
PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1660

Program decision logic optimization
using predication and control speculation

Wen-mei W. Hwu, David I. August, John W. Sias

Abstract— The mainstream arrival of predication, a means other than
branching of selecting instructions for execution, has required compiler ar-
chitects to reformulate fundamental analyses and transformations. Tradi-
tionally, the compiler has generated branches straightforwardly to imple-
ment control flow designed by the programmer and has then performed so-
phisticated “global” optimizations to move and optimize code around them.
In this model, the inherent tie between the control state of the program
and the location of the single instruction pointer serialized runtime evalua-
tion of control and limited the extent to which the compiler could optimize
the control structure of the program (without extensive code replication).
Predication provides a means of control independent of branches and in-
struction fetch location, freeing both compiler and architecture from these
restrictions; effective compilation of predicated code, however, requires so-
phisticated understanding of the program’s control structure. This arti-
cle explores a representational technique which, through direct code anal-
ysis, maps the program’s control component into a canonical database, a
reduced ordered binary decision diagram (ROBDD), which fully enables
the compiler to utilize and manipulate predication. This abstraction is then
applied to optimize the program’s control component, transforming it into
a form more amenable to instruction-level parallel (ILP) execution.

I. INTRODUCTION�
HE performance of statically-scheduled instruction-level
parallel (ILP) architectures depends on the compiler identi-

fying a sufficient number of independent instructions to keep the
processor’s multiple execution units busy. Going well beyond
the sometime goal of 1 instruction per cycle, modern ILP com-
pilers may be burdened with attempting to transform single pro-
gram threads to utilize six or more issue slots per cycle. One of
the primary obstacles faced by the compiler is the prevalence of
branching instructions, typically comprising as many as one out
of every five or six instructions in integer codes. Branches im-
plement program control by conditionally altering the location
from which subsequent instructions will be loaded, rendering
them obstacles to code motion at compilation time and to paral-
lel instruction fetch at execution time. In this model, evaluation
of program decisions is serialized both logically and in practice.
Complex decisions require multiple branches, multiple control
redirections, and multiple predictions in hardware. Predicated
execution [1][2], an architectural alternative in which the execu-
tion of individual instructions is enabled or disabled according
to the value of an associated Boolean predicate, increases ILP by
allowing the compiler to arrange both for parallel computation
of control conditions and for parallel execution of instructions
from different control paths. A compiler employs if-conversion
to convert a sequence of code containing branches into an equiv-
alent sequence of conditionally executed instructions [3].

Traditionally, compilers have expressed high-level language
control constructs directly into assembly-level branches with-
out fundamentally altering the program’s basic control structure.

W. Hwu and J. Sias are with the University of Illinois at Urbana-Champaign.
E-mail: w-hwu@uiuc.edu, sias@crhc.uiuc.edu. D. August is with Princeton
University. E-mail: august@cs.princeton.edu.

Subsequent techniques have focused on exposing and enhancing
ILP within that structure. Constraining the compiler to oper-
ate within the program’s unaltered control structure is undesir-
able for several reasons. First, a high-level language such as
C or C++ represents program control flow sequentially through
the use of nested if-then-else statements, switch statements, and
loop constructs. This structure, which maps easily to conditional
branches, binds decision-making to the time a decision must
be consumed, often contributing to critical paths that constrain
available ILP. Second, programmers tend to represent control
flow for understandability or for ease of debugging rather than
for efficient execution on the target architecture. As a result,
software often contains redundant control constructs that are dif-
ficult to detect with traditional compiler techniques. An effec-
tive ILP compiler should be capable of transforming program
control to eliminate these problems.

Although if-conversion retains the basic decision-making
steps present in branching code, predication presents an unique
opportunity to attack control structure. Since, within a predi-
cated region, decisions, rather than immediately changing the
fetch location of the processor, instead contribute to Boolean
functions which are applied directly to control individual in-
structions, the control structure of the program can be consid-
ered as a unit for targeted optimization, much as the control path
of an integrated circuit would be optimized apart from its data
path. In predicated code, this control component enables and
disables various instructions in a common “data path,” achieving
the same result as the original program but with fewer control
redirections and a higher degree of ILP. This conversion, while
it does not itself optimize the program’s control logic, does de-
couple it from the side-effects of branching and sets up regions
of code within which the compiler can separate, analyze, and
optimize the control component. The compiler’s understanding
of program control, however, has traditionally not been pow-
erful enough to allow significant optimization of this aspect of
program execution. For the compiler to take advantage of this
new perspective, a more systematic approach is required.

This work presents a systematic approach to restructuring
program control, which is based on logical analysis of the pro-
gram’s extracted control component. Predication enables the ab-
straction of this component, the program decision logic, which
consists of all decision-making that could be expressed as a
combinational logic circuit alongside the running program. We
therefore present techniques (1) for providing the compiler with
a full, abstract comprehension of the program decision logic; (2)
for optimizing the program decision logic; and (3) for ensuring
that subsequent direct code analysis retains all accuracy avail-
able prior to optimization. The result is a system which, among
its other benefits, reduces the dependence of ILP performance
on initial program control structure.



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1661

disjunctive type

conjunctive type

or type

and type

conditional type
unconditional type

C
pg

C

C

dp

pd

C

C
gp

pd

pg

pd

C

p

pd

p

pd

pdd

p

p

d
pg

d

gp

pd
g

Fig. 1. Predicate definition types and their logic equivalents.

II. SYSTEM OVERVIEW

While predicated execution exists in a variety of strengths, we
consider the most general form, “full” predication, in which the
instruction set architecture provides a set of Boolean predicate
registers, a set of predicate defining operations, and, on virtu-
ally every instruction, a guard predicate operand. An instruction
whose guard predicate is true executes; all others are nullified.1

Instances of predication presented in this article are in the IM-
PACT EPIC style [4], which subsumes the predication models of
both HPL-PD [5] and Intel’s Itanium family [6]. IMPACT EPIC
predicate define instructions generate two Boolean values using
a comparison of two source operands and a guard predicate. A
predicate define instruction has the form:���������
	�� �������������	�� ������������ �"!$#%�'&)(�*,+-�"!$#.�.�

Here
�/�

represents the guard predicate and
�.!$#"�0&�(�*1+2�"!$#.�

is
the comparison, denoted 3 when treated as a unit, where

&�(�*1+
can be equal (

�4�
), not equal ( 5 �

), greater than ( 6 ), etc. The
guard and condition are shared by the instruction’s two predi-
cate computations, which potentially write to

��	��
and

�
	��
, the

destination predicate registers. The computation
������

specifies
the function used to compute new destination values given the
comparison outcome, the value of

� �
, and the previous value of�
	

. Figure 1 shows logic-gate equivalents of the predicate define
types, which indicate how the destination

��	
is computed based

on the type, guard predicate
� �

and condition 3 . Four of the
types, or, and, conjunctive, and disjunctive, are termed parallel
because multiple such defines having a common type can write
simultaneously to one register (due to the fact that each of these
types can evoke only a single type of transition in the destination
register: 798;: or :<8=7 but not both).

The original HPL-PD predicate types (unconditional, con-
ditional, and, and or) were designed to support if-conversion
rather than general Boolean computation. A thoroughly
Boolean minimization strategy, however, because it strives to
make better reuse of intermediate values, makes extensive use of
logical operations on arbitrary sets of both predicates and condi-
tions. Without efficient support for these logical combinations,
gains of the Boolean minimization approach are diluted or lost.
As an aid to optimization, therefore, the disjunctive type ( > T
or > F) and conjunctive type ( ? T or ? F) were introduced [7].
The ? type computes the logical and of previous value, source
predicate and condition; the > type likewise computes a logical@

As will soon be discussed, some types of predicate defines are exceptions to
this rule, as they write a result of zero under a false guard predicate.

or. These new predicate types increase the reusability of pred-
icate subexpressions by allowing the parallel conjunction and
disjunction of existing predicates. As can be noted from the
logic of Figure 1, the unconditional and conjunctive types write
a 0 when their guard predicates are false, forming the aforemen-
tioned exceptions to instruction squashing.

A. Conversion to the predicated form

For our purposes, the program control component is avail-
able for manipulation only within predicated regions of code,
where it has been decoupled from instruction fetch redirection.
If-conversion is therefore used to convert acyclic regions of
branching control flow into straight-line predicated blocks. In
the IMPACT compiler, this conversion is performed using hy-
perblock formation heuristics [8]. A hyperblock is a single-
entry, potentially multiple-exit block containing predication.
Heuristics examine the dependence height, resource usage, and
profile weight of the paths through an acyclic region of code to
determine which paths should be included or excluded to max-
imize performance. Tail duplication is performed as necessary
to exclude undesirable paths. In order to promote effective hy-
perblock formation, aggressive function inlining is performed.

An example extracted from the UNIX utility wc illustrates
the application and benefit of the described techniques. Fig-
ure 2 shows the code segment before and after if-conversion. As
shown in Figure 2(a), the code before if-conversion consists of
basic blocks and conditional branches (shown in bold) which di-
rect the flow of control through the basic blocks. Supposing all
paths are selected for inclusion, the code after if-conversion con-
sists of only a single block of predicated instructions, a hyper-
block [9], as shown in Figure 2(b). In if-conversion, an unique
predicate is assigned to each set of control-equivalent blocks,
as shown to the left of each basic block. Unconditional and or
type predicate defining instructions are then inserted to compute
these predicates, based on the conditions and order of evaluation
of the program’s branches. Finally, the blocks are combined into
a single hyperblock and instructions are assigned guarding pred-
icates according to their home blocks.

After if-conversion, control speculation is performed to in-
crease opportunities for optimization. Control speculation
breaks a control dependence by allowing an instruction to exe-
cute more frequently than is necessary. In a predicated represen-
tation, instructions are speculated by predicate promotion, the
weakening of an instruction’s guard predicate to one subsuming
the original [8]. An instruction such as 12 in Figure 2(b) may
be promoted so long as its execution under conditions excluded
by its guard predicate does not alter program outcome. Here,
for example, r27 is dead when

�
A
is false, so instruction 12

may be promoted fully by removing its predicate. This process
improves scheduling freedom by easing predicate dependences
and can additionally render some predicates unused as guards,
improving opportunities for optimization of the control logic.

