
Architectural Support for Compiler-Synthesized Dynamic Branch Prediction

Strategies: Rationale and Initial Results

David I. August Daniel A. Connors John C. Gyllenhaal Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana-Champaign, IL 61801

Email: faugust, dconnors, gyllen, hwug@crhc.uiuc.edu

Abstract

This paper introduces a new architectural approach

that supports compiler-synthesized dynamic branch predi-

cation. In compiler-synthesized dynamic branch prediction,

the compiler generates code sequences that, when executed,

digest relevant state information and execution statistics

into a condition bit, or predicate. The hardware then uti-

lizes this information to make predictions. Two categories

of such architectures are proposed and evaluated. In Predi-

cate Only Prediction (POP), the hardware simply uses the

condition generated by the code sequence as a prediction. In

Predicate Enhanced Prediction (PEP), the hardware uses

the generated condition to enhance the accuracy of conven-

tional branch prediction hardware.

The IMPACT compiler currently provides a minimal

level of compiler support for the proposed approach. Ex-

periments based on current predicated code show that the

proposed predictors achieve better performance than con-

ventional branch predictors. Furthermore, they enable fu-

ture compiler techniques which have the potential to achieve

extremely high branch prediction accuracies. Several such

compiler techniques are proposed in this paper.

1 Introduction
State-of-the-art dynamic branch prediction schemes

use hardware mechanisms that transform branch execution

histories into predictions. These schemes record branch ex-

ecution history in the form of counters or explicit bit pat-

terns. They use this record of past behavioral information

to accurately predict future behavior. However, little e�ort

has been made to explicitly take advantage of any other

relevant program state information to further enhance the

accuracy of these predictions.

This paper introduces a new architectural approach

that taps into other relevant program state information.

The proposed approach consists of three parts: branches

based on explicit condition bits at the architecture level,

a prediction mechanism based on explicit condition bits at

the microarchitecture level, and code generation support

at the compiler level. The use of explicit condition bits,

referred to as predicates in this paper, at all three levels

provide a simple yet powerful interface to support sophis-

ticated run-time branch prediction schemes.

At the architectural level, a set of branch instructions

are de�ned which base their decision on a predicate. These

branch instructions are similar to those discussed in [1]

and de�ned in the IBM RS6000 [2], Cydrome Cydra-5 [3],

HPL PlayDoh [4], and SPARC V9 [5]. Each branch re-

quires a previously executed instruction to set a predicate.

Therefore, more instructions are potentially required in the

compare-and-branch model, such as in the HP PA-RISC

architecture [6]. However, in future architectures that sup-

port predicated execution [4][7], the cost of these predicate

de�ning instructions is often mitigated by the reduction of

branches.

At the microarchitecture level, two branch prediction

mechanisms are presented which support the proposed ap-

proach. In Predicate Only Prediction (POP), the hardware

simply uses the branch predicate value as a prediction. The

branch predictor simply accesses the predicate register used

by the branch instruction. If the predicate value is avail-

able, no prediction is required and a perfect decision is

made early for the branch. If the predicate does not yet

contain the correct value for the branch, the current value

is used for prediction, rather than stalling. The use of a

previous version of the predicate value allows the compiler

to inuence the branch predictor by assigning values to this

version of the predicate.

In Predicate Enhanced Prediction (PEP), the hard-

ware uses the predicate value to enhance the accuracy of

conventional branch prediction hardware. In the proposed

PEP schemes, the predicate value is used to steer the up-

date and use of the branch history information. In cases

where the predicate provides useful information, such steer-

ing allows the compiler-synthesized prediction to achieve

higher accuracy. In cases where the predicate does not of-

fer useful information, the proposed PEP schemes simply

degenerate to the conventional branch prediction hardware

that they were built upon.

The conditions in the predicates used by both the POP

and PEP schemes are determined when the program is ex-

ecuted. Ideally, the compiler synthesizes code sequences

that set the predicates with relevant information. However,

as we will illustrate in this paper, such code sequences of-

ten exist naturally in the current generation of predicated

code. This phenomenon makes the proposed scheme at-

tractive since code generated by existing predication com-

pilers immediately bene�ts from them. However, existing



(b)(a)

Stage

p1 = Condition

Fetch

Decode

Execute

Instruction

Write Back

Stage

Fetch

Decode

Execute

Write Back

Instruction

Branch p1, DEST

p1 = Condition

Branch p1, DEST

Figure 1: Timing of code segments owing through a

pipelined processor. In (a), the branch condition has not

been computed before branch direction is needed. In (b),

the condition has been computed before branch direction

is needed.

code does not take full advantage of the potential of the

proposed approach. This paper also proposes some prac-

tical methods by which a compiler could generate code to

provide relevant branch information.

The rest of this paper illustrates the potential of

predicate-based compiler-synthesized dynamic branch pre-

diction. Section 2 provides the intuitive rationale behind

the proposed scheme in a pipelined processor. Section 3

presents an overview of the architecture necessary for a

set of predicate-based branch predictors. The Predicate

Only Prediction (POP) is �rst presented. Then, a set of

Predicate Enhanced Prediction (PEP) strategies are dis-

cussed. Section 4 discusses compiler opportunities for a

both schemes. Some initial performance results of these

predicate-based branch prediction schemes are shown in

Section 5. Finally, the paper concludes with a discussion

of future work.

2 Rationale
This section briey presents some intuitive ratio-

nale behind predicate-based compiler-synthesized dynamic

branch prediction. This discussion will be expanded upon

in Section 4, after the speci�c schemes are described in

Section 3.

