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Abstract

Simulation is an important means of evaluating new
microarchitectures. Current trends toward chip multi-
processors (CMPs) try the ability of designers to develop ef-
ficient simulators. CMP simulation speed can be improved
by exploiting parallelism in the CMP simulation model.
This may be done by either running the simulation on multi-
ple processors or by integrating multiple processors into the
simulation to replace simulated processors. Doing so usu-
ally requires tedious manual parallelization or re-design to
encapsulate processors.

Both problems can be avoided by generating the simula-
tor from a concurrent, structural model of the CMP. Such a
model not only resembles hardware, making it easy to un-
derstand and use, but also provides sufficient information
to automatically parallelize the simulator without requiring
manual model changes. Furthermore, individual compo-
nents of the model such as processors may be replaced with
equivalent hardware without requiring repartitioning.

This paper presents techniques to perform automated
simulator parallelization and hardware integration for
CMP structural models. We show that automated paral-
lelization can achieve an 7.60 speedup for a 16-processor
CMP model on a conventional 4-processor shared-memory
multiprocessor. We demonstrate the power of hardware in-
tegration by integrating eight hardware PowerPC cores into
a CMP model, achieving a speedup of up to 5.82.

1. Introduction

Microarchitects develop and use simulators to evaluate
their ideas. Developing a simulator requires careful trade-
offs among speed, development time, and accuracy. The on-

going trend towards tying multiple processor cores on a sin-
gle die into a chip multi-processor (CMP) makes determin-
ing these tradeoffs even more challenging. As the number
of cores and the complexity of their interconnect increases,
simulators become larger, more complex, and slower.

One means to accelerate CMP simulation is to exploit
the parallelism inherent in the CMP. This can be done in
two ways. First, the simulator can be parallelized to run on
multiple host processors. Doing so is often difficult, requir-
ing manual parallelization of simulator code not originally
written to be parallelized. Second, real processors can be
used to replace simulated processors in the CMP simula-
tor. In this case, memory operations from the processors
are simulated, while instructions are directly executed. This
requires manual re-design of the simulator code to fully en-
capsulate the processors.

In this paper we show that the difficulties involved in
manual parallelization and processor integration can be al-
leviated if the simulator is not written by a simulator de-
signer, but instead is generated from a concurrent, struc-
tural model of the CMP, such as those used in [19] or [8].
Model structure and parallelism may be exploited to achieve
automated parallelization and simple replacement of com-
ponents of the model with actual processors. This ability
to exploit parallelism comes in addition to the benefits of
reduced development time and reduced modeling error pre-
viously shown[19, 16] for such models.

A microarchitectural model in a concurrent structural
modeling framework consists of a collection of compo-
nents. These components execute concurrently and are
connected together by signals, which form the principal
means of inter-component communication. The user instan-
tiates, parameterizes, and connects components to create
the model. The framework then combines the instantiation
and connection information with the components’ behav-
ioral code to generate a simulator for the model. The con-



current structural modeling framework used and modified in
this work is the Liberty Simulation Environment (LSE)[19].
LSE provides explicit support for structural modeling, an
extensible library of components, and language features de-
signed to make parameterization, instantiation, and library
creation easier. One unusual feature of LSE is that it treats
all components as “black boxes”: it attempts no analysis of
how a component operates, allowing the possibility of the
component using hardware to calculate its outputs.

A structural model is a natural candidate for paralleliza-
tion, as the components in the model are already designed
to execute concurrently. This execution must be carefully
scheduled to achieve speed improvement. The scheduling
problem is similar to that of instruction scheduling, but
cache effects and the coordination of accesses to shared
state are important additional factors. We describe modifi-
cations to parallel scheduling algorithms to deal with these
factors. We evaluate automated parallelization on a fam-
ily of chip multi-processor models and find that automated
simulator parallelization achieves a modest speedup of 2.27
with 4 threads for a 4-way CMP model, but a much larger
speedup of 7.60 with 4 threads for a 16-way CMP.