Figure 2(b) shows the predication we intend to optimize,
along with a conceptual (reduced) view of the control logic it
can be understood as implementing. The techniques described
in this article extract the control logic from predicate defining
instructions in an analysis phase, optimize the logic, and regen-
erate the logic as new, more efficient, predicate defining instruc-



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1662

Effects of control speculation

(p1)

(p2) (p4)

(p7)

(p8)

(p3) (p6)

(p5)

32>=r4

r4>=127

r2==0

r4!=10

r4!=32

r4!=9

F

r27 = MEM[r72]
r26 = r27 + 1
MEM[r72] = r26
r2 = r2 + 1

r2 = 0

T
F

F

T

T

T

F

T

Branch r4 >= 127

Branch r2 == 0 Branch r4 != 10

Branch r4 != 9

Branch r4 != 32

Branch 32 >= r4

Jump Loop

r24 = MEM[r3]
r23 = r24 + 1
MEM[r3] = r23
r4 = MEM[r24]

Loop:

F

r62 = MEM[r71]
r61 = r62 + 1
MEM[71] = r61 F

T

1
2
3
4

6
5

7
8
9

10
11

21
22

Loop:

19
20
12
13
14
15
16
17
18

p4 = 0
p5 = 0
r24 = MEM[r3]
r23 = r24 + 1
MEM[r3] = r23
r4 = MEM[r24]

p5_of = (r4 != 9)(p8)
(p7)
(p4)
(p4)
(p2)
(p1)

r27 = MEM[r72]
r26 = r27 + 1
MEM[r72] = r26
r2 = r2 + 1
r62 = MEM[r71]
r61 = r62 + 1
MEM[71] = r61
r2 = 0
Jump Loop

(p5)
(p6)

(p3)
(p3)

p4_ot, p2_uf = (r4>=127)
p3_ut = (r2==0)
p5_of, p6_uf = (r4!=10)
p7_ut = (r4!=10)
p5_of, p8_ut = (r4!=32)

p4_ot,p1_uf = (32>=r4)

(p3)
(p3)

(p6)
(p6) p5

p6

p3

showing conceptualized program decision logic view
(b) After if−conversion and promotion,(a) Original control flow graph

Fig. 2. A portion of the inner loop of the UNIX utility wc.

tions. While the predicate optimization technique described is
but a single application of the analysis methodology we present,
it is one that demonstrates well the generality and power of the
abstracted representation. Using the wc example, we present an
overview of this process.

B. Analysis techniques

The program decision logic must first be extracted into the
Boolean representation before optimization can be performed.
In our system, this is the function of the predicate analyzer,
which applies the semantics of Figure 1 to form the logic circuit
of the program’s “control path.” The example shown in Fig-
ure 3 demonstrates this technique on the predicate expressions
of wc. Figure 3(a) shows the predicate defines from Figure 2(b).
The Boolean circuit of Figure 3(b) is derived by applying the
semantics of the predicate define types, as shown in Figure 1,
to these defines. Three predicates,

�
A
,
�
B

, and
�
C

, are used to
guard computation other than predicate defines, and are there-
fore considered “essential.” These are the logical values that
must be generated by the new network; all other internal values
can be modified arbitrarily to achieve a more efficient compu-
tation. Back-substituting into the circuit, expressions in terms
of the fundamental conditions are derived:

�
AD� 3'E 3 � 3 �
,�
CF� 3�G � 3 ��H 3 � 3 � �

, and
�
BF� 3IG � 3 ��H 3 � 3 � � H 30J$3IG � 3 �KH

3 � 3 � � H 3IL.3�J�3IG � 3 �
H 3 � 3 � �
. These expressions represent the

original control component of the program and are the starting
point for optimization.

These expressions, however, are missing an element of infor-
mation critical to successful optimization. The variables of these
expressions are in many cases not logically independent. For
example, since 3 �

represents the evaluation of (32 >= r4)
and 3IG the evaluation of (r4 != 10), it is clear that 3MG im-
plies 3 �

and that 3 �
excludes 3IG . This and similar relations

among conditions defined based on the same source operands

can be used to further reduce the decision logic, as redundant
tests may be removed. Supposing the the predicate expres-
sion optimization phase gives us the expression

� 3<G H 3�J H
3 L �"� 3 � H 3 �"�

for
��B

, the condition database makes the obser-
vation that 3 �N�O� A�P 6 �RQ�S��

is implied by 3 G �T��Q�SU�4�OV�W��
,3�J �X�YQ�SU�4�ZA�P��

, and 3IL �D�YQ[SU�4�Z\��
and therefore

��B
may

be simplified to 3IG H 30J H 3�L . In this manner, analysis of condi-
tions allows removal of predicate computation that is redundant
with inherent relationships among the condition tests.

In this work, Reduced Ordered Binary Decision Diagrams
(ROBDD) [10] are used as the Boolean representational mech-
anism for both predicate and condition relations. Section III
details this mechanism.

C. Define optimization

The expressions describing the evaluation of the essential
predicates are optimized using standard Boolean minimiza-
tion techniques which eliminate redundant terms and which re-
express the Boolean function in a more parallel form. Opti-
mization to minimal sum-of-products form yields the expres-
sions:

�
A]� 3IE 3 � 3 �
,

�
C�� 3 � 3IG H 3 � 3 � 3IG , and
�
B��

3IG�3 �0H 3IG�3 �^H 30J�3 ��H 3�J�3 �^H 3IL�3 �0H 3IL�3 �
. As indicated

previously, optimization based on condition analysis further re-
duces the expressions for

��B
and

�
C
to 3 G H 3 J H 3 L and 3 G ,

respectively, producing the logical form shown in Figure 3(c).
The number of logic gates in the circuit implementation is re-
duced from ten to three. In addition, the six-level gate network
is reduced to a single-level gate network.

The optimizer significantly reduces the program logic, but
only in its abstracted form. To capitalize on the gains of logic
optimization, the reformulator must moderate its efforts to re-
duce predicate dependence height based on surrounding depen-
dences and machine resource constraints. As in many ILP opti-
mizations, reducing dependence height often involves increas-



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1663

(C0) (C1)

(C3)

(C2)

(C4)

(C5)

10 19

20

9

11

7 8

21181514

6

13

12

17

16

5

4

3 predicate computation

181514

16

1713

12

6

3

4

21

5

predicate computation

1

7 8 9 10 19 20

2

9

8 2

7

1

10 11

20

19

32 >= r4
r4 >= 127

r2 ==0

p3
p5

r4 !=9
r4 != 32

r4 != 10

p6

1
2
7
8
9

10
19
20

1
2 p5 = 0

p3 = 1p4 = 0
p5 = 0

p3
p4

r4 != 32

p7

r4 !=9

p8

32 >= r4 r4 >= 127

r2 ==0

r4 != 10

p4

p7

p5p6

p1p1

p2
10
11
19
20

7
8
9

(p1)
(p2)
(p4)
(p4) p7_ut = (r4 != 10)

p4_ot, p2_uf = (r4>=127)
p4_ot, p1_uf = (32>=r4)

p3_ut = (r2==0)
p5_of, p6_uf = (r4!=10)

(p7)
(p8) p5_of = (r4 != 9)

p5_of, p8_ut = (r4!=32)

p5_of, p6_uf = (r4!=10)

p3_af = (32>=r4)
p3_af = (r4>=127)
p3_at = (r2==0)

p5_of = (r4!=32)
p5_of = (r4!=9)

(d) Optimized defines and dependence graph(c) Optimized logic(a) Original defines and dependence graph (b) Original logic equivalent

Fig. 3. Overview of wc optimization

ing the number of instructions issued. If slack exists in the
predicate define dependence chains (that is, if concurrent depen-
dences constrain execution such that reducing the dependence
height of the predicate expression does not effect a speedup),
a more parallel expression of the predicate computation simply
increases code size. Furthermore, if the increased instruction
issue resulting from the more parallel expression exceeds the is-
sue capabilities of the machine, performance can be hurt rather
than helped. These considerations make the design of the refor-
mulator nontrivial.

Figure 3(d) shows the reformulated predicate defining in-
structions. All non-essential predicates were eliminated as part
of this process. The reformulator generated six parallel predi-
cate defining instructions to replace the seven sequential predi-
cate defining instructions originally used. The overall effective-
ness of the program decision logic minimization process on the
wc example is best shown by comparing the dependence graphs
of the code before and after optimization. Figure 3(a) and (d)
show the dependence graphs for the example hyperblock be-
fore and after optimization. The chain of predicate define in-
structions in the original hyperblock, a five-level network which
dominated the critical path, is replaced by a parallel, single-
cycle computation in the optimized hyperblock. The highlighted
instructions correspond to the predicate defines in each hyper-
block. On a six-wide, general-issue, unit-latency processor, this
means a reduction in schedule height from eight cycles to four.

D. Post-optimization considerations

Once the decision component has been optimized and refor-
mulated back into the predicated representation, further com-
piler transformations need to be performed. For machines

without real predication support, complete reverse if-conversion
must be performed [11]. For machines which support predica-
tion, partial reverse if-conversion can be employed to create the
proper balance of control flow and predication for the target ar-
chitecture [12].

Depending on the compilation model in which predicate opti-
mization is performed, it may be necessary to perform predicate
analysis subsequent to the optimization. It is desirable, there-
fore, to ensure that predicate analysis performed on optimized
code is as accurate as analysis performed on unoptimized code.
This enables incremental compilation and re-compilation with-
out requiring the compiler to save any analysis results alongside
the intermediate form. Returning to the example of Figure 3,
consider the forms of

�
B
optimized with and without condition

information. Without examining condition relations,
�
B

was op-
timized to a form that was simpler than, but still logically equiv-
alent to, its original expression. From these expressions, it is
clear that

�
BF_O� 3 G H 3 J H 3 L �"� 3 � H 3 ���
and

��A`_ 3 E 3 � 3 �
are disjoint. With condition information, however,

�
B
was re-

duced to 3IG H 3�J H 3IL . Comparing this to the expression of�
A
the disjointness is obscured. To avoid loss of accuracy due to

predicate optimization, therefore, it is necessary to incorporate
condition analysis seamlessly into the predicate analysis frame-
work [13].

The following section describes the abstraction of predicate
defines into the desired fully Boolean form using a code exam-
ple better illustrative of that process; we shall return to the wc
example in a subsequent section to illustrate the details of the
optimization process.



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1664

III. THE PREDICATE ANALYSIS SYSTEM

Given that the program has been rendered into the predicated
form, the compiler must comprehend the logical relationships
among predicates to proceed with optimization. As suggested
by Figure 2(b), our approach is to treat the control component in
a purely Boolean sense. While it seems straightforward that the
predicate definitions could be treated in this way, it necessitates
selecting a particular representation for the resulting Boolean
expressions. An appropriate representation must be reasonably
efficient in space and construction time and must allow fre-
quently used queries to be made efficiently. This section fo-
cuses on the design of the Predicate Analysis System and its two
modes of interaction with the compiler. In the first mode, anal-
yses of conditions and predicates are conducted separately, to
aid in optimization of predicates using conditions as the logical
literals. In the second mode, analysis of predicates and condi-
tions is unified to provide accurate results after condition-aware
predicate optimization. We begin by considering the important
characteristics of the underlying Boolean representation.

