
Compiler Technology for Future Microprocessors

Wen-mei W. Hwu Richard E. Hank David M. Gallagher� Scott A. Mahlkey

Daniel M. Lavery Grant E. Haab John C. Gyllenhaal David I. August

Center for Reliable and High-Performance Computing

University of Illinois

Urbana, IL 61801

Correspondent: Wen-mei W. Hwu

Tel: (217)-244-8270

Email: w-hwu@uiuc.edu

Abstract

Advances in hardware technology have made it possible for microprocessors to execute a large

number of instructions concurrently (i.e., in parallel). These microprocessors take advantage of

the opportunity to execute instructions in parallel to increase the execution speed of a program.

As in other forms of parallel processing, the performance of these microprocessors can vary

greatly depending on the quality of the software. In particular, the quality of compilers can

make an order of magnitude di�erence in performance. This paper presents a new generation of

compiler technology that has emerged to deliver the large amount of instruction-level-parallelism

that is already required by some current state-of-the-art microprocessors and will be required

by more future microprocessors. We introduce critical components of the technology which

deal with di�cult problems that are encountered when compiling programs for a high degree

of instruction-level-parallelism. We present examples to illustrate the functional requirements

of these components. To provide more insight into the challenges involved, we present in-depth

case studies on predicated compilation and maintenance of dependence information, two of the

components that are largely missing from most current commercial compilers.

1 Introduction

The microprocessor industry continues to successfully meet the demand for increased performance

in the market place. In 1994, high-end microprocessors [1] [2] executed integer code at about 100

�With the Department of Electrical and Computer Engineering, Air Force Institute of Technology, WPAFB, OH

45433
yWith Hewlett-Packard Laboratories, 1501 Page Mill Rd., MS 3L-5, Palo Alto, CA 94304

times the performance of a high-end microprocessor introduced in 1984 [3].1 Such rapid growth

in microprocessor performance has stimulated the development and sales of powerful system and

application programs that demand even more performance. This positive cycle has helped create

a very high rate of growth for the microprocessor industry. In order to sustain such growth, the

microprocessor industry will continue to seek innovations required for the sustained performance

improvement of their products.

An area of innovation that is important to the next major boost of microprocessor performance

is instruction-level parallel processing. This is reected by the fact that high-performance micropro-

cessors are increasingly designed to exploit instruction-level parallelism (ILP). While mainstream

microprocessors in 1990 executed one instruction per clock cycle [4] [5], those in 1995 execute up

to four instructions per cycle [6] [7]. By the year 2000, hardware technology is expected to produce

microprocessors that can execute up to sixteen instructions per clock cycle. Such rapid, dramatic

increases in the hardware parallelism have placed tremendous pressure on the compiler technology.

Traditionally, optimizing compilers improve program execution speed by eliminating unneces-

sary instruction processing [8]. By keeping memory data and intermediate computation results

in high speed processor registers, optimizing compilers reduce the program execution cycles spent

waiting for the memory system and performing redundant computation. While this model of

optimization will remain important to the performance of future microprocessors, the rapidly in-

creasing hardware parallelism demands parallelization techniques that are currently missing from

most commercial compilers.

The quality of compiler parallelization techniques can potentially make an order of magnitude

di�erence in program execution performance for processors that exploit ILP. For a processor that

executes up to eight instructions per cycle, a well-parallelized program can run at several times the

1The measure of integer code performance is the SPECint number published by SPEC (Standard Performance

Evaluation Corporation), an industry consortium for standardizing performance comparison practices in the computer

industry.

2

speed of a poorly parallelized version of the same program. With so much at stake, one can expect

industry to incorporate parallelization techniques in their compilers in the near future.

The purpose of this paper is to give an advanced introduction to the new generation of compiler

parallelization technology. The reader is assumed to have a general interest in microprocessors

such as programming microprocessors or designing systems using microprocessors. This paper

begins with an overview of the techniques required to parallelize general purpose programs. These

techniques address the problems caused by frequent control decisions, dependences between register

accesses, and dependences between memory references. The overview is designed to give the reader

a functional understanding of these techniques rather than detailed theorems and algorithms.

To provide the reader with further insight into the challenges involved, we present two case

studies. The �rst case study examines compiling for predicated execution, a technique to remove

the performance limitations imposed by frequent control decisions on high performance processors.

We describe the basic transformations needed to make use of this hardware feature as well as the

more advanced optimizations required to handle di�cult situations.

The second case study examines the maintenance and use of memory dependence information

throughout the compilation process. This capability is critical for parallelizing programs that use

sophisticated data structures. These two case studies were selected for several reasons. First,

they both touch upon critical aspects of parallelization. Inadequate capability in either area can

result in excessive constraints on parallelization. Second, most current commercial compilers have

inadequate capabilities in both areas. Thus, they are prime examples of the di�erence between new

and traditional compiler technologies.

2 ILP Compilation

To successfully parallelize a program, the compiler must perform three tasks. First, it must accu-

rately analyze the program to determine the dependences between instructions. Second, it must

3

perform ILP optimizations which remove dependences between instructions, allowing them to be

executed in parallel. Finally, it must reorder the instructions, a process known as code schedul-

ing, so that the microprocessor can execute them in parallel. When performing these tasks, the

compiler must examine a region of the program which is large enough to potentially contain many

independent instructions. These tasks are collectively referred to as ILP compilation.

2.1 Basic Concepts

Figure 1(a) shows an example loop written in C. This loop was chosen because it is small and

simple enough to be used as an example, yet requires many sophisticated compilation techniques

to expose ILP. The body of the loop consists of a simple if-then-else construct. In each iteration, it

evaluates the condition A[i] 6= 0 to determine if the then part or the else part should be executed.

The low-level (assembly-level) code 2 for the loop, after traditional optimization [8], is presented

in Figure 1(b). The descriptions of the register contents are represented using C-language syntax.

For example, &B[1] is the address of the second element of array B. The horizontal lines partition

the code into basic blocks. These are regions of straight-line code separated by decision points and

merge points. Basic block L0 performs the initialization before the loop. L1 tests the if condition

speci�ed in the source code. L2 corresponds to the then part of the if-then-else construct and L3

to the else part. L4 tests for the loop condition and invokes the next iteration if the condition is

satis�ed.

Figure 1(c) shows an abstract representation of the control structure of the loop body called a

control ow graph. Each node in the graph represents a basic block in the low-level code. There is

an arc between two blocks if a control transfer between them is possible, either by taking a branch

or by executing the next sequential instruction after the branch. The two possible paths through

the loop body are clearly shown in this representation of the loop. The then path is enclosed by

2In the assembly language syntax used in this paper, the destination operand is listed �rst, followed by the source

operands. For branches, the operands being compared are listed �rst, followed by the branch target.

4

dotted lines in Figure 1(c).

In Figure 1(b), register r2 is written by instruction 1 and read by instruction 2. Thus, instruction

2 is dependent on instruction 1 and cannot be executed until after instruction 1. This type of

dependence, from a write of a register to a read of the same register, is called a register ow

dependence. There is a di�erent type of dependence between instruction 6 and instruction 9. Here,

the value in r3 used by instruction 6 is overwritten by instruction 9. This is called a register

anti-dependence. The dependences described above are between instances of the instructions in

the same iteration of the loop, and are referred to as loop-independent dependences. In contrast,

instruction 1 uses the value written into r3 by instruction 9 during the previous iteration of the loop.

This register ow dependence is referred to as a loop-carried dependence because the dependence is

carried by the loop from one iteration to another. Another loop-carried dependence exists between

an instance of instruction 5 in the current iteration and the instance of the same instruction in the

next iteration. The latter instance overwrites the value written into r6 by the earlier instance. This

loop-carried dependence is called a register output dependence.

Dependences are used by the code scheduler to determine the constraints on the ordering of the

instructions and by the optimizer to determine if a code transformation is valid. Figure 2(a) shows

the register dependence graph for the loop body of Figure 1(b). Each node in the dependence

graph represents an instruction. The arcs represent dependences between the nodes. An arc going

from instruction A to instruction B indicates that instruction B is dependent on instruction A. For

clarity, the loop-carried output and anti-dependences are not shown.

Similar types of dependences can also occur between instructions which access the same memory

locations. In Figure 1(b), instruction 3 reads from the memory location at address B+r3 (i.e., B[i])

and instruction 6 writes to the same memory location. This is called a loop-independent memory

anti-dependence. Instruction 4 reads the same memory location (i.e., B[i + 1]) which instruction

6 overwrites in the next iteration, creating a loop-carried memory anti-dependence. Memory ow

5

dependences, created by a store followed by a load from the same address, and memory output

dependences, created by two stores to the same address, are also possible.

For memory accesses, it is also useful to know if two instructions read the same memory location.

This is referred to as a memory input dependence. For example, in Figure 1(b), instruction 4 reads

the same memory location which instruction 3 will read in the next iteration. Optimizations which

remove redundant loads can make use of this information.

Figure 2(b) shows the memory dependence graph for the loop body of Figure 1(b). Only the

memory reference instructions are shown. It may at �rst appear that a loop-independent memory

output dependence exists between instructions 6 and 8. However, the two instructions are on

separate paths through the loop body and cannot both be executed during the same iteration of

the loop. Thus, control ow information as well as memory address information must be considered

when computing dependences.

