
To appear - ISCA-22, Jun 1995 1

A Comparison of Full and Partial Predicated Execution Support

for ILP Processors

Scott A. Mahlke� Richard E. Hank James E. McCormick David I. August Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana-Champaign, IL 61801

Abstract

One can e�ectively utilize predicated execution to improve

branch handling in instruction-level parallel processors. Al-

though the potential bene�ts of predicated execution are

high, the tradeo�s involved in the design of an instruction set

to support predicated execution can be di�cult. On one end

of the design spectrum, architectural support for full pred-

icated execution requires increasing the number of source

operands for all instructions. Full predicate support pro-

vides for the most
exibility and the largest potential perfor-

mance improvements. On the other end, partial predicated

execution support, such as conditional moves, requires very

little change to existing architectures. This paper presents

a preliminary study to qualitatively and quantitatively ad-

dress the bene�t of full and partial predicated execution sup-

port. With our current compiler technology, we show that

the compiler can use both partial and full predication to

achieve speedup in large control-intensive programs. Some

details of the code generation techniques are shown to pro-

vide insight into the bene�t of going from partial to full

predication. Preliminary experimental results are very en-

couraging: partial predication provides an average of 33%

performance improvement for an 8-issue processor with no

predicate support while full predication provides an addi-

tional 30% improvement.

1 Introduction

Branch instructions are recognized as a major impediment to

exploiting instruction-level parallelism (ILP). ILP is limited

by branches in two principle ways. First, branches impose

control dependences which restrict the number of indepen-

dent instructions available each cycle. Branch prediction

� Scott Mahlke is now with Hewlett Packard Laboratories,
Palo Alto, CA.

0

in conjunction with speculative execution is typically uti-

lized by the compiler and/or hardware to remove control

dependences and expose ILP in superscalar and VLIW pro-

cessors [1] [2] [3]. However, misprediction of these branches

can result in severe performance penalties. Recent studies

have reported a performance reduction of two to more than

ten when realistic instead of perfect branch prediction is uti-

lized [4] [5] [6]. The second limitation is that processor re-

sources to handle branches are often restricted. As a result,

for control intensive applications, an arti�cial upper bound

on performance will be imposed by the branch resource con-

straints. For example, in an instruction stream consisting of

40% branches, a four issue processor capable of processing

only one branch per cycle is bounded to a maximum of 2.5

sustained instructions per cycle.

Predicated execution support provides an e�ective means

to eliminate branches from an instruction stream. Pred-

icated or guarded execution refers to the conditional exe-

cution of an instruction based on the value of a boolean

source operand, referred to as the predicate [7] [8]. This

architectural support allows the compiler to employ an if-

conversion algorithm to convert conditional branches into

predicate de�ning instructions, and instructions along al-

ternative paths of each branch into predicated instruc-

tions [9] [10] [11]. Predicated instructions are fetched regard-

less of their predicate value. Instructions whose predicate is

true are executed normally. Conversely, instructions whose

predicate is false are nulli�ed, and thus are prevented from

modifying the processor state.

Predicated execution provides the opportunity to signi�-

cantly improve branch handling in ILP processors. The most

obvious bene�t is that decreasing the number of branches re-

duces the need to sustain multiple branches per cycle. There-

fore, the arti�cial performance bounds imposed by limited

branch resources can be alleviated. Eliminating frequently

mispredicted branches also leads to a substantial reduction

in branch prediction misses [12]. As a result, the perfor-

mance penalties associated with mispredictions of the elim-

inated branches are removed. Finally, predicated execution

provides an e�cient interface for the compiler to expose mul-

tiple execution paths to the hardware. Without compiler

support, the cost of maintaining multiple execution paths in

hardware grows exponentially.

Predicated execution may be supported by a range of ar-

chitectural extensions. The most complete approach is full

To appear - ISCA-22, Jun 1995 2

predicate support. With this technique, all instructions are

provided with an additional source operand to hold a pred-

icate speci�er. In this manner, every instruction may be a

predicated. Additionally, a set of predicate de�ning opcodes

are added to e�ciently manipulate predicate values. This

approach was most notably utilized in the Cydra 5 min-

isupercomputer [8] [13]. Full predicate execution support

provides the most
exibility and the largest potential per-

formance improvements. The other approach is to provide

partial predicate support. With partial predicate support, a

small number of instructions are provided which condition-

ally execute, such as a conditional move. As a result, partial

predicate support minimizes the required changes to existing

instruction set architectures (ISA's) and data paths. This

approach is most attractive for designers extending current

ISA's in an upward compatible manner.

In this paper, the tradeo�s involved in supporting full

and partial predicated execution are investigated. Using

the compilation techniques proposed in this paper, partial

predicate support enables the compiler to perform full if-

conversion to eliminate branches and expose ILP. Therefore,

the compiler may remove as many branches with partial

predicate support as with full predicate support. By remov-

ing a large portion of the branches, branch handling is sig-

ni�cantly improved for ILP processors with partial predicate

support. The relatively few changes needed to add partial

predicate support into an architecture make this approach

extremely attractive for designers.

However, there are several fundamental performance lim-

itations of partial predicate support that are overcome with

full predicate support. These di�culties include represent-

ing unsupported predicated instructions, manipulating pred-

icate values, and relying extensively on speculative execu-

tion. In the �rst case, for an architecture with only partial

predicate support, predicated operations must be performed

using an equivalent sequence of instructions. Generation of

these sequences results in an increase in the number of in-

structions executed and requires a larger number of registers

to hold intermediate values for the partial predicate architec-

ture. In the second case, the computation of predicate values

is highly e�cient and parallel with full predicate support.

However, this same computation with partial predicate sup-

port requires a chain of sequentially dependent instructions,

that can frequently increase the critical path length. Finally,

the performance of partial predicate support is extensively

dependent on the use of speculative execution. Conditional

computations are typically represented by �rst performing

the computation unconditionally (speculative) and storing

the result(s) in some temporary locations. Then, if the con-

dition is true, the processor state is updated, using one or

more conditional moves for example. With full predicate

support, speculation is not required since all instructions

may have a predicate speci�er. Thus, speculation may be

selectively employed where it improves performance rather

than always being utilized.

The issues discussed in the paper are intended for both

designers of new ISA's, as well as those extending existing

ISA's. With a new instruction set, the issue of supporting

full or partial predicate support is clearly a choice that is

available. Varying levels of partial predicate support provide

options for extending an existing ISA. For example, intro-

ducing guard instructions which hold the predicate speci�ers

of subsequent instructions may be utilized [14].

2 ISA Extensions

In this section, a set of extensions to the instruction set

architecture for both full and partial predicate support are

presented. The baseline architecture assumed is generic ILP

processor (either VLIW or superscalar) with in-order issue

and register interlocking. A generic load/store ISA is further

assumed as the baseline ISA.

2.1 Extensions for Full Predication

The essence of predicated execution is the ability to suppress

the modi�cation of the processor state based upon some con-

dition. There must be a way to express this condition and a

way to express when the condition should a�ect execution.

Full predication cleanly supports this through a combination

of instruction set and micro-architecture extensions. These

extensions can be classi�ed as support for suppression of ex-

ecution and expression of condition.

Suppression of Execution. The result of the condition

which determines if an instruction should modify state is

stored in a set of 1-bit registers. These registers are collec-

tively referred to as the predicate register �le. The setting of

these registers is discussed later in this section. The values in

the predicate register �le are associated with each instruction

in the extended instruction set through the use of an addi-

tional source operand. This operand speci�es which pred-

icate register will determine whether the operation should

modify processor state. If the value in the speci�ed predicate

register is 1, or true, the instruction is executed normally; if

the value is 0, or false, the instruction is suppressed.