A. Efficient representation of program control

Logical expressions relating predicates and conditions are
provided by the Predicate Analysis System, a framework which
integrates analysis of both predicates and conditions into a com-
mon representation [13]. PAS expresses the relations among
predicates by defining a set of interrelated Boolean functions.
An efficient implementation requires an appropriate represen-
tation. In general, a Boolean function a ��b � �cb � �.d"d.d"�cb�e��

can
be represented in a number of forms. The most familiar of
these are conjunctive-normal form (sum-of-products or CNF)
and disjunctive-normal form (product-of-sums or DNF). The ef-
ficiency of queries varies significantly with the form selected.
Tautology, the test if an expression is constant-true, and satisfia-
bility, the test if an expression is constant-false, for example, are
two important queries in predicate analysis. Unfortunately, such
queries are NP-hard in these common Boolean representations.
The root of the problem is that it is possible in DNF and CNF
for two different expressions to be logically equivalent—these
forms lack canonicity. A canonical form, one in which a given
logical entity has exactly a single representation, is ideal for
predicate analysis because tests for tautology, satisfiability, and
identity are all rendered constant time. In such a form it is obvi-
ous, for example, when two predicates with different derivations
end up being logically equivalent, or when a predicate works out
to be constant-false. Because in a canonical form this property
is always maintained, “automatically,” a canonical form is ideal
for the predicate relation database. The cost of using a canonical
form is that the size of the representation is provably exponen-
tial in the number of variables in the worst case [10]. For all
these reasons, the choice of a representation appropriate to the
expressions being analyzed is critical.

B. Reduced ordered binary decision diagrams

The reduced-ordered binary decision diagram (ROBDD)
forms the underlying Boolean representation for PAS. ROBDD
are a fully canonical representation based on the if-then-else
normal form (INF). Much work has been done in the develop-

ment of efficient ROBDD implementations, mostly intended for
use in the domain of Boolean logic circuit optimization [10].
BDD have also been applied in software problems, usually in
the verification domain. The contribution of PAS is an effec-
tive mapping of the predicate analysis problem to this efficient
representation.

INF constructs Boolean functions using the ternary if-then-
else ( fhg'i ) operator, where fhg'i �Yb��kj��mln�o_D�Yb ? j`� > � b ? ln�

,
where

b
is a BDD variable and

j
and

l
are other functions

(subgraphs) in the BDD. Functions are expressed by recursive
decomposition, in the form of a Shannon expansion, using thefhg'i operator:pIqsr�t.ucvcvhvcuYr�w[x
yzr�w)pIqsr�t.ucvhvcvcuYr w�{ @ uc|kx)} r�w�pIq~r�t�uhvhvcvcuYr w�{ @ u���x�N����� q~r�u ��u �,x��zr��z} r��pIqsr�t.ukvhvhvcu�r�w)x
y ����� q~r�w�u�p @ q~r�t.ucvhvhvkuYr w�{ @ x�u p/t.qsr�t�uhvcvcvhuYr w�{ @ xYx

Here, considering the common graph representation, two sub-
BDD, a �

and a �
, are connected as the then- and else- decisions

of an fhg'i node labeled with the variable
bKe

, and the function a
is represented by a reference to this decision node. The whole
graph is rooted with the logical constants 7 and : . A system of
INF expressions in which all equal subexpressions are shared
is termed a binary decision diagram (BDD). A BDD in which
all identical fhg'i nodes are shared, in which variables appear in
the same order and at most once in any path from root to leaf,
and in which no redundant tests are performed is termed a re-
duced ordered binary decision diagram (ROBDD). Such BDD
are canonical: each derivation of a particular Boolean function
arrives at the same graph representation; that is, any two equal
expressions share the same subgraph. Certain queries are thus
vastly simplified; for example, it is possible to test if two given
functions are identical or opposite in constant time. This is use-
ful especially for testing if a function evaluates to the constant 7
or the constant : .

PAS uses the Colorado University Decision Diagram
(CUDD) implementation of ROBDD [14]. CUDD implements
“invert” arcs, which can be used in the place of “else” arcs to
implement the alternate “if-then-invert” construct:pIq~r�t"ucvcvhvhu r w x�yzr w p @ qsr�t�uhvkvhvhu r w�{ @ x)} r w p/t�q~r�t"ukvhvhvkuYr w�{ @ x

Here we observe the same recursive formulation as before, but
the formula inverts an existing subgraph ( a �

) for use as an “else”
subexpression of a without making additional nodes. Repre-
sented by an “invert” arc in the graph, this extension allows for
constant-time inversion and avoids the addition of extra internal
nodes when the complement of an existing subgraph is required.
Now only the constant : is provided; evaluations to 7 are made
via invert-arcs. CUDD ensures canonicity and the optimal reuse
of subexpressions by imposing rules on the use of invert-arcs
and by using a node hashing table called the computed-table,
respectively[15]. Notationally, we speak of the BDD as con-
structed of fhg'i nodes, where a given fhg'i node possesses, in
addition to its outgoing “then” arc, either an outgoing “else” arc,
in which case it implements the first semantic, or an outgoing
“invert” arc, in which case it implements the alternate semantic.

Initially, the BDD consists only of the node : . An interface
exists to add new variables

b��
to the BDD, each of which is cre-

ated as a single fhg'i node with a then-arc and an invert-arc to : .



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1665

F=x

H=x+yG=xy

(x,1,0)

(y,1,F)

(y,F,0)

H

G

F

computed−table

1

y y

x

�0yzpo�
(1)

�0y ����� q~pKu��<u���x����� q~p�u���u ��x�y��
(2)

�0y ����� qs��u ����� q~p'� ��u���� �$u���x�u����� q�p'� � u���� � u ��xYxp'� ��yzp
,
p'� � yzp

,
��� ��y�|

,
�F� � y p

(3)
�0y ����� qs��u ����� q~pKuk|%u���x�u ����� q~p�u pIu���xYx����� q��nuc|%u���x����

,
����� q���u ��u���x����

(4)
�0y ����� qs��u�pKu���x
computed-table(

��ukpKu �
) = �

(5)
�0y �

then else invert

Fig. 4. BDD canonicity example: computing
�0yzpo�

The order of variable definition determines the subsequent order
of the variables from root to leaf in each expression path. The
BDD is built using the function ite(f,g,h), which builds a
subgraph to compute fhg'i � a �k�U�k���

, where a ,
�

, and
�

are all
existing functions in the graph. The function checks to see if the
requested node is a terminal case (a constant) or, through a hash,
if it already exists in the graph; if so, it is returned immediately.
If not, the topmost variable

b� 
of the existing functions a ,

�
,

and
�

is extracted, and then- and else- sub-BDD, which assumeb   � : and
b   � 7 , respectively, are recursively computed. A

new node containing
b  

is formed, and the sub-BDD are con-
nected to it, forming the requested function. The ite function
automatically maintains graph canonicity [15] and operates in
time proportional to the size of the resulting function graph.

A brief example illustrates the construction of the BDD. Fig-
ure 4 shows a small BDD containing three named functions rep-
resenting the indicated Boolean expressions. Let us try to com-
pute ¡ � a �

. Canonicity requires that this computation result
in

�
, since a �

=
b1� b H �/�

=
b b H b��

=
b��

=
�

. In step 1, the
generation of ¡ is requested using the fhg'i construct; subsequent
steps detail the recursive descent which finds the resulting rep-
resentation. The top variable among a ,

�
, and 7 is

�
, so step

2 partitions the expression on
�

. a is insensitive to
�

, which
is not its top variable, so it remains unaltered. Following the
arcs from H, on the other hand,

�£¢ ¤
, “

�
given

�
,” resolves to: and

�£¢ ¤
resolves to a . In step 3, the indicated axioms re-

duce fhg'i � a � : � 7 � to a and fhg'i � a � a � 7 �
to 7 . Thus, by step

4 we have arrived at the expression fhg'i �Y��� a � 7 �
. This expres-

sion cannot be trivially reduced, so the BDD hashes into the
computed-table and finds that it already exists as

�
. Thus the

recursion is complete and ¡ has been discovered to be identical
to the existing function

�
, as desired.

C. Mapping predicate defines to the BDD

BDD are well known for and apply naturally to Boolean logic
manipulation; the unique contribution of PAS is the mapping of
the predicate analysis problem to this efficient substrate. Fig-
ure 5 shows an example hyperblock, for which the PAS BDD
will be constructed. The source code in (a) is translated to the
intermediate representation, if-converted and scheduled in (b).
Solid lines in the figure indicate the break between cycles in the
schedule. Predicate analysis is significant for a code segment
such as this for reasons beyond predicate optimization. Here,

for example, predicate analysis informs the scheduler that the
predicates on stmtB (

�/S
) and stmtC (

�
P
) are mutually exclu-

sive; thus, these instructions may be reordered freely. Since the
logical relations among predicates change infrequently but are
queried often during the compilation process, it is efficient to
construct a database of relations from which common queries
may be drawn rapidly.

The code is subjected to predicate optimization and resched-
uled using a predicate analysis of the type described here (Fig-
ure 5(c)). Optimization removes the guard predicate on the de-
fine that computes

��S
. This is legal because the logical expres-

sion of the predicate guard
�
A

, (r1>-8 && r1<8), is implied
by the condition on the instruction, (r1=0). Since the uncon-
ditional type define computes the conjunction of the guard with
the condition, the guard may safely be eliminated. As in the wc
example, this has an effect on the ability of future predicate anal-
yses to determine the relation of predicates

�
P
and

�/S
. In (b),

the apparent derivation of
��S

from
��V

, which is non-intersecting
with

�
P
, indicates that

�/S4¥2��P¦�]§
. In (c), however, the predi-

cate analysis needs to examine relations among conditions them-
selves (and ones more complex than simple recognition of oppo-
sites) to reach the same proper conclusion. The following shows
how the BDD is constructed to support this analysis.

D. Construction of the condition layer

The first step of finding relations among predicates is the def-
inition of relations among condition evaluations. In PAS, these
relations are represented together with predicate information in
the BDD by providing a set of condition nodes [16]. PAS incor-
porates arbitrary relations within families of conditions based on
comparing the same register values, representing, for example,
the exclusivity of (r1=1) and (r1=2) while indicating that
both are subsets of (r1>0). A family is initially represented as
a single interval containing all representable numbers. For each
condition that depends on the same register value, the number
line is split at the boundaries of the intervals of numbers yield-
ing an evaluation to “true.” The number line in Figure 6(a) rep-
resents the condition family of

Q�V
in Figure 5. The set of values

causing any condition to evaluate to “true” is represented as the
union of disjoint intervals. The relations among all possible out-
comes on this family are represented in the BDD by creating a
Boolean space, known as a finite domain [17], and assigning all
intervals to mutually exclusive and collectively exhaustive ex-
pressions, meaning that any assignment of the variables causes
exactly one of the expressions to evaluate to 1. The expressions
must be mutually exclusive, as each value belongs to only one
interval, and also collectively exhaustive, so that an expression
such as “(x>5)||(x<=5)” is recognized as a tautology.