Early-Resolved Branches Figure 1 shows two

branches, each with its own separate condition evaluation

instruction. The condition evaluation instruction com-

putes the branch condition and places the result into a

predicate register p1. If p1 is TRUE, the branch directs

the ow of control to DEST. If p1 is FALSE, the branch

allows the ow of control to fall through.

Figure 1(a) shows one scenario of code owing through

a pipelined processor. The �gure depicts the pipeline state

when a prediction on the branch needs to be made. Even

though the compare instruction is fetched one stage before

the branch, the execution of the compare instruction is not

completed before the branch exits the fetch stage. Thus,

the direction of the branch is not known in time to fetch

the appropriate subsequent instructions. In other words,

the branch condition is resolved late.

A similar situation is shown in Figure 1(b). The di�er-

ence here is that the compare instruction is fetched three

stages before the branch. This has an interesting e�ect on

the state of the pipeline when the branch prediction is nor-

mally made. Since the compare instruction is many stages

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

w
c

ya
cc

A
ve

ra
ge

Benchmark

P
er

ce
nt

 e
ar

ly
 re

so
lv

ed
 p

re
di

ca
te

s 2 Cycles 4 Cycles 6 Cycles 8 Cycles

Figure 2: The percentage of early-resolved branches en-

countered dynamically with respect to number of cycles

before the branch that the branch condition is computed.

The code is generated for a 4-issue machine with support

for predicated execution.

ahead of the branch, it has already been executed when the

calculation of the next instruction address after the branch

must occur. Since the branch condition is already deter-

mined, a prediction is unnecessary. If the branch architec-

ture could take advantage of this fact, it would be able to

make a perfect prediction. Any architecture with multi-

ple condition codes or predicate registers could be made to

take advantage of this situation.

As a general rule, a branch's direction can be known

if the distance between the branch and the comparison in

the schedule is larger than the number of pipe stages be-

tween fetch and execute. A branch which satis�es this

condition is referred to as early-resolved. The percentage

of early-resolved branches encountered dynamically with

code compiled for a 4-issue processor is shown in Figure 2.

Discussion of the compiler and architecture assumptions

used to generate this code will be given in Section 5. It is

interesting to note that a signi�cant portion of the branches

remain early-resolved even in long pipelines. Many of these

early-resolved branches are a side-e�ect of the if-conversion

process as explained in Section 4. These early-resolved

branches help make predicate-based branch predictors ex-

tremely attractive.

Correlation to Program State In general, pro-

gram dependencies prevent the compiler from always com-

puting branch conditions early enough to make all branches

early-resolved. In these cases, it may be useful for the com-

piler to generate code to evaluate another condition which

can be scheduled early enough to be used by the branch

hardware. This new condition could be used in forming

the branch's prediction. Figure 3 illustrates this case. No-

tice that the original condition must remain to correctly

determine the actual direction of the branch.

At compile time, relations and correlations between

branches to be predicted and other architectural state may

be determined. For example, the behavior of a branch may

be correlated to the control ow path which was traversed

to reach it. Alternatively, a branch may be found to be

highly correlated to certain values in integer or oating



Stage

Fetch Branch p1, DEST

Decode

Execute

Write Back

Instruction

p1 = Prediction

p1 = Condition

Figure 3: Pipeline timing of a code segment in which the

branch condition has not been computed before branch di-

rection is needed, but the compiler has inserted an early

prediction.

point registers. Pro�le-based compilation can be used as a

tool for extracting correlations [8]. With this information,

the compiler can generate expressions that, when evaluated

at run-time, are useful in generating accurate predictions.

Flexibility An interesting advantage that a

compiler-synthesized dynamic branch prediction approach

may have over other schemes is the ability to improve per-

formance long after a processor design has been frozen.

Compilers can adapt their prediction schemes to match

new and di�erent workloads. Implementing new and more

sophisticated branch predictors becomes a matter of en-

hancing the compiler. It is also very exible in that vir-

tually any prediction scheme that can be computed by an

inlined code sequence can be employed for branch predic-

tion.

3 Predicate-Based Branch Prediction
While the interface to a compiler-synthesized dynamic

branch prediction scheme is generic, one can derive im-

portant insight into the approach by studying it in regard

to a baseline architecture with predication support. The

proposed schemes, known collectively as predicate-based

branch predictors, will be studied in the context of this

architecture.

3.1 Baseline Architecture

Predicate-based compiler-synthesized dynamic branch

prediction schemes assume an architecture with support

for predicated execution [9][4]. Each instruction in a ma-

chine with support for predicated execution has a predicate

source operand. The execution of each instruction in such

a machine is controlled by the value of its predicate.

With predicated execution, there are two ways in

which instructions can be conditionally executed. The �rst

way employs branch instructions to direct the ow of con-

trol through or around the instructions to be guarded. The

selection of the branch destination is determined by some

condition and a target address. In a machine with pred-

icated execution support, it is natural, though not neces-

sary, to replace the branch condition with a predicate.

The second way in which instructions can be condi-

tionally executed is through the use of predicated execu-

tion. Fetched instructions may be conditionally nulli�ed

in the pipeline by setting its predicate with the appropri-

ate condition. The values of the predicate registers are set

by a collection of predicate de�ning instructions. Using

predication, many branches can be replaced by predicate

de�ning instructions.

