the operation is non-speculative. Fi-
nally, R-tags support selective inline recovery. The R-tag, like the
E-tag, is added to each regular and predicate register and is for-
warded in the same way as the E-tags. The R-tag is used during
recovery to indicate that re-execution has replaced a value which
was not correct due to an exception with a new, correct value.

3.6. Code example

The code example of Figure 4 illustrates the IMPACT EPIC
inline recovery mechanism with data and control speculation. Fig-
ures 4a and 4b illustrate the code segment before and after schedul-
ing, respectively. In the example, a data and control-speculative
load operation (3) has been moved above a potentially aliased store
operation (2) and a branch operation (1). At the same time, a check
operation (3' ) has been placed at the load's original location. Op-
eration 4, which is data flow dependent on operation 3, has also
been speculated above the branch.

To illustrate how the IMPACT EPIC control speculation mech-
anism works, Figure 4c shows the state of the machine as it han-
dles a non-program terminating exception during execution of op-
eration 3. Since operation 3 is speculative (its S-bit is set), the
exception is deferred but recorded by setting registerr1 's E-tag
and depositing the PC of operation 3 in the register itself. Oper-
ation 4 then consumes the value inr1 , which was speculatively
produced by operation 3. Since the E-tag on this register is set,
operation 4 does not execute, but instead propagates the earlier ex-
ception by setting the E-tag on its destination register and copying
the excepting PC value fromr1 to r2 . Assuming that the branch
(1) falls through, operation 2 will execute. Operation 3' confirms
the exception, since its source operand has a set E-tag. Inline re-
covery begins by jumping to the PC inr1 and by settingpR to
TRUE. After each operation is re-executed, the E-tag is cleared
and the R-tag is set to indicate that the value has been properly re-
computed. When operation 3' is re-executed the R-tag indicates to



(1)

(2) MEM[r5] = r12

(3) r1 = MEM[r4]

(4) r2 = r1 + 1

(3)

r2 = r1 + 1 <S>

(3’)Check r1,label(3)

r1 = MEM[r4]<S,DS>

(b)(a)

Branch

MEM[r5] = r12

Branch

(2)

(1)

(4)

State after R1 R2
execution of: R/E tags Value R/E tags Value pR
(3) r1 = MEM[r4]<S,DS> 0 / 1 PC of 3 0 / 0 0 F
(4) r2 = r1 + 1<S> 0 / 1 PC of 3 0 / 1 PC of 3 F
(1) Branch 0 / 1 PC of 3 0 / 1 PC of 3 F
(2) MEM[r5] = r12 0 / 1 PC of 3 0 / 1 PC of 3 F
(3' ) Check r1, label (3) 1 / 0 PC of 3 0 / 1 PC of 3 T
(3) r1 = MEM[r4]<S,DS> 1 / 0 v new 0 / 1 PC of 3 T
(4) r2 = r1 + 1<S> 1 / 0 v new 1 / 0 v new + 1 T
(3' ) Check r1, label (3) 1 / 0 v new 1 / 0 v new + 1 F

(c)

State after R1 MCB
execution of: R/E tags Value Reg No. Address Conflict
(3) r1 = MEM[r4]<S,DS> 0 / 0 v R1 load addr 0
(4) r2 = r1 + 1<S> 0 / 0 v R1 load addr 0
(1) Branch 0 / 0 v R1 load addr 0
(2) MEM[r5] = r12 0 / 0 v R1 load addr 1
(3' ) Check r1, label (3) 0 / 0 v R1 load addr 1
(3) r1 = MEM[r4]<S,DS> 1 / 0 v new

(d)

Figure 4. Code example (a), scheduled with control
and data speculation (b), shown at various times
during recovery in (c) and (d).

this non-speculative operation that recovery has successfully com-
pleted. At this point operation 3' sets the predicatepR to FALSE
and normal execution continues.

Now consider the code example of Figure 4 again, this time
in relation to data speculation. Since store operation 2 could con-
flict with the data-speculative load operation 3, there is a potential
need to re-execute the load operation to obtain the correct value.
Operation 4 must be marked speculative as well, since it sources
the result of the speculative load and has been scheduled above the
original location of the load, thus requiring re-execution during
data speculation correction.