The column labeled IT (for issue time) in Figure 1(b) illustrates a possible execution scenario in

which the then path is taken. The column shows the issue time, the time at which the instruction

is sent to the functional unit.3 The issue time for the block at label L3 is not shown because it is

not executed in this scenario.

2.2 Enlarging the Scope of ILP Optimization and Scheduling

Early attempts at ILP compilation used the basic block as the scope of the search for independent

instructions. This approach is appealing because of its simplicity. During code scheduling, the

compiler does not need to handle complications due to the decision and merge points. However, it

3The issue times assume a processor that issues instructions in the same order that that is speci�ed in the

program and that can begin execution of multiple instructions each cycle. There is no limit placed on the number

or combination of instructions that can be issued in a single cycle. An instruction is issued as soon as the producers

of its input operands have �nished execution. It is also assumed that loads take 2 cycles, and that stores and ALU

instructions take 1 cycle. The processor predicts the direction of branches, so instructions following the branch on

the predicted path can be executed at the same time as the branch. Thus, the next loop iteration begins in the same

cycle that the loop back branch is issued unless delayed by loop-carried dependences.

6

was discovered, and is the current consensus, that most basic blocks have very limited ILP [9][10].

In Figure 1(b), most of the basic blocks have very few instructions that can be executed in the

same cycle. For the then path, the average number of instructions executed per cycle is only 1.5.

To expose further ILP, the compiler must be able to search beyond the basic block boundaries.

Several approaches have been developed to form regions larger than the basic block. Only two

of them are discussed here. They di�er in their treatment of the decision point associated with

instruction 2 in Figure 1(b). This instruction is highlighted both in Figure 1(b) and later examples

to emphasize the di�erence between the two approaches.

One approach is to form either a trace [11] or a superblock [12], which is a region consisting of a

sequence of basic blocks along a frequently executed path. This path is then optimized, sometimes

at the expense of the infrequently executed paths. In the example of Figure 1(c), if the else path is

infrequently executed, the dotted lines enclose a trace formed along the frequently executed then

path. Figure 3(a) shows the control ow graph after a superblock (highlighted by dotted lines) is

formed from the trace along the then path. A superblock is formed from a trace by duplicating

blocks to remove merge points and their associated complications from the trace. In the example,

basic block L4 is duplicated.

Figure 3(b) shows the low-level code for the superblock after code scheduling. The code is laid

out in memory so that the infrequent else path (not shown) does not interrupt the sequence of blocks

in the superblock. The horizontal lines between basic blocks have been removed to emphasize the

fact that the compiler can now optimize and schedule the code within this larger block. The process

of reordering instructions within the superblock is called global acyclic scheduling. Global means

that the compiler moves code across basic block boundaries. For example, the compiler has moved

instructions 3 and 4, which were in block L2 of the original code, before instruction 2, which was in

block L1 in the original code. Acyclic means that the scheduling is done within an acyclic region of

the control ow graph. In the example, instructions have been moved within the superblock, but

7

no instructions have been moved across the back-edge of the loop from one iteration to another.

Note that when the compiler moved instructions 3 and 4 to before instruction 2, code was

moved from after to before a branch. This is known as speculative code motion [13][14][15][16]. In

the original program, instructions 3 and 4 are executed only if the then path is executed and are said

to be control dependent on instruction 2. Speculative code motion breaks this control dependence.

When the then path is executed, two cycles are saved because the early execution of instructions

3 and 4 allows their dependent instructions (5 and 6) to also execute early. However, when the

infrequent else path is executed, instructions 3 and 4 are executed needlessly. The compiler must

ensure that the extra execution of instructions 3 and 4 does not cause incorrect program results

when the else path is executed. The execution time on the then path is decreased from 6 cycles to

4 cycles as a result of the increased opportunities to execute instructions in parallel.

Traces and superblocks are most e�ective if a single frequently executed path through the

loop body exists. The compiler can focus on optimizing that path without being limited by the

constraints of the infrequent paths. Also, when there is a single dominant path, the branches in the

loop body tend to be very predictable. If more than one important path exists, the compiler needs

to jointly optimize both paths in order to produce e�cient code. Also, when there is more than

one important path, the branches can be less predictable, leading to more performance problems

at run time.

If more than one important path exists, a larger region can be formed using predicated ex-

ecution [17] [18]. This technique merges several paths into a single block and eliminates from

the instruction stream the branches associated with those paths. Predicated or guarded execu-

tion refers to the conditional execution of an instruction based on the value of a boolean source

operand, referred to as the predicate. Through a process known as if-conversion, the compiler con-

verts conditional branches into predicate de�ne instructions, and assigns predicates to instructions

along alternative paths of each branch [19] [20] [21]. Predicated instructions are fetched regardless

8

of their predicate value. Instructions whose predicate is true are executed normally. Conversely,

instructions with false predicates are nulli�ed, and thus are prevented from modifying the processor

state. Transformation of conditional branches into predicate de�ne instructions converts the con-

trol dependences associated with the branches into data dependences associated with the predicate

de�ne instructions. Predicated execution allows the compiler to trade instruction fetch e�ciency

for the capability to expose ILP to the hardware along multiple execution paths.

Figure 4 shows the example loop after both paths have been merged into a single block. Instead

of branching based on a comparison, instruction 2 now does the same comparison and writes the

result in predicate register p1. The then path is executed if predicate p1 is false; the else path is

executed if predicate p1 is true. Initially, instructions 3-6 are all conditionally executed on predicate

p1. However, a technique referred to as predicate promotion allows instructions 3, 4, and 5 from

the then path to be executed before the result of the comparison is known [21] by removing the

predicates from those instructions. This is another example of speculative code motion and again

helps the performance of the then path.4 The ILP along the then path has been increased to two

instructions per cycle.5 The else path is now included in the block and treated along with the then

path during later optimizations instead of being excluded. The examples in the rest of the section

will continue to optimize this predicated code.

In Figure 4, the compiler is limited to a single iteration of the loop when looking for independent

instructions. Loop unrolling [22] and software pipelining [23][24][25] are two techniques which allow

the compiler to overlap the execution of multiple iterations. A loop is unrolled by placing several

copies of the loop body sequentially in memory. This forms a much larger block in much the same

way as forming a superblock. A global acyclic scheduling algorithm can then be applied to the

unrolled loop body. When code is moved between copies of the loop body, the iterations become

4Assuming that the peq instruction takes 1 cycle, executing instruction 5 before its predicate has been computed

reduces the execution time of the loop body by 1 cycle.
5When the then path is executed, instructions 8 and 28 are not executed. Thus, they are not counted in the

calculation of instructions/cycle.

9

overlapped.

However, with loop unrolling, only the copies of the original loop body within the unrolled

loop body are overlapped; all overlap is lost when the loop-back branch for the unrolled loop

body is taken. Software pipelining generates code that continuously maintains the overlap of the

original loop iterations throughout the execution of the loop. Software pipelining is also called

cyclic scheduling because it moves instructions across the back-edge in the control ow graph from

one loop iteration to another.

2.3 Overcoming Register and Memory Dependences

Figure 5(a) shows the example loop from Figure 4 after unrolling to form two copies of the original

loop body. Instruction 10, the loop-back branch in the original loop, is now a loop-exit branch

which is taken if the second copy of the loop body should not be executed. There are now two

problems which limit the overlap of the two copies of the loop body. The �rst is the reuse of the

same registers for the second copy of the loop body. This reuse creates an anti-dependence because

the instruction which writes the new value cannot be executed until all the instructions which read

the old value have been executed. In addition, a register output dependence is created between the

write of the old value and the write of the new value.

For the example loop, the anti-dependences associated with the index variable (r3) are partic-

ularly problematic. The code scheduler would like to arrange the instructions so that instructions

from the second copy of the loop body execute concurrently with instructions from the �rst copy.

However, the load instructions in the second copy depend on the update of the index variable done

by instruction 9. Instruction 9 in turn cannot be executed until the stores which use r3 have been

executed. These register dependences e�ectively serialize the two copies of the loop body, but can

be removed by using di�erent registers for the second copy of the loop body. This process is called

compile-time register renaming.

10

The second impediment to ILP in the unrolled loop is possible memory dependences [26][27].

Given a pair of memory references, the compiler tries to determine whether or not the two memory

references ever access the same memory location. If the compiler cannot determine this, it must

conservatively assume that a dependence exists to guarantee the correctness of the compiled code.

In Figure 5(a), possible memory ow dependences exist from instructions 6 and 8, the high-

lighted stores of B[i] in the �rst copy of the original loop body, to each of the highlighted load

instructions 21 (i.e., A[i]), 23 (i.e., B[i]), and 24 (i.e., B[i+ 1]), in the second copy.6 To determine

if the loads are independent of the stores, the compiler must determine whether the loads ever

access the same memory location as the stores. For example, if the compiler can determine that A

and B are the labels for the start of two non-overlapping arrays, it can determine that the load of

A[i] cannot access the same memory location as the stores of B[i]. Determining that instructions

23 and 24 are independent of the stores is more di�cult. The compiler must analyze the address

operands to determine the relationship between the value in r1 and B and the relationship between

the value in r3 in the �rst copy of the loop body and the value in r3 in the second copy. This

process is referred to data dependence analysis, and will be discussed further in section 4.