One way to perform the suppression of an instruction in

hardware is to allow the instruction to execute and to dis-

allow any change of processor state in the write-back stage

of the pipeline. This method is useful since it reduces the

latency between an instruction that modi�es the value of

the predicate register and a subsequent instruction which is

conditioned based on that predicate register. This reduced

latency enables more compact schedules to be generated for

predicated code. A drawback to this method is that regard-

less of whether an instruction is suppressed, it still ties up an

execution unit. This method may also increase the complex-

ity of the register bypass logic and force exception signalling

to be delayed until the last pipeline stage.

An instruction can also be suppressed during the de-

code/issue stage. Thus, an instruction whose corresponding

predicate register is false is simply not issued. This has the

advantage of allowing the execution unit to be allocated to

other operations. Since the value of the predicate register

referenced must be available during decode/issue, the predi-

cate register must at least be set in the previous cycle. This

dependence distance may also be larger for deeper pipelines

or if bypass is not available for predicate registers. Increas-

ing the dependence distance between de�nitions and uses of

predicates may adversely a�ect execution time by lengthen-

ing the schedule for predicated code. An example of this

To appear - ISCA-22, Jun 1995 3

Pout

Pin Comparison U U OR OR AND AND

0 0 0 0 - - - -
0 1 0 0 - - - -
1 0 0 1 - 1 0 -
1 1 1 0 1 - - 0

Table 1: Predicate de�nition truth table.

suppression model is the predicate support provided by the

Cydra 5 [8]. Suppression at the decode/issue stage is also

assumed in our simulation model.

Expression of Condition. A set of new instructions is

needed to set the predicate registers based upon conditional

expressions. These instructions can be classi�ed as those

that de�ne, clear, set, load, or store predicate registers.

Predicate register values may be set using predicate de�ne

instructions. The predicate de�ne semantics used are those

of the HPL Playdoh architecture [15]. There is a predicate

de�ne instruction for each comparison opcode in the origi-

nal instruction set. The major di�erence with conventional

comparison instructions is that these predicate de�nes have

up to two destination registers and that their destination

registers are predicate registers. The instruction format of a

predicate de�ne is shown below.

pred <cmp> Pout1<type>, Pout2<type>, src1, src2 (Pin)

This instruction assigns values to Pout1 and Pout2 accord-

ing to a comparison of src1 and src2 speci�ed by <cmp>.

The comparison <cmp> can be: equal (eq), not equal (ne),

greater than (gt), etc. A predicate <type> is speci�ed for

each destination predicate. Predicate de�ning instructions

are also predicated, as speci�ed by Pin.

The predicate <type> determines the value written to the

destination predicate register based upon the result of the

comparison and of the input predicate, Pin. For each com-

bination of comparison result and Pin, one of three actions

may be performed on the destination predicate. It can write

1, write 0, or leave it unchanged. A total of 34 = 81 possible

types exist.

There are six predicate types which are particularly useful,

the unconditional (U), OR, and AND type predicates and

their complements. Table 1 contains the truth table for these

predicate types.

Unconditional destination predicate registers are always

de�ned, regardless of the value of Pin and the result of the

comparison. If the value of Pin is 1, the result of the com-

parison is placed in the predicate register (or its compliment

for U). Otherwise, a 0 is written to the predicate register.

Unconditional predicates are utilized for blocks which are

executed based on a single condition, i.e., they have a single

control dependence.

The OR type predicates are useful when execution of a

block can be enabled by multiple conditions, such as logical

AND (&&) and OR (k) constructs in C. OR type destination

predicate registers are set if Pin is 1 and the result of the

comparison is 1 (0 for OR), otherwise the destination pred-

icate register is unchanged. Note that OR type predicates

must be explicitly initialized to 0 before they are de�ned and

used. However, after they are initialized multiple OR type

predicate de�nes may be issued simultaneously and in any

if (a&&b) beq a,0,L1 pred clear
j = j + 1; beq b,0,L1 pred eq p1OR,p2U ,a,0

else add j,j,1 pred eq p1OR,p3U ,b,0 (p2)

if (c) jump L3 add j,j,1 (p3)
k = k + 1; L1: pred ne p4U ,p5U ,c,0 (p1)

else bne c,0,L2 add k,k,1 (p4)
k = k � 1; add k,k,1 sub k,k,1 (p5)

i = i+ 1; jump L3 add i,i,1
L2:
sub k,k,1

L3:
add i,i,1

(a) (b) (c)

Figure 1: Example of predication, (a) source code, (b) as-

sembly code, (c) assembly code after if-conversion.

order on the same predicate register. This is true since the

OR type predicate either writes a 1 or leaves the register un-

changed which allows implementation as a wired logical OR

condition. This property can be utilized to compute an exe-

cution condition with zero dependence height using multiple

predicate de�ne instructions.

AND type predicates, are analogous to the OR type pred-

icate. AND type destination predicate registers are cleared

if Pin is 1 and the result of the comparison is 0 (1 for AND),

otherwise the destination predicate register is unchanged.

The AND type predicate is particularly useful for transfor-

mations such as control height reduction [16].

Although it is possible to individually set each predicate

register to zero or one through the use of the aforemen-

tioned predicate de�ne instructions, in some cases individ-

ually setting each predicate can be costly. Therefore, two

instructions, pred clear and pred set , are de�ned to provide

a method of setting the entire predicate register �le to 0 or

1 in one cycle.

Code Example. Figure 1 contains a simple example il-

lustrating the concept of predicated execution. The source

code in Figure 1(a) is compiled into the code shown in Fig-

ure 1(b). Using if-conversion [10], the code is then trans-

formed into the code shown in Figure 1(c). The use of

predicate registers is initiated by a pred clear in order to

insure that all predicate registers are cleared. The �rst two

conditional branches in (b) are translated into two pred eq

instructions. Predicate register p1 is OR type since either

condition can be true for p1 to be true. If p2 in the �rst

pred eq is false the second pred eq is not executed. This is

consistent with short circuit boolean evaluation. p3 is true

only if the entire expression is true. The \then" part of the

outer if statement is predicated on p3 for this reason. The

pred ne simply decides whether the addition or subtraction

instruction is performed. Notice that both p4 and p5 remain

at zero if the pred ne is not executed. This is consistent with

the \else" part of the outer if statement. Finally, the incre-

ment of i is performed unconditionally.

2.2 Extensions for Partial Predication

Enhancing an existing ISA to support only partial predica-

tion in the form of conditional move or select instructions

To appear - ISCA-22, Jun 1995 4

trades o� the
exibility and e�ciency provided by full pred-

ication in order to minimize the impact to the ISA. Several

existing architectures provide instruction set features that

re
ect this point of view.

Conditional Move. The conditional move instruction

provides a natural way to add partial support for predicated

execution to an existing ISA. A conditional move instruction

has two source operands and one destination operand, which

�ts well into current 3 operand ISA's. The semantics of a

conditional move instruction, shown below, are similar to

that of a predicated move instruction.

cmov dest,src,cond

if (cond) dest = src

As with a predicated move, the contents of the source

register are copied to the destination register if the condi-

tion is true. Also, the conditional modi�cation of the target

register in a conditional move instruction allows simultane-

ous issue of conditional move instructions having the same

target register and opposite conditions on an in-order pro-

cessor. The principal di�erence between a conditional move

instruction and a predicated move instruction is that a reg-

ister from the integer or
oating-point register �le is used to

hold the condition, rather than a special predicate register

�le. When conditional moves are available, we also assume

conditional move complement instructions (cmov com) are

present. These are analogous in operation to conditional

moves, except they perform the move when cond is false, as

opposed to when cond is true.