An execution sequence for the scheduled code segment in
which operation 2 conflicts with the data-speculative load is shown
in Figure 4d. The initial states of all the registers are assumed to
have reset R-tags and E-tags. In the first cycle, operation 3 cre-
ates a valid MCB entry. On execution of operation 2, the MCB
detects the memory conflict but correction is not yet performed.
Instead, the conflict field of the MCB entry corresponding to the
data-speculative load is set. During execution of the check, the
MCB log entry corresponding to the instance of data speculation
indicates that a correction must be made. As a result,pRis set and
re-execution begins at the explicit target of operation 3' , which is
operation 3. Operation 3 re-executes as a non-speculative opera-
tion, setting the R-tag of its register destination, after which only
speculative operations between the initial re-execution operation
and the check operation that have incoming recovery tags set exe-
cute. In this case, operation 4 will execute as required for correc-
tion. Re-execution of the check operation shows that the exception
has been completely serviced, completing recovery.

4. Experimental results

In this section, the performance of the integrated speculation
and predication model utilized by the IMPACT EPIC Architecture
is evaluated.

4.1. Methodology

In order to study the IMPACT EPIC Architecture, the IMPACT
compiler and its emulation-driven simulator were enhanced to sup-
port the IMPACT EPIC model. The machine modeled can fetch,
decode, and issue up to 6 operations per cycle. The processor
can execute these operations in-order up to the limits of the avail-
able functional units: four integer ALU's, two memory ports, two
floating point ALU's, and one branch unit. The instruction laten-
cies used match those of the HP PA-7100 microprocessor. The
processor contains 64 integer registers, 64 floating point registers,
and 64 predicate registers. The processor utilizes profile-based
static branch prediction and has a 6-cycle misprediction penalty.
To support control speculation, most opcodes have an S-bit which
provides speculative versions of these operations. To support data
speculation, a 64-entry, fully associative Memory Conflict Buffer
is utilized [8]. Furthermore, special opcodes exist to perform data-
speculative loads and data-speculative checks. To support predi-
cation, every instruction has a predicate source operand and new
operations to support computation of predicate values are added.
A detailed description of the IMPACT EPIC Instruction Set used
in these experiments can be found in [2].

The execution time for each benchmark is derived from the
static code schedule weighted by dynamic execution frequencies
obtained from profiling. Static branch predictions and the perfor-
mance effects of branch mispredictions are are also obtained by
profiling. Similarly, memory dependence profiling is utilized in
determining the data speculation conflict profiles. Previous expe-
rience with this method of execution time estimation has demon-
strated that it accurately estimates simulations of the modeled ma-
chine with perfect caches. Cache and other exception effects were
obtained using the IMPACT emulation-driven simulator.

The benchmarks used in this experiment consist of 16 non-
numeric programs. Four benchmarks are taken from SPEC
CINT92, five benchmarks are taken from SPEC CINT95, and
seven benchmarks areUNIX utilities.

4.2. Results

Two categories of results are presented. The overall perfor-
mance of the IMPACT EPIC Architecture is first examined. Sec-
ond, some of the more detailed performance issues concerning the
use of inline recovery and delayed exceptions are evaluated.

Performance. First, the performance of each of the three key
features of the IMPACT EPIC Architecture—predication, control
speculation, and data speculation—is presented individually. Then
the performance of these three features working in concert in the
coherent architecture is discussed. Performance is reported as
speedup which is derived by dividing the number of total execu-
tion cycles for code utilizing none of the EPIC features by that
of the code utilizing the feature or features of interest. Therefore,
larger numbers represent a larger relative performance gain.