The integration of hardware components is made fea-
sible because the structural nature of the system allows
portions of the model to be replaced without affecting the
remainder of the model. We describe the hardware and
software support necessary to integrate an arbitrary piece
of hardware into a model. In addition, hardware compo-
nent integration increases accuracy, obviates the need to
model available components, and enables an incremental
architecture-to-implementation design flow. We integrate
eight PowerPC 405 cores realized in Field-Programmable
Gate Arrays (FPGAs) into a CMP model described in LSE,
achieving a speedup of 5.82 with perfect caches and 1.31
with a detailed simulated memory hierarchy and intercon-
nect.

Section 2 explains how automated simulator paralleliza-
tion is carried out, while Section 3 evaluates the paralleliza-
tion. Section 4 explains integration of hardware compo-
nents, and Section 5 presents the results of this integration.
Section 6 concludes.

2. Automated simulator parallelization

Simulator parallelization is one way to take advantage
of parallelism in a CMP simulator. Parallelization, whether
manual or automated, requires that the simulator be parti-
tioned into tasks to be run concurrently. It then requires
that these tasks be either scheduled or synchronized such
that tasks wait for their inputs to become available and that
tasks which could simultaneously access shared data do not
run concurrently. Furthermore, the scheduling of tasks onto
threads must be efficient, minimizing the time threads spend

waiting, if good performance is to be achieved. Meeting
these requirements manually is a difficult problem when a
simulator’s form obscures potential tasks and data sharing.
In the following subsections we describe how automated
parallel code generation for structural models deals with
each of these requirements, obviating the need for manual
parallelization.

2.1. Task formation

The general flow of an LSE simulator is shown in Fig-
ure 1(a). After an initialization step, control enters the
“main loop”. For each time step, there are four substeps:
PHASE START, PHASE, PHASE END, and between-cycle
book-keeping. As time steps generally correspond to a sin-
gle clock cycle of the simulated machine, the substeps can
be described in terms of state machine behavior. During
PHASE START, components produce output signals depen-
dent only upon state (i.e., Moore state machine outputs).
During PHASE they produce outputs depending on inputs
and possibly state (Mealy state machine outputs). During
PHASE END, they update their state.

Within each substep, the framework invokes methods for
each substep from each of the component instances. The
user does not have control of the order in which these in-
vocations are made within the substep and must therefore
write components which do not require any particular in-
vocation order to work correctly. The method invocations
made during the substeps are the tasks used in the auto-
mated parallelization.

The ordering of component method invocations during
PHASE START and PHASE END is arbitrary as no commu-
nication takes place during these substeps. During PHASE,
however, signal values may be written and read concur-
rently, requiring an invocation order that obeys a formal
model of computation defining the semantics of communi-
cation and concurrent execution. The model used by LSE is
known as the Heterogeneous Synchronous Reactive (HSR)
model[7]. While the details are beyond the scope of this
paper, it is possible to create a static execution schedule of
method invocations (possibly repeating some invocations)
which guarantees that the collection of signal values reaches
a fixed point in each cycle[7, 15]. The resulting schedule is
a directed acyclic graph of invocations which may be exe-
cuted in any valid reverse topological ordering.

2.2. Shared state discovery

There are four ways in which data can be legally shared
between component instances in LSE:

Through signals All signals are part of the model struc-
ture and can be analyzed by the framework to determine
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Figure 1. Simulation flows

data dependencies. Note that components are written with
an atomicity assumption: no input signals examined by a
component method may change while the method is run-
ning. This constraint is represented as an automatically gen-
erated conflict between potential producers and consumers
of signals.

Through user-defined “runtime variables” Data depen-
dencies through these variables within PHASE must satisfy
the same producer-consumer relationship as some signal
and thus need no additional analysis. Data dependencies
within PHASE END and PHASE START are not allowed.

Through library calls Data dependencies through library
calls must obey the same restrictions as data dependencies
through runtime variables. Non-thread-safe library calls re-
quire that the framework avoid simultaneous calls to the li-
brary. As not all library calls are part of the structural de-
scription (due to the black-box nature of component code),
some minimal user input is required to mark conflicts be-
tween the component methods making these calls.

Internally A component instance shares data internally
with other invocations of its own methods. This constraint is
represented as an automatically generated conflict between
method invocations of the same instance.

2.3. Synchronization

The structure of the simulator once automated paral-
lelization has been carried out is shown in Figure 1(b).