Figures 6(a) through (d) show the construction of the condi-
tion layer for the conditions of Figure 5(c). In this case, the con-
ditions divide the number line into five discrete segments, bro-
ken between -8 and -7, -1 and 0, 0 and 1, and 7 and 8. The finite
domain technique is applied, using ¨�©~ª�« E ��¬)��®�°¯

BDD vari-
ables to create an eight-element Boolean space ± ��² E �c²)�$�c²$���¦³� 7 ¢ : � G�´ . Since this case requires exactly five elements, we
merge the three extra elements to neighbors, forming three two-
variable expressions and two three-variable expressions to im-
plement the finite domain. In general, representing µ intervals



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1666

if (x > -8 && x < 8) ¶
stmtA;
if (x == 0)

stmtB;·
else ¶

stmtC;
if (x < 0)

stmtD;·
(a)

p2 uf = (0=0)

p1 ut,p2 of = (r1>-8)

(p1) p3 ut,p2 of = (r1<8)

(p3) p4 ut = (r1=0)
(p2) p5 ut = (r1<0)
(p3) stmtA
(p2) stmtC

(p4) stmtB
(p5) stmtD

(b)

p1 ut,p2 uf = (0=0)

p1 at,p2 of = (r1>-8)
p1 at,p2 of = (r1<8)
p4 ut = (r1=0)
p5 ut = (r1<=-8)

(p1) stmtA
(p4) stmtB
(p2) stmtC
(p5) stmtD

(c)

Fig. 5. An example hyperblock: (a) source, (b) if-converted, (c) optimized.

1

1

C0= I1 + I+ I2 + I3 4

C3= I0

C2= I2

C1= I0 + I+ I1 + I2 3

C2

1

C1C03C

C
C
C
C

0
1
2
3

I

I

I

I I

0

1

4

2

3

−7 p1.0_ut,p2.0_uf=(0=0)
p1.1_at,p2.1_of=(r1>−8)
p1.2_at,p2.2_of=(r1<8)

(e) Predicate defining instructions

(f) Predicate BDD(d) Condition−level BDD
(b) Expressions forming finite domain,

showing exclusivity and exhaustion

(c) Mapping of conditions

10

00

01

11

10

2

I
I
I

2
3
4

=
=
=

1
2
2 1

1
0
0

0
0

I0 = 1 0
I1 1=

condition expressions
to intervals and resulting

I I I I I0 1 2 3 4

01

(a) Finite domain representation
of number line

=

=

= +

= +1 0

1 0

2 1 0

1 0

1

2

1 1

0

2

111

0

1

2 2

111

0

v v v

v v

v

v

v v

vv v

vv

v v

v
v
v
v
v v

v
v
v
v

v
v

v v
v

v

vv

v

v

v

v v v

v

p1.2 p2.2 p4.0 p5.0

p1.0 p2.0

p1.1
p2.1

        p4.0_ut=(r1=0)
        p5.0_ut=(r1<=−8)

else
invert

then

−8 80−1 1 7

Fig. 6. Assembly of Predicate BDD for the example of Figure 5(c).

adds ¸ � ¨�©~ª�« E � µ �� variables, and generates ¹ e�º µ expres-
sions in ¸ º : variables and ¹$µ º ¹ e

expressions in ¸ vari-
ables. This procedure creates the simplest possible finite do-
main structure for the given number of elements. In the re-
sulting BDD, shown in (a), each segment of the number line
is represented by a BDD node; for example, ¡ � represents the
expression

² � ² �
and thus has the equivalent (canonical) BDD

expression fhg'i �Y² � � : � fhg'i �Y² � � : � : �c�c� as shown. In this and all
BDD expressions, the basis variables appear in a fixed order in
all paths from root to leaf. The rest of the expressions repre-
sented in the BDD are shown in (b), along with a Karnaugh map
showing the expressions to be mutually exclusive of each other
and collectively exhaustive of the Boolean 3-space, as desired.

Applying the interval composition of the conditions (c), the
interval nodes are used together with the fhg'i operator to com-
pose the condition nodes shown in Figure 6(d). A condition,
such as (r1<8), is represented by the disjunction of the in-
terval nodes which represent the set of values resulting in an

evaluation to : . Considering the condition 3 �
, (r1>-8), we

see that 3 �»� ¡ � H ¡ E H ¡ G H ¡ J . Thus, 3 �¼� ²)�%²$� H² � ² �4H ² E ² � ² �½H ² E ² � ² � �¾² �½H ² �
, represented in the BDD

as fhg'i ��² � � : � fhg'i ��² � � : � : �k� . This simplified expression is com-
puted automatically in the BDD as the disjunction representing3 �

is formed, one fhg'i at a time. Figure 6(d) shows the resulting
BDD, in which all relationships among conditions in a family
are represented. For example, the expressions for 3 �

(r1>-8),²$� H ²)�
, and 3 E (r1=0),

²)� ²$�
, show that 3 E implies 3 �

. This
process is described in detail in [16].

This condition layer is used in the optimization phase to deter-
mine the relations among condition variables. In this capacity it
is separate from the predicate BDD; in later analyses, however,
it serves as the foundation for the predicate layer.

E. Construction of the predicate layer

The mapping of predicate defines to the BDD is somewhat
more straightforward than the mapping of conditions. For pur-



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1667

TABLE I

PREDICATE DEPOSIT LOGIC.

SSA pred. def. ¿�À)Á Expression
( Â�Ã ) Â"Ä�Å Æ ut = Ç È[Ä�Å Æ y Ç^ÉhÈ[Ã'Ê �
( Â Ã ) Â"Ä�Å Æ uf = Ç È[Ä�Å Æ y Ç^É � Ê%È Ã
( Â Ã ) Â"Ä�Å Æ ot = Ç È[Ä�Å Æ y Ç^É q È Ã É | Ê%È�Ä�Å Æ { @ x ÊmÈ�Ä�Å Æ { @
( Â�Ã ) Â"Ä�Å Æ of = Ç È[Ä�Å Æ y Ç^ÉhÈ�Ä�Å Æ { @ Ê q È)Ã.É | Ê%È�Ä�Å Æ { @ x
( Â Ã ) Â"Ä�Å Æ at = Ç È[Ä�Å Æ y È Ã É q Ç^ÉhÈ�Ä�Å Æ { @ Ê ��x ÊmÈ�Ä�Å Æ { @
( Â�Ã ) Â"Ä�Å Æ af = Ç È[Ä�Å Æ y È[Ã.É q Ç^É � Ê%È�Ä�Å Æ { @ x ÊmÈ�Ä�Å Æ { @
( Â Ã ) Â"Ä�Å Æ ct = Ç È[Ä�Å Æ y È Ã ÉkÇ�Ê%È�Ä�Å Æ { @
( Â�Ã ) Â"Ä�Å Æ cf = Ç È[Ä�Å Æ y È[Ã.É Ç�Ê%È�Ä�Å Æ { @
( Â Ã ) Â"Ä�Å Æ }

t = Ç È[Ä�Å Æ y Ç^É | Ê q È Ã É | Ê%È�Ä�Å Æ { @ x
( Â�Ã ) Â"Ä�Å Æ }

f = Ç È[Ä�Å Æ y Ç^É q È)Ã�É | Ê%È�Ä�Å Æ { @ x Ê |
( Â Ã ) Â"Ä�Å Æ Ë t = Ç È[Ä�Å Æ y È Ã É q Ç^ÉhÈ�Ä�Å Æ { @ Ê ��x Ê �
( Â�Ã ) Â"Ä�Å Æ Ë f = Ç È[Ä�Å Æ y È[Ã.É q Ç^É � Ê%È�Ä�Å Æ { @ x Ê �

poses of the optimizer, predicate uses are constrained to have
a single forward-control-flow-reaching definition. This means
that all predicate value flows are within the acyclic-rendered
control flow graph (i.e. there are no flows around backedges)
and that each use has a single reaching definition; that is, a sin-
gle static assignment view (SSA) contains no Ì functions[18].
In this setting, predicates are given single static assignment
tags. The predicate graph is constructed in a single topologi-
cal traversal of the control flow graph by adding at each predi-
cate define a new expression according to Table I. In the table,b�ÍN�ÏÎÑÐÒ_ fhg'i �Yb��c����Ð[�

and ¸ �YÓ Ô
represents the BDD node

associated with the predicate
�KÕ�d Ö

(× represents the SSA sub-
script). As indicated in the table, a new subgraph representing
the defined predicate is generated from existing subgraphs rep-
resenting the predicate source, the previous value of the predi-
cate destination, and the condition. The forward-flow constraint
guarantees that these expressions are available when required.

For purposes of predicate optimization, in the construction of
the predicate BDD each condition is treated as an independent
BDD variable; in subsequent analyses, the condition family sub-
BDD composed using the condition analysis are incorporated
directly into the predicate BDD.

Returning to the example of Figure 5, we construct the cor-
responding local relation BDD. A BDD expression has already
been defined for each condition, as shown in Figure 6(d), and
the predicate defines of Figure 5(c) have been converted to the
SSA form shown in Figure 6(e). In the following topological
traversal, predicate define instruction semantics are applied to
generate the form shown in Figure 6(f), which expresses the
relations among all predicate definitions. Consider the deriva-
tion of the predicate p2. The first assignment (with SSA name
p2.0) is an initialization to 7 . Thus p2.0 is attached via an
invert-arc to : , as shown. p2.1 is an or-false type definition
with a constant-true guard predicate and condition 3 �

. Consult-
ing Table I, p2.1= 3 �

?p2.0:(1?1:p2.0). Since p2.0= 7 , this
degenerate case results in p2.1 being attached via an “invert”
arc to the same node as 3 �

. Finally, by the or-false expression as
before, p2.2= 3 �

?p2.1:(1?1:p2.1). The two ite calls used
to compose this expression provide the node labeled p2.2. Fig-
ure 6(f) shows the BDD after excess condition nodes are freed
(once all predicates are computed); thus nodes such as those
for 3 �

no longer exist in the graph. The CUDD BDD package

employs reference counting to ensure that such nodes are re-
moved when no longer required. A more complex example with
multiple comparison families would show several initially inde-
pendent condition BDD (based on different variables) rooted on
the same ’1’ node. During predicate define processing, graphs
would be composed of members of the various subtrees, ef-
fectively unifying them into one predicate BDD. The resulting
BDD expresses relations among all conditions and predicates.

The techniques presented are capable of faithfully represent-
ing relations among acyclically-defined predicates in the as-
sumed SSA model. Both the extension of these techniques to
general predicated codes and the size-safety of the BDD for
predicate analysis have been described in other work [13].