The Hewlett-Packard Laboratories PlayDoh architec-

ture is assumed as the baseline architecture [4]. The

PlayDoh architecture supports predicated execution and

a branch architecture which uses predicates as branch con-

ditions. The only di�erence between PlayDoh and the ar-

chitecture used in this paper is in its handling of branch

destinations. PlayDoh splits the branch into three instruc-

tions by moving the branch target speci�er into a separate

instruction. This paper assumes that the branch target

speci�er remains with the branch instruction. While this

di�erence a�ects the interpretation of the experimental re-

sults, it does not a�ect the applicability of the proposed

methods.

3.2 Predicate Only Prediction

The simplest scheme which can take advantage of

early-resolved branches and compiler-synthesized predic-

tions is Predicate Only Prediction (POP). A conceptual

design of the POP hardware is shown in Figure 4. The POP

Branch Target Bu�er (BTB) contains a predicate register

number �eld in addition to the conventional BTB �elds.

At the �rst misprediction of a branch, an entry is created

in the POP BTB. Creation of the entry involves record-

ing the predicate register number which the branch uses

as its condition. Any time the branch is fetched, a lookup

in the POP BTB �nds the previously created entry. The

predicate register number is used to retrieve the value of

that predicate from the predicate register �le. This value

is then used directly as the branch's prediction.

In any branch prediction scheme, the critical path in-

volves the sequence of recognizing a branch, generating a

prediction, and sending that prediction to the fetch hard-

ware. For the POP scheme, the additional lookup of a

predicate value may add time to the critical prediction

path. In practice, there are many ways to deal with this

prediction delay, but all involve tradeo�s between hard-

ware cost and prediction performance. Detailed evaluation

of these solutions is beyond the scope of this paper, but

two are mentioned here.

One solution is to simply delay the actual predic-

tion for an additional cycle. This would increase the la-

tency of all branches predicted taken by a cycle. However,

since more compare instructions could �nish execution, this

might in fact lead to more accurate branch predictions as

more branches may become early-resolved.

Another solution is to reference the BTB with the ad-

dress preceding each branch at run-time. Since these in-

structions appear immediately before the branch, it would

provide more time for the second predicate lookup. How-

ever, in this method there exist address aliasing e�ects

which may degrade prediction accuracy.

With POP, all early-resolved branches will be pre-

dicted perfectly. In the case where a predicate is de�ned

late, an earlier value of that predicate will be used. Us-

ing this fact, the remaining branches can bene�t from a

compiler which sets these earlier values meaningfully.



POP BTB

Tag, etc.

Pred. Reg. File

Pred Value

Predicate Register #

Branch Address Branch Prediction

Figure 4: Conceptual design of the Predicate Only Predic-

tor.

3.3 Predicate Enhanced Prediction

POP can perform poorly in a situation where the code

has not been compiled for it. This may be a result of ei-

ther few early-resolved branches or misleading predicate

predictors. Another scheme, Predicate Enhanced Predic-

tion (PEP), can deal with this situation gracefully. It can

do this because it designed to enhance already aggressive

traditional hardware branch predictors only when the pre-

dictor predicate is meaningful.

3.3.1 PEP-Counter

The simplest of the PEP schemes is the PEP-Counter.

PEP-Counter is an extension of Lee and Smith's two-bit

counter scheme [10]. As shown in Figure 5, two two-bit

saturating counters are kept for each BTB entry in addi-

tion to the predicate register number. When a prediction is

needed, the appropriate entry is accessed and the predicate

register number is retrieved. Then, the predicate register

number is used to access the predicate register �le as in

the POP scheme. However, the predicate register's value

is not used directly as a prediction. Instead, it is used

by a multiplexer to pick one of the two saturating coun-

ters. One counter, referred to as the TRUE counter, is

employed when the predicate value is TRUE. The other

counter, referred to as the FALSE counter, is employed

when the predicate is FALSE. As with the Lee and Smith

two-bit counter scheme, the chosen counter's highest order

bit is used as the prediction. When the actual direction

of a predicted branch is known, the counter used for the

prediction is updated.

The PEP-Counter scheme is e�ective in a number

of situations. In the early-resolved case, both counters

quickly saturate to deliver perfect prediction. This is an

important aspect of the PEP-Counter scheme since, as Fig-

ure 2 illustrates, a high percentage of branches are early-

resolved. The counters are initialized to predict taken for

the TRUE counter and not taken for the FALSE counter.

This initialization handles all early-resolved branches cor-

rectly the �rst time a prediction is made. The PEP-

Counter scheme is also e�ective when the compiler has not

made a prediction or when the compiler makes inaccurate

predictions. In such cases, the prediction predicate may

seem to be random with respect to the branch direction.

Branch Address

Tag, etc.

Pred. Reg. File

Pred Value

Pred Reg #C1C0

PEP-Counter BTB

Branch Prediction

Figure 5: Conceptual design of the Predication Enhanced

Prediction Counter scheme.

Here, the two two-bit counters will tend to act as one, mak-

ing the PEP-Counter act in a manner similar to the two-bit

counter scheme.

A case presented later, called partially resolved condi-

tions, is also captured. Here, the branch is always taken

when the predicate is TRUE, however, when the predi-

cate is FALSE nothing is known about the branch. In

this situation, the TRUE counter will saturate to always

correctly predict the branch taken when the predicate is

TRUE. When the predicate is FALSE, the PEP-Counter

will default to using the FALSE counter in the traditional

fashion. All four permutations of partially resolved condi-

tions are handled properly.