The Sparc V9 instruction set speci�cation and the DEC

Alpha provide conditional move instructions for both inte-

ger and
oating point registers. The HP Precision Architec-

ture [17] provides all branch, arithmetic, and logic instruc-

tions the capability to conditionally nullify the subsequent

instruction. Currently the generation of conditional move

instructions is very limited in most compilers. One excep-

tion is the DEC GEM compiler that can e�ciently generate

conditional moves for simple control constructs [18].

Select. The select instruction provides more
exibil-

ity than the conditional move instruction at the expense

of pipeline implementation. The added
exibility and in-

creased di�culty of implementation is caused by the addi-

tion of a third source operand. The semantics of the select

instruction are shown below.

select dest,src1,src2,cond

dest = ((cond) ? src1 : src2)

Unlike the conditional move instruction, the destination

register is always modi�ed with a select. If the condition

is true, the contents of src1 are copied to the destination,

otherwise the contents of src2 are copied to the destination

register. The ability to choose one of two values to place

in the destination register allows the compiler to e�ectively

choose between computations from \then" and \else" paths

of conditionals based upon the result of the appropriate com-

parison. As a result, select instructions enable more e�cient

transformations by the compiler. This will be discussed in

more detail in the next section. The Multi
ow Trace 300

series machines supported partial predicated execution with

select instructions [19].

3 Compiler Support

The compiler eliminates branch instructions by introducing

conditional instructions. The basic transformation is known

as if-conversion [9] [10]. In our approach, full predicate sup-

port is assumed in the intermediate representation (IR) re-

gardless of the the actual architectural support in the tar-

get processor. A set of compilation techniques based on

the hyperblock structure are employed to e�ectively exploit

predicate support in the IR [11]. For target processors that

only have partial predicate support, unsupported predicated

instructions are broken down into sequences of equivalent in-

structions that are representable. Since the transformation

may introduce ine�ciencies, a comprehensive set of peephole

optimizations is applied to code both before and after con-

version. This approach of compiling for processors with par-

tial predicate support di�ers from conventional code genera-

tion techniques. Conventional compilers typically transform

simple control
ow structures or identify special patterns

that can utilize conditional moves or selects. Conversely,

the approach utilized in this paper enables full if-conversion

to be applied with partial predicate support to eliminate

control
ow.

In this section, the hyperblock compilation techniques for

full predicate support are �rst summarized. Then, the trans-

formation techniques to generate partial predicate code from

a full predicate IR are described. Finally, two examples from

the benchmark programs studied are presented to compare

and contrast the e�ectiveness of full and partial predicate

support using the these compilation techniques.

3.1 Compiler Support for Full Predication

The compilation techniques utilized in this paper to exploit

predicated execution are based on a structure called a hy-

perblock [11]. A hyperblock is a collection of connected basic

blocks in which control may only enter at the �rst block, des-

ignated as the entry block. Control
ow may leave from one

or more blocks in the hyperblock. All control
ow between

basic blocks in a hyperblock is eliminated via if-conversion.

The goal of hyperblocks is to intelligently group basic blocks

from many di�erent control
ow paths into a single block for

compiler optimization and scheduling.

Basic blocks are systematically included in a hyperblock

based on two, possibly con
icting, high level goals. First,

performance is maximized when the hyperblock captures a

large fraction of the likely control
ow paths. Thus, any

blocks to which control is likely to
ow are desirable to add

to the hyperblock. Second, resource (fetch bandwidth and

function units) are limited; therefore, including too many

blocks may over saturate the processor causing an overall

performance loss. Also, including a block which has a com-

paratively large dependence height or contains a hazardous

instruction (e.g., a subroutine call) is likely to result in per-

formance loss. The �nal hyperblock consists of a linear se-

quence of predicated instructions. Additionally, there are ex-

plicit exit branch instructions (possibly predicated) to any

blocks not selected for inclusion in the hyperblock. These

branch instructions represent the control
ow that was iden-

ti�ed as unpro�table to eliminate with predicated execution

support.

To appear - ISCA-22, Jun 1995 5

Note: non-excepting instructions
 assumed.

before
promotion

after
promotion

partially
predicated code

fully
predicated code

load x
y = 2x+3

operation:

load
mul
add

load
mul
add

temp1,addrx,offx (Pin)
temp2,temp1,2 (Pin)
y,temp2,3 (Pin)

temp2,temp1,2
y,temp,2,3 (Pin)

temp1,addrx,offx

load
cmov
mul
cmov
add
cmov

temp3,addrx,offx
temp1,temp3,Pin
temp4,temp1,2
temp2,temp4,Pin
temp5,temp2,3
y,temp5,Pin

load
mul
add
cmov

temp1,addr,offx
temp2,temp1,2
temp3,temp2,3
y,temp3,Pin

Figure 2: Example of predicate promotion.

3.2 Compiler Support for Partial Predication

Generating partially predicated code from fully predicated

code involves removing predicates from all instructions

which are not allowed to have a predicate speci�er. The

only instruction set remnants of predication in the partially

predicated code are conditional move or select instructions.

Transforming fully predicated code to partially predicated

code is essentially accomplished by converting predicated in-

structions into speculative instructions which write to some

temporary location. Then, conditional move or select in-

structions are inserted to conditionally update the processor

state based on the value of the predicate. Since all predi-

cated instructions are converted to speculative instructions,

the e�ciency of the partially predicated code is heavily de-

pendent on the underlying support for speculation provided

by the processor. In this section, the code generation pro-

cedure chosen to implement the full to partial predication

transformation is described. The procedure is divided into 3

steps, predicate promotion, basic conversion, and peephole

optimization.

Predicate Promotion. The conversion of predicated

instructions into an equivalent set of instructions that only

utilize conditional moves or selects introduces a signi�cant

amount of code expansion. This code expansion is obviously

reduced if there are fewer predicated instructions that must

be converted. Predicate promotion refers to removing the

predicate from a predicated instruction [11]. As a result,

the instruction is unconditionally executed. By performing

predicate promotion, fewer predicated instructions remain

in the IR that must be converted.

An example to illustrate the e�ectiveness of predicate pro-

motion is presented in Figure 2. The code sequence in the

upper left box is the original fully predicated IR. Straight-

forward conversion to conditional move code, as will be dis-

cussed in the next subsection, yields the code in the upper

right box. Each predicated instruction is expanded into two

instructions for the partial predicate architecture. All the

conditional moves in this sequence, except for the last, are

unnecessary if the original destination registers of the predi-

cated instructions are temporary registers. In this case, the

predicate of the �rst two instructions can be promoted, as

shown in the lower left box of Figure 2. The add instruc-

tion is the only remaining predicated instruction. Finally,

conversion to conditional move code after promotion yields

the code sequence in the bottom right box of Figure 2. In

all, the number of instructions is reduced from 6 to 4 in this

example with predicate promotion.

It should be noted that predicate promotion is also e�ec-

tive for architectures with full predicate support. Predicate

promotion enables speculative execution by allowing predi-

cated instructions to execute before their predicate is calcu-

lated. In this manner, the dependence between the predicate

de�nition and the predicated instruction is eliminated. The

hyperblock optimizer and scheduler utilize predicate promo-

tion when the predicate calculation occurs along a critical

dependence chain to reduce this dependence length.

Basic Conversions. In the second step of the trans-

formation from fully predicated code to partially predicated

code, a set of simple transformations, referred to as basic

conversions, are applied to each remaining predicated in-

struction independently. The purpose of the basic conver-

sions is to replace each predicated instruction by a sequence

of instructions with equivalent functionality. The sequence

is limited to contain conditional moves as the only condi-

tional instructions. As a result, most instructions in the

sequence must be executed without a predicate. These in-

structions thus become speculative. When generating specu-

lative instructions, the compiler must ensure they only mod-

ify temporary registers or memory locations. Furthermore,

the compiler must ensure the speculative instructions will

not cause any program terminating exceptions when the con-

dition turns out to be false. Program terminating exceptions

include illegal memory address, divide-by-zero, over
ow, or

under
ow.