The PHASE START and PHASE substeps are parallelized to-
gether, while PHASE END is parallelized separately; barri-
ers (represented by heavy dashed lines) are used to separate
each parallelized section.

Cross-thread data dependencies are respected by auto-
matically adding binary semaphores to indicate when data is
available. The framework code waits on these semaphores
before invoking consumer component methods and sets the
semaphores after invoking producer component methods.
Redundant semaphores are removed.

Mutual exclusion of component methods which have a
conflict is accomplished by automatically acquiring and re-
leasing locks around the conflicting invocations. Most po-
tential locks are removed through a lock elision algorithm
which looks at the cross-thread data dependencies to deter-
mine whether two invocations may truly run in parallel.

2.4. Scheduling

The input to the scheduling problem for PHASE START
and PHASE is the directed acyclic graph (DAG) of compo-
nent instance method invocations produced as the single-
thread schedule augmented with nodes for PHASE START
invocations and edges causing PHASE START method in-
vocations to precede other method invocations in the same
component instance. For PHASE END the input is a simple
DAG of invocations with very few edges (there are actually
two subsubsteps of PHASE END which must proceed in or-
der and the edges are used to enforce that).

Scheduling of a task DAG across multiple processors is
a well-known problem for which many heuristics have been
developed. We describe four strategies for performing this
scheduling:



2.4.1 List schedulers

Our first strategy (called LIST) is a list scheduler similar to
that of Yu[22]. A priority queue of tasks whose predecessor
nodes have all been scheduled is maintained. The highest
priority task is removed from the queue and scheduled in the
earliest available time slot not violating data dependencies
in any thread; the queue is then updated. This is repeated
until the queue is empty. Priority is the length of the longest
directed path originating at the task, where length is the sum
of the (estimated) execution times of each task.

List scheduling takes into account load balancing and
critical path length. However, it ignores two very impor-
tant aspects of the scheduling problem for automated par-
allelization. First, it fails to take into account the potential
for conflicts which prevent two tasks from executing con-
currently. Second, cache effects on signal values and other
data cause the execution times of tasks to depend heavily
upon how other tasks accessing the same data (particularly
tasks from the same component instance) have been sched-
uled.

Our second strategy (LOCKAVOID) reduces conflicts
by actively avoiding locking during the thread selection step
of the list scheduler. Tasks are scheduled onto the earliest
time available on a thread which does not result in a lock
being needed. If all threads would require a lock, the task is
skewed in time to reduce the likelihood of lock contention;
it is purposefully scheduled later than the earliest possible
time if that time would be “too close” to a time when the
lock is planned to be owned by another thread. Lower pri-
ority tasks can then be placed in the resulting schedule hole.

List scheduling has been extended in [22] to include
communication costs, but this extension is not appropri-
ate for scheduling around cache misses. The reason is that
cache misses require the receiving thread of the commu-
nication to initiate the transfer and effectively block the
receiving thread. Communication cost extensions to list
scheduling assume that the sender initiates the transfer and
that useful work may be done by the receiver during the
communication time.

2.4.2 Clustering

An alternative to list scheduling is to make thread assign-
ments by trying to cluster related tasks together in the same
thread. Such an approach can be used to improve cache
locality of signal values and other data. After clustering, a
list scheduler is run with the thread assignments constrained
to those chosen by the clustering strategy; lock skewing as
previously described is used to reduce lock conflicts.

Our third strategy (INSTCLUSTER) groups all method
invocations from the same component instance into one
cluster. Clusters are then combined based upon the signal
bandwidth between them, starting with the highest band-

width pair of clusters. Signal bandwidth between clusters is
updated as they are combined. This combination continues
until there are either as many clusters as there are threads or
a minimum bandwidth value has been reached. The remain-
ing clusters are then mapped onto threads in a load-balanced
fashion. Note that this strategy takes into account probable
cache effects and load balancing, but not the critical path.