3.3.2 PEP-PAs

A more advanced PEP scheme is called PEP-PAs. PEP-

PAs is a predication enhanced version of Yeh and Patt's

PAs [11]. Instead of one branch history per entry, each

PEP-PAs BTB entry contains two histories. The TRUE

history is utilized when the predictor predicate is TRUE

and the FALSE history is utilized when the predictor pred-

icate is FALSE. This means that only one of the two his-

tories is used in determining the branch direction and only

that same history is updated. By using two histories,

the predictor can capture more subtle correlations between

branch history, the predictor predicate value, and the ac-

tual branch behavior. Figure 6 illustrates the design of a

PEP-PAs scheme.

Just like the PEP-Counter, the PEP-PAs's e�ective-

ness stems from the fact that it can capture early-resolved

predicates, partially resolved conditions, and good predi-

cate predictions for branches which have them. In addi-

tion, when the predicate prediction is not correlated with

the branch, the PEP-PAs degenerates to a scheme which

behaves similarly to the traditional PAs branch predictor.

4 Opportunities for Predicate-Based

Branch Prediction
The branch characteristics of a program can be sig-

ni�cantly improved through the use of predicated execu-

tion. Architectural support for predicated execution al-

lows the compiler to apply if-conversion which converts



Branch Prediction

Pred Value

P

Pred. Reg. File

Tag, etc. True Hist False Hist

PEP-PAs BTB

Branch Address

C00

C01

C10

C11

Hist. Table

Figure 6: Conceptual design of the Predication Enhanced

Prediction PAs scheme.

branch control ow structures into a single block by in-

serting predicate de�ning instructions and predicating the

original instructions appropriately [12][13][7]. By eliminat-

ing branches, if-conversion may lead to a substantial re-

duction in branch prediction misses and a reduced need to

handle multiple branches per cycle for wide issue proces-

sors [14][15][16].

Even though predicated execution has been shown to

greatly improve the branch characteristics of programs,

many situations still exist in which branches remain prob-

lematic. In fact, the removal of some branches by if-

conversion may adversely a�ect the predictability of other

remaining branches [14]. Consider branch correlation-

based predictors. The removal of some branches has the

potential to reduce the amount of correlation information

available to these predictors. The branches which remain

may have little or no correlation among themselves. An-

other problem is that if-conversion may merge the char-

acteristics of many branches into a single branch, possibly

making the new branch harder to predict [14]. The result is

that predicated code may need more sophisticated branch

prediction.

While predication can make traditional branch predic-

tors less e�ective, it has the opposite e�ect on predicate-

based predictors. By reducing the static and dynamic

branch count, if-conversion increases the distance between

branches. This gives the compiler additional freedom to

enlarge the distance between branch condition evaluations

and their branches. In addition, if-conversion and associ-

ated techniques o�er natural opportunities for the compiler

to generate predictions as described in the rest of this sec-

tion.

4.1 Restoring Desirable Control Flow Char-

acteristics

Due to resource and hazard constraints, some branches

remain after if-conversion [7]. These branches take on a

new condition which is the logical-AND of the original con-

dition and the guarding predicate. Giving branches new

conditions may have the undesirable e�ect of making orig-

p1 = (cond)

x

(a) (b)

Jump

Branch p1

p1 = (cond)

y

z Branch p2

x (p2) y (p1)

z (p1)

p2 = ~(cond)

Figure 7: Control ow graph before if-conversion (a) and

after if-conversion has merged paths (b).

inally easy to predict branches hard to predict.

Figure 7 shows a code segment distilled from a fre-

quently executed segment of the function elim lowering

in the benchmark 008.espresso. The original control ow

graph is shown in Figure 7(a). This region is formed into

a single predicated block, shown in Figure 7(b), to remove

the hard to predict branch in the dominating header block.

This branch has a 49:6% fall-through frequency and an un-

predictable behavior with respect to traditional predictors.

The basic block at the fall through path contains an un-

conditional branch. During if-conversion two predicates are

created. P1 is de�ned to be equal to the original branch

condition. P2 is the complement of that condition. The

destination basic blocks are then predicated upon p1 and

p2. When the unconditional branch is predicated upon p2,

it e�ectively becomes a conditional branch with a condi-

tion of p2. Unfortunately, the hard to predict behavior of

the original branch is faithfully transferred to the newly

created conditional branch. This branch now has a 49:6%

taken frequency and has the same unpredictability as the

original branch. For most traditional dynamic branch pre-

dictors, the number of total mispredictions is as high as

before.

In the newly formed region, the distance between

branch condition generation and the branch which uses it is

larger than the distance in the original code. If the branch

is distanced enough from the predicate de�ning instruction,

the predicate for the new branch will be early-resolved. If

this is the case, as in the example, the mispredictions from

the original branch can be completely removed through

the use of a predicate-based branch predictor. The use

of the original branch condition as the predictor restored

the originally desirable characteristics of the unconditional

branch.

4.2 Previous Predicate Value

Consider a loop with a predicate that corresponds to

the back-edge branch condition. Assuming the back-edge

branch is not early-resolved in such a loop, the prediction

for the back-edge branch will be the branch condition from

a previous iteration. If the loop iterates many times, this

prediction will be very good as it correctly predicts taken

for all but the last iteration. This is one example of the

class of opportunities which can bene�t from the previous



br

t

A: B:

M:

Y:
br aa>0

br aa==2br aa==0
tt

t

Figure 8: A graph whose paths are indistinguishable by

branch history.

predicate value. As with restoring desirable control ow

characteristics, the compiler can take advantage of previ-

ous predicate values without inserting code to generate the

conditions used for predictions.

4.3 Branch Correlation

Any attempt to predict a branch based solely upon

that branch's previous behavior is likely at a disadvantage.