The basic conversions that may be applied are greatly sim-

pli�ed if the underlying processor has support full support

for speculative execution. In particular, non-excepting or

silent, instructions allow for the most e�cient transforma-

tions. For such an architecture, the basic conversions for

the main classes of instructions are summarized in Figure 3.

The simplest conversion is used for predicated arithmetic

and logic instructions and also for memory loads. The con-

version, as can be seen in Figure 3, is to rename the desti-

nation of the predicated instruction, remove the predicate,

and then conditionally move the result into the original des-

tination based on the result of the predicate.

The basic conversions for memory store instructions are

similar. Since the destination of a store instruction is a mem-

ory location instead of a register, a di�erent technique must

be used to insure that the an invalid value is not written to

the original destination of the store. Figure 3 shows that

the address of the store is calculated separately. Then a

conditional move is used to replace the address of the store

with $safe addr when the predicate of the store is false. The

macro $safe addr refers to a reserved location on the stack.

The conversions for predicate de�nition instructions are

the most complicated because predicate de�nitions have

rather complicated logic capabilities. The conversions

for two representative predicate de�nition instructions are

shown in Figure 3. The predicate de�nition instructions

are identical except for the type on the destination predi-

cate register. The transformation for the OR type predicate

To appear - ISCA-22, Jun 1995 6

pred_lt Pout
OR

,src1,src2 (Pin) lt temp,src1,src2
and temp,Pin,temp
or Pout,Pout,temp

store addr,off,src (Pin)

load dest,addr,off (Pin)

bne Pin,0,label

ge temp,src1,src2
blt temp,Pin,label

beq Pin,0,NEXT
jsr label

NEXT:

jump label (Pin)

blt src1,src2,label (Pin)

jsr label (Pin)

add dest,src1,src2 (Pin)

div_f dest,src1,src2 (Pin)

add temp,src1,src2
cmov dest,temp,Pin

div_f temp_dest,src1,src2
cmov dest,temp_dest,Pin

memory instructions

branch instructions

predicate definition instructions

Fully Predicated Code

arithmetic & logic instructions

Basic Conversions, Non−
 excepting Instructions

temp_addr,addr,off
temp_addr,$safe_addr,Pin
temp_addr,0,src

add
cmov_com
store

load
cmov

temp_dest,addr,off
dest,temp_dest,Pin

temp,src1,src2
Pout,Pin,temp

lt_f
andUpred_lt_f Pout ,src1,src2 (Pin)

Figure 3: Basic conversions assuming non-excepting instruc-

tions available in the architecture.

produces three instructions. The �rst instruction performs

the lt comparison of src1 and src2 , placing the result in a

temporary register. Each predicate de�nition transforma-

tion generates such a comparison instruction. The second

instruction performs a logical AND which clears the tem-

porary register if the predicate Pin is false. This clearing

instruction is generated only if the predicate de�nition in-

struction is predicated. The third instruction performs a

logical OR of the value in the temporary register with the

previous value of the OR type predicate Pout and deposits

the result t in Pout . For an AND type predicate, the result

would be stored with a logical AND . For an unconditional

predicate, a separate depositing instruction is not necessary.

The basic conversions for branches are relatively straight

forward and are left to the reader. Predicated subroutine

calls are handled by branching around them when the pred-

icate is false since conditional calls were not assumed in the

architecture.

Conversions are also possible if no speculation support is

provided. However, in addition to insuring that registers

or memory locations are not illegally modi�ed, the basic

conversions must also prevent exceptions when the original

predicate is false. Figure 4 shows three typical conversions.

The non-excepting versions of these appeared in Figure 3.

Note that the excepting versions produce more instructions

than the corresponding conversions for non-excepting in-

structions. For predicate de�nition, arithmetic, and logic

instructions, the only di�erence in the conversions is that

a value that is known to prevent an exception is condition-

ally moved into one of the source operands of the previously

predicated instruction. These values, which depend on the

type of instruction, are referred to as $safe val in the �g-

add
cmov_com
load
cmov

temp_addr,addr,off
temp_addr,$safe_addr,Pin
temp_dest,temp_addr,0
dest,temp_dest,Pin

load dest,addr,off (Pin)

memory instructions

Fully Predicated Code Basic Conversions,
Excepting Instructions

arithmetic & logic instructions

div_f dest,src1,src2 (Pin) mov
cmov_com
div_f
cmov

temp_src,src2
temp_src,$safe_val,Pin
temp_dest,src1,temp_src
dest,temp_dest,Pin

U

predicate definition instructions

Pout ,src1,src2 (Pin)pred_lt_f temp_src,src2
temp_src,$safe_val,Pi
temp_dest,src1,temp_src
Pout,temp_dest,Pin

mov
cmov_com
lt_f
and

Figure 4: Basic conversions without non-excepting instruc-

tions available in the architecture.

ure. The conversions for
oating point conditional branch

instructions are similar. Conversion for load instructions is

also similar, only an address known not to cause an illegal

memory access is moved into the address source of the load.

Peephole Optimizations. The basic transformations of

the previous section introduce some ine�ciencies since each

instruction is considered independently. Many of these in-

e�ciencies can be removed by applying a set of peephole

optimizations after the basic transformation. The goal of

these optimizations is to reduce the instruction count and

dependence height of the partial predicate code. The opti-

mizations �nd opportunities for improving code e�ciency by

investigating the interactions of the various transformations,

exploiting special cases, and utilizing the additional func-

tionality of the select instruction over the conditional move.

Some of the optimizations in this section rely on the exis-

tence of complementary AND and OR instructions (and not

and or not). These instructions are simply logical instruc-

tions in which the second source operand is complemented.

The existence of these instructions is assumed in the base

instruction set.

Basic conversions of predicate de�nes introduce redundant

comparison and logic instructions. For predicates which only

di�er in predicate type (U , OR, AND), the comparisons

are obviously redundant. Applying common subexpression

elimination, copy propagation, and dead code removal after

conversion e�ectively eliminates these redundancies. In some

cases, the transformations of similar predicate de�nitions re-

sult in opposite comparisons. If one of these comparisons can

be inverted, then one of the comparisons may be eliminated.

A comparison can be inverted when each use of the result

of this comparison can be inverted without the addition of

an instruction. The result of a comparison in a predicate

de�nition instruction used only by and , and not , or , or not ,

cmov , cmov com, select , or a conditional branch may be

inverted. The only two non-invertible sources which might

contain the result of a predicate de�nition conversion are

the non-inverted inputs of and not and or not . Therefore,

in most cases, one of two complementary comparisons re-

To appear - ISCA-22, Jun 1995 7

sulting from similar predicate de�nitions can be eliminated.

The use of OR type predicates is extremely e�cient for

architectures with full predicate support. Sequences of OR

type predicate de�nitions which all write to the same desti-

nation predicate may be simultaneously executed. However,

with partial support, these sequences of OR type predicate

de�nitions result in a sequential chain of dependent instruc-

tions. These strict sequential dependences may be overcome

using associativity rules to reduce the height of the depen-

dence chain. The dependence height of the resulting code is

log2(n), where n is the number of OR type predicate de�ni-

tions. An example of OR-Tree optimization is presented in

Section 3.3.

Some additional optimizations are possible if a select in-

struction is available. The functionality of the select in-

struction is described in Section 2.2. Through the use of a

select instruction, one instruction from the sequences used

for excepting arithmetic and memory instructions shown in

Figure 4 can be eliminated. The detailed use of selects is

not discussed in this paper due to space considerations.