Our final strategy (IDSC) is derived from Dominant
Sequence Clustering (DSC)[21]. DSC attempts to clus-
ter tasks on the critical path together for an infinitely par-
allel machine, observing that the critical path changes as
decisions are made and threads become utilized. It takes
into account communication costs, load balancing, and the
critical path. It then assigns clusters to threads. While
as noted for list scheduling, communication costs do not
model cache effects well for the purpose of determining
final schedules, they may be helpful for determining the
estimated path lengths required in DSC. We therefore set
the communication costs to be the the number of input sig-
nals referenced by the task. We also modify the assignment
phase to be cache-aware by preferentially assigning clusters
to threads which already contain invocations of components
in the cluster.

2.5. Related work

Previous efforts to parallelize microarchitecture simula-
tors for multi-processors have used coarse-grain processor-
level task granularity with manual or hard-coded assign-
ment of tasks to threads. The Wisconsin Wind Tunnel II[12]
uses parallel discrete event simulation to simulate a multi-
processor memory hierarchy. Chidester[3] created a paral-
lel multiprocessor simulator by running a modified copy of
SimpleScalar in each thread. Barr[1] has created parallel
multiprocessor simulators in Asim, another structural mod-
eling system, by defining new port types and changing the
models to use these types. While the addition of framework
support is similar in spirit to what we have done, it still re-
quires manual thread assignment and model changes to use
the new port types.

There is an extensive literature on parallel and distributed
discrete event simulation. A good overview is given in [9].
The primary problem addressed is agreement about global
time. Parallel HSR simulation is more closely related to
multiprocessor scheduling, for which there is again an ex-
tensive literature; see [18] for additional references.

3. Evaluation of automated simulator paral-
lelization

We evaluate the effectiveness of automated simulator
parallelization for chip multi-processors by using the pre-
viously described scheduling strategies to generate parallel



simulators for a family of CMP models and measuring their
speed.

3.1. Measurement methodology

Our CMP models have a tile-based architecture. Each
processing tile contains a processor with its first-level data
and instruction caches, a portion of the distributed second-
level cache, and a memory controller. The tiles are con-
nected via a standard wormhole routing network organized
as a mesh. Five different sizes of CMP are used: 1, 2, 4,
8, and 16 processors. The processor core is an 1-wide in-
order core with branch prediction, chosen to be similar to
the PowerPC 405 core used in Section 5.

We generate one, two, three, and four-threaded simula-
tors using each of the scheduling strategies. Two to four
threads is the number of threads available in today’s in-
expensive workgroup servers, in particular those becoming
available which themselves use CMPs. Task length is pre-
dicted from the number of potential input and output signals
of the method invocation using a regression-based model
derived from measurements upon the 2-core CMP model.
In addition, a manually-guided clustering of invocations
to threads (called GUIDED) is used for comparison; the
guided clustering attempts to map complete tiles to threads,
though it splits tiles in the 2-way and 1-way CMP models.
This clustering should enjoy good cache behavior in addi-
tion to being intuitive and similar to previous work. We
emphasize that this guided clustering is not a manual par-
allelization of the simulator; it merely overrides the thread
assignments of automated clustering.

Each simulator is run on the FFT and Radix bench-
marks from the Splash-2 benchmark suite[20], linked with a
mini-OS which provides processor initialization and simple
I/O capabilities. The benchmarks were compiled using gcc
3.3 with compiler flags -g -O2 -msoft-float. Input
sizes and parameters were chosen to use all simulated pro-
cessors and to provide several minutes of running time. Re-
sults are presented for both benchmarks; they are so similar
that numbers quoted in the discussion are all from Radix.

All experiments were run on a 4-processor server with
6 GB of physical memory running Red Hat Linux Fedora
Core 3. The processors used are 2-GHz AMD Opteron pro-
cessors, which each have 64KB L1 data, 64KB L1 instruc-
tion, and 1MB L2 private caches. Memory is partitioned
across processor nodes. The oprofile[14] tool is used to
profile simulator execution. This tool records the program
counter (PC) every N times an event such as a clock cycle
or a cache miss occurs, where N can be set by the user. A
post-processing step then maps the PC back to instructions,
source lines, and functions.

