
Finding Parallelism for Future EPIC Machines

Matthew Iyer†, Chinmay Ashok†, Joshua Stone†
∗

, Neil Vachharajani‡,
Daniel A. Connors†, and Manish Vachharajani†

†Department of Electrical and Computer Engineering ‡Department of Computer Science
University of Colorado Princeton University
Boulder, CO 80309 Princeton, NJ 08544

{Matthew.Iyer, Chinmay.Ashok, Joshua.Stone, nvachhar@cs.princeton.edu
dconnors, manishv}@colorado.edu

ABSTRACT
Parallelism has been the primary architectural mechanism to in-
crease computer system performance. To continue pushing the
performance envelope, identifying new sources of parallelism for
future architectures is critical. Current hardware exploits local in-
struction level parallelism (ILP) as hardware resources and infor-
mation communicated by the instruction-set architecture (ISA) per-
mit. From this perspective, the Explicitly Parallel Instruction Com-
puting (EPIC) ISA is an interesting model for future machines as
its primary design allows software to expose analysis information
to the underlying processor for it to exploit parallelism. In this
effort, EPIC processors have been more or less successful, how-
ever the question of how to identify (or create) additional paral-
lelism remains. This paper analyzes the potential of future relation-
ships of compilers, ISAs, and hardware resources to collectively
exploit new levels of parallelism. By experimentally studying the
ILP of applications under ideal execution conditions (e.g., perfect
memory disambiguation, infinite instruction-issue window, and in-
finite machine resources), the impact of aggressive compiler opti-
mization and the underlying processor ISA on parallelism can be
explored. Experimental comparisons involving an Itanium-based
EPIC model and an Intel x86-based CISC (Complex Instruction
Set Computing) model indicate that the compiler and certain ISA
details directly affect local and distant instruction-level parallelism.
The experimental results also suggest promising research directions
for extracting the distant ILP.

1. INTRODUCTION
Current processors exploit instruction-level parallelism (ILP) in sin-
gle threads by using aggressive control speculation, data specula-
tion, large instruction issue windows, and high-bandwidth, low-
latency instruction caches. Unfortunately, these now classic design
features are not scaling well given trends in fabrication technol-
ogy; feasible extensions of these methods are showing vanishingly
small returns. For instance, despite advanced branch predictors,
increasingly large misprediction penalties strongly limit speedup
for control intensive programs [1]. Likewise, the instruction win-
dow currently consumes a large percentage of total processor core
power [2], and is very difficult to enlarge [3]. Larger instruction
windows require larger multi-ported register files and larger reorder
buffers to realize their potential, and these also are difficult to de-
sign [4]. Finally, the added complexity of new microarchitectural

∗Now at Intel Corp., Santa Clara, CA

concepts has led to ever larger design teams to manage design com-
plexity and correctness. The consequence of this poor scalability
and diminishing returns in the recent past is that caches now domi-
nate the area of typical high-end processor chips [5].

Currently, the challenges of meeting continual demands for perfor-
mance improvements have spurred designers to move to chip multi-
threaded (CMT) [6] and chip-multiprocessor (CMP) [7] designs. In
these designs, replication of processor cores and hardware contexts
reduces design effort per transistor and provides a way of deliver-
ing more computational power without the scalability problems de-
scribed above. While these systems provide higher overall through-
put, single-thread application performance sees no direct improve-
ment, and sometimes even experiences slowdown due to the over-
head in multiprocessor operating systems. In response, there is an
effort to explore the use of multi-threading multi-processing to ex-
ploit parallelism within a single thread [8, 9].

Two broad classes of evaluating the level of parallelism available in
modern single-threaded applications exist: near-ILP (exploitable
by kilo-instruction window processors [10]) and distant ILP (due
to instructions more well over 2K instructions ahead in execution
trace [11]). Both classes of parallelism are evaluated by consid-
ering ideal execution conditions (unconstrained microarchitectural
resources). However, most compiler and architecture studies have
focused on near ILP as it relates more closely to scaling existing
processor models [12, 13]. On the other hand, there are more av-
enues to exploit distant ILP and these may unlock substantially
more parallelism. As exploiting distant ILP will likely require com-
piler and/or run-time system support, it is critical to examine the in-
fluence that compiler technology has on distant ILP. Similarly, the
information communicated by different instruction-set architecture
(ISA) models also directly influences the ability of hardware-based
techniques to exploit distant ILP. This paper presents an integrated
study of distant ILP by simultaneously examining multiple ISAs
and the impact of compiler optimization.

Results show that for both EPIC (Explicitly Parallel Instruction
Computing) and CISC (Complex Instruction Set Computing) ar-
chitectures, a large amount of useful ILP exists beyond the range
of current instruction windows, much of it beyond the range of
kilo-instruction processors. At the same time, results also show,
surprisingly, that local transformations implemented in modern ag-
gressively optimizing compilers have a significant influence on the
amount of distant ILP available. In many cases the compiler sac-
rifices distant ILP in exchange for better exposure of near ILP on
real hardware. Additional results from this study suggest that the

character of distant ILP is quite similar across different architec-
tures (in this case Itanium, PowerPC, and x86), though the absolute
IPC and other details vary greatly between the platforms. The study
also determined that while the ISA does not have a dominant role in
distant ILP patterns, specific, seemingly minor, platform details do
play a major role. During the course of this investigation, several
key properties of distant parallelism such as dependence critical-
ity and parallel dependence chains were identified. Overall, these
results motivate potential new design techniques to exploit distant
ILP on multi-core platforms.