3.3 Benchmark Examples

In order to more clearly understand the e�ectiveness of pred-

icated execution support and the performance tradeo�s of

full versus partial support, two examples from the set of

benchmarks are presented. The �rst example is from wc

and the second is from grep. These benchmarks were chosen

because they are relatively small, yet they are very control-

intensive so they clearly illustrate the e�ectiveness of full

and partial predicate support.

Example Loop from Wc. Figure 5(a) shows the con-

trol
ow graph for the most important loop segment from

the benchmark wc. The control
ow graph is augmented

with the execution frequencies of each control transfer for

the measured run of the program. This loop is characterized

by small basic blocks and a large percentage of branches.

The loop segment contains 13 basic blocks with a total of 34

instructions, 14 of which are branches. The performance of

an 8-issue ILP processor without predicated execution sup-

port is limited by this high frequency of branches. Overall,

a speedup of 2.3 is achieved for an 8-issue processor over a

1-issue processor (see Figure 8).

The assembly code after hyperblock formation for the loop

segment with full and partial predicate support is shown in

Figures 5(b) and (c), respectively. The issue cycle is given

to the right of each assembly code instruction. Note that

the assembly code is not reordered based on the issue cycle

for ease of understanding. The schedule assumes a 4-issue

processor which can issue 4 instructions of any type except

branches, which are limited to 1 per cycle. With both full

and partial predicate support, all of the branches except

three are eliminated using hyperblock formation. The three

remaining branches, conditional branch to block C, condi-

tional branch to EXIT, and the loop backedge, are highly

predictable. Therefore, virtually all the mispredictions are

eliminated with both full and partial predicate support in

this loop. The resulting performance is increased by 17%

with partial predicate support and an additional 88% with

full predicate support (see Figure 8).

The performance di�erence between full and partial pred-

icate support comes from the extra instructions required to

represent predicate de�nes and predicated instructions. As

a result, the issue resources of the processor are over sat-

urated with partial predicate support. In the example in

Figure 5, the number of instructions is increased from 18

with full predicate support to 31 with partial predicate sup-

port. This results in an increase in execution time from 8

to 10 cycles. For the entire benchmark execution, a similar

trend is observed. The number of instructions is increased

from 1526K with full predicate support to 2999K with par-

tial predicate support, resulting in a speedup increase of 2.7

with partial support to 5.1 with full support (see Figure 8

and Table 2).

Example Loop from Grep. Figure 6 shows the as-

sembly code for the most important loop segment from the

benchmark grep. The base processor model, which does

not support any predicated execution, employs speculative

execution in conjunction with superblock ILP compilation

techniques to achieve the schedule shown in Figure 6(a) [20].

Each of the conditional branches in the �gure are very infre-

quently taken, thus the sequence of instructions iterates very

frequently. Overall, grep is dominated by an extremely high

frequency of branches. This high frequency of branches is

the performance bottleneck of this loop since only 1 branch

resource is available. However, the branches are highly pre-

dictable. Thus, hyperblock compilation techniques focus on

reducing this branch bottleneck for processors with limited

branch resources.

With full predicate support, the compiler is able to com-

bine the branches into a single exit branch using OR type

predicate de�nitions. Since OR type predicate de�nitions

can be issued simultaneously, an extremely tight schedule

can be achieved. The execution time is dramatically re-

duced from 14 to 6 cycles with full predicate support. With

partial predicate support, the same transformations are ap-

plied. Therefore, the same number of branches are elimi-

nated. However, the representation of OR type predicates

is less e�cient with partial predicate support. In particular,

the logical OR instructions cannot be simultaneously issued.

The or-tree optimization discussed previously in Section 3.2

is applied to reduce the dependence height of the sequence

and improve performance. In the example, partial predicate

support improves performance from 14 to 10 cycles. Over-

all for the �nal benchmark performance, partial predicate

support improves performance by 46% over the base code

and full predicate support further improves performance by

31%.

4 Experimental Evaluation

4.1 Methodology

The predication techniques presented in this paper are evalu-

ated through emulation-driven simulation. The benchmarks

studied consist of 008.espresso, 022.li, 023.eqntott, 026.com-

press, 052.alvinn, 056.ear, and 072.sc from SPEC-92, and

the Unix utilities cccp, cmp, eqn, grep, lex, qsort, wc, and

yacc. The benchmark programs are initially compiled to

produce intermediate code, which is essentially the instruc-

To appear - ISCA-22, Jun 1995 8

pred_ge p1 ,p2 ,32,r2

pred_ge p1 ,p3 ,r2,127 (p2)

pred_eq p4 ,0,r4 (p3)

pred_eq p5 ,p6 ,r2,10 (p1)

pred_eq p7 ,r2,10 (p1)

pred_eq p5 ,p8 ,r2,32 (p6)

add r5,r5,1 (p4)

add r4,r4,1 (p4)

add r6,r6,1 (p7)

mov r4,0 (p5)

OR U

OR U

U

OR U

U

OR U

pred_eq p5 ,r2,9 (p8)OR

r7,r7,1

r3,r3,1

ld_uc r2,r3,−1

r1,r1,−1

add

add_u

add

blt
ld_uc
beq
lt
ge
and_not
and
or_not
eq
and
eq
and_not
and
eq
and_not
and
add
cmov
add
cmov
add
cmov
eq
and
or
or
cmov
add
add_u
add

r2,r3,−1

beq

A

CB

14

14

105K

105K

D

E

F

H

K

G

I J

L

M

1
105K

77K 28K

0

77K

61K 16K

16K

4K 24K

4K 22K
2K

252K

28K

0

2

3

4

5

0

6

7

2

4

4

5

5

5

2

3

2

8 cycles
r7,r7,1
r3,r3,1
r1,r1,−1

r4,0,r15

r25,r5,1
r5,r25,r14
r24,r4,1
r4,r24,r14

r6,r26,r17
r26,r6,1

r35,r2,9

r33,r2,127
r12,32,r2

r36,r2,10
r16,r11,r36

r14,r34,r13
r34,0,r4

r13,r12,r33

r11,r31,r12
r31,r33,r12

r17,r36,r11

0
1

8
9

3
3
3
4
4
5
1
5
3
6
6

r37,r2,32 4

7

7
r55,r37,r16
r18,r16,r37

7
1

1

1

6

6

7
4
5r65,r35,r18

r45,r17,r65
r15,r65,r45

7

2
2
2
9

10 cyclesNote: 4−issue, 1−branch machine assumed for scheduling

issue cycle

issue cycle

r1,0,blockC

r2,−1,EXIT

blockA

blockA:blt

EXIT

blockA:

r2,−1,EXIT

jump

jump blockA

r1,0,blockC

(b) fully predicated hyperblock code (c) partially predicated code(a) basic block control flow block

Figure 5: Example loop segment from wc.

tion set of an architecture with varying levels of support for

predicated execution. Register allocation and code schedul-

ing are performed in order to produce code that could be

executed by a target architecture with such support. To al-

low emulation of the code on the host HP PA-RISC proces-

sor, the code must be modi�ed to remove predication, while

providing accurate emulation of predicated instructions.

Emulation ensures that the optimized code generated for

each con�guration executes correctly. Execution of the

benchmark with emulation also generates an instruction

trace containing memory address information, predicate reg-

ister contents, and branch directions. This trace is fed to a

simulator for performance analysis of the particular archi-

tectural model being studied. We refer to this technique as

emulation-driven simulation. The simulator models, in de-

tail, the architecture's prefetch and issue unit, instruction

and data caches, branch target bu�er, and hardware inter-

locks, providing an accurate measure of performance.

Predicate Emulation. Emulation is achieved by per-

forming a second phase of register allocation and generat-

ing PA-RISC assembly code. The emulation of the varying

levels of predicate support, as well as speculation of load in-

structions is done using the bit manipulation and conditional

nulli�cation capabilities of the PA-RISC instruction set [17].