3.2. Results

We begin by looking at the performance scalability of
the non-parallelized simulator with increasing CMP model
size. Figure 2 shows time per simulated cycle vs. number
of simulated processors, normalized to one simulated pro-
cessor. The speed of the 1-way CMP is 36,130 simulated
cycles/sec. As the number of simulated processors grows
beyond four, there are large slowdowns. These slowdowns
are due to a sharp increase in the number of L2 cache misses
as the working set of the simulator increases. The 4-way
CMP model incurs only 300 data L2 cache misses per sim-
ulated cycle, but the 8-way CMP model incurs 2500 data
misses and the 16-way CMP model nearly 5000 data misses
per simulated cycle. Such cache behavior has a significant
effect upon the effectiveness of automated parallelization.

Figure 3 shows the speedups achieved by automated par-
allelization. Each panel shows the speedup achieved us-
ing each scheduling strategy measured relative to a single-
threaded simulator as the model size changes. Note that
the baseline single-threaded simulator is different for each
model size. Different panels correspond to different bench-
marks and numbers of threads.

The most obvious trend visible from Figure 3 is that
speedup vs. a single-threaded simulator increases as the size
of the model increases. These results can be explained us-
ing two factors. First, cache effects should penalize smaller
models; when the model is small enough that its working set
fits within the L2 cache of a single processor, parallelization
will increase cache misses relative to a single-threaded sim-
ulator. On the other hand, for larger models whose working
sets did not fit within the L2 cache of a single processor but
do fit within the combined L2 caches of multiple processors,
parallelization can decrease cache misses and boost perfor-
mance. Second, as the model increases in size, schedul-
ing strategies should have more opportunities to schedule
around locks and achieve higher parallelism.

We can separate these two factors by breaking down
overall speedup into cache-caused and parallelism-caused
speedup. We compute the cache-caused speedup by com-
paring the number of CPU seconds spent in component
method invocations (as reported by oprofile) in the par-
allelized and single-threaded simulators. The remaining
speedup we attribute to parallel execution (though it ac-
tually includes and is reduced by all extra overhead due
to parallelization). The two speedup components multiply
to form the overall speedup. Figure 4 shows the speedup
breakdown for Radix for two-threaded and four-threaded
simulators.

Figures 4(a) and 4(c) show that cache effects are as pre-
dicted; smaller models are hurt by cache effects while the
largest model is helped by the larger total effective cache
size; the tradeoff point appears at around 8 simulated cores
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Figure 2. Scalability of single-threaded simulator performance

for 4 threads. This speedup boost due to the larger effective
cache size is what leads to superlinear overall speedup. As
might be expected, cache effects increase in intensity as the
number of threads increases. Both figures also show that
clustering strategies are better than non-clustering strate-
gies at handling cache effects; INSTCLUSTER is the most
effective strategy overall, though IDSC is nearly as effec-
tive once model size grows beyond four simulated cores.
Beyond two simulated cores, both clustering strategies are
competitive with manually-guided clustering.

Figures 4(b) and 4(d) indicate how well the strategies
find and exploit parallelism. As model size increases,
speedup generally increases for most strategies as schedul-
ing opportunities increase. For two threads, there is lit-
tle difference between the strategies, other than that LIST
is worse than the rest. However when four threads are
used, IDSC shows itself to be particularly good at exploit-
ing parallelism, achieving greater than 80% efficiency for
four threads. LOCKAVOID and INSTCLUSTER obtain
somewhat lower results. Note also the poor performance of
GUIDED for smaller models; this is indicative of the dif-
ficulty of doing good load-balancing by hand when a good
clustering is not obvious to the user.

3.3. Summary of results

Standard list scheduling (LIST) is not effective for
task scheduling in the simulator because it ignores both
cache and locking effects. Locking effects improve when
lock avoidance mechanisms are used, but the schedule
is still vulnerable to poor cache locality. Locality im-

proves through use of clustering techniques, but there is no
clearly preferred clustering strategy. The simpler instance-
based strategy (INSTCLUSTER) achieves better local-
ity but poorer parallelism than the more complex strategy
(IDSC) taking into account the critical path. Overall, IN-
STCLUSTER is better when the model is small and there
are few threads, but IDSC is better when the model is large
or there are many threads.