Branches in a program are often correlated. That is, the

history of recently encountered branches may be useful in

predicting the one encountered next [17][11]. Many tradi-

tional dynamic schemes have been proposed which attempt

to capture the correlations among branches. These schemes

are successful at achieving a high accuracy of prediction.

However, as Young and Smith pointed out [18], there

is still room for additional improvement. The problem with

these schemes is that there may be more than one path to

a given branch with the same history. In many cases, if

the BTB could distinguish paths with the same history, it

could make better predictions. Figure 8 shows an example

presented by Young and Smith. In this example, there are

two paths AMY and BMY which yield the same taken-

taken branch history. In path AMY, aa is always 0. This

makes the branch in Y always fall through. However, in

path BMY, aa is always 2 which makes the branch in Y

always taken. With PEP, these paths can be distinguished

by setting the predictor predicate in block A to FALSE

and to TRUE in block B. By doing this, the PEP schemes

make a separate prediction for each path. In fact, in this

example setting the predicate to these values will yield per-

fect prediction for these paths. Young and Smith solved

this problem with code duplication. However, the use of

predicate-based predictors can reduce the code expansion

generated by their method.

As mentioned earlier, the removal of some branches

may make the remaining branches harder to predict. Con-

sider the e�ect of removing, by if-conversion, the branches

in blocks A, B, and M from the code in Figure 8. Assum-

ing that these branches delivered useful correlation infor-

mation before removal, prediction accuracy of the branch

in Y would be reduced. Fortunately, using compiler in-

serted predicate prediction with a PEP scheme, this lost

information can be completely restored.

Cycle Before After

0 mul r2, r1,r1 mul r2, r1, r1

1 ... pred gt p1U ,, r1, r4

2 ... ...

3 pred gt p1U ,, r2, r4 pred gt p1U ,, r2, r4

4 jump DEST (p1) jump DEST (p1)

(a) (b)

Figure 9: Example of architectural correlation.

4.4 Architecture State Correlation

Since all branch directions are determined by program

state, it would seem logical that this state would also have

su�cient correlation to yield good predictions. Predicate-

based schemes could take advantage of such correlation if

the information were provided by the compiler. This corre-

lation information can be extracted by pro�le or expression

analysis of the code [8]. While this paper does not attempt

to propose methods to �nd architecture state correlation

for branches, it is interesting to study a simple example

which hints at their potential.

Figure 9a shows a scheduled segment of code. Assum-

ing the multiply takes three cycles to complete, the actual

branch condition cannot be computed until cycle 3. How-

ever, a good compiler may be able to place good prediction

code earlier. In Figure 9b, a prediction is made in cycle 1.

This prediction takes advantage of the fact that r1 is an

unsigned integer. If r1 is greater than r4, then r12 is guar-

anteed to be greater than r4. Here, if the prediction is

TRUE, the branch is always taken. Otherwise, PEP will

degenerate into a traditional dynamic predictor to cover

the r1 is not greater than r4 case.

4.5 Prediction By Promotion

It is often the case that the condition of a branch is

determined by a single expression chain of many predi-

cate de�ning operations. One way this can occur naturally

is by if-converting consecutive branches on a single path.

It would be desirable to use the predicate de�nes which

have the most inuence on the branch direction for the

prediction. Unfortunately, such instructions may be de-

layed while their predicate source operands are being com-

puted. A solution to the problem of unavailable predicates

is known as promotion.

Promotion is a form of speculation which allows an op-

eration to execute before its original predicate is known [7].

It does this by reducing the strength of the predicate so

that the operation executes speculatively. If a copy of the

predicate de�ning instruction which has the most inuence

on the branch condition is promoted, it may be possible to

schedule it early enough to use it as a prediction.

Figure 10 is a case in the SPEC benchmark 085.cc1

where the condition with the greatest impact on the branch

condition is delayed by its predicate source operand. In

this �gure, the relative execution weights of the predicated

instructions are shown. With unconditional type predi-

cate de�ne instructions, the destination is set to TRUE

when the input predicate is TRUE and the condition eval-



1 A pred eq p1U ,,r1,0 1.00

2 D' pred eq p5U ,,r4,100 (p1)

2 B pred eq p2U ,,r2,100 (p1) 0.69

3 C pred eq p3U ,,r3,100 (p2) 0.68

4 D pred eq p4U ,,r4,100 (p3) 0.65

5 E pred eq p5U ,,r5,100 (p4) 0.30

6 F jump DEST (p5) 0.28

Figure 10: Example of prediction by promotion in 085.cc1

with each instruction's probability of execution.

1 A pred eq p1U ,,r1,0

2 B pred eq p1OR,,r2,0

3 C pred eq p1OR,,r3,0

4 D pred eq p1OR,,r4,0

5 E pred eq p1OR,,r5,0

6 F jump DEST (p1)

Figure 11: Example of the branch condition p1 = (r1 ==

0 jj r2 == 0 jj r3 == 0 jj r4 == 0 jj r5 == 0).

uates to TRUE, otherwise, it is set to FALSE. This means

that if any condition along this chain evaluates to FALSE,

then the remaining predicate de�nition instructions will all

evaluate to FALSE and the branch will not be taken. Ex-

ecution pro�ling shows that the percentages of time that

predicate de�nes A, B, C, D, and E evaluate to FALSE are

31%, 1%, 3%, 35%, 2%, respectively. Note that predicate

de�ning instruction D directly controls 35% of the branch

occurrences which is signi�cant.