The remainder of this paper is organized as follows. Section 2 de-
scribes the experimental infrastructure and setup for this study, in-
cluding Adamantium, an ideal trace scheduler. Section 3 details
the results of the limit study and presents our analysis. Section 4
briefly describes previous ILP limit studies and highlights how the
this study differs. Finally, Section 5 concludes by discussing the
implications of our results and suggesting future directions.

2. LIMIT STUDY METHODOLOGY
Studies have previously shown the impact of hardware resources on
the the potential level of parallel execution. This study is focuses on
the upper bound of available parallelism with the primary consider-
ation of inherent program information, the effect of instruction-set
architecture (ISA) and the compiler transformed by the compiler.
In particular, the study:

• Characterizes the amount and type of natural parallelism in
an application.

• Evaluates the role of a single-thread compiler in uncovering
different types of parallelism.

• Examines the role of instruction-set architecture (ISA) in per-
mitting parallelism.

In conducting the limit study of available ILP, a range of conditions,
a variety of ISAs, and a variety of compilers are examined. The
following sections describe the techniques used to perform the limit
study and the space of applications, compilers, and the targeted
ISAs. In addition, the mechanisms used to address the challenges in
implementing the infrastructure to perform the study are discussed.

2.1 ILP Limit Studies
The process of assessing limits to parallelism generally involves
several steps: collecting application execution traces from an archi-
tecture, determining true (flow) dependences of instructions within
the trace, and scheduling the instructions based on unconstrained
hardware resources. An example of an execution trace and its re-
spective ILP-limit schedule is shown in Figure 1a and Figure 1b.

To identify the limit of available ILP, the scheduler should assume
single cycle latency, ignore all false dependences including false
memory dependences (i.e., those that can be avoided via renaming),
assume perfect branch prediction allowing instructions to be moved
across branches, and assume perfect memory disambiguation. No-
tice, in Figure 1c, that because the scheduler ignores all false de-
pendences, instruction number 10 need not wait for dynamic in-
struction number 6 to complete since the value of r1 defined by 10
is a new value for r1 indicating that the dependence on r1 between
6 and 10 is false. Furthermore, note that although dynamic instruc-
tion 11 is a branch, instructions 12, 13, and 14 need not wait for it

1 li r1, &fibarr
2 mov r2, 8 // cnt=8
3 mov r3, 1 // prev1=1
4 mov r4, 1 // prev2=1
5 loop: add r5,r3,r4 // tmp=prev1+prev2
6 st 0(r1),r5 // fibarr[i]=tmp
7 mov r3,r4 // prev1=prev2
8 mov r4,r5 // prev2=tmp
9 addi r2,r2,-1 // cnt--;

10 addi r1,r1,4 // i++;
11 bnz r2, loop

(a) Fibonacci Program to be Analyzed

Dynamic Memory
Instruction Address
Number Instruction Accessed
1 li r1, &fibarr
2 mov r2, 8
3 mov r4, 1
4 mov r3, 1
5 add r5,r3,r4
6 st 0(r1),r5 0xbee0
7 mov r3,r4
8 mov r4,r5
9 addi r2,r2,-1
10 addi r1,r1,4
11 bnz r2, loop
12 add r5,r3,r4
13 st 0(r1),r5 0xbee4
14 mov r3,r4

...
(b) Execution trace

Cycle Dynamic Instruction Numbers
1 1 2 3 4
2 5 7 9 10
3 6 8 11
4 12 14
5 13

(c) Ideal trace schedule

Figure 1: Stages of an ILP limit experiment

Platform gcc icc glibc
x86 3.3.2 8.1 2.2.5
Itanium 3.2.3 8.1 2.3.2
PowerPC 3.4.1 n/a 2.3.3

Table 1: Compiler versions used to build SPEC benchmarks

due to perfect branch prediction. They are scheduled after instruc-
tion 11 due to their dependence on dynamic instructions numbered
8, 12, and 8, respectively.

In the scheduling infrastructure, perfect branch prediction is easy
to achieve, the scheduler simply ignores all control dependences.
Ignoring false register dependences is also straight-forward, the
scheduler simply renames architected registers. Typically, this re-
naming is done by keeping a map of architected locations to a set
of virtual “physical” names. The location of the instruction that
produces a value in the execution trace is guaranteed to be unique
and usually suffices. Perfect memory disambiguation is more dif-
ficult. In Figure 1, perfect memory disambiguation is achieved by
recording in the execution trace the address used by every memory
instruction. The scheduler then treats these memory locations just
like architected registers, renaming them by creating a new label
for each write to the location. Of course, managing a map that po-
tentially contains every virtual address can be tricky. Furthermore,
including the memory address with every execution trace can in-
crease the size of the trace prohibitively. The mechanisms used to
address these issues are discussed in Section 2.3.

2.2 Study Configuration Space
For this limit-study, the integer applications in the SPEC bench-
mark suite (i.e., SPEC CPU INT 2000 benchmarks) were exam-
ined. These applications were selected because they are considered
particularly difficult to parallelize, especially when attempting to
extract distant-ILP. Floating point applications have challenges but
efforts at automatic parallelization of these codes have had success
when compared to integer codes in the SPEC suite [11].

A subset of the SPEC CPU INT 2000 benchmarks were compiled
for Linux running on Intel’s x86 instruction set architecture (ISA),
IBM’s PowerPC ISA, and Intel’s Itanium ISA. Benchmarks were
compiled using both the GNU Compiler Collection (gcc), and when
available, Intel’s optimizing compiler (icc). Table 1 shows the com-
piler versions used for various platforms. All benchmarks were
compiled with the -O3 flag. Traces were generated for the train
input set using Intel’s Pin [14] tool for the x86 and Itanium traces.
The PowerPC traces were generated using a modified version of the
Liberty Simulation Environment’s [15] PowerPC emulator [16].