IV. MINIMIZATION OF PROGRAM DECISION LOGIC

With the program decision logic and condition relations ab-
stracted into a Boolean form, optimization can proceed. Pro-
gressing from decision logic to new predicate define instructions
encompasses several steps. First, sum-of-products expressions
are formed to represent predicate functions in terms of program
conditions. Knowledge of condition interrelation is applied to
these expressions to remove redundant literals and redundant or
constant-false terms. Traditional Boolean logic minimization
techniques are then used to simplify the expressions to a re-
duced two-level form. The resulting optimized expressions are
then factored into a multi-level form based on condition avail-
ability times and resource constraints. Finally, program control
is re-expressed in predicate define instructions. We return in this
section to the wc example begun in Figure 3.

The BDD maintains a canonical representation of the decision
logic functions, from which Boolean sums-of-products can eas-
ily be produced. The generated expressions reflect the canonical
nature of the BDD, and are usually not optimal for expressions
of multiple terms. Therefore, reduction of the expressions is al-
most always required before re-expression becomes a realistic
option.

Figure 7(a) shows the original wc predicate define structure.
Figures 7(b) and 7(c) show the result of the analyses described
in the previous section. In the figure, condition relations are
expressed in disjunctive form for understanding; in the imple-
mentation these expressions remain embodied in the BDD rep-
resentation. The predicate expressions shown in Figure 7(c),
on the other hand, are extracted by a straightforward technique
from the BDD and expressed in disjunctive form. It is these
expressions that will be optimized using the condition relation
database and traditional Boolean optimization techniques.

A. Condition-based optimization

Figure 7(b) shows the expressions represented in the BDD for
the conditions of the wc example. As indicated in the previous
section, condition families have been formed to relate the con-
ditions to each other. Here two families are indicated. The first,
based on comparisons to register r4, relates conditions 3 �

, 3 �
,3 G , 3 J , and 3 L using the BDD variables

²��
,
²)�

, and
² E . The

second family, containing only the single condition 3 E , requires
only the single BDD variable

² G . These expressions embody
all logical interrelation among the conditions. For example, the
condition 3 J , true when r4 == 32 clearly implies 3 �

, true



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1668

(p2)
(p7)
(p8)

p4_ot, p1_uf = (32>=r4)
p4_ot, p2_uf = (r4>=127)
p3_ut = (r2 == 0)
p5_of, p8_ut = (r4 != 32)
p5_of = (r4 != 9)

(p1)
(p4)(p4) p5_of, p6_uf = (r4 != 10) p7_ut = (r4 != 10)

(a) Original predicate define structure

Variable Condition ExpressionØ�Ù Ú GkE"Û�Ü�Ý�J�Þ ² E H ² �
Ø�ß Ú ÝYJ"Û�Ü � E�à�Þ ² E ²)�%²$�
Ø�á Ú ÝYE�Ü�Ü � Þ ² GØ�â Ú Ý�J�ã Ü ��� Þ ² E H ² �0H ² �
Ø
ä Ú Ý�J�ã Ü�GkE�Þ ² E H ²)� H ²$�
Ø�å Ú ÝYJ%ã Ü�æ�Þ ² E H ² �0H ² �

(b) Conditions and condition expressions

Extracted Cond. opti. espressoç G Ø Ù Ø1ßhØ á Ø Ù Ø1ßcØ á Ø Ù Ø,ßhØ á
ç"è Ø�Ù Ø â�é Ø�Ù�Ø ß Ø â Ø â Ø âØ Ù Ø�â é Ø Ù Ø�ß Ø�â é Ø�â é
ç L Ø Ù Ø�â ØKä é Ø Ù Ø�ßhØ�â ØKä é Ø�â Ø�ä é Ø�â é ØKä é Ø åØ�ÙkØ â Ø ä Ø�å é Ø�Ù�Ø ß Ø â Ø ä Ø�å Ø â Ø ä Ø�å

(c) Optimization of predicate expressions

...

...

p5_of, p6_uf = (r4 != 10)

p3_at = (r2 == 0)

p5_of = (r4 != 9)p5_of = (r4 != 32)

p3_af = (r4 >= 127)p3_af = (32 >= r4)

(d) Regenerated predicate define structure

Fig. 7. Analysis and optimization of wc

when r4 >= 32. The expressions hold the same relation to
each other:

² E H ²)� H ²$���X² E ²)��²$�
implies

² E H ²)�
. The com-

position of these expressions therefore exposes constant-false
and redundant minterms and literals among the predicate ex-
pressions. Three types of optimizations are performed: (1) re-
moval of redundant literals within a term; (2) removal of redun-
dant terms; and (3) removal of constant-false terms. Figure 7(c)
shows the result of “filtering” the extracted terms using the con-
dition relations. Consider the optimization of

�
C
. Its first term,3 � 3 G , is reduced to 3 G because of the implication between

the two variables. When the expression for the second term3 � 3 � 34G is composed, this term is discovered to be constant-
false and is removed: 3 � 3 � 3NG ��² E ² � ² E ² � ² � ² E ² � ² � � 7 . The
example’s predicate expressions are thus reduced using condi-
tion information to the form shown in Figure 7(c).

The BDD lends itself naturally to this optimization process
due to its strong canonicity. For example, to determine if a term
is constant-false, it is necessary only to compose the term from
functions available in the BDD. If the term is unsatisfiable (that
is, if the literals present are mutually exclusive) the BDD will
generate a reference to 0 as the formula for the term.

B. Predicate expression optimization

After condition optimization, the predicate expressions still
exhibit two types of redundancy: that present in the original
sequences of define instructions and that generated by the ex-
traction of the disjunctive form from the BDD. To address both
these inefficiencies, a traditional Boolean optimizer, espresso,
is applied to the predicate expressions. The optimizer applies

the iterative consensus technique to the minterms, reducing the
expression to minimal two-level logic. The heart of this iter-
ative algorithm is the consensus-taking routine, which applies
the Boolean theorem

b H b�� 8 b H �
. After each pass through

the product list, products subsumed (covered) by other prod-
ucts are removed. The iterative-consensus algorithm generates
a complete sum for the input expression and then removes non-
essential products to generate a minimal covering sum [19]. In
the wc example, the expression for

�
B
is reduced by iterative

consensus. Figure 7(c) shows the expressions to which the es-
sential predicates of the wc example are reduced in the logic
optimization phase. These expressions are both less complex
and more parallel than the original functions.

Predicate expressions can grow very large in heavily predi-
cated code, having in some instances in excess of thirty vari-
ables. This renders the consensus algorithm, the complexity of
which is in the worst case exponential in the number of vari-
ables, intolerably slow in some cases. Fortunately, the struc-
ture of the expressions extracted from the BDD lends itself to
a divide-and-conquer optimization approach which drastically
reduces computation time. Terms generated from the BDD are
an irredundant form, in which no two minterms overlap. Ad-
jacent terms, however, are often easily reduced by consensus.
Thus an unmanageably large espresso input can be piecewise-
preprocessed in more manageable chunks, drastically reduc-
ing computation time without sacrificing optimization. By this
method we have been able to optimize even the largest predicate
expressions resulting from the benchmarks studied.

C. Two-level predicate synthesis

Following optimization of the predicate expressions, the con-
trol logic can be synthesized most intuitively as a two-level
predicate define network which directly evaluates the minimized
sum-of-products expression. In this approach, two levels of
predicate define instructions are used for each predicate. The
first level consists of and type predicate defines of the form�KÕ ê)ëÑ� 3 �

, where one predicate
�KÕ

is defined for each prod-
uct term in the predicate expression. The second level consists
of or type predicate defines of the form

����Õh����Ö ì)ë2�í�Y#�î ¸�ï)ð �
,

where there is one such predicate define for each product (
�KÕ

)
and

#�î ¸�ï)ð is an invariant TRUE condition (e.g.
� 7 �4� 7 �

).
Thus, a predicate expression having ñ literals and ò products
consumes ò H : predicates and performs ñ H ò predicate as-
signments. Continuing the wc example in Figure 7(d), note that
the two special cases of two-level predicate synthesis occur, in
which the computation of functions containing a single product
and functions that are disjunctions of single-literal products can
be performed in a single cycle. Note also that predicates which
have products in common can share intermediate predicates, al-
lowing for some savings through reuse. In many cases, however,
the sum-of-products form is far larger than the optimal uncon-
strained network. Furthermore, since the evaluation of such a
predicate define network usually takes at least two cycles af-
ter the last condition becomes available (one for the and-level
and one for the or-level), the result may also be suboptimal in
latency, even when scheduled for infinite issue. These deficien-
cies, indicated in the results (Section VI) required development
of factorization techniques.



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1669

D. Factorization

The wc example of the previous section exhibited a high ra-
tio of control height to computation height, and the computation
was nearly completely dependent on the outcome of the deci-
sion mechanisms. Thus, it was important to compress the height
of the entire decision structure as much as possible, as any re-
duction in the decision height improved performance. Further-
more, since the predicate conditions were strongly related, the
reformulation required fewer predicates and predicate defines
than the original form. In many other situations, however, pred-
icates are based on more independent conditions and the num-
ber of predicate define instructions required to generate a two-
level network may be quite large. Factorization seeks to use the
code’s computation or datapath height to hide some portions of
the decision latency which are not on the critical path. Thus, the
optimizer is free to focus on reducing implementation size rather
than delay when implementing these non-critical sections, sav-
ing valuable predicate registers and instruction issue resources.

The factored generation method determines how much fac-
toring can be performed without increasing the length of any
critical path. The availability times of conditions and the time at
which predicate values are needed by the computation compo-
nent drive the factorizer. If parallel computation height, rather
than predicate define height, is the critical path through the code
segment, then it is beneficial to perform factorization instead of
full expression flattening.

To measure the availability times of conditions and the time
at which predicate values are needed, a special version of the
code is scheduled. This version of the code has all the predicate
dependences between predicate defines removed. For each con-
dition, a predicate destination is added for each predicate whose
function depends on that condition. In the resultant code, predi-
cate define instructions migrate as early in the schedule as their
condition availability will allow. Also, all uses of a predicate
are placed as early as possible, but after all the conditions which
may be needed to compute it. By extracting the issue time of
these predicate defines and predicate uses, the “slack,” or the
amount of time the new predicate network has to compute pred-
icates without performance penalty, is ascertained.

With factorization, the goal is to form intermediate predicates
as the conditions to compute them become available, and then
to reuse these intermediate predicates in the computation of the
essential predicates. This activity factors the optimized sum-of-
products expression so that the resulting define structure may
take more cycles, but can reuse more intermediate predicates,
thus saving predicate defines and predicate registers.