Predicates are emulated by reserving n of the callee-saved

registers and accessing them as 32� n 1-bit registers.

The instruction sequence required to emulate a predicate

de�ne instruction is dependent upon the predicate types of

the destination predicate registers. As an example, consider

the predicated predicate de�ne instruction (1) in Figure 7.

In this example, predicate registers p1 , p2 , and p3 have been

assigned bits 1,2, and 3 of general register %r3 , respectively.

Instruction (1) is de�ning predicate register p1 as OR type

and p3 as unconditional complement. The �rst instruction

in the �ve instruction assembly code sequence, places a 0 in

bit 3 of register %r3 , unconditionally setting p3 to 0. The

second instruction will branch around the remaining instruc-

tions if the predicate p2 is 0. If p2 is 1 the third instruction

then performs the comparison, and using the conditional nul-

li�cation capabilities of that instruction, determines which

of the next two instructions will be executed. If the contents

of %r24 is 0, then only the �fth instruction will be executed,

writing a 1 to bit 1 of %r3 , setting p1 to 1. Otherwise, only

the fourth instruction will be executed, writing a 1 to bit 3

of %r3 , setting p3 to 1.

Predicated instructions are emulated by extracting the bit

from one of the reserved registers that corresponds to the

predicate for that instruction. The value of that bit is used

to conditionally execute the predicated instruction. For ex-

ample, instruction (2) in Figure 7 is predicated on p3 . Thus,

bit 3 is extracted from %r3 and is used to conditionally nul-

lify the increment of %r25 .

Conditional Move Emulation. The emulation of con-

ditional move and select instructions is done in a similar

fashion. Instruction (3) in Figure 7 is a conditional move

of r6 into r5 if the contents of r8 is non-zero. Emulation

requires two instructions. The �rst performs the comparison

and nulli�es the subsequent copy of 6 into 5 if r8 is zero.

Instruction (4) in Figure 7 is a select instruction. As with

the conditional move instruction, the �rst instruction per-

forms a comparison to determine the contents of r8 . If r8 is

zero, r7 will be copied into r5 , otherwise r6 is copied into

r5 as described in Section 2.2.

Processor Models. Three processor models are evalu-

ated this paper. The baseline processor is a k-issue proces-

sor, with no limitation placed on the combination of instruc-

To appear - ISCA-22, Jun 1995 9

ld_c r3,r1,−3
eq r7,r3,10
eq r8,0,r3
ge r9,r4,r5

ld_c r13,r1,−2
eq r17,r13,10
eq r18,0,r13
ge r19,r4,r15

ld_c r23,r1,−1

st_c r4,−2,r3
st_c r4,−1,r13
st_c r4,0,r23
add r4,r4,3
add r1,r1,3

iter 1

iter2

iter3

or−tree

bge r1,r2,cb158

ld_c r3,r1,−3

beq r3,10,cb159

beq 0,r3,cb160

bge r4,r5,cb161

st_c r4,−2,r3

bge r1,r12,cb162

ld_c r13,r1,−2

beq r13,10,cb163

beq 0,r13,cb164

bge r4,r15,cb165

st_c r4,−1,r13

bge r1,r22,cb166

ld_c r23,r1,−1

beq r23,10,cb167

st_c r4,0,r23

beq 0,r23,cb168

bge r4,r25,cb269

add r1,r1,3

add r4,r4,3

cb6

iter 1

iter2

iter3

ORpred_ge p1 ,r1,r2

pred_eq p1 ,r3,10OR

pred_eq p1 ,0,r3OR

pred_ge p1 ,r4,r5OR

pred_ge p1 ,r1,r12OR

pred_eq p1 ,r13,10OR

pred_eq p1 ,0,r13OR

pred_ge p1 ,r4,r15OR

pred_ge p1 ,r1,r22OR

pred_eq p1 ,r23,10OR

pred_eq p1 ,0,r23OR

pred_eq p1 ,r4,25OR

pred_clear p1

iter 1

iter2

iter3

ld_c r3,r1,−3

0

4

0

1

1

3

1

1

3

1

1

1

3

3

1

5
5
5

4

5

7

9

6

10

11

12

13

12

0
0

3

0

0

4

4

4
5
5
5

6
6
7

8

0

2

4

0

8

8

0

12

12

14 cycles

0

2

2

0

2

2

0

3

4
4
4

6 cycles

2
2

2
2

3
3

3

4

5

9

8
8
8

9
9

10 cycles

issue cycle

issue cycle

issue cycleNote: 4−issue,1−branch assumed for scheduling

(a) superblock code (c) partially predicated code

jump

jumb cb6

jump cb293 (p1)

ld_c r23,r1,−1

ld_c r13,r1,−2

add r4,r4,3
add r1,r1,3

st_c r4,−2,r3
st_c r4,−1,r13
st_c r4,0,r23

ge r6,r1,r2

ge r16,r1,r2

ge r26,r1,r2

ge r29,r4,r25
eq r28,0,r23
eq r27,r23,10

bne r400,0,cb293

or r101,r7,r8
or r102,r9,r16
or r103,r17,r18
or r104,r19,r26
or r105,r27,r28
or r200,r29,r100
or r201,r101,r102
or r202,r103,r104
or r300,r105,r200
or r301,r201,r202
or r400,r300,r301

or r100,r6,r7

jump cb6

(b) fully predicated hyperblock code

Figure 6: Example loop segment from grep.

tions which may be issued each cycle, except for branches.

The memory system is speci�ed as either perfect or consists

of a 64K directed mapped instruction cache and a 64K di-

rect mapped, blocking data cache; both with 64 byte blocks.

The data cache is write-through with no write allocate and

has a miss penalty of 12 cycles. The dynamic branch predic-

tion strategy employed is a 1K entry BTB with 2 bit counter

with a 2 cycle misprediction penalty. The instruction laten-

cies assumed are those of the HP PA-RISC 7100. Lastly, the

baseline processor is assumed to have an in�nite number of

registers. The baseline processor does not support any form

of predicated execution. However, it includes non-excepting

or silent versions of all instructions to fully support specula-

tive execution. Superblock ILP compilation techniques are

utilized to support the baseline processor [20]. The base-

line processor is referred to as Superblock in all graphs and

tables.

For partial predicate support, the baseline processor is ex-

tended to support conditional move instructions. Note that

since non-excepting versions of all instructions are available,

the more e�cient conversions are applied by the compiler

for partial predication (Section 3.2). The partial predicate

support processor is referred to as Conditional Move. The

�nal model is the baseline processor extended to support

full predication as described in Section 2.1. This model is

referred to as Full Predication. For this model, hyperblock

compilation techniques are applied. Performance of the 3

models is compared by reporting the speedup of the par-

ticular processor model versus the baseline processor. In

(1) pred eq p1OR, p3
U
,r24,0 (p2) DEPI 0,3,1,%r3

BB,>=,N %r3,2,$pred 0

COMCLR,= %r0,%r24,%r0

DEPI,TR 1,3,1,%r3

DEPI 1,1,1,%r3

$pred 0

(2) add r25,r25,1 (p3) EXTRU,EV %r3,3,1,%r0

ADDI 1,%r25,%r25

(3) cmov r5,r6,r8 COMCLR,= %r8,%r0,%r0

COPY %r6,%r5

(4) select r5,r6,r7,r8 COMCLR,= %r8,%r0,%r0

OR,TR %r6,%r5

COPY %r7,%r5

Figure 7: HP PA-RISC emulation of predicate support.

particular, speedup is calculated by dividing the cycle count

for a 1-issue baseline processor by the cycle count of a k-issue

processor of the speci�ed model.