All the resulting benchmarks were scheduled using the Adaman-
tium trace scheduler developed for this study. A variety of schedul-
ing window sizes were evaluated to examine the effect of window
size on parallelism and to allow a comparison to prior limit studies
that used finite windows. The window sizes used were 64 dynamic
instructions, 128 dynamic instructions, 256 dynamic instructions,
2048 instructions, 16384 instructions, 102400 instructions, and an
infinite window. All generated schedules at all window sizes ig-
nore no-op instructions and discount instructions whose qualifying
predicate is false (for Itanium).

The 3-tuple, (arch, compiler, window) is used in the remainder of
this paper to refer to the ILP results for a particular benchmark or

arch x86 ia64 (Itanium) ppc (PowerPC)
compiler gcc icc
window 64 128 256

2k (2048) 16k (16384) 100k (102400)
inf (infinite)

Table 2: Values for configuration tuple fields

set of benchmarks. Table 2 shows the values for each field of the
tuple.

2.3 Challenges
While the overall concept of the ideal limit study is simple, there
are a number of practical challenges that arise in the implementa-
tion. Of these, there are three main challenges: limiting trace size
on disk, managing renaming for memory locations, and generating
meaningful output. The remainder of this section discusses how
these issues are addressed.

2.3.1 Trace Size
The SPEC CPU INT 2000 benchmarks often execute in excess of 1
billion instructions. Assuming 33% of integer application instruc-
tions are memory operations with a single memory address, the
trace file, naively stored would be at least 2GB on Itanium (8 bytes
per address). This large size still ignores the space to store the
actual instructions executed and their register operands. To keep
the trace file size manageable, two separate mechanisms were de-
ployed. First, the trace file is partitioned into two parts, a static trace
file (called the program trace file) and the dynamic trace file (called
simply the trace file). The static trace file stores a map of instruc-
tion address to decoded instruction information including the op-
code, architected register operands, and some category information
to aid in later scheduling (e.g., whether the instruction is a nop). In
this way, the dynamic trace need only store the qualifying predi-
cate (for Itanium), an instruction pointer with which the scheduler
can index the program file, and any memory operand addresses. To
manage the excessive size of the memory operand addresses, the
TCgen [17] tool was used to transform the traces into highly com-
pressible streams. The streams are then compressed using bzip2.
Trace compression ratios were observed similar to those reported
by the TCgen authors.

This trace-size reduction strategy poses a special challenge for the
Itanium architecture. The Itanium supports compiler controlled re-
naming, and thus, the architected register numbers are not sufficient
to properly track dependences. To avoid writing renamed register
numbers to the trace (greatly expanding its size), the full REN stage
of the Itanium pipeline was implemented in the trace scheduler.
This allows us to translate the architected registers in the program
trace file to physical register numbers consistent with the renaming
requested by the code sequence during trace scheduling. The values
of the CFM register and PFS register must be tracked throughout
the trace in order to support the REN stage 1. To support this the
Itanium trace generator writes a side-trace file that stores every IP
(instruction pointer) that modifies the CFM or PFS, and the corre-
sponding register value. This side-trace is compressed using bzip2.

2.3.2 Managing Memory Renaming
1The CFM and PFS registers track how the registers have been ro-
tated for software pipelining, as well as which register stack frame
is currently in use. See the Itanium architecture reference manuals
for more detail.

In order to perform register renaming, the Adamantium trace sched-
uler maintains a map of every architected register to the ideal cy-
cle number in which the last producer of that register was sched-
uled. This map is simply a fixed size array of 64-bit cycle numbers
indexed by architected register number. This strategy allows for
fast scheduling (recall that Adamantium is scheduling well over
a billion instructions for many benchmarks), but does not work for
memory since a 32-bit machine would require over 32 GB of RAM.
A 64-bit address space could not be mapped on any machine. To
remedy this, but still allow fast lookup of dependences, Adaman-
tium uses an inverted page table backed by a multi-level page table
with large page sizes (between 32k and 128k 64-bit time entries per
page). Nodes in the page table are only allocated on first reference
limiting the total size of the structure to just as many pages as the
application being scheduled needs. The hash table in the inverted
page table has 1024 entries and two hash functions: a primary hash
and a secondary hash for use on collision. With this infrastructure
98% of the memory dependence lookups hit in the hash table, leav-
ing only 2% to page table walks.

2.3.3 Generating Meaningful Output
The final challenge for trace scheduling is identifying a useful set
of output for analysis. Outputting the full schedule is impractical
since it will be as large as the original trace. Compressing this
schedule as described earlier prevents reasonable analysis because
random access is disallowed. In general, the question of how to
best store and analyze the schedule remains unaddressed. In this
paper, analysis was limited to schedule representations generated
incrementally as scheduling occurred. This data includes:

• A histogram that shows the idealized IPC of the application
over ideal scheduling cycles (i.e., time).

• A plot of the time an instruction was scheduled versus dy-
namic instruction number (DIN) (i.e., the instruction’s loca-
tion in the serial execution trace) (DIN vs. ready-time plot).

• A plot of the static instruction number (SIN), the instruction
address, of each instruction vs. the time it was scheduled in
the ideal scheduler (SIN vs. ready-time plot).