By promoting a copy of operation D as operation D0,

a good predicate predictor is made. Notice that in cycle

2, where the prediction needs to be made, the value of p1

is available. If we predicate D0 with p1, an even better

predicate predictor is made. This is because p1 represents

the condition of instruction A which is also very restric-

tive. The combination of the conditions of A and D0 yields

a perfect prediction of not taken 66% of the time and a

highly accurate prediction the other 34%. It is important

to note that operation D must remain as it is part of the

computation of the correct value of p5.

4.6 Partially Resolved Conditions

The condition of a branch is often built from many

conditions joined with logical-AND's and logical-OR's.

The PlayDoh predicate de�nition instructions support up-

dating a predicate value by AND'ing or OR'ing to it an-

other condition. The conditions of these predicate de�ning

instructions are usually independent of each other, each

bringing the branch predicate closer to the �nal value used

by the branch. At each step, a partially resolved condi-

tion exists. By using the partially resolved condition, a

prediction can be made. An example of this is shown in

Figure 11. The condition of the branch, (r1 == 0 jj r2 ==
0 jj r3 == 0 jj r4 == 0 jj r5 == 0) is generated by OR'ing

each subexpression to p1.

A perfect prediction can be made for some values of

a partially resolved condition. In the example, if any of

the predicate de�nition instructions in the OR-chain writes

TRUE, then the computed branch predicate, p1 must be

TRUE and the branch is taken. However, if no predicate

de�nition instruction has evaluated to TRUE, the branch

can only be said to still be based upon the remaining un-

evaluated conditions. It is important to note, however, that

the remaining condition may be easier to predict than the

complete condition. For example, (r4 == 0 jj r5 == 0)

may be easier to predict than (r1 == 0 jj r2 == 0 jj r3 ==
0 jj r4 == 0 jj r5 == 0). All predicate-based schemes

will capture the case where p1 is true early, only the PEP

schemes will take advantage of the partial-resolution of the

remaining conditions.

A real example of a situation in which partially re-

solved conditions occur, is contained in the Unix utility

grep. Grep contains a function, advance, which is inlined

multiple times in various parts of the program. Advance

consists of a switch/case statement. After loop unrolling,

the condition on one of the branches is the logical-OR of

many comparisons. While some of the predicate de�nes

occur one cycle before the branch, many others occur up

to 15 cycles earlier. Therefore, reading the predicate value

for the branch early and using it as a predictor yields signif-

icant bene�ts. In grep, 49:4% of all branch mispredictions

in the program using traditional predictors reside in only

four branches of this type.

4.7 Delaying Branches

Predicate-based predictors predict perfectly if the dis-

tance between the branch and the �nal predicate de�n-

ing instruction is large enough. In some hard-to-predict

branches, a delay of only a few cycles would remove all

of the mispredictions by making the branch early-resolved.

While the program's cycle count would be penalized by

this delay every time the branch is taken, this may be less

than the penalty incurred by the branch for all of its mis-

predictions.

One way to mitigate the loss in performance incurred

by delaying a branch is to percolate instructions above the

branch. In this way, useful work can continue even though

the branch is delayed. In certain cases, where the taken and

fall-through paths of the branch are limited by dependence

height, a machine with su�cient resources can percolate in-

structions from both paths without loss of performance to

either path. In addition to speculation, predication enables

more sophisticated ways of percolating instructions above

branches. The Fully Resolved Predication model plus de-

pendence height reduction techniques show great potential

for facilitating such percolation [19].

5 Experimental Evaluation
The objective of the experiments presented in this sec-

tion is to show the potential of the proposed methods. Due

to space limitations, these experiments do not address de-

tailed design issues of these schemes.

5.1 Methodology

The target architecture studied in these experiments

is a 4-issue in-order superscalar processor that supports



Scheme Cost Expression Cost

POP n(x+ log
2
p) 50176

Counter n(x+ 2) 46080

PEP-C n(x+ 4 + log
2
p) 54272

PAs n(x+ h) + 2t(2h) 187392

PEP-PAs n(x+ 2h+ log
2
p) + 2t(2h) 205824

Table 1: Hardware cost expressions and net bit cost for

schemes evaluated. (p = 64, n = 1024, x = 43, h = 12,

and t = 16).

Var De�nition

p number of predicate registers

n number of BTB entries

x bits in standard BTB entry (target address, tag...)

h history register size

t number of history tables

Table 2: Variables and de�nitions for use in hardware cost

computation.

predicated execution and control speculation. No restric-

tions were placed on the combination of instructions which

may be issued together except that only one branch may

be issued per cycle and nothing may issue after it. This

con�guration yields conservative results. Should greater

restrictions be placed on instructions which may be issued

simultaneously, an extending of the code schedule would

result. This longer schedule would improve the results of

predicate-based predictors as branches and their conditions

would be farther apart. The base architecture is further

assumed to have 64 integer, 64 oating-point, and 64 pred-

icate registers. The instruction latencies assumed are those

of the HP PA-RISC 7100.

All branch prediction models were based on a 1024-

entry direct mapped BTB structure.When simulating the

two-level adaptive branch predictors PAs [11] and the PEP-

PAs, 12-bit history pattern registers were used and both

utilized 16 history tables. All counters were two-bit coun-

ters. Table 1 represents a hardware cost estimate of the

the �ve branch prediction models evaluated. This table ac-

counts for bits of hardware memory, but does not include

wiring or logic gate costs. Table 2 de�nes the meaning of

symbols found in Table 1. In general, the predicate-based

predictors require only slightly more hardware than their

traditional branch predictor equivalent.