Figure 5 shows the scalability of simulator performance
(defined as in Figure 2) as the model size increases for
the instance-based strategy scheduler, INSTCLUSTER,
for different numbers of threads. Ideally, a 4-threaded simu-
lation of a four-way CMP would take as long as a 1-threaded
simulation of a 1-way CMP. This is unfortunately not the
case; as discussed before, small models do not achieve large
parallel efficiency due to the extra L2 data misses implied
by parallelization. However, large models do see a large
benefit from parallelization due to the increase in effective
L2 cache size for data. This benefit is so large that it be-
comes the primary benefit of parallelization, increasing the
range of model sizes for which simulation speed scales ap-
proximately linearly with model size.

4. Integrating processors in simulation

While parallelism in a CMP model can be exploited by
using multiple processors to parallelize the simulator, these
processors can also be integrated as components of the sim-
ulation itself. To do so requires that the simulator be explic-
itly developed in such a way as to encapsulate the hardware,
providing input signals to and receiving output signals from
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Figure 3. Achieved speedup for multi-threaded simulators by scheduling strategy
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Figure 4. Breakdown of speedup for 2-threaded and 4-threaded simulators on Radix
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the hardware. Concurrent structural simulation frameworks
make this process much easier, as this is the normal model-
ing paradigm: components communicate with each other
through signals. As a result, once the hardware compo-
nent has a corresponding LSE adapter component, integrat-
ing the component into the simulator is simply a matter of
swapping the software component with the hardware one.
No other changes are required to the rest of the simulation
model.

Integration of processors (or arbitrary hardware compo-
nents) can offer additional benefits beyond increases in sim-
ulation speed. Two major motivating factors behind the de-
velopment of structural modeling have been reuse and re-
duction of error. Using actual hardware can be seen as the
ultimate expression of these goals: the component need not
be modeled at all and is already completely validated. In
addition, simulated components can be incrementally im-
plemented and become hardware components, creating an
incremental architecture-to-implementation design flow.

4.1. Integration Requirements

Three requirements must be met when integrating hard-
ware into a structural simulation framework. First, the sim-
ulator must control and communicate with the hardware.
Second, the hardware must be made to appear as if it obeys
the simulator’s model of computation. Finally, hardware
signals must be translated and mapped to simulator signals.

Control and Communication The simulator must be
able to control all of the input signals of the hardware com-
ponent and to sample all of its output signals. The simu-
lator must also be able to control the hardware clock. We
accomplish this by placing hardware input registers, hard-
ware output registers, and a hardware register controlling a
clock driver on the interfaces of the hardware component
instantiated in a Field-Programmable Gate Array (FPGA),
as shown in Figure 6. These registers can be written to
and read from via a Linux device driver written for the
board upon which the FPGA resides. Device driver meth-
ods to write and read these registers are called from an LSE
adapter component written specifically for the hardware be-
ing integrated.

Model of computation The Hetrogeneous Synchronous
Reactive (HSR) model of computation which LSE uses re-
quires that components carefully control when signals are
set. An output signal must not be given a value before all
inputs needed to compute it are known. An output signal
should also be given a value as soon as all of the inputs
needed to compute it are known. The essential invariant
which an LSE adapter component around a hardware com-
ponent must maintain, therefore, is to not set a signal value

too early (before it would be set by an HSR model of the
component) nor too late.

It is useful to think of the outputs of the hardware to be
integrated as being either Moore or Mealy state machine
outputs. At the beginning of the simulation timestep, Moore
machine outputs should be available from the hardware, and
LSE requires that they be driven out of the LSE adapter dur-
ing the PHASE START method of the simulation time step.
As inputs become available during the timestep, LSE calls
the PHASE method of the adapter. The adapter provides its
inputs to the hardware and then samples the hardware’s out-
puts. It then drives in LSE those outputs which are known
to have resolved to a known value; as the hardware will not
indicate this, knowledge of the zero-cycle paths through the
hardware must be put into the adapter. Finally, during the
PHASE END method, the adapter provides its inputs to the
hardware and causes the hardware clock to tick.