Although simple, these three representations provide a wealth of
information about the available ILP in a program and allow inter-
esting comparisons between compilers and architectures as will be
discussed in Section 3. As will be seen, they also guide us to inter-
esting phenomena to investigate regarding ILP.

3. RESULTS AND ANALYSIS
This section presents a representative subset of the interesting in-
formation revealed by the limit study described in Section 2. The
section begins by giving an overview of the IPC available on both
the x86 and Itanium architectures. It continues by characterizing
various phenomena regarding the IPC, especially the distant-ILP.
Next, results for the two compilers (icc and gcc) are compared and
interesting features identified. Finally, with an understanding of the
role of the compiler, the section concludes with an examination of
the ISA’s role in the far-ILP available in a program binary.

3.1 Overview of IPC
Figure 3 shows the average IPC values for the x86 and the Itanium
architectures given an infinite instruction window for the SPEC

1 .function foo
2 foo: subi $sp,$sp,242 //Grow stack
3 ...
4 stw r1,28($sp) // Spill code
5 ...
6 ld r1,28($sp) // Fill code
7 addi $sp,$sp,242 // Shrink stack
8 jr $ra // Return

(a) Arithmetic SP Update

1 .function foo
2 foo: stw 0($bp),$sp
3 subi $sp,$sp,242 //Grow stack
4 ...
5 stw r1,28($sp) // Spill code
6 ...
7 ld r1,28($sp) // Fill code
8 ld $sp,0($bp) // Shrink stack
9 jr $ra // Return

(b) Save-restore SP Update

Figure 2: Stack pointer manipulation code.

CINT 2000 benchmark suite2. This graph shows that Itanium com-
paritively performs far better across the entire benchmark suite,
more than intuition would suggest. This finding suggests that there
is a naive set of unnecessary true dependences on the x86 archi-
tecture that causes this drop in performance. As discussed in the
literature we found this to be a dependence based on arithmetic up-
date of the stack pointer [18, 19].

The x86 stack pointer is updated arithmetically as shown in the
RISC-like assembly pseudo-code in Figure 2a. This pair of arith-
metic updates to grow and shrink the stack occur on each call and
return on x86 architecture. As a result all instructions in the func-
tion body that use the stack pointer (and their dependents), such
as register spill and fill code, are unable to execute until after the
corresponding instruction to grow the stack pointer. However, each
grow instructions is pegged behind prior shrink instructions. This
dramatically limits ILP. However, consider the save-restore based
stack pointer update code in Figure 2b. In this figure, there is no
such dependence between the grow and prior shrink instruction be-
cause renaming is able to disambiguate the different stack pointer
definitions. Based on this observation, for the x86 architecture, we
ignore all dependences based on the stack pointer. This marginally
inflates the IPC of the application because the SP grow instructions
are not serialized, but this effect is minor on the whole. There is
no need to ignore the SP on Itanium since the Itanium architecture
has a stacked general purpose register file with hardware backed fill
and spill when the stack overflows the physical register file. This is
discussed in more detail in Section 3.5.

Figure 4 shows the same data as Figure 3 while ignoring stack
pointer dependences on x86. This demonstrates that if the stack
pointer dependences are ignored, the x86 architecture does better
in comparison with the Itanium architecture on an average. Fig-
ure 5 demonstrates that, on the x86 architecture, far fewer dynamic
instructions are executed than on the Itanium architecture. This
observation suggests that there is a greater amount of parallelism
2Benchmarks 256.bzip2, 186.crafty and 252.eon have been omit-
ted. On Itanium, trace generation for 256.bzip2 has been exces-
sively slow and traces were unavailable at the time of this writing.
Technical difficulties were experienced for 252.eon and 186.crafty.

0

25

50

75

100

In
st

ru
ct

io
ns

Pe
r

C
yc

le
(I

PC
)

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

30
0.t

wolf

Benchmark

x86
ia64

Figure 3: Average IPC for (x86,gcc,inf) and (ia64,gcc,inf)

0

100

200

300

400

In
st

ru
ct

io
ns

Pe
r

C
yc

le
(I

PC
)

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

30
0.t

wolf

Benchmark

x86
ia64

Figure 4: Average IPC ignoring SP on x86

0

2 ·1010

4 ·1010

6 ·1010

To
ta

lI
ns

tr
uc

tio
ns

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

30
0.t

wolf

Benchmark

x86
ia64

Figure 5: Number of operations by architecture

available for the x86 architecture over the entire execution, if the
stack pointer dependence is ignored. This is an counter intuitive
which should be explored in greater detail. Another possible cause
for this effect is discussed in Section 3.5, but further investigation is
still warranted. Notice that 300.twolf executes far more instructions
on an x86 architecture as compared to the Itanium architecture. In
addition, it is apparent that ignoring the stack pointer does not offer
an advantage in the case of 300.twolf. This is because the num-
ber of calls made within the program are very few, minimizing the
effect of the stack pointer dependence.

3.2 Characterizing ILP
Many prior limit studies limit the window size when considering
“ideal” ILP. For example, the studies by Wall [13], limit the in-
struction window to two thousand instructions. Given this, and the
recent work advocating kilo-instruction processors [10], terms near
and distant-ILP are loosely defined. Near-ILP is parallelism found
within approximately two thousand dynamic instructions, and dis-
tant ILP (i.e., far-ILP) is parallelism considerably farther than this.
In this section two phenomena that characterize distant parallelism
are presented: critical dependences and independent dependence
chains.