The e�ect of two di�erent depths of pipelining on

predicate-based predication accuracy was measured. The

misprediction penalty is equal to the number of stages

before the execution stage (assuming branch prediction

is done in the �rst stage). Veri�cation of a predicated

branch involves only the reading of a predicate register

and not a logical or arithmetic comparison. Thus, the pro-

cessor's branch prediction veri�cation is modeled as being

performed early in the execution pipeline stage.

High performance code was generated for this target

architecture using the IMPACT Compiler version 961030-

R. This compiler's support for aggressive speculation, pred-

ication, ILP transformations, scheduling, and register allo-

cation was used. Pro�ling was used to determine important

segments of code and to estimate the behavior of branches.

The compilation techniques applied are described in detail

in [14][20].

It is important to note that the compiler supports a

minimal portion of the techniques presented in Section 4.

In e�ect, the baseline performance for these techniques was

obtained. The compiler did not insert any prediction code.

Instead, an earlier value of the branch's predicate register

was used to make the prediction. This captured all early-

resolved cases as well as situations where an earlier value

of the predicate contained relevant information. It is ex-

pected that a compiler that aggressively takes advantage

of the enhanced branch prediction hardware would imple-

ment many of the techniques presented in Section 4 and

generate code with greater branch predication accuracy.

The experimental results presented in this paper were

gathered using IMPACT's emulation-driven simulation

tools. All the predicated code used in these experiments

was emulated on a HP PA-RISC workstation in order to

verify proper execution of the predicated code and to drive

a detailed cycle by cycle processor simulator. In order to

focus on the performance e�ect of improved branch predic-

tion, perfect instruction and data caches were simulated.

5.2 Results and Analysis

Figures 12 and 13 show the prediction accuracy

achieved by various schemes in an architecture where a

predicate's value is available to the branch predictor two

and four cycles after the predicate de�nition is fetched.

The values in the �gures are computed by taking the num-

ber of dynamic branches predicted correctly and dividing

it by the total number of dynamic branches. The bench-

marks studied consist of the six SPEC-92 integer bench-

marks and eight Unix utilities: cccp, cmp, eqn, grep, lex,

qsort, wc, and yacc. However, the benchmarks wc and

cmp were not included in these �gures since if-conversion

resulted in almost perfect branch prediction.

Figures 14 and 15 show the performance achieved by

various schemes. The performance is shown relative to the

code executed with perfect branch prediction. Performance

is computed by taking the cycle count of the program run

with perfect prediction and dividing it by the cycle count of

the same program run with each of the schemes presented.

In the predicate-based schemes, prediction accuracy

and performance tend to decrease as the pipeline gets

deeper. This is due to a decreasing number of early-

resolved branches. In addition, there is a reduction in the

naturally occurring correlation between the predictor pred-

icate and the branch direction as the predicate is sampled

earlier and earlier. The accuracy of the traditional predic-

tors were una�ected by the pipeline length, as expected.

Naturally occurring correlation was helpful in many

ways. Previous predicate values were helpful in loops.

Restoration of desirable control ow helped remove mis-

predictions that were introduced during if-conversion. Par-



80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

cc
cp

eq
n

gr
ep le
x

qs
or

t

ya
cc

A
ve

ra
ge

Benchmark

P
re

di
ct

io
n 

A
cc

ur
ac

y

POP Counter PAs PEP-Counter PEP-PAs

Figure 12: Prediction rate for an architecture where a pred-

icate's value is available to the branch predictor two cycles

after the predicate de�nition is fetched.

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

cc
cp

eq
n

gr
ep le
x

qs
or

t

ya
cc

A
ve

ra
ge

Benchmark

P
re

di
ct

io
n 

A
cc

ur
ac

y

POP Counter PAs PEP-Counter PEP-PAs

Figure 13: Prediction rate for an architecture where a pred-

icate's value is available to the branch predictor four cycles

after the predicate de�nition is fetched.

tially resolved conditions o�ered a large reduction in mis-

predictions to some benchmarks. Unfortunately, these

were the only cases discussed in Section 4 that occurred

naturally.

There are a few benchmarks which display interest-

ing results. The benchmark grep did very well with the

predicate-based schemes in comparison to the traditional

schemes. This was mostly due to the large amount of par-

tially resolved conditions which existed in grep. The reason

for this was described in detail in Section 4.6.

Comparison with Figure 2 indicates that much of the

accuracy of the predicate-based predictors is not due to

early-resolved conditions. An example of a benchmark

which derives most of its performance from naturally oc-

curring correlation is 022.li. At 4 cycles it has only 10%

early-resolved branches, yet still has a POP prediction ac-

curacy of 89%. Given this amount of naturally occurring

correlation, it appears that there should be a great deal of

additional correlation for compilers to extract.

The performance presented here is the baseline per-

formance one would expect from the predicate-based pre-

dictors. It is clear that there is potential for performance

gains over traditional branch predictors with compiler syn-

thesized predictions. Given that these methods add rela-

tively little additional bit cost in exchange for a modest

performance increase now and a potentially large perfor-

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

cc
cp

eq
n

gr
ep le
x

qs
or

t

ya
cc

A
ve

ra
ge

Benchmark

P
er

fo
rm

an
ce

POP Counter PAs PEP-Counter PEP-PAs

Figure 14: Performance relative to perfect branch predic-

tion for an architecture where a predicate's value is avail-

able to the branch predictor two cycles after the predicate

de�nition is fetched. A two cycle mispredict penalty is

assumed.

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

cc
cp

eq
n

gr
ep le
x

qs
or

t

ya
cc

A
ve

ra
ge

Benchmark

P
er

fo
rm

an
ce

POP Counter PAs PEP-Counter PEP-PAs

Figure 15: Performance relative to perfect branch predic-

tion for an architecture where a predicate's value is avail-

able to the branch predictor four cycles after the predicate

de�nition is fetched. A four cycle mispredict penalty is

assumed.

mance increase later, predicate-based predictors should be

further studied.