4.2 Results

Figure 8 shows the relative performance achieved by su-

perblock, conditional move, and full predication for an issue-

8, 1-branch processor. Full predication performed the best

in every benchmark with an average speedup of 63% over

superblock.1 Speedup with conditional move code fell be-

tween superblock and full predication for all benchmarks

except 072.sc which performed slightly below superblock

1Averages reported refer to the arithmetic mean.

To appear - ISCA-22, Jun 1995 10

Superblock Conditional Move Full Predication

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

w
c

ya
cc

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Figure 8: E�ectiveness of full and partial predicate support

for an 8-issue, 1-branch processor with perfect caches.

Superblock Conditional Move Full Predication

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

w
c

ya
cc

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Figure 9: E�ectiveness of full and partial predicate support

for an 8-issue, 2-branch processor with perfect caches.

code's performance. The unusual behavior of 072.sc was pri-

marily due to increased dependence chain lengths caused by

the conditional move transformations. On average, though,

conditional move code had a speedup of 33% over su-

perblock. The speedup for conditional move code is very

substantial. Most researchers and product developers have

reported small gains except for certain special cases with

conditional moves. However, utilizing the hyperblock tech-

niques in conjunction with the conditional move transforma-

tions yields consistent performance improvements.

Full predication also achieved performance gain on top of

the conditional move model. This illustrates that there is

signi�cant performance gain possible provided by the ISA

changes to support full predication. In particular, the e�-

ciency of representing predicated instructions, the reduced

dependence heights to represent predicated instructions, and

the ability to simultaneously execute OR type predicate de-

�nes provided full predicate support with the additional per-

formance improvement. On average, a gain of 30% over the

conditional move model was observed.

Increasing the branch issue rate from 1 to 2 branches per

cycle provides interesting insight into the e�ectiveness of

predicated execution. Figure 9 shows the performance result

of an 8-issue processor that can execute 2 branches per cycle.

The performance improvement of conditional move code and

full predicate against superblock code is reduced. This is at-

tributal to improving the performance of superblock. The

Superblock Conditional Move Full Predication

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

w
c

ya
cc

1.00

2.00

3.00

4.00

Figure 10: E�ectiveness of full and partial predicate support

for an 4-issue, 1-branch processor with perfect caches.

Superblock Conditional Move Full Predication

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

w
c

ya
cc

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Figure 11: E�ectiveness of full and partial predicate support

for an 8-issue, 1-branch processor with 64K instruction and

data caches.

conditional move and full predication code has had many of

the branches removed with hyperblock formation. There-

fore, increasing the number of branches does not noticeably

improve the performance of conditional move and full pred-

ication code. On average, conditional move performed only

3% faster than superblock while full predication performed

35% faster than superblock.

Figure 10 shows performance of the benchmarks on a 4

issue processor that can issue 1 branch per cycle. The most

noticeable trend across these benchmarks is that while full

predication consistently beats superblock code, conditional

move code performs worse than superblock in the majority

of benchmarks. Since support for predication in the con-

dition move code is limited, the compiler must compensate

by creating many more instructions than it would with full

predicate support. These extra instructions are absorbed by

the 8 issue machine, but saturate the 4 issue machine creat-

ing poor results. These results indicate a more conservative

hyperblock formation algorithm needs to be employed for

the conditional move model with a 4-issue processor. For

full predication, substantial performance gain is still possi-

ble for the 4-issue processor, with an average of 33% speedup

over superblock.

To evaluate the cache e�ects associated with predicated

execution, Figure 11 is presented. As expected all three

methods were a�ected by a realistic cache model. However,

To appear - ISCA-22, Jun 1995 11

Benchmark Superblk Cond. Move Full Pred.

008.espresso 489M 812M (1.66) 626M (1.28)
022.li 31M 38M (1.23) 32M (1.04)
023.eqntott 1030M 1230M (1.19) 885M (0.86)
026.compress 90M 128M (1.41) 108M (1.20)
052.alvinn 3574M 4003M (1.12) 3603M (1.01)
056.ear 11225M 13838M (1.23) 11073M (0.99)
072.sc 91M 85M (0.93) 75M (0.83)
cccp 3701K 5077K (1.37) 3855K (1.04)
cmp 932K 1422K (1.53) 922K (0.99)
eqn 44M 49M (1.11) 44M (0.99)
grep 1282K 2467K (1.92) 1647K (1.28)
lex 36M 75M (2.10) 46M (1.29)
qsort 44M 70M (1.61) 49M (1.11)
wc 1493K 2999K (2.01) 1526K (1.02)
yacc 43M 66M (1.53) 50M (1.16)

Table 2: Dynamic instruction count comparison.

two benchmarks stand out. The real cache signi�cantly re-

duced the performance of 026.compress in all three models.

Conditional move and full predication code increased data

memory tra�c more by performing speculative execution

using predicate promotion. Since these promoted instruc-

tions often caused cache misses, the performance of condi-

tional move and full predication code dropped signi�cantly.

Eqn also exhibited an interesting result. Conditional move

performed poorly while full predication and superblock re-

mained proportionally the same. This is a side e�ect of

the increased instruction cache miss rate due to conditional

move's larger instruction count. This is evidenced by the dy-

namic instruction count of eqn in Table 2. On average pred-

icated code still yielded good results over superblock with

full predication performing 54% faster than superblock and

conditional moves performing 24% faster than superblock.

The dynamic instruction count of all benchmarks with

respect to a processor model is shown in Table 2. Full predi-

cation code can increase dynamic instruction count over su-

perblock as is executes both paths of an if-then-else con-

struct. Superblock code can increase dynamic instruction

count over full predication by unnecessary speculated in-

structions into frequently executed paths. Therefore the

overall relation in instruction count between full predication

and superblock can vary as the results indicate. Conditional

move code's dynamic instruction count is hit hardest; how-

ever, since it su�ers from executing code normally hidden by

branches combined with the ine�ciencies associated with not

having full predicate support. Conditional move code had an

average of 46% more dynamic instructions than superblock,

while full predication had only 7% dynamic instruction.

Finally, as shown in Table 3, the number of branches in

partially and fully predicated code is substantially less than

in the superblock code. Much of the speedup of full and par-

tial predication comes from the elimination of branches. Mis-

predicted branches incur a signi�cant performance penalty.

With fewer branches in the code, there are fewer mispre-

dictions. Also, in many architectures, because of the high

cost of branch prediction, the issue rate for branches is less

than the issue rate for other instructions. Therefore, fewer

branches in the code can greatly increase the available ILP.

Partially and fully predicated code have very close to the

same number of branches, with fully predicated code often

having just a few less. The small di�erence in the number

of branches is a result of adding branches around predicated

subroutine calls in partially predicated code. The di�erences

in the misprediction ratios for partially and fully predicated

code is also a result of predicated subroutine calls.

An odd behavior is observed for grep in Table 3. The

number of mispredictions for the conditional move and full

predication models are larger than that of the superblock

model. This is caused by a branch combining transformation

employed for hyperblocks by the compiler which is heavily

applied for grep. With this transformation, unlikely taken

branches are combined to a single branch. The goal of the

transformation is to reduce the number of dynamic branches.

However, the combined branch typically causes more mispre-

dictions than the sum of the mispredictions caused by the

original branches. As a result, the total number of mispre-

dictions may be increased with this technique.

5 Concluding Remarks

The code generation strategy presented in this paper illus-

trates the qualitative bene�t of both partial and full pred-

ication. In general, both allow the compiler to remove a

substantial number of branches from the instruction stream.

However, full predication allows more e�cient predicate

evaluation, less reliance on speculative execution, and fewer

instructions executed. As shown in our quantitative results,

these bene�ts enable full predication to provide more robust

performance gain in a variety of processor con�gurations.