3.2.1 DIN Plots
Before beginning a discussion of these effects, the visualization of
ILP used throughout the remainder of this paper must be discussed.
Consider Figure 6 for 254.gap (ia64,gcc,inf). The top graph of this
figure is a plot whose horizontal axis represents time as cycles in
which the scheduler schedules instruction. The vertical axis repre-
sents dynamic instruction number (DIN). Each instruction in a trace
is plotted in the graph according to the time that it is scheduled by
Adamantium and its dynamic instruction number. The lower graph
in the figure shows the instantaneous IPC of the application over
scheduling cycles. This pair of plots will be called a DIN plot or a
DIN vs. ready-time plot.

These plots are useful for discussing far-ILP because they easily
show interesting phenomena. For example, a line with positive
slope in this plot corresponds to a chain of locally dependent in-
structions. We know this because the plot is for ideal ILP, instruc-
tions are scheduled as early as possible. The sloped line forms
because the execution of the instructions earlier in the line satisfy
the dependences for those in the very next cycle. The slope of this
line gives a rough indication of the IPC of the dependence chain.
Note dependence chain is used loosely in this context. There is not
necessarily a chain of fully dependent instructions, instead there
are groups of independent instructions that are nearby in the trace
(giving rise to near-ILP) satisfying dependences for the next group
of nearby independent instructions.

Far-ILP is represented by vertical stacks of points. We know this
is far ILP since the vertical distance between the points is large
(indicating very different DINs and thus distance in the serial ex-
ecution trace), however the instructions are scheduled in the same
cycle. With this basic understanding of DIN plots, we can now dis-
cuss critical dependences and independent satisfying dependences
for the next group of independent instructions.

3.2.2 Critical Dependences
Our study indicates that an important characteristics of distant par-
allelism is a tendency for large numbers of instructions to be data
dependent upon a single result. When resolved, these critical de-
pendences unlock vast quantities of ILP. Notice how the DIN plot

for 254.gap (Figure 6) exhibits staircase behavior. At the front of
the “stair” (e.g., at 7.5 × 107 cycles), there is a fair amount of ILP
since the line has decent slope. However, at some point the paral-
lelism is exhausted and a very serial chain of dependences remains
(with little near ILP and almost no distant ILP). This can be ascer-
tained by the “top-of-the-stair” effect (e.g., from cycle 8.75 × 107

to 1 × 108). The final results generated by this long dependence
chain satisfy a large number of other dependences giving rise to the
start of another “stair.” The set of dependences that unlocks this
new parallelism is what we call a critical dependence. In this study,
almost all benchmarks exhibit this staircase behavior with an infi-
nite window (a few show a single long dependence chain executing
throughout the program).

A more extreme example of critical dependences is shown in Fig-
ure 7 shows critical dependences in the DIN plot for benchmark
181.mcf (ia64,gcc,inf). 181.mcf uses an iterative method to min-
imize network flow, where results of each successive iteration of
the flow computation algorithm depends upon the previous one. In
the figure, each iteration of the algorithm (seen as a black wedge)
begins execution with a large amount of far-ILP (indicated by the
height of the wedge). As the iteration progresses, newer instruc-
tions are not available for execution. In fact, the flat horizontal top
of each wedge strongly indicates that there are key dependences
that cannot be satisfied (and thus more distant instructions are un-
able to execute.) At the thin end of a “wedge” a key section of
code is executed. Once its execution is complete, a new wedge
begins. This indicates that at that point in the schedule the criti-
cal dependences were satisfied and more distant ILP is unlocked.
Once again, this DIN plot supports the notion that critical depen-
dences within each iteration of the flow computation algorithm pre-
vent execution of future iterations, and therefore cause a bottleneck
in distant ILP.

The prevalence of critical dependences indicates that, in order to
extract far-ILP, the compiler must break critical dependences, or
some form of value prediction must be used to unlock far-ILP for
execution as separate threads on different cores in a multi-core sys-
tem. This is less necessary in the case of 181.mcf (versus 254.gap)
because of the large amount of far-ILP present within an iteration.
However, the relatively few dependences between iterations of the
algorithm may make the more distant ILP more amenable to thread-
ing techniques.

3.2.3 Independent Dependence Chains
The DIN plot in Figure 6 also exhibits multiple divergent lines dur-
ing periods that execute with high IPC (e.g., around cycle number
5 × 107). Each line represents a group of instructions with near
ILP that form a dependence chain and must be serialized. Multiple
lines with differing slopes suggests independent dependence chains
executing in parallel with distant ILP. This phenomenon of inde-
pendent dependence chains was present across most of the SPEC
CPU INT 2000 benchmarks. In fact, for the benchmark 175.vpr
(x86,gcc,inf) (whose DIN plot is shown in Figure 8) these chains
continue for the entire execution of the program. These dependence
chains could be harnessed by spawning a separate thread to exe-
cute each dependence chain in parallel on a multiprocessor system.
This allows the chip-multiprocessor system to dynamically adapt
its behavior to the available program. Furthermore, since these are
dependence chains with relatively little IPC, large speedups could
be achieved even with relatively simple cores. Of course, identify-
ing the critical dependences for these chains (and thus identifying
the point at which to spawn threads) remains an open questions, as

0

2 · 109

4 · 109

6 · 109

8 · 109

D
y
n

am
ic

In
st

ru
ct

io
n

N
u

m
b

er

0 2.5 · 107 5 · 107 7.5 · 107 1 · 108 1.25 · 108

0

2500

5000

7500

IP
C

0 2.5 · 107 5 · 107 7.5 · 107 1 · 108 1.25 · 108

Cycle

Figure 6: DIN versus ready-time for 254.gap (ia64,gcc,inf)