It is possible for data dependence analysis techniques to determine that the loads in Figure 5(a)

are independent of the stores, and Figure 5(b) shows the code after the compiler performs opti-

mizations and scheduling assuming this independence. The register renaming discussed earlier has

also been performed. The loads from the second copy can now be executed before the stores from

the �rst copy. In addition, the compiler is able to determine, using data dependence analysis, that

the load of B[i] (i.e., instruction 23) in the second copy accesses the same location as the load of

B[i + 1] (i.e., instruction 4) in the �rst copy; that is, a memory input dependence exists between

the two instructions. Thus, the load of B[i] is redundant, and can be removed. After applying

data dependence analysis and register renaming, the unrolled loop body is executed in four cycles

6Note that the value of i increases by one from the �rst to the second copy.

11

instead of eight cycles.

2.4 Summary

Overall, ILP compilation reduced the execution time from 6 cycles for one iteration of the loop

to 4 cycles for two iterations of the loop. Note that by using predication, the execution of the

two copies of the loop body is overlapped even if the �rst copy takes the else path, which is an

advantage of predication over traces or superblocks. Using superblocks, the code of Figure 3(b)

would have been unrolled. However, in that case, if the else path in the �rst copy is taken, the

unrolled superblock would be exited, and the overlap with the second copy would be lost. Using

superblocks can cause signi�cant performance degradation if the else path is executed often enough

relative to the then path.

Also note that after the limitations imposed by control ow instructions and register depen-

dences were removed, memory dependences became the only bottleneck. Data dependence analysis

is important for traditional optimizations such as loop invariant code removal and redundant load

elimination. However, as shown in this section, data dependence analysis is also important for ILP

compilation because conservative memory dependences can prohibit the scheduler from overlapping

independent sections of the code. The next two sections present case studies on the predication

and data dependence analysis technologies, including their performance bene�ts.

3 Case Study 1: Compiling for Predicated Execution

A critical issue in high performance microprocessors is control ow. Control ow corresponds to

constructs such as switch and if-then-else statements in programming languages. In a traditional

instruction set architecture (ISA), control ow results in branch instructions that often account for

a signi�cant percentage of the instructions executed. For example, if one examines the execution

record of the program wc, a frequently-used UNIXTM utility program that counts the number

12

of characters, words, and lines in a text �le, more than 40% of the instructions executed by the

processor are branch instructions.7 The source code for the inner loop of wc, in which the program

spends nearly 100% of its execution time, is shown in Figure 6.

A closer look at the wc inner loop provides some insight into the frequent occurrence of branch

instructions. The assembly code for the loop is shown in Figure 7(a) and the corresponding control

ow graph is shown in Figure 7(b). The weights on the arcs are the number of times each control

ow arc is traversed when the program is executed with a particular input, and are obtained

from run-time execution pro�ling. For each iteration of the loop, a path is e�ectively traversed

through the control ow graph. One can verify that there are 22 alternative paths through this

loop, some with much higher probability of traversal than the others. However, no one path

through the inner loop is clearly dominant. For example, the most frequent path through the loop,

A! B ! D ! E ! F ! H ! A, is traversed 58% of the time. This path corresponds to the case

where the current character is not the last character in the word; no special action is needed except

for incrementing the character counter. Note that nine instructions are executed along this path

and �ve of them are branches, resulting in a very high percentage of branch instructions among

executed instructions.

In a processor that exploits instruction-level parallelism, branches limit ILP in two principal

ways. First, branches force high performance processors to perform branch prediction at the cost

of large performance penalty if prediction fails [28] [29] [30]. For example, if the execution takes

path A! B ! D ! E ! F ! H ! A, it will encounter �ve branch instructions. If the processor

wants to fetch all nine instructions on this path in one cycle, it must be able to fetch instructions

across �ve branch instructions in the same clock cycle. This means predicting all �ve instructions

and hoping that the execution will follow that path. If any of the �ve branches is predicted

incorrectly, the processor must disrupt the execution, recover from the incorrect prediction, and

7The frequency of branches varies across instruction set architectures and compilers. The example is based on HP

PA-RISCTM code generated by IMPACT C Compiler version 2.6.

13

initiate instruction fetch along the correct path. This costly disruption makes it necessary to predict

branches as accurately as possible. Unfortunately, branches such as those at the end of E and H

in Figure 7(b) do leave the path frequently in an unpredictable manner. This makes it di�cult for

any branch prediction scheme to attain a high degree of accuracy.

The second way branch instructions limit ILP comes from the limited number of processor

resources available to handle branches. For example, most of the high performance microprocessors

introduced in 1995 are capable of issuing four instructions every clock cycle, but only one of these

four instructions can be a branch [6] [7]. Frequent occurrences of branches can seriously limit the

execution speed of programs. For example, if the execution takes path A ! B ! D ! E !

F ! H ! A, a processor that executes one branch per clock cycle must spend at least �ve cycles

to execute instructions along the path. With only nine instructions on the path, the processor is

limited to executing 1.8 instructions per clock cycle.

One approach to removing the limitation due to branch handling hardware is to increase the

number of branch instructions that can be handled in parallel during each clock cycle. This would

require the processor to predict multiple branches each clock cycle. It would also require the proces-

sor to determine the joint outcome of multiple branches executed in the same cycle. The problem

with this brute force approach is that it may negatively impact the clock frequency of the pro-

cessor. An alternative technique allows the compiler to judiciously remove branches. Eliminating

branches helps to solve both of the above problems, and removes the possibility of incorrect branch

prediction associated with the branches. This can greatly reduce the performance penalty due to

incorrect predictions. Furthermore, the reduced frequency of branches will increase the performance

of processors with limited branch handling resources.

14

3.1 Predicate-Based Compilation

A suite of compiler techniques to e�ectively use predicated execution has been developed based

on the hyperblock structure [21]. A hyperblock is a collection of connected basic blocks in which

control may only enter at the �rst block, designated as the entry block. Control ow may leave

from one or more blocks in the hyperblock. All control ow between basic blocks in a hyperblock

is removed by eliminating branch instructions and introducing conditional instructions through

if-conversion [19] [20].

While forming hyperblocks, the compiler must trade o� branch performance with resource

usage, hazard conditions, and critical path length. Selecting blocks on either side of a branch

instruction eliminates the branch and any associated misprediction penalties. However, combining

both paths may over-utilize available processor resources, introduce hazard conditions that inhibit

optimizations, or increase the critical path length. The compiler must take all of these factors

into account when determining which basic blocks are desirable to include within a hyperblock.

In Figure 7(b), a hyperblock highlighted by the dashed box is formed by including the desirable

blocks. For example, Block C is not included because of its low execution frequency and the fact

that it calls the �llbuf function in the I/O library. Such library calls present hazard conditions

that can reduce the e�ectiveness of parallelization. Blocks D through M are duplicated so that the

control ow does not reenter the middle of the hyperblock. This is done to eliminate the e�ect the

hazard conditions in C can have on the parallelization of the resulting hyperblock.

The Hewlett-Packard Laboratories PlayDoh architecture [31] helps us illustrate the compiler

extensions required to support predicated execution. Within the PlayDoh architecture, all instruc-

tions have an operand that serves as a predicate speci�er, that is, all instructions are predicated.

The predicates are located in a centralized predicate register �le. The ISA contains a set of spe-

cialized predicate de�ne instructions that write their results into the predicate register �le. The

instruction format of a predicate de�ne instruction is shown below.

15

p<cmp> Pout1(< type >), Pout2(< type >), src1, src2 (Pin)

This instruction assigns values to Pout1 and Pout2 according to a comparison of src1 and src2

speci�ed by <cmp>. The comparison <cmp> can be: equal (eq), not equal (ne), greater than

(gt), etc. A predicate <type> is speci�ed for each of the destination predicates Pout1 and Pout2.

Predicate de�ne instructions may also be predicated, as speci�ed by Pin.

The assembly code for the resulting hyperblock is shown in Figure 7(c). Notice that all branches

except for instructions 2 and 5 have been replaced by predicate de�ne instructions with correspond-

ing compare conditions and input operands. All non-branch instructions are predicated with the

predicate assigned to their basic block during if-conversion. The predicate de�ne instructions in

this hyperblock utilize two of the predicate de�nition types available in the PlayDoh ISA, uncon-

ditional (U) and OR-types. Unconditional-type predicates are useful for instructions that execute

based upon a single condition. For example, instruction 17 from basic block I can only be reached

from basic block G. Thus, the assigned predicate, p7, is de�ned by instruction 13 as unconditional.

OR-type predicates are useful when execution of a block can be enabled by multiple conditions.

An example use of an OR type predicate is provided by instruction 15, which is predicated on

predicate p6. This instruction was originally located in block M and is executed only if control

passes through blocks G, J, or L. OR-type predicates must be preset to zero and are set to one only

if the result of an OR-type comparison evaluates to true. If an OR-type comparison evaluates to

false, the destination predicate register is unchanged. This characteristic allows multiple OR-type

de�nitions of the same predicate register to be executed in the same cycle. Thus, predicate p6 will

allow instruction 15 to execute, if set to one by any of the predicate de�ne instructions 13', 14, or

19.