When resource utilization is very high and predicate func-
tions are very complex, factorization becomes critical for per-
formance. In these situations, an additional factorization prepro-
cessing stage is applied, in which predicates are selectively fac-
tored on subexpressions of other available essential predicates.
This activity has the effect of moderating the restructuring of
control in cases where reordering of the predicate expressions
would generate a define network too wide for the target archi-
tecture.

Figure 8 shows an example extracted from the function co-
factor of the 008.espresso benchmark. The minimal sum-of-
products is computed for each of the final predicates, as shown

��V�� 3 � 3IE�3�J 3NL H 3 � 3IE�3IG 39L H 3 � 3 � 34L�
PF� 3 � 3 E 3 J 3 L 3 è H 3 � 3 E 3 G 3 L 3 è H 3 � 3 � 3 L 3 è
(a) Optimized predicate expressions

Time Cond. arrivals Predicate expression
1 3 � �
A ó�ëU� 3 �

3 � �/S ê�ëU� 3 ��/S ê�ëU� 3 �
2 3 E �
B ó�ëU� 3 E����A�����C ó/ë`� 3�E
3 3 G ����C�����ô ó/ë`� 3 G
4 3�J ����C�����õ ó/ë`� 30J
5 3 L ����ô�����V ì[ö�� 3 L����õ�����V ì[ö�� 3�L����S�����V ì[ö�� 3�L
6 3 è ����V�����P ó/ë`� 3 è
(b) Factoring with schedule time information

Fig. 8. Factorized predicate define optimization.

in Figure 8(a). In the example, when the code segment is sched-
uled by the slack estimation technique described, predicate

��V
is required in cycle 6 and

�
P
is required in cycle 7. The sec-

ond column of Figure 8(b) indicates at which times the vari-
ous conditions become available. Given this information, the
factorizer generates the sequence of predicate defines shown in
the final column of Figure 8(b), which takes advantage of the
available slack to factor common subexpressions out of the two
functions. In this example, factoring generated in 13 predicate
defines a result that required 37 predicate defines in the two-
level logic form. Since the dependence height of this sequence
is matched to parallel dependences in the code, the factored re-
sult is guaranteed to perform at least as well as the two-level
form, even on an infinitely wide machine. Furthermore, the use-
ful predicates (

��V
and

��P
) are available a single cycle after the

last condition is evaluated, sooner than would have been pos-
sible using a two-level synthesis of the predicate expressions.
Clearly, resource- and dependence-aware factorization is essen-
tial for achieving the benefit of Boolean logic minimization in
real programs.

V. ARCHITECTURAL SUPPORT FOR SYNTHESIS

The description of the predicate optimization in previous sec-
tions has disregarded the means by which Boolean expressions
are converted back into predicate defining instructions. This
section examines the instruction set considerations that evolved
in supporting an effective predicate synthesis system. Imple-
mentation of two-level predicate synthesis is straightforward in
the HPL-PD predicate architecture. For example, in Figure 7(c)
and (d), a simple sum-of-products expression is converted into a
small set of predicate defines.

Synthesis of multi-level factored functions is not as simple
as that of sum-of-products expressions, but yields significant
improvements in both performance and predicate define count.
Factoring involves combining available subexpressions, stored
in predicates, into new predicates. After factoring, expressions
to be synthesized thus contain predicates as well as conditions.
Figure 9 shows an example of factoring. In Figure 9(a), pred-



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1670

C1C1 C2p1 = +

C0 C1C1 C3 C0 C2 C3p2 = +

C0p2_ t=

C3(p1)p2_ t=

C1C1p1_ot= C2p1_ot=

C0

C3

C1C1 C2

p2_at=

p2_at= (p3)p2_af= 1

p1_ot,p3_af= p1_ot,p3_af=C2

C0

C3

C1

(p3)p2_ot= 1

C1 C2

C0

C3

(a) Factored generation (b) "Two−level" generation (c) Factored generation without
conjunctive types

Availability
Condition

1(p4)p2_ot=

p3_at,p1_ot= p4_at,p1_ot=

p3_at,p4_at=

p3_at,p4_at=

Fig. 9. Various methods of predicate expression regeneration

icate
��V

is a subexpression of
�
P

. Factoring 3 ��H 3IE , or
��V

,
out of

�
P
is desirable because both 3 �

and 3IE are available ear-
lier than other variables in

�
P
and because it allows exploitation

of redundancy between
�
P

’s two terms. As can be seen in Fig-
ure 9(b), this subexpression can be computed in cycle 1 using
or type predicate defines. The subsequent computation of

�
P
can incorporate this subexpression beneficially if it can conjoin
a predicate with its own previous value and the condition 3 G in
cycle 3. HPL-PD semantics do not provide for the parallel con-
junction of multiple predicates and conditions. The addition of
the conjunctive type, however, provides a predicate define suited
to this task. Figure 9(c) shows the final, factored predicate de-
fine formulation. The two expressions are computed using two
predicates and four predicate defines. The last predicate define
conjoins

��V
and 3IG with the previous contents of

�
P
( 3 �

) to
finish the computation of the

�
P
expression.

The primary use of the conjunctive type predicate defines is
to reduce the number of instructions required to compute fac-
tored expressions. Figures 9(b) and 9(c) show two generation
options that do not use the conjunctive type. In Figure 9(b), the
sum-of-products is generated directly, without factoring. In this
case, six predicate defines are required and dependence height
is increased. In Figure 9(c), factorization is performed, but the
conjunctive type is not used. Here, five predicate defines are
used, partially to construct the complement of the factored ex-
pression using DeMorgan’s theorem. The predicate

�
P
is nulli-

fied by the final predicate define if this complement is true. In
general, it should be noted that not all architectures allow ar-
bitrary pairs of predicate destination types on single predicate
defines, and not all expressions are so easily complemented as
the simple disjunction treated here. Thus, the cost of factoriza-
tion in the absence of special predicate destination types can be
significant.

VI. EXPERIMENTAL RESULTS

To determine the effectiveness of the presented Boolean mini-
mization techniques, particularly due to the sensitivity of perfor-
mance to the success of factorization heuristics, it was necessary
to implement the proposed techniques in a state-of-the-art ILP
compiler and to test the results on a processor with aggressive
issue capabilities. The described system was thus implemented
within the IMPACT experimental compiler / simulator frame-
work.

The processor modeled is an 8-issue processor with in-order
execution and register interlocking. The processor has no lim-

itation on the combination of instructions that may be issued
each cycle, except that only one may be a branch. Instruction
latencies match those of the HP PA-7100 microprocessor. The
instruction set contains non-trapping versions of all potentially
excepting instructions, with the exception of branch and store
instructions, to support aggressive compiler-directed speculative
execution without generation of recovery code. The instruction
set also contains support for predicated execution as described
in Section II.

The IMPACT emulation-driven simulator assessed the execu-
tion time for each benchmark according to the static latencies
described in the processor model. In the interest of minimizing
experimental noise, some dynamic effects such as branch mis-
predictions, cache misses, and TLB misses were not measured.
Since reformulation of the predicate decision logic does not af-
fect the basic nature of memory access patterns and branch his-
tories, any change in these dynamic effects between the original
and optimized codes would generally be spurious in nature.

The benchmarks used in this experiment consist of 13 non-
numeric programs: four of the SPECINT 92 benchmarks,
008.espresso, 022.li, 026.compress, 072.sc; six of the SPECINT
95 benchmarks, 099.go, 124.m88ksim, 126.gcc, 129.compress,
130.li, 132.ijpeg; and three UNIX utilities, cccp, lex, wc. The
best code generated by the IMPACT compiler for the selected ar-
chitecture using traditional hyperblock compilation techniques
was selected as the baseline for performance comparisons, again
in an attempt to isolate the particular effects of the predicate
optimizations. To this was compared the code transformed us-
ing the described Boolean reduction, factorization, and regener-
ation techniques. Following the regeneration step, an additional
scheduling pass was performed to allow the code to benefit from
the shortening of critical paths in predicate optimization. The
presentation of results begins with a discussion of performance
at the benchmark and function levels. An examination of some
of the details such as factorization strategies and the new predi-
cate define types follows the presentation of overall performance
results.

Figure 10 shows whole-benchmark speedups relative to the
hyperblock baseline, as measured by simulation. For each
benchmark, two results are reported. The first, the light bar
in the graph, is the benchmark speedup on the target architec-
ture. The unweighted average speedup for all the benchmarks
is 1.13. For some benchmarks, such as 022.li, 026.compress,
129.compress, and wc, the program decision height was signifi-
cantly limiting performance throughout the most frequently ex-



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1671

1.37

1.00

1.05

1.10

1.15

1.20

1.25

1.30

00
8.

es
pr

es
so



02
2.

li

02
6.

co
m

pr
es

s

07
2.

sc


09
9.

go


12
4.

m
88

ks
im



12
6.

gc
c

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg



cc
cp



le
x

w
c

Sp
ee

du
p

8-issue

8-issue, 256-preds

Fig. 10. Speedup from minimization of program decision logic.

ecuted portions of the code; when this height is reduced by our
techniques, speedups of around 1.2 were achieved.

The second result presented for each benchmark, repre-
sented by the dark bar and labeled “8-issue, 256-preds,” is the
speedup on a hypothetical machine capable of issuing eight non-
predicate-define instructions and, in addition, up to 256 pred-
icate defines per cycle. The significance of the second set of
numbers is that they reflect only the dependence height of predi-
cate defines, while eliminating their resource consumption char-
acteristics. These results suggest a logical upper bound for gains
possible with more effective factorization techniques. In most
benchmarks, the optimizer produced a number of predicate de-
fines that was appropriate for the schedule and machine model.
However, in four benchmarks, 008.espresso, cccp, 126.gcc, and
lex, the optimizer was unable to balance height reduction with
resource consumption and performance was penalized. The
benchmark 008.espresso is affected severely due to its being
very decision-height-limited. Unfortunately, the current min-
imization heuristic chose to reduce height too aggressively in
008.espresso, resulting in code which excelled on an infinite-
issue machine but which over-saturated the target architecture.
With more advanced factorization techniques, the number of
predicate defines could be reduced in these instances, more
closely approximating the “8-issue, 256-preds” results.

Overall, the whole-benchmark results are encouraging. In
most cases, the described techniques succeeded in matching
control dependence height to surrounding constraints, effec-
tively hiding the cost of predicate computation and significantly
improving performance. During our experimental exploration,
we observed that as optimizations targeting computation height
were improved, the decision logic became dominant and rela-
tive speedups improved. In particular, data and memory depen-
dences seemed to hide much of the program decision height re-
duction in many important hyperblocks. As the various compo-
nents of compiler technology mature, the importance of control
optimization in the general scheme of ILP optimization can be
expected to increase.