0

2 · 109

4 · 109

6 · 109

8 · 109

1 · 1010

D
y
n

am
ic

In
st

ru
ct

io
n

N
u

m
b

er

0 5 · 107 1 · 108 1.5 · 108 2 · 108

0

2000

4000

6000

IP
C

0 5 · 107 1 · 108 1.5 · 108 2 · 108

Cycle

Figure 7: DIN versus ready-time for 181.mcf (ia64,gcc,inf)

0.0

2.0 · 109

4.0 · 109

6.0 · 109

8.0 · 109

1.0 · 1010

1.2 · 1010

D
y
n

am
ic

In
st

ru
ct

io
n

N
u

m
b

er

0 1 · 108 2 · 108 3 · 108 4 · 108

0

25

50

75

100

IP
C

0 1 · 108 2 · 108 3 · 108 4 · 108

Cycle

Figure 8: DIN versus ready-time for 175.vpr (x86,gcc,inf)

0

2.5 · 109

5 · 109

7.5 · 109

1 · 1010

1.25 · 1010

1.5 · 1010

1.75 · 1010

In
st

ru
ct

io
n

s

0 2 · 108 4 · 108 6 · 108 8 · 108 1 · 109

Cycles

*

*

*

*

*

*

*

*

*

*

@

@

@

@

@

@

@

@

@

@

*

@

100k
128
16k
256
2k
64
inf

Figure 9: IPC for varying instruction-window sizes on 255.vor-
tex (ia64,gcc)

does the mechanism to create the code for the threads in the first
place.

3.3 Effect of Instruction Window Size on IPC
Section 3.2 shows the definitive existence of distant ILP in multiple
forms. Conventional instruction windows lack scalability and are
therefore unsuitable to exploit this distant ILP [2, 3]. Nevertheless,
it is important to know how much nearby parallelism remains to be
harnessed by incrementally larger instruction windows in current
processors.

Figure 9 and Figure 10 show the effect of instruction window size
on ILP for the benchmarks 255.vortex (ia64,gcc) and 197.parser
(ia64,gcc). The graphs plot instructions-completed versus cycles
for all the different instruction window sizes. In these plots, steep
slopes represent high IPC, and flat areas represent low IPC. A sin-
gle line is drawn for each window size and given a unique sym-
bol. Notice the drastic differences in distant ILP for the two bench-

0

2 · 109

4 · 109

6 · 109

8 · 109

1 · 1010

In
st

ru
ct

io
n

s

0 2 · 108 4 · 108 6 · 108 8 · 108 1 · 109 1.2 · 109

Cycles

*

*

*

*

*

*

*

*

*

*

@

@

@

@

@

@

@

@

@

@

*

@

100k
128
16k
256
2k
64
inf

Figure 10: IPC for varying instruction-window sizes on
197.parser (ia64,gcc)

marks. In 255.vortex, increasing the window size from 64 to 2k
instructions exposes most of the available ILP; negligible gains are
seen for 2k,16k,100k, and infinite windows. However, in 197.parser
window sizes larger than 2k instructions continue to unveil paral-
lelism, with the only apparent limitation being the total number
of dynamic instructions. In addition to 255.vortex, benchmarks
253.perlbmk and 300.twolf demonstrate miniscule amounts of dis-
tant ILP beyond 2k instructions. The remaining benchmarks stud-
ied reveal substantial amounts of distant ILP beyond 2k instructions
similar to 197.parser. (Recall that the interaction between predica-
tion and Adamantium in the Itanium architecture presents an addi-
tional limitation to ILP by converting control dependences to data
dependences, as discussed in detail in Section 3.5).

Our results indicate that for all benchmarks, a large amount of
nearby parallelism remains untapped. However, this untapped par-
allelism will be difficult to extract in practice [13]. However, this
lends merit to run-ahead and speculative techniques such as those
of Mutlu et al. [20], Balasubramonian et al. [21], as well as pro-
posals for larger instruction windows [22] and kilo-instruction pro-
cessors [10]. Additionally, huge amounts of parallelism beyond
2k instructions exists, and exploring methods to distant parallelism
remains important.

3.4 Effect of the Compiler on IPC
Compiler code transformations directly effect the inherent paral-
lelism within the dynamic execution of a program. However, com-
piler transformations are primarily local, target increased paral-
lelism, and attempt to reduce overhead within small regions of
code. In fact, most architecture specific optimizations are imple-
mented as peephole optimizations. This suggests that better op-
timizations applied by the compiler should improve near ILP, but
distant ILP should remain relatively unaffected. This matches the
intuition that distant ILP is a property of application characteristics
such as data structures and algorithms which are intrinsicly affected
by local optimizations. As will be seen, however, the results of this
study contradict both these notions.