The elimination of most branches within the inner loop of wc has two signi�cant e�ects on the

dynamic branch characteristics of the program. First, the number of dynamic branches in the pro-

gram is reduced from 572K to 315K by if-conversion. Second, the number of branch mispredictions

16

is signi�cantly reduced; the two remaining exit branches are only taken a combined total of 15

times, making them easily predictable. The loop-back branch is also easy to predict since the loop

iterates frequently. As a result, the number of branch mispredictions in wc using a branch target

bu�er with a 2-bit counter is reduced from 52K to 56. This example illustrates the ability of predi-

cated execution to signi�cantly improve the dynamic branch behavior of programs for architectures

with high branch misprediction penalties and limited branch handling resources.

3.2 Predicate-Based Optimizations

Predicated execution provides bene�ts beyond improved program branch behavior. Hyperblock

formation combines basic blocks from multiple control ow paths into a single block for optimization

and scheduling. The presence of multiple control ow paths within a hyperblock exposes more

opportunities for the compiler to apply classical optimizations, such as common subexpression

elimination and copy propagation [8]. Hyperblock formation also increases the applicability of

more aggressive ILP techniques by transforming complex control ow constructs into constructs

that are better understood. For example, if-conversion transformed the complex control ow found

in the wc example of Figure 7 into a single-block loop which greatly facilitates loop optimizations.

The hyperblock loop formed within wc has two desirable properties. First, it is a frequently

iterated loop, making it a prime candidate for loop unrolling or software pipelining. Second, the

hyperblock contains only two exit branches so execution will not be constrained on a processor

with limited branch resources. However, not all loops are as well-behaved. Several additional

predicate-based compiler optimizations have been developed to deal with these less well-behaved

code segments.

Branch Combining. A hyperblock may contain branches which exit the hyperblock to handle

execution sequences involving one or more basic blocks which were not selected for inclusion in the

hyperblock. These basic blocks typically correspond to handling infrequent execution scenarios such

17

as special cases, boundary conditions, and invalid input. In the wc example presented earlier (see

Figure 7), the hyperblock contained two exit branches, instructions 2 and 5. These exit branches

handle the special cases of re�lling the input bu�er and detecting the end of the input �le. In many

cases, code segments contain a large number of these infrequent execution scenarios. Thus, the

corresponding hyperblocks often contain a large number of exit branches.

An example of such a hyperblock is the loop segment from the benchmark grep shown in

Figure 8(a). The code segment consists of a loop body which has been unrolled twice. Each

iteration of the loop consists of a load, a store, and four exit branches. This loop contains no

loop-carried dependences, so the amount of parallelism achieved will be determined by resource

constraints. In this example, the unrolled loop contains nine branches. Assuming the processor can

execute one branch per cycle, the minimal schedule length of this hyperblock is 9=1 or nine cycles.

With only 15 instructions in the loop body, the best case schedule length of nine cycles yields an

average of only 1.67 instructions per cycle.

In this example, if-conversion alone was not su�cient for eliminating branches from the code.

The targets of the remaining branches were not included in the hyperblock because the contents of

those blocks would have resulted in a less e�cient hyperblock. For these cases, the compiler can

employ a transformation, referred to as branch combining [32], to further eliminate exit branches

from the hyperblock. Branch combining replaces a group of exit branches with a corresponding

group of predicate de�ne instructions. All of the predicate de�nes write into the same predicate

register using the OR-type semantics. As a result, the resultant predicate will be true if any of

the exit branches were to be taken. Not exiting the hyperblock is the most common case, so the

predicate will usually be false. The use of OR-type semantics allows the predicate de�ne instructions

to be executed in parallel, which signi�cantly reduces the dependence height of the loop.

Branch combining is illustrated in Figure 8(b). Each of the exit branches, instructions 1, 3,

4, 5, 7, 9, 10, and 11 in Figure 8(a), is replaced by a corresponding predicate de�ne instruction

18

in Figure 8(b) based on the corresponding comparison condition. All predicate de�ne instructions

target the same predicate register, p1. The predicate is initially cleared, then each predicate de�ne

instruction sets p1 if the corresponding exit branch would have been taken in the original code.

A single, combined exit branch (instruction 16) is then inserted which is taken whenever any of

the exit branches are taken. The correct exiting condition is achieved by creating an unconditional

branch predicated on p1. In the cases where p1 is false, the remainder of the unrolled loop is

executed and the next iteration is invoked.

In the cases where an exit branch was indeed taken, instruction 16 transfers control to the block

labeled Decode. This block of code serves two purposes. First, exit branches are re-executed in

their original order to determine the �rst branch which was taken. Since the conditions of multiple

exit branches could be true, the �rst such branch needs to be determined since that branch would

have been taken in the original code sequence. The second purpose of the decode block is to execute

any instructions in the hyperblock that originally resided between exit branches but have not yet

been executed when the exit branch is taken. Memory stores are the most common instructions in

this category. For example, instruction 6 (Figure 8(a)) is moved below the combined exit in the

transformed hyperblock and copied to the decode block after the fourth exit branch. By positioning

the store as such, it is guaranteed to execute exactly the same number of times as it did in the

original code sequence. For instructions which may be executed speculatively, such as loads or

arithmetic instructions, this duplication is unnecessary.

Overall, for an 8-issue processor which can execute at most one branch per cycle, the execution

time of the example loop from grep is reduced from 584K cycles to 106K cycles with branch

combining.

Additional Predicate-Based Optimizations. Two other important optimizations which

take advantage of predicated execution support are loop peeling and control height reduction. Loop

peeling targets inner loops that tend to iterate infrequently [32]. For these loops, loop unrolling and

19

software pipelining are usually ine�ective for exposing su�cient ILP since the number of iterations

available to overlap is small. Loop peeling is a technique whereby the compiler \peels" away the �rst

several iterations of a loop. The peeled iterations are then combined with the code surrounding

the inner loop (oftentimes an outer loop) using predication to create a single block of code for

ILP optimization and scheduling. By combining the inner loop code with the surrounding code,

the scheduler can then overlap the execution of the peeled iterations with the surrounding code.

Furthermore, when the surrounding code is an outer loop, the combined outer loop and peeled

iterations of the inner loop may be unrolled or software pipelined to expose large levels of ILP.

Control height reduction, is a technique which reduces the dependence chain length to compute

the execution conditions of instructions [33]. In the control ow domain, an execution path is a

sequence of directions taken by the branches leading to a particular instruction. In the predicate

domain, the execution path is a sequence of predicate values used to compute the predicate of a

particular instruction. Since predicates are a series of data values computed using arithmetic in-

structions, data height reduction techniques such as symmetric back substitution may be applied.

Using height reduction, a compiler can signi�cantly shorten dependence chain lengths to compute

predicates, thereby enhancing ILP. A complete description of these and other predicate optimiza-

tions are beyond the scope of this paper. The interested reader is referred to [33] and [32] for more

details.

3.3 Experimental Evaluation

To illustrate the e�ect of full predication on processor performance, experiments were conducted on

a set of ten C benchmark programs, including programs from SPEC CFP92 (052.alvinn, 056.ear)

SPEC CINT92 (008.espresso, 023.eqntott, 072.sc), and common UNIXTM utilities (cmp, eqn, grep,

lex, wc). The processor model used for these experiments is an 8-issue extension of the HP PA-

RISCTM architecture. The processor may issue eight instructions of any type each cycle except

20

branches, which are restricted to one per cycle. The processor has 64 integer, 64 oating-point, and

64 predicate registers. Branch prediction is done using a 2-bit counter based branch target bu�er,

which is direct-mapped and contains 1K entries. In addition, perfect instruction and data caches

are assumed. The results are based on detailed simulation of dynamic execution of the benchmark

programs.

Figure 9 compares the performance of these programs with and without support for predicated

execution on a 8-issue processor. The base con�guration for this experiment is a single-issue

processor without predicate support. The Best Non-Predicated bars represent the speedup over

the base processor of the most aggressive ILP compilation techniques for an architecture without

support for predicated execution. The Predicated bars represent the performance of the predicate-

based compilation techniques on an architecture with full predicate support. As Figure 9 shows,

the addition of predicate support a�ords a signi�cant improvement in performance.

The ability to remove branches by combining multiple execution paths is extremely bene�cial

to several of the benchmarks. The performance improvements in 023.eqntott , cmp, and wc result

from the elimination of almost all of the branch mispredictions. The largest overall speedup, 12.5,

is observed for cmp. The apparent super-linear speedup for cmp is a combination of optimizations

exposed through hyperblock formation and the increased issue width of the processor. The branch

combining technique presented in Section 3.2 is the source of the performance improvements seen

in grep and lex . The performance improvements in 008.espresso and 072.sc are primarily due to

loop peeling.