To better understand the effects of program decision logic
minimization apart from the averaging tendencies of whole-
program results, we measured the performance and code size
characteristics of a number of selected functions. Table II ex-
amines the performance of one or more functions from each of

the benchmarks. These functions were chosen based on two cri-
teria: significant program execution time and potential for opti-
mization (e.g., the control height was significant relative to the
computation height). The table compares the effectiveness of
two strategies for program logic regeneration, two-level predi-
cate synthesis and factorization-based synthesis, by indicating
for each strategy the number of static predicate define instruc-
tions generated, the performance gain on an 8-issue processor
with unconstrained predicate define resources ( ÷ ), and the per-
formance gain on the 8-issue processor. In addition, the table
indicates the static number of predicate define instructions in
the code prior to minimization.

As indicated in the table, two-level synthesis shows mixed re-
sults. For the unconstrained machine, height reduction produces
large speedups. However, the unconstrained performance does
not translate directly into the same performance gain on the 8-
issue processor. This effect is most pronounced in 008.espresso,
essen parts where the 1.16 speedup is sharply reduced to 0.39.
The primary reason for this behavior is the large increase in the
number of predicate define instructions. The predicate defines
created over-saturate processor resources and result in loss of
performance. Correspondingly, when the number of predicate
defines is not unduly increased, the unconstrained performance
does indeed translate directly into performance on the 8-issue
processor. Clearly, factored synthesis is necessary for practical
optimization of program decision logic.

These results show the factored approach yielding both larger
and more consistent speedups. Both methods reduce the predi-
cate computation height, but the factored approach dramatically
reduces the number of predicate defines relative to the number
generated by the two-level approach. The function 126.gcc,
canon hash provides a good example of this behavior. Both
methods achieve respectable speedups on the unconstrained pro-
cessor. However, the two-level synthesis approach requires 149
predicate defines to accomplish the improvement. On the 8-
issue processor, resource constraints caused by this instruction
bloat consume most of the gains that were made available by
height reduction. The factored approach reduces the number
of predicate defines to 116, increasing the 8-issue speedup to
1.74. Although this constitutes a significant increase relative
to the original 89 predicate defines, the net effect is improved
performance. The Boolean minimization/factorization approach
systematically balances instruction count and resource height
by identifying condition subexpressions that can be computed
early. This allows the final predicate to be made available as
soon as possible after the final condition is ready. The factored
approach is consistently more effective because it factors predi-
cate expressions into multiple-level structures which are less de-
manding of processor resources than two-step evaluations. An-
other interesting result is that for some functions, such as update
from 072.sc, the factored synthesis method outperforms the two-
level method, even at infinite issue. This is a due to the ability
of the factorizer to generate expressions in one cycle rather than
the two usually required by the two-level synthesis approach.

Another set of data examines the effectiveness of the new
predicate types (conjunctive and disjunctive, described in Sec-
tion II) in the context of Boolean minimization and justifies
these proposed architectural extensions. Table III presents the



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1672

TABLE II

SPEEDUP AND PREDICATE DEFINE COUNT FOR SELECTED FUNCTIONS.

Original Two-Level Synthesis Factored Synthesis
Benchmark, Function Pred. Defines Pred. Defines Speedup( ø ) Speedup(8) Pred. Defines Speedup( ø ) Speedup(8)

008.espresso, essen parts 39 1293 1.29 0.39 49 1.24 1.16
022.li, xleval 48 485 1.07 0.66 80 1.10 1.10
022.li, mark 42 67 1.48 1.48 53 1.50 1.48
026.compress, compress 60 456 1.20 1.03 221 1.23 1.23
072.sc, update 141 240 1.15 1.15 159 1.23 1.23
099.go, getefflibs 98 1083 1.06 0.98 204 1.07 1.07
124.m88ksim, execute 41 47 1.12 1.12 40 1.12 1.12
124.m88ksim, goexec 176 175 1.10 1.09 155 1.09 1.08
124.m88ksim, load data 42 54 1.30 1.30 53 1.30 1.30
124.m88ksim, loadmem 84 88 1.13 1.13 84 1.13 1.13
126.gcc, invalidate 89 202 1.27 1.24 125 1.22 1.21
126.gcc, flow analysis 64 92 1.77 1.69 58 1.86 1.86
126.gcc, canon hash 89 149 1.88 1.20 116 1.90 1.74
129.compress, compress 63 154 1.21 1.21 98 1.26 1.26
130.li, mark 55 148 1.15 1.14 101 1.19 1.19
132.ijpeg, forward DCT 31 47 1.46 1.35 32 1.46 1.43
cccp, skip if group 157 208 1.23 1.05 190 1.32 1.24
lex, cgoto 236 330 1.31 1.10 260 1.18 1.14
wc, main 56 48 1.22 1.31 48 1.22 1.22

effects of the new predicate define types on the speedup for
an 8-issue processor, the dynamic predicate define count, and
the static predicate define count. The new types allow certain
important logical combinations of predicates and conditions to
be expressed more efficiently. For all functions except 022.li,
mark and 130.li, mark, the performance gained from the pro-
gram decision logic optimization is diminished when the pro-
posed predicate define types are not available. Further, in six
of the nineteen functions, the performance improvement is con-
verted into a performance loss. The most dramatic example of
this is 126.gcc, flow analysis, in which a 46% performance im-
provement becomes an 8% performance degradation. When the
new predicate define types are removed from the target archi-
tecture and the compiler must generate an alternative, code size
suffers. In general, the additional predicate types allow signif-
icant reductions in both the static and dynamic predicate define
counts. In one case, 74% more predicate defines are required if
the new types are not available. Six functions do not exhibit this
penalty. In these functions, the majority of the predicate expres-
sions are sums of single term “products” making the conjunctive
type unnecessary for instantiating these functions.

VII. RELATED WORK

Previous research in the area of control flow optimization can
be classified into three major categories: branch elimination,
branch reordering, and control height reduction. Branch elimi-
nation techniques identify and remove those branches whose di-
rection is known at compile-time. The simplest form of branch
elimination is loop unrolling, in which instances of backedge
branches are removed by replicating the body of the loop. More
sophisticated techniques examine control and data flow simulta-
neously to identify correlations among branches [20][21]. When
a correlation is detected, a branch direction is determinable by
the compiler along one or more paths, and the branch can be
eliminated. In [21], an algorithm is developed to identify corre-
lations and to perform the necessary code replication to remove
branches within a local scope. This approach is generalized and
extended to the program level in [20]. In the second category of

TABLE III

EFFECTS OF conjunctive TYPE PREDICATE DEFINES ON SPEEDUP AND

INSTRUCTION COUNT.

Pred. Def. Count
Speedup (8) Penalty w/o Ë t/ Ë f

Benchmark, Function with without dynamic static

008.espresso, essen parts 1.16 0.96 17.2% 17.8%
022.li, xleval 1.10 1.08 35.4% 35.0%
022.li, mark 1.48 1.48 11.5% 11.3%
026.compress, compress 1.23 1.13 59.8% 60.2%
072.sc, update 1.23 0.98 4.3% 5.0%
099.go, getefflibs 1.07 1.06 17.1% 21.1%
124.m88ksim, execute 1.12 0.89 16.9% 10.0%
124.m88ksim, goexec 1.08 0.90 6.3% 6.5%
124.m88ksim, load data 1.30 1.07 15.3% 11.3%
124.m88ksim, loadmem 1.13 1.02 74.1% 14.3%
126.gcc, invalidate 1.14 0.77 30.3% 22.4%
126.gcc, flow analysis 1.86 0.93 0.1% 0.0%
126.gcc, canon hash 1.74 1.60 11.4% 10.5%
129.compress, compress 1.26 1.10 53.4% 35.7%
130.li, mark 1.19 1.19 18.2% 17.8%
132.ijpeg, forward DCT 1.43 1.33 0.0% 0.0%
cccp, skip if group 1.24 1.20 16.8% 14.2%
lex, cgoto 1.14 1.07 4.7% 10.8%
wc, main 1.22 1.16 4.2% 4.2%

control flow optimization, branch reordering, the order in which
branches are evaluated is changed to reduce the average depth
traversed through a network of branches [22].

The final category of control flow optimization research fo-
cuses on the reduction of control dependence height. This work
attempts to collapse the sequential evaluation of linear chains
of branches in order to reduce the height of program critical
paths [23]. In an approach analogous to a carry lookahead adder,
a lookahead branch is used to calculate the taken condition of a
series of branches in a parallel form. Subsequent operations de-
pendent on any of the branches in the series need only to wait
for the lookahead branch to complete. The control dependence
height of the branch series is thus reduced to that of a single
branch. While the mechanisms introduced herein also reduce



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1673

control dependence height, they comprise a minimization ap-
proach far more general than those previously proposed.

Three general approaches to predicate analysis have been de-
scribed previously in the literature, two of which apply to hy-
perblock code with restricted predicate define types. The first
and simplest, the Predicate Hierarchy Graph (PHG), was intro-
duced with the IMPACT hyperblock compilation framework [8].
The PHG relates predicates by keeping track of which predicates
guarded the definition of each predicate, or of each component
term for or type expressions. The PHG thus understands only
“genealogical” relationships, and is inaccurate when predicates
do not fit neatly into a hierarchical graph. The PHG is unable
to represent networks which contain and type, conjunctive type,
and disjunctive type predicate defines, precluding direct analy-
sis of code generated by control height reduction optimizations
such as those presented in [7] and [24].

A second, more sophisticated approach, the Predicate Query
System (PQS) [25], exists within the Hewlett-Packard Elcor
framework. The representational mechanism of PQS, the par-
tition graph, can describe accurately only those predicate ex-
pressions which can be expressed as logical partitions. (p2 and
p3 partition p1 iff p1=p2 ù p3 and p2

¥
p3=

§
.) This relation is

generally satisfied only for unconditional predicate defines and
for or type predicate defines with disjoint terms. Thus, although
PQS performs a direct analysis of assembly code containing
predication, it can accurately represent only predication con-
forming to the style of if-conversion. In practice, other define
types have been represented in the partition graph using con-
servative approximations or special constructs. Unfortunately,
such accommodations pollute the logical relations of the parti-
tion graph with artifacts of the order in which defines were pro-
cessed and of the approximations themselves; while these tech-
niques allow the partition graph to function safely in a predicate-
aware dataflow system [26], they are insufficient as a basis for a
logic minimization system. Thus, although PQS can accurately
analyze the example of Figure 5(b) (disregarding condition in-
formation), it cannot accurately analyze the logically equivalent
Figure 5(c), which uses types not easily partitioned. The pri-
mary advantages of PAS over PQS, therefore, are its ability to
perform fully accurate direct analysis of code utilizing any de-
sired predicate defining semantics, and its ability to incorporate
knowledge of condition relations into its logical database.