Figure 11 shows a comparison between Intel’s C and C++ compiler
(icc) and the GNU C compiler (gcc), for the x86 architecture, using
different instruction window sizes, for the 181.mcf benchmark. The
plots in grey represent icc runs, while the plots in black represent
gcc runs. As expected, the more aggressive icc compiler completes
more instructions per cycle than the gcc compiler for all window

0

2 · 109

4 · 109

6 · 109

8 · 109
In

st
ru

ct
io

n
s

0 1 · 108 2 · 108 3 · 108 4 · 108 5 · 108 6 · 108 7 · 108 8 · 108

Cycles

ia32 gcc 100k nosp 181.mcf
ia32 gcc 16k nosp 181.mcf
ia32 gcc 2k nosp 181.mcf
ia32 gcc 64 nosp 181.mcf
ia32 gcc inf nosp 181.mcf
ia32 icc 100k nosp 181.mcf
ia32 icc 16k nosp 181.mcf
ia32 icc 2k nosp 181.mcf
ia32 icc 64 nosp 181.mcf
ia32 icc inf nosp 181.mcf

Figure 11: Compiler comparison for 181.mcf on x86 while ig-
noring the stack pointer

0

5 · 108

1 · 109

1.5 · 109

2 · 109

2.5 · 109

3 · 109

In
st

ru
ct

io
n

s

0 5 · 107 1 · 108 1.5 · 108 2 · 108

Cycles

ia32 gcc 100k nosp 176.gcc
ia32 gcc 16k nosp 176.gcc
ia32 gcc 2k nosp 176.gcc
ia32 gcc 64 nosp 176.gcc
ia32 gcc inf nosp 176.gcc
ia32 icc 100k nosp 176.gcc
ia32 icc 16k nosp 176.gcc
ia32 icc 2k nosp 176.gcc
ia32 icc 64 nosp 176.gcc
ia32 icc inf nosp 176.gcc

Figure 12: Compiler comparison for 176.gcc on x86 while ig-
noring the stack pointer

sizes. Note, however, that to do so icc executes 22% more instruc-
tions than the gcc compiler. Note, further, that the graph shows that
there is a very large amount of distant parallelism available, which
is evident from the large difference in completion time when using
the infinite window. While 181.mcf is fairly well behaved, we shall
see that a number of other benchmarks behave in a counter-intuitive
fashion.

Figure 12 shows a similar compiler comparison for the 176.gcc
benchmark. In contrast to 181.mcf, for 176.gcc the more aggres-
sive optimizations performed by the icc compiler in order to exploit
near ILP destroys the distant parallelism in the application. On the
other hand, the less aggressive optimizations performed by the gcc
compiler preserve the distant ILP. This causes the gcc schedules to
out-perform the icc schedules in the ideal case. Figure 13 demon-
strates a similar counterintuitive trend for the 254.gap benchmark.
In fact more often than not (in 6 of 9 benchmarks), the attempt
to utilize near ILP undermines the ability of a compiler to expose
distant parallelism.

Note that this result also indicates that the compiler can have a sig-
nificant influence on distant ILP, despite only local optimizaitons.
This gives hope that compiler techniques (along with special hard-
ware assists) will aid in extracting far ILP for next generation multi-
core systems. With that said, at this time, the reason for this effect

0

1 · 109

2 · 109

3 · 109

4 · 109

5 · 109

6 · 109

7 · 109

In
st

ru
ct

io
n

s

0 1 · 108 2 · 108 3 · 108 4 · 108 5 · 108 6 · 108 7 · 108

Cycles

ia32 gcc 100k nosp 254.gap
ia32 gcc 16k nosp 254.gap
ia32 gcc 2k nosp 254.gap
ia32 gcc 64 nosp 254.gap
ia32 gcc inf nosp 254.gap
ia32 icc 100k nosp 254.gap
ia32 icc 16k nosp 254.gap
ia32 icc 2k nosp 254.gap
ia32 icc 64 nosp 254.gap
ia32 icc inf nosp 254.gap

Figure 13: Compiler comparison for 254.gap on x86 while ig-
noring the stack pointer

0

250

500

750

1000

In
st

ru
ct

io
ns

Pe
r

C
yc

le
(I

PC
)

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

30
0.t

wolf

Benchmark

icc
gcc

Figure 14: Compiler effect on average IPC for x86

is unclear, however, the effect is interesting and warrants further
exploration. One possible explanation is that the local compiler
transformations affect the critical dependences which have a dra-
matic effect on available ILP.

Figures 14 and 15 compare the 2 compilers on x86 and IA64 archi-

0

25

50

75

100

In
st

ru
ct

io
ns

Pe
r

C
yc

le
(I

PC
)

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

30
0.t

wolf

Benchmark

icc
gcc

Figure 15: Compiler effect on average IPC for IA64

0

2 ·1010

4 ·1010

6 ·1010

To
ta

lI
ns

tr
uc

tio
ns

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

30
0.t

wolf

Benchmark

icc
gcc

Figure 16: Compiler effect on total instructions for x86

0

2 ·1010

4 ·1010

6 ·1010

To
ta

lI
ns

tr
uc

tio
ns

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

30
0.t

wolf

Benchmark

icc
gcc

Figure 17: Compiler effect on total instructions for IA64

tectures based on average IPC values for the ideal case across all
benchmarks in this study (for reference, Figures 16 and 17 show
the total ops executed for each binary).

These figures show that, with x86, for most benchmarks the icc
compiler exhibits lower average IPC values, except in the case of
181.mcf. The reason for the large amount of overall parallelism
that the icc compiler is able to garner (compared to gcc) for the
181.mcf benchmark needs to be examined in detail to establish the
nature of the compiler effects described above. It also remains to be
determined why this advantage is absent for the other benchmarks.
In the case of IA64, across all benchmarks, the performance of
both icc and gcc compilers are similar and it appears that neither
compiler diplays a clear advantage. Here, it is important to note
that the values presented for x86 are for runs that ignore the stack
pointer dependence, thus control dependences are eliminated. Be-
cause predication converts control dependences (which are ignored
by Adamantium in this study) into data dependences (which are not
ignored in Adamantium), there is an unfair disadvantage for more
aggressive compilers on Itanium. This effect is discussed further in
Section 3.5.