Predicated execution support has several e�ects on the benchmarks that are not apparent from

the data shown in Figure 9. The number of dynamic instructions that must be fetched by the

processor may change because multiple execution paths are being combined. Also, the elimination

of di�cult-to-predict branches improves the performance of the branch prediction mechanism used

by the processor. A detailed discussion of these e�ects is beyond the scope of this paper; the

21

interested reader is referred to [34][35][36] for more details.

4 Case Study II: Memory Dependence Information for ILP Com-

pilation

Various techniques have been proposed to provide an accurate analysis of memory references. Data

dependence analysis attempts to determine the nature of the dependence relationship between

pairs of memory references at compile time. This information can then be used to safely direct

subsequent code transformations. This case study is organized as follows: The �rst section gives an

overview of data dependence analysis. Later sections discuss the dependence information needed by

the optimizing and scheduling phases of the compiler, and how that information can be maintained

during code transformations. Finally, results are shown which quantify the bene�t of accurate data

dependence analysis for ILP processor performance.

4.1 Data Dependence Analysis

Traditionally, data dependence analysis is performed on the source-level code, and is used to facili-

tate source-to-source code transformations. In-depth dependence analysis has seldom been applied

to assist compilation of low-level code. In most commercial compilers, rudimentary data depen-

dence analysis for low-level code is performed using only symbol table information and inexpensive

memory address analysis. For example, commercial compilers can often determine the indepen-

dence of references to separate global variables or to separate locations on the stack. However,

they often have trouble analyzing array and pointer references. There are two exceptions that the

authors are aware of. The compiler for the Cydrome Cydra-5 [37] performed detailed memory

dependence analysis for inner loops and used that information to support optimization of memory

reference instructions and software pipelining. The Multiow Trace Scheduling Compiler [22] also

performed detailed memory dependence analysis for low-level code, but within traces instead of

22

inner loops, and used that information to support optimization and scheduling for the TRACE

series of VLIW computers.

Research has focused on data dependence analysis to support source-level transformations;

however, many of the dependence algorithms proposed can also support ILP compilation. A few

representative works are cited here. Numerous algorithms have been proposed for dependence

analysis of array references [38][39][40]. These algorithms generate a set of equations and inequalities

which represent the conditions that must be met for two references to access the same array element.

A dependence exists between the two references if an integer solution to the equations exists. The

problem of variable aliasing, which occurs when two or more logical variables can reference the same

memory location, has also been addressed [41][42]. For languages like C, analysis across procedure

boundaries, referred to as inter-procedural analysis, is often required to identify the aliases due to

the use of pointers [43][44][27].

Sophisticated algorithms for array dependence analysis and inter-procedural analysis are time

consuming. Thus, it is desirable to do the analysis only once. To make the most use of the

information, it is desirable to do the analysis as early in the compilation process as possible. The

information must then be maintained through subsequent code transformations.8 Figure 10 gives

an overview of this process. Dependence analysis is performed using the compiler's high-level

intermediate representation (IR), which typically represents the program source code in a tree-

type structure. The results of this dependence analysis, dependence relations between memory

references, are maintained throughout subsequent compilation in the form of explicit dependence

arcs. While compiling the low-level IR, the dependence arcs must be accurately maintained through

any code transformations. The dependence arcs can then be used to provide accurate memory

dependence information to support optimization and scheduling.

8The alternative to this approach is to maintain the source-level information necessary to do the analysis, and use

this information to perform the analysis on the low-level code. This alternative approach was used in the Cydra-5

and Multiow compilers.

23

4.2 Desired Dependence Information

Source-level dependence analysis has most often been used to support source-level loop transforma-

tions. In contrast, the approach outlined in Figure 10 applies the results of the source-level analysis

to support low-level transformations. Because the dependence information must be maintained

explicitly throughout the remaining compilation, only dependence information which is directly

useful for supporting subsequent transformations should be propagated to the low-level code. In

this section, examples involving acyclic scheduling, cyclic scheduling, and code optimization show

the types of dependence information utilized in the low-level compilation phases.

4.2.1 Dependence Information to Support Code Scheduling

For acyclic scheduling, the legality of reordering two memory instructions is based on whether

a dependence exists between the two instructions during any single execution of the block being

scheduled. If the block is a loop body, two memory instructions can be reordered only if they never

reference the same memory location during any single iteration of the loop; i.e., there exists no

loop-independent dependence between them. For example, the array references for the code shown

in Figure 11(a) cannot be legally reordered within a single loop iteration because they access the

same element of the array A during each iteration of the loop.

Since cyclic scheduling attempts to overlap the execution of multiple, consecutive iterations of

the loop body, loop-carried dependences must also be taken into account. For the code shown in

Figure 11(b), the store of A[i+ 2] will reference the same location as the load of A[i] which occurs

two loop iterations later. The number of loop iterations between two dependent memory references

is called the dependence distance.9 To continue the example, a ow dependence of distance two

exists from the store to the load for the array A. During cyclic scheduling, this distance-two

9Loop-independent dependences, such as the one shown in Figure 11(a) are sometimes called distance-zero depen-

dences since both references occur in the same loop iteration.

24

dependence prevents scheduling the load of A[i] from two iterations later before the store of A[i+2]

in the current iteration. Note that the load and store of array A could be reordered during acyclic

scheduling of the loop body for this code, because no loop-independent dependence exists.

A characteristic of dependence relations useful for cyclic scheduling is the loop which carries the

dependence. In Figure 11(c), note that the inner-loop index variable is i and the array references

are indexed by only the outer-loop index variable, j. During each single iteration of the j loop, the

load and store instructions reference the same two non-intersecting locations for all iterations of the

i loop. Thus, an output dependence of distance one, carried by the i loop, exists between the store

in the current iteration of the i loop and the store in the next iteration of the i loop (but the same

iteration of the j loop), as shown in Figure 11(c).10 This distance-one output dependence prevents

scheduling the store of A[j + 2] from the next iteration of the i loop before the store of A[j + 2]

in the current iteration. In addition, a ow dependence of distance two, carried by the j loop,

exists between the store and the load, which prevents scheduling the store of A[j+2] in the current

iteration of the j loop before the load of A[j] two iterations later. Although both dependences are

loop carried, only the distance-one output dependence must be honored during cyclic scheduling

of the i loop, and only the distance-two ow dependence must be honored during cyclic scheduling

of the j loop. Because cyclic scheduling of a particular loop need only honor dependences which

are carried by that loop or are loop-independent, the loop which carries the dependence is useful

information to include in the dependence representation.

From the requirements of acyclic and cyclic scheduling, it follows that the dependence infor-

mation should include the dependence distance and an identi�er indicating which loop carries the

dependence (or none if the dependence is loop-independent). For some cases, the dependence anal-

ysis may determine that the dependence distance varies, or it may be unable to determine the

distance. For these cases, the dependence representation should at least be able to specify that the

10Although an input dependence also exists from the load to the load in the next iteration of the i loop, this

dependence is not shown in Figure 11(c) because input dependences do not a�ect code scheduling.

25

dependence distance is unknown, implying that dependences of any distance may exist.

4.2.2 Dependence Information to Support Optimizations

Memory dependence analysis is critical not only for code scheduling, but also for code optimization.

The certainty of the existence of the dependence is a characteristic of the dependence relationship

useful to support code optimization. One optimization requiring information about the certainty of

the dependence is redundant load elimination, illustrated in Figure 12. This optimization attempts

to eliminate the second load if it is loading the same data as the �rst load during each loop iteration.

Thus, a de�nite loop-independent dependence must exist between the two loads for all iterations

of the i loop.

Another condition for valid redundant load elimination is that no intervening store instructions

may exist that possibly reference the same address as the load instructions. Even a possible

dependence, called a maybe dependence, between the store and either load is su�cient to prevent

the optimization. For example, if the dependence analyzer cannot determine that the memory

locations accessed by A[i] and A[j] are di�erent within each iteration of the i loop in Figure 12,

then it must report that maybe dependences exist from the �rst load to the store and the store

to the second load, which prevent the optimization. Information regarding the certainty of the

dependence is useful to include in the dependence representation to support this optimization.

Note that although only ow, output, and anti-dependence relations are useful for code scheduling,

this example demonstrates that input dependence relations are useful for optimization as well.

Table 1 summarizes the dependence information which is useful for scheduling and optimization

of the low-level code.

26

4.3 Maintaining Dependence Arcs

One limitation of using source-level analysis results for low-level code compilation is that dependence

analysis cannot be re-applied if the dependence information is lost or becomes less accurate as a

result of code transformations. For this approach to be viable, the dependence arcs must be

accurately maintained through transformations.

Maintaining dependence arcs when memory instructions are relocated within a loop body is

trivial. If two memory instructions are legally reordered by a code transformation such as acyclic

scheduling, no characteristic of the dependence is altered. For example, if a loop-carried ow depen-

dence exists from a store instruction to a subsequent load, and scheduling reorders the instructions,

the dependence will still be a ow dependence with the same dependence distance.

The maintenance of the arcs is less trivial when the structure of a loop is changed. One of the

most interesting optimizations with regard to dependence arc maintenance is loop unrolling. To

preserve the accuracy of the dependences, the optimizer must utilize the dependence distance when

unrolling loops. If the compiler does not utilize the dependence distance, it must conservatively

assume that all dependences carried by the loop could have any distance greater than or equal to

one. Consequently, if a loop-carried dependence exists between a store and a load in the original

loop, then the compiler places a loop-carried dependence between all possible combinations of the

copies of that store and load in the unrolled loop. The resulting loss of certainty in the dependence

relationships restricts code scheduling and can signi�cantly decrease available ILP. A simple method

for maintaining dependence arcs with full precision during unrolling is demonstrated in Figure 13.