The first architectural feature considered is data speculation.
Figure 5 presents the effect on performance of adding data spec-
ulation to the baseline architecture. Data speculation alone gen-
erally provides small performance increases, with an average of a
3% gain. Data speculation is most effective for008.espressoand
132.ijpeg, where there are a large number of ambiguous memory
dependences on critical dependence chains. Data speculation al-
lows the compiler to break many of these dependences, reducing
memory dependence height and thus leading to an overall perfor-
mance increase. While this gain is small, other limitations that
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Figure 5. Performance of IMPACT EPIC predication and speculation.

will be broken by predication and control speculation will expose
more opportunities for data speculation. This is most evidenced by
124.m88ksim, 132.ijpeg, andgrepwhere the addition of data spec-
ulation to a model supporting control speculation and predication
more than doubles performance.

The next architectural feature considered is control specula-
tion. Figure 5 presents the performance effect of adding control
speculation to the baseline architecture. Clearly, the performance
gains are much larger with only control speculation than with
only data speculation, indicating that control dependences are a
more important initial barrier to break than data speculation. An
average speedup of 30% is achieved over the baseline architec-
ture. 008.espressoand147.vortexperformed especially well with
control speculation. The ability to break control dependences is
extremely important for performance given the large number of
branches existing in the non-predicated code.

The last architectural feature considered is predication. Fig-
ure 5 presents the performance effect of adding predication to the
base architecture. The addition of predication yields moderate
performance gains for most of the benchmarks. On average, a
speedup of 30% is observed. The performance increase is mainly
due to the additional ILP from overlapping different control paths
and the reduction in branch misprediction penalty. In addition,
the processor has just one branch unit, so reduction in the num-
ber of branches reduces the contention for the branch resource.
The benchmarks023.eqntottandcmpmore than doubled perfor-
mance with predication alone. This was mainly due to a technique
known as branch combining. Branch combining removes many
infrequently taken branches from the critical path. In these two
benchmarks, this technique greatly reduced the height of the criti-
cal path in the most important loops of these benchmarks.

When all techniques are used together, an average performance
increase of 79% is observed. In many cases, a greater than addi-
tive effect is observed. For example, in132.ijpegnone of the tech-
niques alone do very well. However, when used in conjunction
132.ijpegperforms quite well. This trend can be observed for other
benchmarks as well. When predication removes branches to over-
lap paths, it still relies on control speculation to allow code motion
across branches which remain. Further, predication needs control
speculation to reduce the strength of the guarding predicates on
many instructions. By doing this, a dependence from predicate
defines to these instructions is removed, affording greater freedom

to the scheduler. Data speculation becomes more profitable after
predication and control speculation have done their work. This
is because after many of the dependences due to branches and
predicate defines have been removed, memory dependences are
exposed and become dominant.

Across all the benchmarks, the average speedup due to the IM-
PACT EPIC techniques is 1.83. The utilization of the resources
in terms of Instructions Per Cycle (IPC) executed is also a mea-
sure of the architecture effectiveness. For this study, the baseline
machine with no support for speculation and predication achieved
an average of 1.56 useful IPC. The average is increased to 2.85
useful IPC with control speculation, data speculation, and predi-
cation. The average raw IPC, which includes nullified predicated
code, for the same code is 3.29.

Architecture tradeoffs. Several important tradeoffs were con-
sidered in various aspects of the IMPACT EPIC Architecture, two
of which will be discussed here. The first is the choice of an in-
tegrated inline recovery scheme for both control and data specu-
lation rather than a traditional recovery block based method. The
major advantage of inline recovery is that it avoids the static code
size increase incurred with the inclusion of recovery blocks. To
quantify these effects, the compiler was configured to generate
code for both recovery strategies, using profile information to ap-
ply speculation only in frequently executed portions of the code.
Figure 6 compares the static code size ratio of code using recov-
ery blocks to that of code using inline recovery. When compared
to speculative code prepared using recovery blocks, inline recov-
ery results in a 7% to 42% code size reduction for the benchmarks
tested, with an average 23% savings. This significant reduction in
code size is a major reason for development of the presented inline
recovery model.