In the third approach, Eichenberger developed a predicate
analysis mechanism for use in register-allocating predicated
codes. His mechanism collected logical expressions, termed P-
facts, which related predicates and, in some cases, related condi-
tions. These P-facts were evaluated with respect to each other in
a symbolic manipulation environment [27]. Eichenberger’s re-
sults do not indicate the expense involved in applying this tech-
nique. For single-hyperblock analysis, this technique is func-
tionally equivalent to the technique proposed in this paper, but
in this work the BDD replaces the symbolic framework, demon-
strating the same local accuracy at a low cost, and constructs on
top of the analysis a powerful optimization engine.

VIII. CONCLUSION

In this article, we have presented a comprehensive method for
optimizing a program’s “decision logic.” Our approach provides

a systematic methodology for reformulating program control
flow for more efficient execution on ILP processors. Control ex-
pressed through branches and predicate defines is extracted and
represented as a program decision logic network. Boolean min-
imization techniques are applied to the network both to reduce
dependence height and to simplify the component expressions.
Redundancy is controlled by employing a schedule-sensitive
factorization technique to identify intermediate logical combi-
nations of conditions that can be shared. After optimization, the
network is reformulated into predicated code.

We have also presented extensions to the HPL-PD model of
predication that allow more efficient computation of the pred-
icate expressions produced by our minimization techniques,
namely the conjunctive and disjunctive predicate assignment
types. Experimental results show that in blocks of predicated
code with significant control height, the application of logic
minimization techniques together with these architectural en-
hancements provides substantial performance benefit. Across
the benchmarks studied, program decision logic minimization
provided an average overall speedup of 1.13 for an 8-issue pro-
cessor. Single-function results indicated speedups up to 1.90 in
significant functions. The new predicate assignment types were
also shown to significantly reduce the number of predicate de-
fine instructions required. As compiler technology progresses
to make more extensive and effective use of predicated code,
minimization of program decision logic is likely to become an
increasingly more important part of total program optimization.

More important than the optimization technique itself is the
approach demonstrated in achieving it. A sequence of tech-
niques exposed, abstracted, analyzed, optimized, and replaced
a significant program component. Hyperblock formation was
used not just to eliminate branches but to define and separate a
program control component. The predicate analysis system ab-
stracted both the relationships among condition tests and those
among predicates into a fully Boolean form, the ROBDD, in
which expressions representative of the program decision logic
could be compared and manipulated efficiently. Traditional
Boolean optimization techniques were then applied on this ab-
stracted form, performing transformations that would have been
difficult to achieve within the context of the instruction set ar-
chitecture and traditional compiler analyses. Knowledge of re-
source and dependence limitations was applied to render an ef-
ficient implementation of the improved decision logic back into
the target ISA. Finally, it was demonstrated that all this can take
place without sacrificing analysis accuracy in subsequent com-
pilation steps. The results achieved, combined with the increas-
ing complexity and variety of architectures, encourage the fur-
ther development of abstraction-based compilation models.

ACKNOWLEDGMENTS

The authors would like to thank Jean-Michel Puiatti for his
help with our initial work in Boolean optimization and Professor
Farid Najm for the insight he has provided into the nature of the
BDD. This research has been supported by the National Science
Foundation (under grants CCR-9629948 and CCR-0086096),
Advanced Micro Devices, Hewlett-Packard, and Intel.



PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1674

REFERENCES

[1] P. Y. Hsu and E. S. Davidson, “Highly concurrent scalar processing,” in
Proceedings of the 13th International Symposium on Computer Architec-
ture, June 1986, pp. 386–395.

[2] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, “The Cydra 5 de-
partmental supercomputer,” IEEE Computer, vol. 22, no. 1, pp. 12–35,
January 1989.

[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of
control dependence to data dependence,” in Proceedings of the 10th ACM
Symposium on Principles of Programming Languages, January 1983, pp.
177–189.

[4] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier,
B. Cheng, P. R. Eaton, Q. B. Olaniran, and W. W. Hwu, “Integrated pred-
ication and speculative execution in the IMPACT EPIC architecture,” in
Proceedings of the 25th International Symposium on Computer Architec-
ture, June 1998, pp. 227–237.

[5] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL PlayDoh architec-
ture specification: Version 1.0,” Tech. Rep. HPL-93-80, Hewlett-Packard
Laboratories, Palo Alto, CA, February 1994.

[6] Intel Corporation, IA-64 Application Developer’s Architecture Guide,
May 1999.

[7] D. I. August, J. W. Sias, J. Puiatti, S. A. Mahlke, D. A. Connors, K. M.
Crozier, and W. W. Hwu, “The program decision logic approach to predi-
cated execution,” in Proceedings of the 26th International Symposium on
Computer Architecture, May 1999, pp. 208–219.

[8] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, R. A. Bringmann, and
W. W. Hwu, “Effective compiler support for predicated execution using
the hyperblock,” in Proceedings of the 25th International Symposium on
Microarchitecture, December 1992, pp. 45–54.

[9] S. A. Mahlke, R. E. Hank, J.E. McCormick, D. I. August, and W. W.
Hwu, “A comparison of full and partial predicated execution support for
ILP processors,” in Proceedings of the 22th International Symposium on
Computer Architecture, June 1995, pp. 138–150.

[10] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transaction on Computers, vol. C-35, no. 8, pp. 677–691,
August 1986.

[11] N. J. Warter, S. A. Mahlke, W. W. Hwu, and B. R. Rau, “Reverse if-
conversion,” in Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation, June 1993, pp. 290–
299.

[12] D. I. August, W. W. Hwu, and S. A. Mahlke, “A framework for balancing
control flow and predication,” in Proceedings of the 30th Annual Interna-
tional Symposium on Microarchitecture, December 1997, pp. 92–103.

[13] J. W. Sias, D. I. August, and W. W. Hwu, “Accurate and efficient predicate
analysis with binary decision diagrams,” in Proceedings of the 33rd An-
nual International Symposium on Microarchitecture, December 2000, pp.
112–123.

[14] F. Somenzi, “CUDD: Colorado University Decision Diagram package,
release 2.30,” http://vlsi.colorado.edu/ ú fabio/CUDD/, 1998.

[15] K. S. Brace, R. R. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” in Proc. of the 27th ACM/IEEE Design Automation
Conference, January 1990, pp. 40–45.

[16] J. W. Sias, “Condition awareness support for predicate analysis and opti-
mization,” M.S. thesis, University of Illinois, Urbana, IL, 1999.

[17] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary de-
cision diagrams,” Tech. Rep. CMU-CS-92-160, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA, October 1992.

[18] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control de-
pendence graph,” ACM Transactions on Programming Languages and
Systems, vol. 13, no. 4, pp. 451–490, October 1991.

[19] J. F. Wakerly, Digital Design: Principles and Practices, Prentice Hall,
Englewood Cliffs, NJ, 1994.

[20] R. Bodik, R. Gupta, and M. L. Soffa, “Interprocedural conditional branch
elimination,” in Proceedings of the ACM SIGPLAN 1997 Conference on
Programming Language Design and Implementation, June 1997, pp. 146–
158.

[21] F. Mueller and D. B. Whalley, “Avoiding conditional branches by code
replication,” in Proceedings of the ACM SIGPLAN ’95 Conference on
Programming Language Design and Implementation, June 1995, pp. 55–
66.

[22] M. Yang, G.-R. Uh, and D. B. Whalley, “Improving performance by
branch reordering,” in Proceedings of the ACM SIGPLAN ’98 Confer-
ence on Programming Language Design and Implementation, June 1998,
pp. 130–141.

[23] M. Schlansker and V. Kathail, “Critical path reduction for scalar pro-
grams,” in Proceedings of the 28th International Symposium on Microar-
chitecture, December 1995, pp. 57–69.

[24] M. S. Schlansker, S. A. Mahlke, and R. Johnson, “Control CPR: A branch
height reduction optimization for EPIC architectures,” in Proceedings of
the ACM SIGPLAN 1999 Conference on Programming Language Design
and Implementation, May 1999, pp. 155–168.

[25] R. Johnson and M. Schlansker, “Analysis techniques for predicated code,”
in Proceedings of the 29th International Symposium on Microarchitecture,
December 1996, pp. 100–113.

[26] D. M. Gillies, D. R. Ju, R. Johnson, and M. Schlansker, “Global predicate
analysis and its application to register allocation,” in Proceedings of the
29th International Symposium on Microarchitecture, December 1996, pp.
114–125.

[27] A. E. Eichenberger and E. S. Davidson, “Register allocation for predicated
code,” in Proceedings of the 28th Annual International Symposium on
Microarchitecture, December 1995, pp. 180–191.

Wen-mei Hwu(S’81-M’87-F’98) is Franklin Woeltge
Professor at the Department of Electrical and Com-
puter Engineering, University of Illinois at Urbana-
Champaign. From 1997 to 1999, he served as the
chairman of the Computer Engineering Program at the
University of Illinois. His research interest is in the
area of architecture, implementation, and compilation
for high performance computer systems. He is the
director of the IMPACT project, which has delivered
new compiler and computer architecture technologies
to the computer industry since 1987. For his contri-

butions to the areas of compiler optimization and computer architecture, he re-
ceived the 1993 Eta Kappa Nu Outstanding Young Electrical Engineer Award,
the 1994 Xerox Award for Faculty Research, the 1994 University Scholar Award
of the University of Illinois, the 1997 Eta Kappa Nu Holmes MacDonald Out-
standing Teaching Award, the 1998 ACM SigArch Maurice Wilkes Award and
the 1999 ACM Grace Murray Hopper Award. He is an IEEE Fellow. Dr. Hwu
received his Ph.D. degree in Computer Science from the University of Califor-
nia, Berkeley.

David August is an Assistant Professor in the De-
partment of Computer Science at Princeton Univer-
sity. His research interests lie in computer architec-
ture and back-end compilation. He directs the Liberty
computer architecture research group. The Liberty
group is currently developing an open-source cycle-
accurate simulator builder and retargetable compiler.
Please see http://liberty.cs.princeton.edu for more in-
formation. David received his Ph.D. in Electrical and
Computer Engineering from the University of Illinois
at Urbana-Champaign in 2000. At Illinois, as a mem-

ber of the IMPACT research compiler group, he invented a complete framework
for aggressive predicate analysis and optimization.

John Sias (S ’95) received a B.S. in Computer Engi-
neering and an M.S. in Electrical Engineering from
the University of Illinois at Urbana-Champaign in
1997 and 1999, respectively. He is currently pursu-
ing his Ph.D. in Electrical Engineering, also at Illi-
nois. His work has been supported by the National
Defense Science and Engineering Graduate Program
and the IBM Centre for Advanced Studies. He has
spent summers at the IBM Toronto Laboratory, aid-
ing in the development of static and dynamic compi-
lation techniques for EPIC architectures. His primary

research interests surround the interface between compiler technology and com-
puter architecture.