Translation and mapping LSE creates three signals for
each connection made to a component. These signals –
called data, enable, and ack – are used to provide de-
fault flow-control behavior across components. Further-
more, data has an implicit “data valid” signal carried with it.
Most hardware components will not use precisely the same
scheme. To resolve this, the adapter component shown
in Figure 6 translates the hardware signals into LSE sig-
nals signifying the hardware’s flow-control semantics, and
vice-versa. It may also translate datatypes; for example,
transforming the raw bits off of a command bus into some
enumerated type that lists the commands in human-friendly
form.

4.2. Related Work

Hardware emulation has been used for microprocessor
design and verification in many efforts in the past. Ray and
Ho[17] describe using an FPGA prototyping board to ver-
ify a synthesizable processor design. Within industry, mi-
croprocessors such as the AMD K5[10] and the Sun Ultra-
SPARC I[11] have been verified through hardware emula-
tion using specialized emulation systems constructed from
FPGAs. These efforts have required that the entire design
be emulated, not just portions of it, and that the entire de-
sign be described in a hardware-synthesizable language.

Nakamura, et al.[13] present a method for integrating
C/C++ simulators with hardware implemented in FPGAs.
This is similar in some ways to our work, but the simulators
used are written in an ad-hoc fashion and must intersperse
driver calls throughout the simulation without the benefit
of a structured simulation cycle. Davis, et al.[5] present a
prototyping system for multiprocessors built out of FPGA
boards with processors. This system does not integrate with
simulators, but instead is intended to be used to prototype
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Figure 6. A Hardware Component in LSE

the entire multiprocessor. Chiou[4] partitions simulation
between functional and timing simulation and offload the
simulation onto FPGAs, but does not present results.

DirectRSIM[6] uses direct execution to model the func-
tionality of processors in a multi-processor system, thus “in-
tegrating” them in a sense. The communication mechanism
with the processors is not cycle-accurate; the binary being
run by the processors is instrumented to call the timing sim-
ulator at each memory operation and pass it the execution
path taken since the last operation. The timing simulator
then performs a timing-only simulation of the processor to
determine the time at which the memory operation would
actually have been issued.

Finally, integration of different models of computation
was one of the goals of the Ptolemy[2] project, out of which
the HSR model originated.

5. Evaluation of hardware integration

In this section we demonstrate the feasibility of integrat-
ing processors into a concurrent structural simulation model
by integrating hardware PPC405 cores into 1-, 2-, 4-, and 8-
way chip multi-processor models. This integration is done
by simply replacing the PowerPC software LSE component
with a PPC405 LSE adapter component. Having swapped
the components, we then compare the new simulator’s per-
formance to the software-only models.

5.1. Experimental infrastructure

Up to four AMIRIX AP130 PCI boards are used, each
board containing one Xilinx Virtex-II Pro XC2VP30 FPGA
containing two PPC405 cores implemented as hard macros.
54% of the logic resources (slices) on these mid-size FPGAs

are used. The boards share the host system’s single PCI bus,
which is 32 bits wide and runs at 33MHz.

The simulations use the minimal number of boards for
a given size of CMP model: i.e. the number of cores di-
vided by two. Because the external bus of the PPC405 has
no zero-cycle input-to-output paths, a PHASE method is not
needed in the adapter. Instead, it simply reads the core’s
outputs at PHASE START and drives inputs to the core and
toggles the clock at PHASE END. The adapter translates
the core’s bus signals to and from cache transactions under-
stood by the simulated cache models. It also handles some
special cases of the cache protocol, such as responding to
invalidation requests, that the core does not expect to see.

The hardware integration experiments use the same
benchmarks and inputs as those used in Section 3. Three
families of CMP are considered: the first, GRID, is the
complex, tiled architecture used in Section 3. The sec-
ond, BUS, has a bus-based architecture and a monolithic
L2 cache. The final family, PERF, has perfect L1 data
and instruction caches and serves to illustrate speedup when
nearly all of the simulation has been moved to hardware.
The host system, which is also used for software-only speed
measurements, has a Pentium 4 630 (3.0 GHz “Prescott”
with a 2MB L2 cache) system running the 32-bit version of
Red Hat Fedora Core 3.

5.2. Results

Table 1 shows the speed measured in simulated cycles
per second of the purely software-based simulators and the
hardware-integrated simulators for both Radix and FFT.
Also shown for Radix is a profile of the percentage of time
spent in the adapter component and the board driver in the
hardware-integrated models.