Due to the nature of recovery, recovery blocks infrequently re-
side in the instruction cache at the time of recovery. Fetching re-
covery code thus can have a negative effect on instruction cache
performance. To determine the significance of this effect, the IM-
PACT simulator was used to gather instruction cache statistics for
both the inline and recovery block models. For this study, the mod-
eled instruction cache system consists of a 32K direct mapped L1
cache with 64-byte sized blocks, with a unified 256K 2-way set-
associative L2 cache. Figure 7 shows the percentage of instruction
cache misses that are avoided by implementing an inline recovery
model rather than a recovery block model. This reduction in in-



struction cache misses can be significant, averaging nearly 30%.
In 129.compress, cmp, grep, andwc, however, the reduction of in-
struction cache misses is exaggerated due to the small number of
base instruction cache misses. Thus, a small increase in the re-
covery block instruction cache misses causes the inline model to
appear to have significantly fewer instruction cache misses. These
instruction cache effects and performance features of the two re-
covery mechanisms themselves contribute to simulation findings
of an average speedup of 6% for the inline model when compared
to the recovery block model.

The second tradeoff involves delaying handling of cache
misses and non-program terminating exceptions, such as TLB
misses and page faults, due to speculative operations. Exceptions
and misses on speculated operations can either be handled imme-
diately or delayed until their corresponding check operations are
reached. The obvious solution is to handle these exceptions imme-
diately. However, by delaying reporting, the processor can avoid
handling spurious events generated by speculative operations that
would not have executed in a non-speculative version of the pro-
gram. When the number of spurious exceptions is significant,
delaying handling can prevent the large performance loss which
would be incurred in spurious recoveries. To determine the mag-
nitude of this effect, the IMPACT simulator was instrumented to
detect spurious exceptions by keeping track of exceptions on spec-
ulative operations whose home basic blocks were not reached in
execution. For this study, the modeled memory system consists of
a 32K direct mapped L1 data cache, a 256K 2-way set-associative
L2 data cache, a 32-entry direct-mapped first level TLB, a 128-
entry 2-way set-associative second level TLB, and a main mem-
ory with 4K pages and a 4K-entry page table. Figure 8 shows the
percentage of data cache misses and non-terminal exceptions that
are avoided by implementing the IMPACT EPIC inline recovery
model rather than a recovery block model. The results indicate
that the number of spurious cache misses, TLB misses, and page
faults is significant. On average, 31% of cache misses and 13%
of transparent exceptions are spurious. Depending on the over-
head associated with repairing these exceptions, delaying repair of
speculative exceptions until it is known whether the instructions
would have executed in the original program can significantly re-
duce the runtime overhead of speculation.

5. Conclusion

Predication, control speculation, and data speculation in a co-
herent architecture can be effectively used by the compiler to en-
hance the performance of wide-issue processors. Predication al-
lows the compiler to rewrite the program control structure and to
overlap separate execution paths. Control and data speculation al-
low the compiler to break dependences to reduce the dependence
height of computation. This paper shows that these techniques
complement each other enabling the compiler to achieve additive
performance benefits.

The IMPACT EPIC Architecture provides a coherent model for
designing processors to support predication, control speculation
and data dependence speculation. This paper shows that the in-
struction nullification support required by predication can be used
to effectively support selective instruction re-execution in delayed
exception handling for speculation. This recovery model unifies
support for data and control speculation. It also provides a mech-
anism for inline recovery which reduces the code expansion and
instruction cache misses associated with recovery blocks.
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Figure 6. Ratio of recovery block model static code
size to inline recovery model static code size.
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Figure 7. Reduction in instruction cache misses for
inline recovery as compared to recovery blocks.
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Experimental results show that for these benchmarks an ag-
gressive compiler can achieve an average performance improve-
ment of at least 83% by exploiting the IMPACT EPIC features in a
moderate six-issue processor model. One can expect the margin to
enlarge as the compiler technology matures or as the processor is-
sue rate increases. An important observation is that programs incur
an average of 31% fewer cache misses and an average 13% fewer
page faults if delayed exception handling is supported. When
running demanding workloads, these additional cache misses and
page faults can result in major performance degradation. Thus, we
expect that the IMPACT EPIC Architecture features supporting
accurate exception detection and efficient delayed exception han-
dling in predicated code will be essential to the success of future
EPIC processors.
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