Figure 13(a) shows a loop body with dependence arcs annotated by the dependence distance

in loop iterations. For example, a ow dependence arc exists between the store and the �rst load

with a distance of 2. Figure 13(b) shows the loop body after unrolling, with updated dependence

arcs. After unrolling, there will be a ow dependence arc from the store in copy 0 of the unrolled

loop, but the compiler must determine to which loads (the �rst load in copy 0, the �rst load in

27

copy 1, or both) the arc should go. The copy of the loop to which the arc should go (Copydest) can

be identi�ed as follows:

Copydest = (Copysrc +Distold) mod n

where Copysrc is the copy of the loop containing the arc's source instruction, Distold is the distance

in original loop iterations, and n is the number of copies of the original loop body after unrolling

(two for the example in Figure 13). The example ow dependence arc would go to the �rst load in

copy (0 + 2) mod 2 = 0. In addition, the dependence distance is updated so that it represents the

di�erence in iterations of the unrolled loop. The new distance is calculated as follows using integer

division instead of modulo arithmetic on the same values:

Distnew =
Copysrc +Distold

n

The example ow dependence would have a new distance of (0 + 2)=2 = 1. Use of the formulas to

update all the arcs in the unrolled loop body results in a precise update of the dependence relations,

adding only the required arcs.

4.4 Experimental Evaluation

A suite of 29 benchmarks was compiled and subjected to aggressive ILP optimizations. The bench-

mark suite consists of 15 integer programs and 14 oating-point programs. Each benchmark was

compiled in two di�erent ways: once using a base level of dependence analysis and once using ag-

gressive memory dependence analysis. The base-level dependence analysis uses only symbol table

information and inexpensive memory address analysis, and thus cannot determine the independence

of many pointer and array references. In contrast, the aggressive memory dependence analysis in-

cludes both the sophisticated array dependence analysis performed by the Omega Test [45], as

28

well as inter-procedural analysis of pointer aliases and function side e�ects. For this case, memory

dependence information is propagated to the low-level code in the form of dependence arcs.

Both versions of the compiled code were then evaluated using a detailed simulation of the

processor and memory system. For more details of the experimental evaluation presented here,

see [27]. An experimental evaluation of the Multiow TRACE 14/300 computer, including the

bottlenecks due to memory dependences, has been published elsewhere [46].

4.4.1 Integer Benchmark Results

Figure 14 shows performance results for the 15 integer benchmarks. The �rst six benchmarks in the

�gure are from the SPEC CINT92 suite and the rest are UNIXTM utilities. The speedup of code

compiled with and without memory dependence arcs is shown for an 8-issue architecture compared

to a baseline single-issue architecture. The code compiled without memory dependence arcs and

the baseline single-issue code use the base-level dependence analysis.

The data demonstrates that maintaining the dependence arcs derived from the aggressive mem-

ory dependence analysis resulted in much better optimization and scheduling than the information

provided by the base-level dependence analysis. The use of memory dependence arcs resulted in

more than 20% speedup over the same architecture without the arcs for six of the benchmarks,

and even signi�cantly greater speedup in a few cases. The use of memory dependence analysis

signi�cantly impacted overall ILP; for most benchmarks, the code compiled with the dependence

arcs provided greater than three times speedup over the baseline single-issue architecture.

The most impressive result occurs for the benchmark cmp, which obtained a 17.8 times speedup

over the single-issue processor and an 11.8 times speedup over the 8-issue processor without memory

dependence arcs. This large speedup results because the compiler is able to both optimize and

schedule the code much more e�ectively with the aid of dependence arcs.

29

4.4.2 Floating-point Benchmark Results

The benchmarks from SPEC CFP92 were also evaluated to measure the performance increase due to

accurate memory dependence information. Floating-point programs generally display signi�cantly

di�erent characteristics than integer programs. Floating-point programs are usually much less

control intensive; they tend to have larger basic blocks than integer C programs. They also tend

to spend most of the execution time in loops with a large number of iterations and make frequent

use of array data structures. These factors tend to make ILP compilation for oating-point code

more e�ective, assuming good memory dependence analysis is available for array references.

Figure 15 presents the speedup results for oating-point code compiled with and without mem-

ory dependence arcs on an 8-issue processor, relative to the single-issue processor. Because the

e�ectiveness of the base-level dependence analysis is limited for array references, the results for the

code without arcs are relatively poor. A speedup of less than two is achieved for most programs,

despite the ability to issue eight instructions per cycle. With the bene�t of aggressive memory

dependence analysis, the code with arcs provides substantially better performance for most bench-

marks. However, for a few benchmarks such as 013.spice2g6, 015.doduc, and 048.ora, overall

parallelism is low and the aggressive dependence analysis provides limited bene�t. A comparison

of the data presented in Figures 14 and 15 con�rms that the bene�t of the aggressive dependence

analysis is more pronounced for oating-point code than for integer code.

5 Conclusions

In the coming decade, microprocessor designers will continue to increase the hardware parallelism,

allowing execution of 16 or more instructions each clock cycle. In order to exploit the perfor-

mance potential of such parallel hardware, compiler technology will assume greater responsibility

in exposing and enhancing instruction-level parallelism in the executable code. The quality of

30

compilation will become one of the most important distinguishing factors among microprocessor

products. Therefore, one can expect that commercial compilers will go through rapid, fundamental

changes to include technology comparable to that described in this paper.

We would like to emphasize that abundant research opportunities exist in the continuing revo-

lution of compiler technology. Microprocessor architects will continue to devise innovative features

such as predicated execution that require new compiler support. Compiler researchers will con-

tinue to develop innovations to meet the demands for increased performance. Because of these

innovations, the phenomenal growth in processor performance should continue into the foreseeable

future.

Acknowledgments

This paper and the underlying research have bene�ted from discussions with Mike Schlansker,

Bob Rau, Vinod Kathail, and Sadun Anik. The authors would like to thank Sadun Anik, Scott

Breach, Po-Yung Chang, Yale Patt, Guri Sohi, Aad van Moorsel, and Cli� Young for reviewing the

various versions of the paper, and Brian Deitrich, Teresa Johnson and Jim McCormick for their

contributions to the paper. We would also like to acknowledge all the members of the IMPACT

research group for their support.

This research has been supported by the National Science Foundation (NSF) under grant MIP-

9308013. Grant Haab was supported by a Fannie and John Hertz Foundation Graduate Fellowship.

David August was supported by an O�ce of Naval Research (ONR) Graduate Fellowship.

References

[1] T. Asprey, G. Averill, E. DeLano, R. Mason, B. Weiner, and J. Yetter, \Performance features

of the PA7100 microprocessor," IEEE Micro, vol. 13, pp. 22{35, June 1993.

31

[2] E. McLellan, \The Alpha AXP architecture and 21064 processor," IEEE Micro, vol. 13, pp. 36{

47, June 1993.

[3] J. Emer and D. Clark, \A characterization of processor performance in the VAX-11/780," in

Proceedings of the 11th International Symposium on Computer Architecture, June 1984.

[4] J. H. Crawford, \The i486 CPU: Executing instructions in one clock cycle," IEEE Micro,

pp. 27{36, February 1990.

[5] M. Forsyth, S. Mangelsdorf, E. Delano, C. Gleason, and J. Yetter, \CMOS PA-RISC processor

for a new family of workstations," in Proceedings of COMPCON, pp. 202{207, February 1991.

[6] J. H. Edmondson, P. Rubinfeld, R. Preston, and V. Rajagopalan, \Superscalar instruction

execution in the 21164 Alpha microprocessor," IEEE Micro, pp. 33{43, April 1995.

[7] P. Wayner, \SPARC strikes back," Byte, vol. 19, pp. 105{112, Nov. 1994.

[8] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools. Reading, MA:

Addison-Wesley, 1986.

[9] D. W. Wall, \Limits of instruction-level parallelism," in Proceedings of the 4th International

Conference on Architectural Support for Programming Languages and Operating Systems,

pp. 176{188, April 1991.

[10] M. S. Lam and R. P. Wilson, \Limits of control ow on parallelism," in Proceedings of the

19th International Symposium on Computer Architecture, pp. 46{57, May 1992.

[11] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction," IEEE Trans-

actions on Computers, vol. C-30, pp. 478{490, July 1981.

[12] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,

R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery, \The

32

Superblock: An e�ective technique for VLIW and superscalar compilation," The Journal of

Supercomputing, vol. 7, pp. 229{248, January 1993.

[13] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K. Rodman, \A VLIW archi-

tecture for a trace scheduling compiler," in Proceedings of the 2nd International Conference on

Architectural Support for Programming Languages and Operating Systems, pp. 180{192, April

1987.

[14] M. D. Smith, M. A. Horowitz, and M. S. Lam, \E�cient superscalar performance through

boosting," in Proceedings of the Fifth International Conference on Architecture Support for

Programming Languages and Operating Systems, pp. 248{259, October 1992.