Radix FFT
Speed (cycles/sec) % time spent in Speed (cycles/sec)

Model SW-only HW Speedup driver adapter SW-only HW Speedup
1-way PERF 37314 160978 4.31 68.7 10.8 37461 162920 4.35
2-way PERF 17277 71316 4.13 56.5 17.8 17312 72329 4.18
4-way PERF 7496 38363 5.12 46.7 22.7 7481 39049 5.22
8-way PERF 3136 17930 5.72 40.8 27.3 3130 18229 5.82
1-way BUS 24720 41860 1.69 12.7 7.0 24858 41974 1.69
2-way BUS 11544 21494 1.86 12.7 7.7 11731 21664 1.85
4-way BUS 5074 9759 1.92 11.5 9.9 5154 9873 1.92
8-way BUS 2205 4278 1.90 9.4 11.6 2146 4359 2.03
1-way GRID 22210 31692 1.43 9.4 5.3 22348 31898 1.43
2-way GRID 9551 12341 1.29 7.5 5.3 9584 12408 1.29
4-way GRID 3951 4761 1.21 5.7 6.1 3983 4767 1.20
8-way GRID 1649 2092 1.27 4.7 6.3 1604 2101 1.31

Table 1. Hardware-integrated vs. software-only simulators

Large speedups are seen for the PERF models. Inte-
gration of hardware has accelerated simulation by moving
most of the computation into efficient, highly-parallel hard-
ware. Up to 69% of simulation time is spent within the
driver; of this time, nearly all of it is spent waiting for PCI
read transactions to complete. Notice also that the propor-
tion of time spent in the adapter relative to the driver in-
creases as the number of cores increases. We believe this
is because the frequency with which memory transactions
occurs increases as the number of cores increases due to
the increased amount of time spent in synchronization con-
structs such as locks in the target benchmarks. As a result,
the adapter must spend proportionally more time translat-
ing signals, as the driver’s time to provide the signals to and
from the hardware each cycle remains relatively constant.

We stress that the simulation model of the PPC405 core
is a very simple parameterized generic core model which
does not model the PPC405 particularly accurately. A more
detailed and accurate core model would likely be much
slower, causing the speed benefit of hardware integration to
be even higher. This effect would be even more pronounced
for more complex cores. Thus these speedup results should
be considered to be very conservative.

The BUS and GRID models show less speedup. This is
a consequence of Amdahl’s Law. As the memory hierarchy
becomes more complex and takes up a much larger propor-
tion of simulation time, the potential speedup due to reduc-
ing the time spent in the processors is reduced. The large
reduction in speedup seen implies that implementation and
integration of portions of the memory hierarchy (for exam-
ple, first-level caches) in hardware could be worthwhile.

6. Conclusion

We have shown that the use of structural concurrent mod-
els for CMPs allows simulators to exploit structure and par-
allelism in the CMP model. This can be achieved either
through automated parallelization of the simulator or by in-
tegrating processors into the simulation itself. Structural
models make it possible to use either technique without re-
quiring the user to manually parallelize or re-design the sim-
ulator.

Automated parallelization is possible because the struc-
tural, concurrent nature of the model provides a rich as-
sortment of tasks which can then be automatically sched-
uled. We show that shared data access and cache behavior
are important to consider while scheduling and demonstrate
an automatic scheduler which can achieve moderate (2.27)
speedup on a 4-way CMP model and large (7.60) speedup
on a 16-way CMP model. Future work will focus on further
improving the data cache locality of the parallelized simu-
lator.

We have also demonstrated that processors can be inte-
grated into a structural CMP model without requiring re-
design of the model, achieving a speedup of 5.82 for an
8-way CMP model with perfect caches and 1.31 for an 8-
way CMP model with a complex tiled memory architecture.
Besides this speed advantage, hardware component integra-
tion offers advantages of accuracy, reduced model develop-
ment time, and incremental architecture-to-implementation
design flow possibilities. Future work will improve board
communication overhead with the driver and explore the
performance issues involved in simulating multiple mi-
croarchitectural components on multiple FPGAs and FPGA
boards as well as the effects of various hardware parameters
and configurations on performance.
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