For an eight issue processor that executes up to one branch

per cycle, we show that conditional move allows about 30%

performance gain over an aggressive base ILP processor with

no predication support. This speedup is very encouraging

and shows that a relatively small architectural extension

can provided signi�cant performance gain. Full predication

o�ers another 30% gain over conditional move. The perfor-

mance gains of full and partial predication support illustrate

the importance of improving branch handling in ILP proces-

sors using predicated execution.

Results based on a four issue processor illustrate the ad-

vantage of full predication support. Full predication support

remains substantially superior even in the presence of a low

issue rate. This is due to its e�cient predicate evaluation

and low instruction overhead. This contrasts with condi-

tional move support where the extra dynamic instructions

over utilize the processor issue resources and result in a siz-

able performance degradation for the majority of the bench-

marks. Nevertheless, the substantial performance gain for

two of the benchmarks suggests that conditional move could

be a valuable feature even in a low issue rate processor. How-

ever, this does indicate that a compiler must be extremely

intelligent when exploiting conditional move on low issue

rate processors.

All of the results presented in this paper are based on a

2-cycle branch prediction miss penalty. This was chosen to

show conservative performance gains for predicated execu-

tion. For machines with larger branch prediction miss penal-

ties, we expect the bene�ts of both full and partial prediction

to be much more pronounced. Furthermore, when more ad-

vanced compiler optimization techniques become available,

To appear - ISCA-22, Jun 1995 12

Benchmark Superblock Conditional Move Full Predication
BR MP MPR BR MP MPR BR MP MPR

008.espresso 75M 3402K 4.55% 38M 2066K 5.38% 33M 1039K 3.15%
022.li 7457K 774K 10.38% 6169K 694K 11.25% 6110K 702K 11.5%
023.eqntott 315M 42M 13.47% 53M 6732K 12.66% 51M 6931K 13.57%
026.compress 12M 1344K 10.9% 9269K 864K 9.32% 9240K 867K 9.38%
052.alvinn 463M 1091K 0.24% 74M 896K 1.23% 74M 1032K 1.38%
056.ear 1539M 66M 4.3% 443M 16M 3.52% 442M 15M 3.4%
072.sc 22M 1232K 5.49% 11M 1044K 9.19% 11M 934K 8.26%
cccp 921K 66K 7.19% 537K 65K 12.17% 534K 65K 12.15%
cmp 530K 4395 0.83% 26K 31 0.12% 26K 31 0.12%
eqn 7470K 1612K 8.2% 4506K 514K 11.4% 4495K 511K 11.37%
grep 663K 9660 1.46% 171K 20K 11.7% 171K 20K 11.73%
lex 14M 232K 1.65% 3070K 201K 6.55% 3030K 196K 6.46%
qsort 8847K 1332K 15.06% 6092K 597K 9.79% 6066K 610K 10.06%
wc 478K 33K 6.85% 224K 57 .025% 224K 57 .025%
yacc 12M 517K 4.31% 5944K 445K 7.48% 5900K 431K 7.31%

Table 3: Comparison of branch statistics: number of branches (BR), mispredictions (MP), and miss prediction rate (MPR).

we expect the performance gain of both partial and full pred-

ication to increase. We also feel it would be interesting to

explore the range of predication support between conditional

move and full predication support.

Acknowledgements

The authors would like to thank Roger Bringmann and Dan

Lavery for their e�ort in helping put this paper together. We

also wish to extend thanks to Mike Schlansker and Vinod

Kathail at HP Labs for their insightful discussions of the

Playdoh model of predicated execution. Finally, we would

like to thank Robert Cohn and Geo� Lowney at DEC, and

John Ruttenberg at SGI for their discussions on the use

of conditional moves and selects. This research has been

supported by the National Science Foundation (NSF) under

grant MIP-9308013, Intel Corporation, Advanced Micro De-

vces, Hewlett-Packard, SUN Microsystems and AT&T GIS.

References

[1] J. E. Smith, \A study of branch prediction strategies," in
Proceedings of the 8th International Symposium on Com-

puter Architecture, pp. 135{148, May 1981.

[2] J. Lee and A. J. Smith, \Branch prediction strategies and
branch target bu�er design," IEEE Computer, pp. 6{22, Jan-
uary 1984.

[3] T. Y. Yeh and Y. N. Patt, \A comparison of dynamic branch
predictors that use two levels of branch history," in Proceed-

ings of the 20th Annual International Symposium on Com-

puter Architecture, pp. 257{266, May 1993.

[4] M. D. Smith, M. Johnson, and M. A. Horowitz, \Limits on
multiple instruction issue," in Proceedings of the 3rd Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 290{302, April 1989.

[5] D. W. Wall, \Limits of instruction-level parallelism," in Pro-

ceedings of the 4th International Conference on Architectural

Support for Programming Languages and Operating Systems,
pp. 176{188, April 1991.

[6] M. Butler, T. Yeh, Y. Patt, M. Alsup, H. Scales, and M. She-
banow, \Single instruction stream parallelism is greater than
two," in Proceedings of the 18th International Symposium on

Computer Architecture, pp. 276{286, May 1991.

[7] P. Y. Hsu and E. S. Davidson, \Highly concurrent scalar pro-
cessing," in Proceedings of the 13th International Symposium

on Computer Architecture, pp. 386{395, June 1986.

[8] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, \The
Cydra 5 departmental supercomputer," IEEE Computer,
vol. 22, pp. 12{35, January 1989.

[9] J. R. Allen, K. Kennedy, C. Porter�eld, and J. Warren, \Con-
version of control dependence to data dependence," in Pro-

ceedings of the 10th ACM Symposium on Principles of Pro-

gramming Languages, pp. 177{189, January 1983.

[10] J. C. Park and M. S. Schlansker, \On predicated execution,"
Tech. Rep. HPL-91-58, Hewlett Packard Laboratories, Palo
Alto, CA, May 1991.

[11] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann, \E�ective compiler support for predicated
execution using the hyperblock," in Proceedings of the 25th

International Symposium on Microarchitecture, pp. 45{54,
December 1992.

[12] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyl-
lenhaal, D. M. Gallagher, and W. W. Hwu, \Characterizing
the impact of predicated execution on branch prediction,"
in Proceedings of the 27th International Symposium on Mi-

croarchitecture, pp. 217{227, December 1994.

[13] G. R. Beck, D. W. Yen, and T. L. Anderson, \The Cydra
5 minisupercomputer: Architecture and implementation,"
The Journal of Supercomputing, vol. 7, pp. 143{180, Jan-
uary 1993.

[14] D. N. Pnevmatikatos and G. S. Sohi, \Guarded execution
and branch prediction in dynamic ILP processors," in Pro-

ceedings of the 21st International Symposium on Computer

Architecture, pp. 120{129, April 1994.

[15] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL play-
doh architecture speci�cation: Version 1.0," Tech. Rep. HPL-
93-80, Hewlett-Packard Laboratories, Palo Alto, CA 94303,
February 1994.

[16] M. Schlansker, V. Kathail, and S. Anik, \Height reduction of
control recurrences for ILP processors," in Proceedings of the

27th International Symposium on Microarchitecture, pp. 40{
51, December 1994.

[17] Hewlett-Packard Company, Cupertino, CA, PA-RISC 1.1

Architecture and Instruction Set Reference Manual, 1990.

[18] D. S. Blickstein et al., \The GEM optimizing compiler sys-
tem," Digital Technical Journal, vol. 4, pp. 121{136, 1992.

[19] P. G. Lowney et al., \The Multi
ow trace scheduling com-
piler," The Journal of Supercomputing, vol. 7, pp. 51{142,
January 1993.

[20] W. W. Hwu et al., \The Superblock: An e�ective technique
for VLIW and superscalar compilation," The Journal of Su-

percomputing, vol. 7, pp. 229{248, January 1993.