[15] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W. Hwu, B. R. Rau, and

M. S. Schlansker, \Sentinel scheduling: A model for compiler-controlled speculative execution,"

Transactions on Computer Systems, vol. 11, November 1993.

[16] R. A. Bringmann, S. A. Mahlke, R. E. Hank, J. C. Gyllenhaal, and W. W. Hwu, \Speculative

execution exception recovery using write-back suppression," in Proceedings of 26th Annual

International Symposium on Microarchitecture, December 1993.

[17] P. Y. Hsu and E. S. Davidson, \Highly concurrent scalar processing," in Proceedings of the

13th International Symposium on Computer Architecture, pp. 386{395, June 1986.

[18] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, \The Cydra 5 departmental supercom-

puter," IEEE Computer, vol. 22, pp. 12{35, January 1989.

[19] J. R. Allen, K. Kennedy, C. Porter�eld, and J. Warren, \Conversion of control dependence to

data dependence," in Proceedings of the 10th ACM Symposium on Principles of Programming

Languages, pp. 177{189, January 1983.

33

[20] J. C. Park and M. S. Schlansker, \On predicated execution," Tech. Rep. HPL-91-58, Hewlett

Packard Laboratories, Palo Alto, CA, May 1991.

[21] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, \E�ective compiler

support for predicated execution using the hyperblock," in Proceedings of the 25th International

Symposium on Microarchitecture, pp. 45{54, December 1992.

[22] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S. O'Donell,

and J. C. Ruttenberg, \The Multiow trace scheduling compiler," The Journal of Supercom-

puting, vol. 7, pp. 51{142, January 1993.

[23] B. R. Rau, \Iterative modulo scheduling: An algorithm for software pipelining loops," in

Proceedings of the 27th International Symposium on Microarchitecture, pp. 63{74, December

1994.

[24] K. Ebcioglu and T. Nakatani, \A new compilation technique for parallelizing loops with un-

predictable branches on a VLIW architecture," in Languages and Compilers for Parallel Com-

puting, pp. 213{229, 1989.

[25] P. Tirumalai, M. Lee, and M. Schlansker, \Parallelization of loops with exits on pipelined

architectures," in Proceedings of Supercomputing '90, November 1990.

[26] W. Y. Chen, Data Preload for Superscalar and VLIW Processors. PhD thesis, Department of

Electrical and Computer Engineering, University of Illinois, Urbana, IL, 1993.

[27] D. M. Gallagher, Memory Disambiguation to Facilitate Instruction-Level Parallelism Compi-

lation. PhD thesis, Department of Electrical and Computer Engineering, University of Illinois,

Urbana, IL, 1995.

[28] J. E. Smith, \A study of branch prediction strategies," in Proceedings of the 8th International

Symposium on Computer Architecture, pp. 135{148, May 1981.

34

[29] J. Lee and A. J. Smith, \Branch prediction strategies and branch target bu�er design," IEEE

Computer, pp. 6{22, January 1984.

[30] T. Y. Yeh and Y. N. Patt, \A comparison of dynamic branch predictors that use two levels

of branch history," in Proceedings of the 20th Annual International Symposium on Computer

Architecture, pp. 257{266, May 1993.

[31] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL PlayDoh architecture speci�cation: Version

1.0," Tech. Rep. HPL-93-80, Hewlett-Packard Laboratories, Palo Alto, CA, February 1994.

[32] S. A. Mahlke, Exploiting Instruction Level Parallelism in the Presence of Conditional Branches.

PhD thesis, Department of Electrical and Computer Engineering, University of Illinois, Ur-

bana, IL, 1995.

[33] M. Schlansker, V. Kathail, and S. Anik, \Height reduction of control recurrences for ILP

processors," in Proceedings of the 27th International Symposium on Microarchitecture, pp. 40{

51, December 1994.

[34] G. S. Tyson, \The e�ects of predicated execution on branch prediction," in Proceedings of the

27th International Symposium on Microarchitecture, pp. 196{206, December 1994.

[35] D. N. Pnevmatikatos and G. S. Sohi, \Guarded execution and branch prediction in dynamic

ILP processors," in Proceedings of the 21st International Symposium on Computer Architec-

ture, pp. 120{129, April 1994.

[36] S. A. Mahlke, R. E. Hank, J. McCormick, D. I. August, and W. W. Hwu, \A comparison of

full and partial predicated execution support for ILP processors," in Proceedings of the 22th

International Symposium on Computer Architecture, pp. 138{150, June 1995.

[37] J. C. Dehnert and R. A. Towle, \Compiling for the Cydra 5," The Journal of Supercomputing,

vol. 7, pp. 181{227, January 1993.

35

[38] M. J. Wolfe, Optimizing Compilers for Supercomputers. PhD thesis, Department of Computer

Science, University of Illinois, Urbana, IL, 1982.

[39] U. Banerjee, Dependence Analysis for Supercomputing. Boston, MA: Kluwer Academic Pub-

lishers, 1988.

[40] W. Pugh and D. Wonnacott, \Eliminating false data dependences using the omega test," in

Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Design and

Implementation, pp. 140{151, June 1992.

[41] J. Banning, \An e�cient way to �nd the side e�ects of procedure calls and the aliases of vari-

ables," in Proceedings of the 6th ACM Symposium on Principles of Programming Languages,

pp. 29{41, January 1979.

[42] K. Cooper, \Analyzing aliases of reference formal parameters," in Proceedings of the 12th ACM

Symposium on Principles of Programming Languages, pp. 281{290, January 1985.

[43] W. Landi and B. G. Ryder, \A safe approximate algorithm for interprocedural pointer alias-

ing," in Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Design

and Implementation, pp. 235{248, June 1992.

[44] E. Ruf, \Context-insensitive alias analysis reconsidered," in Proceedings of the ACM SIGPLAN

95 Conference on Programming Language Design and Implementation, pp. 13{22, June 1995.

[45] W. Pugh, \A practical algorithm for exact array dependence analysis," Communications of

the ACM, vol. 35, pp. 102{114, August 1992.

[46] M. A. Schuette and J. P. Shen, \An instruction-level experimental evaluation of the Multi-

ow TRACE 14/300 VLIW computer," The Journal of Supercomputing, vol. 7, pp. 181{227,

January 1993.

36

(b)(a)

for (i=0; i<n; i++)
if (A[i] != 0)

B[i] = B[i] + B[i+1];

Assembly

L1:

Inst.

1
2
3
4
5
6

L2:

7
8

else
B[i] = 0;

L3:
9

10

IT

1.50 instr./cycle

L4:

L1

L2 L3

L4

(c)

0
2
2
2
4
5
5

5
6

Register contents:

r3 = i*4

r2 = A[i]
r4 = B[i]

r5 = B[i+1]
r6 = B[i] + B[i+1]
r7 = n*4

r1 = &B[1]

L0: mov
mul
add
ld
beq
ld
ld
add
st
jmp

add
blt

r3, 0
r7, n, 4
r1, B, 4
r2, mem(A+r3)
r2, 0, L3
r4, mem(B+r3)
r5, mem(r1+r3)
r6, r5, r4
mem(B+r3), r6
L4

r3, r3, 4
r3, r7, L1

st mem(B+r3), 0

L0

Figure 1: Traditional compilation example, (a) original loop, (b) assembly code, (c) control ow
graph.

37

1

2

3 4

5

6

8

9

10

1 3 4

6 8

(a) (b)

*

loop-independent

loop-carried

*

flow

anti

output

Figure 2: Dependence graphs for example loop, (a) register dependences, (b) memory dependences.

38

2.0 instr./cycle

L1

L2 L3

L4

(a) (b)

L4’

Assembly

L1:

Inst.

1

2

3
4

5
6
9

10

IT

0

2

0
0

2
3
3
4

ld

beq

ld
ld

add
st
add
blt

r2, mem(A+r3)

r2, 0, L3

r4, mem(B+r3)
r5, mem(r1+r3)

r6, r5, r4
mem(B+r3), r6
r3, r3, 4
r3, r7, L1

Figure 3: Forming larger blocks from traces, (a) control ow graph, (b) assembly code for the then
path.

39

(a) (b)

L1

2.0 instr./cycle

Assembly

L1:

Inst.

1

2

3
4
5

6

9
10

IT

0

2

0
0
2

3

3
4

ld
ld
ld
add

st

add
blt

r2, mem(A+r3)
r4, mem(B+r3)
r5, mem(r1+r3)
r6, r5, r4

mem(B+r3), r6

r3, r3, 4
r3, r7, L1

peq p1, r2, 0
(p1)

st mem(B+r3), 0 (p1) 38

Figure 4: Forming larger blocks using predication, (a) assembly code, (b) control ow graph.

40

(a) (b)

3.75 instr./cycle

L1:

Inst. Assembly IT

0
0
0
0
0
2
2
2
2
3
3
3
3
3
3
3
4

2.0 instr./cycle

Assembly

L1:

Inst.