6 Concluding Remarks

The predicate-based branch prediction schemes pre-

sented have the potential to signi�cantly enhance the e�ec-

tiveness of branch prediction. For early-resolved branches,

all of the predicate-based predictors o�er perfect branch

prediction. For other branches, these schemes allow the

compiler to generate a prediction or assist traditional

branch predictors.

In this paper, we demonstrated that predicated pro-

grams tend to have a large portion of branches that are

early-resolved. Also, that predicated code contains a sig-

ni�cant amount of natural correlation information in the

predicates. A compiler providing only minimal support was

able to generate a respectable performance improvement.

As we have outlined in Section 4, there are still many

great opportunities for future compiler enhancements to

further improve overall performance by better utilizing the

predicate-based branch prediction schemes.



Acknowledgments

The authors would like to thank all the members of the

IMPACT compiler team for their support. Special thanks

is due to Scott Mahlke of Hewlett-Packard Laboratories

whose numerous insightful comments were very useful. We

would also like to thank the anonymous referees for their

constructive comments.

References
[1] H. C. Young and J. R. Goodman, \A simulation study

of architectural data queues and prepare-to-branch in-

struction," in Proceedings of the IEEE International

Conference on Computer Design: VLSI in Computers

ICCD '84, pp. 544{549, 1984.

[2] R. R. Oehler and R. D. Groves, \IBM RISC Sys-

tem/6000 processor architecture," IBM Journal of Re-

search and Development, vol. 34, pp. 23{36, January

1990.

[3] G. R. Beck, D. W. Yen, and T. L. Anderson, \The

Cydra 5 minisupercomputer: Architecture and imple-

mentation," The Journal of Supercomputing, vol. 7,

pp. 143{180, January 1993.

[4] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL

PlayDoh architecture speci�cation: Version 1.0,"

Tech. Rep. HPL-93-80, Hewlett-Packard Laboratories,

Palo Alto, CA, February 1994.

[5] D. Weaver, SPARC-V9 Architecture Speci�cation.

SPARC International Inc., Menlo Park, CA, 1994.

[6] M. Forsyth, S. Mangelsdorf, E. Delano, C. Gleason,

and J. Yetter, \CMOS PA-RISC processor for a new

family of workstations," in Proceedings of COMP-

CON, pp. 202{207, February 1991.

[7] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank,

and R. A. Bringmann, \E�ective compiler support for

predicated execution using the hyperblock," in Pro-

ceedings of the 25th International Symposium on Mi-

croarchitecture, pp. 45{54, December 1992.

[8] S. A. Mahlke and B. Natarajan, \Compiler synthe-

sized dynamic branch prediction," in Proceedings of

the 29th International Symposium on Microarchitec-

ture, December 1996.

[9] P. Y. Hsu and E. S. Davidson, \Highly concurrent

scalar processing," in Proceedings of the 13th Interna-

tional Symposium on Computer Architecture, pp. 386{

395, June 1986.

[10] J. E. Smith, \A study of branch prediction strategies,"

in Proceedings of the 8th International Symposium on

Computer Architecture, pp. 135{148, May 1981.

[11] T. Y. Yeh and Y. N. Patt, \Two-level adaptive train-

ing branch prediction," in Proceedings of the 24th An-

nual International Symposium on Microarchitecture,

pp. 51{61, November 1991.

[12] J. R. Allen, K. Kennedy, C. Porter�eld, and J. War-

ren, \Conversion of control dependence to data depen-

dence," in Proceedings of the 10th ACM Symposium on

Principles of Programming Languages, pp. 177{189,

January 1983.

[13] J. C. Park and M. S. Schlansker, \On predicated exe-

cution," Tech. Rep. HPL-91-58, Hewlett Packard Lab-

oratories, Palo Alto, CA, May 1991.

[14] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C.

Gyllenhaal, D. M. Gallagher, and W. W. Hwu, \Char-

acterizing the impact of predicated execution on

branch prediction," in Proceedings of the 27th Interna-

tional Symposium on Microarchitecture, pp. 217{227,

December 1994.

[15] D. N. Pnevmatikatos and G. S. Sohi, \Guarded exe-

cution and branch prediction in dynamic ILP proces-

sors," in Proceedings of the 21st International Sym-

posium on Computer Architecture, pp. 120{129, April

1994.

[16] G. S. Tyson, \The e�ects of predicated execution on

branch prediction," in Proceedings of the 27th Interna-

tional Symposium on Microarchitecture, pp. 196{206,

December 1994.

[17] S. Pan, K. So, and J. T. Rahmeh, \Improving the

accuracy of dynamic branch prediction using branch

correlation," in Proceedings of the 5th International

Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 76{84, October

1992.

[18] C. Young, N. Gloy, and M. D. Smith, \A comparative

analysis of schemes for correlated branch prediction,"

in Proceedings of the 22nd Annual International Sym-

posium on Computer Architecture, pp. 276{286, May

1995.

[19] M. Schlansker and V. Kathail, \Critical path re-

duction for scalar programs," in Proceedings of the

28th International Symposium on Microarchitecture,

pp. 57{69, December 1995.

[20] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,

N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.

Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and

D. M. Lavery, \The Superblock: An e�ective tech-

nique for VLIW and superscalar compilation," The

Journal of Supercomputing, vol. 7, pp. 229{248, Jan-

uary 1993.