1

2

3
4
5

6

9
10

IT

0

2

0
0
2

3

3
4

ld
ld
ld
add

st

add

r2, mem(A+r3)
r4, mem(B+r3)
r5, mem(r1+r3)
r6, r5, r4

mem(B+r3), r6

r3, r3, 4

peq p1, r2, 0
(p1)

st mem(B+r3), 0 (p1) 38

21

22

23
24
25

26

29
30

4

6

4
4
6

7

7
8

ld

ld
ld
add

st

add
blt

r9, mem(A+r8)

r4, mem(B+r3)
r5, mem(r1+r3)
r6, r5, r4

mem(B+r3), r6

r3, r3, 4
r3, r7, L1

peq p1, r2, 0
(p1)

st mem(B+r3), 0 (p1) 728

bge r3, r7, L100

ld r2, mem(A+r3)

ld r2, mem(A+r3)

ld r4, mem(B+r3)
ld r5, mem(r1+r3)
ld r11, mem(r1+r8)
add r6, r5, r4
add r12, r11, r5
peq p1, r2, 0
peq p2, r9, 0

6 st mem(B+r3), r6 (p1)
26 st mem(B+r8), r12 (p2)

st mem(B+r8), 0 (p2)28
st mem(B+r3), 0 (p1)8

9 add r3, r8, 4
10 bge r8, r7, L100
29 add r8, r3, 4
30 blt r3, r7, L1

1
21
3
4

24
5

25
2

22

Copy 0

Copy 1

Figure 5: E�ect of dependence analysis and dependence removal on performance, (a) after unrolling,
(b) after renaming and memory dependence analysis.

41

linect = wordct = charct = token = 0;

{
for (;;)

if (−−(fp)−>cnt < 0)
c = filbuf(fp);

B:

}

charct++;
if (c == EOF) break;

if ((’ ’ < c) &&

D:
E:

F:

H:

token = 0;

}

linect++;
if (c == ’\n’)

(c != ’\t’)) continue;
else if ((c != ’ ’) &&

K:

G:
I:
J:
L:

M:

{
 (c < 0177))

wordct++;
token++;

}
continue;

{
if (! token)

else
c = *(fp)−>ptr++;

A:
C:

Figure 6: Source code for the inner loop of wc.

42

p4(OR),p2(U),r4,127
p4(OR),p1(U),32,r4

(b)(a)

add
blt

add
beq
add
bge
bge
bne
add
add
jmp
beq
bne
mov
jmp
add
jmp
bne
jmp
st
st
mov
jsr
mov
ld
ld
jmp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A:

B:

D:
E:

F:
H:
K:

G:
J:

M:

I:

L:

C:

A

A

M

M

filbuf

D

r6,r6,−1
r6,0,C
r4,mem(r7+0)
r7,r7,1
r4,−1,EXIT
r1,r1,1
32,r4,G
r4,127,G
0,r8,A
r2,r2,1
r8,r8,1

r4,10,I
r4,32,L
r8,0

r3,r3,1

r4,9,A

mem(r5+0),r6
mem(r5+4),r7
Parm0,r5

r4,Ret0
r6,mem(r5+0)
r7,mem(r5+4)

ld_c
C

A

B

14

14

105K

105K

D

E

F

H

K

G

I J

L

M

1
105K

77K
28K

0
77K

61K 16K

16K

4K 24K

4K 22K
2K

252K

28K

EXIT

1
2
3
4
5
6
7
8
9

10
11
13

14

15

17

19

13’

0

16

A:

(p6)

(p2)
(p1)

(p4)

(p3)
(p3)

(p7)

p3(U),−,0,r8

(p5)
(p8)

p6(OR),p5(U),r4,10

p4,p6
r6,r6,−1
r6,0,C
r4,mem(r7 + 0)
r7,r7,1
r4,−1,EXIT
r1,r1,1

r2,r2,1
r8,r8,1
p7(U),−,r4,10
r3,r3,1

(p4)

r8,0
p6(OR),−,r4,9
p6(OR),p8(U),r4,32

A

add
blt

add
beq
add

mov
jmp

add
add

add

pge
pge
pne

peq

peq
pne
peq

pclr

ld_c

(c)

Register contents:

r5 = fp r1 = charct
r2 = wordct
r3 = linect
r4 = c

r6 = fp−>cnt
r7 = fp−>ptr
r8 = token

Predicate association:

p1 F
H
K
G

p2
p3
p4

J
M
I
L

p5
p6
p7
p8

Figure 7: Inner loop segment of wc, (a) assembly code, (b) control ow graph, (c) assembly code
after if-conversion.

43

(a) (b)

1
2

4
3

5
6
7
8
9

10
11
12
13
14
15

bge
ld_c
beq
beq
bge
st_c
bge
ld_c
beq
beq
bge
st_c
add
add
jmp

A:

r1, r1, 2
r2, r2, 2

r1, r5, EXIT1

r3, 10, EXIT2
r3, 0, EXIT3
r2, r6, EXIT4

r1, r7, EXIT5

r4, 10, EXIT6
r4, 0, EXIT7
r2, r8, EXIT8

A

r3, mem(r1−2)

mem(r2−2), r3

r4, mem(r1−1)

mem(r2−1), r4

Copy 0

Copy 1

(p1)

A:

1
3
4
5
6
7
9

10
11

0
1’
2
3’
4’
5’

8
9’

10’
11’
16

7’

12
13
14
15

6’

Decode:

beq
beq
bge
st_c
bge
beq
beq

bge

jmp

ld_c

ld_c

st_c
add
add

st_c
jmp

jmp

pge

peq
peq
pge
pge

peq
peq
pge

pclr

r1, r1, 2
r2, r2, 2

p1(OR), r3, 10
p1(OR), r3, 0

p1(OR), r4, 10
p1(OR), r4, 0

p1(OR), r1, r5

p1(OR), r2, r6
p1(OR), r1, r7

p1(OR), r2, r8

p1

A

Decode

r1, r5, EXIT1
r3, 10, EXIT2
r3, 0, EXIT3
r2, r6, EXIT4

r1, r7, EXIT5
r4, 10, EXIT6
r4, 0, EXIT7
EXIT8

r3, mem(r1−2)

r4, mem(r1−1)

mem(r2−2), r3
mem(r2−1), r4

mem(r2−2), r3

Copy 1

Copy 0

Figure 8: Example of branch combining from grep, (a) original assembly code, (b) assembly code
after branch combining.

44

12.5

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

00
8.

es
pr

es
so

02
3.

eq
nt

ot
t

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cm
p

eq
n

gr
ep le

x

w
c

Benchmark

S
pe

ed
up

Best Non-Predicated Predicated

Figure 9: Performance improvement of predicated execution support for an 8-issue processor.

45

Source-level
dependence analysis

Extract dependence
arcs and propagate

to low-level IR

Maintain dependence
arcs through low-level

transformations

Use dependence arcs
to aid optimization

and scheduling

Figure 10: Overview of the generation and maintenance of dependence information.

46

for (i=0; i<n; i++)
 {
 Load A[i]

 Store A[i+2]
 }

2

(b)(a)

for (i=0; i<n; i++)
 {
 Load A[i]

 Store A[i]
 }

0

(c)

for (j=0; j<n; j++)
 {
 for (i=0; i<m; i++)
 {
 Load A[j]

 Store A[j+2]
 }
 }

2

1

Figure 11: Code scheduling examples, (a) loop-independent dependence, (b) loop-carried depen-
dence (c) outer-loop-carried dependence.

47

for (i=0; i<n; i++)
 {
 Load A[i]

 Store A[j]

 Load A[i]
 }

?

?

Figure 12: Redundant load elimination example.

48

Table 1: Desired dependence information.

Category Possible Values

type ow, anti, output, input
distance (integer), unknown
carrying loop none, (loop identi�er)
certainty de�nite, maybe

49

(a) (b)

for (i=0; i<10; i++)
 {
 Store A[i+2]

 Load A[i]

 Load A[i+1]
 }

2

1

1

for (i=0; i<10; i=i+2)
 {
 Store A[i+2]

 Load A[i]

 Load A[i+1]

 Store A[i+3]

 Load A[i+1]

 Load A[i+2]
 }

1

0

0

1
1

1

Copy 0

Copy 1

Figure 13: Loop unrolling example, (a) original code, (b) code after loop unrolling.

50

B
e
n
ch

m
a
rk

Speedup

1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

008.espress

022.li

023.eqntott

026.compres

072.sc

085.cc1

cccp

cmp

eqn

grep

lex

qsort

tbl

wc

yacc

N
o
 A

rcs
A

rcs
1

7
.8

F
igu

re
14:

In
teger

b
en
ch
m
ark

sp
eed

u
p
s
for

an
8-issu

e
p
ro
cessor.

51

B
e
n
ch

m
a
rk

Speedup

1 2 3 4 5

013.spice2g

015.doduc

034.mdljdp2

039.wave5

047.tomcatv

048.ora

052.alvinn

056.ear

077.mdljsp2

078.swm256

089.su2cor

090.hydro2d

093.nasa7

094.fpppp

N
o
 A

rcs

A
rcs

6
.5

F
igu

re
15:

F
loatin

g-p
oin

t
b
en
ch
m
ark

sp
eed

u
p
s
for

an
8-issu

e
p
ro
cessor.

52