Before concluding this section, it should be noted that icc does do
a better job than gcc in extracting performance. Figures 18 and
19 compare the two compilers based on the execution time on real
hardware (900 MHz Itanium 2 processors and 2.4 Intel Xeons with

0

20

40

T
im

e
(i

n
se

co
nd

s)

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

30
0.t

wolf

Benchmark

icc
gcc

Figure 18: Compiler effect on real execution time for x86

0

25

50

75

T
im

e
(i

n
se

co
nd

s)

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

30
0.t

wolf

Benchmark

icc
gcc

Figure 19: Compiler effect on real execution time for IA64

0.00

2.50 · 107

5.00 · 107

7.50 · 107

1.00 · 108

1.25 · 108

1.50 · 108
D

y
n

am
ic

In
st

ru
ct

io
n

N
u

m
b

er

0 2 · 104 4 · 104 6 · 104 8 · 104 1 · 105

0

5 · 104

1 · 105

1.5 · 105

2 · 105

IP
C

0 2 · 104 4 · 104 6 · 104 8 · 104 1 · 105

Cycle

Figure 20: DIN versus ready-time plot for 181.mcf (x86,gcc,inf)

2 GB RAM on both platforms). The icc compiler has a clear advan-
tage, and almost always executes code faster than the gcc compiler,
for x86. For Itanium, on the other hand, neither compiler is clearly
better (though we expect a dramatic advantage for icc on floating
point codes).

3.5 Effect of ISA on IPC
Intuition tells us that the instruction-set architecture targeted by the
compiler may have a drastic effect on ILP. However, this intuition is
built upon a working knowledge of application-ISA interaction in
the presence of microarchitectural constraints. For example, Intel’s
x86 architecture is usually considered ill-suited for ILP because
its dearth of architected registers results in excessive memory de-
lay due to register-spill and fill code. However, in the ideal case,
memory operations are no more costly than other operations, and
thus spill-fill code may not have a significant effect on the ideal
ILP. (This is not to say that excessive memory operations are not a
problem, but they are not the focus of this paper). In this section we
examine the role that the ISA and ISA-related factors play in ideal
ILP.

Figure 20 and Figure 21 show the DIN versus. ready-time plots
and IPC histograms (seen earlier in the paper) for the 181.mcf
benchmark and its test input with configurations (x86,gcc,inf) and
(ia64,gcc,inf). From this perspective it appears that the overall
IPC available in the two benchmarks is quite different, especially
in terms of the far-ILP. This contradicts the intuition that far-ILP
ought to be a product of high-level application properties and not
implementation details.

To examine the dependence on far-ILP further, consider Figure 22a.
This figure shows the DIN versus ready-time plot for the same run
of the 181.mcf benchmark and test input using the PowerPC ISA, in
particular (ppc,gcc,inf). Notice that this plot is, overall, a match for
the same 181.mcf plot on the Itanium architecture. Now, consider
Figure 22b. This is the same 181.mcf run for (ppc,gcc,inf), but

0.00

2.50 · 107

5.00 · 107

7.50 · 107

1.00 · 108

1.25 · 108

1.50 · 108

1.75 · 108

D
y
n

am
ic

In
st

ru
ct

io
n

N
u

m
b

er

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106 1.25 · 106

0

5 · 103

1 · 104

1.5 · 104

2 · 104

IP
C

0 2.5 · 105 5 · 105 7.5 · 105 1 · 106 1.25 · 106

Cycle

Figure 21: DIN versus ready-time plot for 181.mcf
(ia64,gcc,inf)

ignoring the stack pointer (as described for the x86 data). Notice
here, that this plot is nearly identical in shape to the x86 DIN plot.
A similar match between plots is observed for other benchmarks.
This matchup arises because, like x86, PowerPC and Itanium using
arithmetic stack pointer updates. The difference is that PowerPC
and Itanium still have considerable ILP, even in the presence of
the arithmetic stack pointer updates. Due to the small number of
registers on x86, however, the stack pointer serializes much of the
computation due to the register spill and fill code in the binary.

Unfortunately, this explanation is still not satisfactory. Itanium too
has a stack pointer but, intuitively, the hardware stacked registers
and large architected register file should greatly reduce the number
of instructions that need the stack pointer. Indeed, generating the
same 181.mcf run’s DIN vs. ready-time plot when ignoring r12 (the
stack pointer on Itanium) shows no major difference from the plot
in Figure 21. On the other hand, consider Figure 23, which shows
the same DIN vs. ready-time plot for Itanium but this time ignoring
all predicate registers. Notice that this plot looks very similar to to
the same plot for x86 (Figure 20) and PowerPC (Figure 22). Thus,
the predicate registers on Itanium are somehow limiting the ideal
case far-ILP. The reason for this is that the Adamantium scheduler
is doing perfect branch prediction which allows much more par-
allelism than would otherwise be possible. On Itanium, however,
predication converts control dependences into data dependences on
the predicate registers. Ignoring the predicate registers is tanta-
mount to assuming perfect predicate prediction, and thus brings
the Itanium plots in line with the observed PowerPC and x86 data.
In fact, the critical dependences shown in Section 3 for 181.mcf are
based on predicate registers. It is tempting to attribute the influence
the compiler has on far-ILP to this effect alone, but note that in
Section 3.4, the compiler can influence far-ILP even for x86 code
which does not support predication, and thus compiler effects still
warrant further investigation.

0.00

2.50 · 107

5.00 · 107

7.50 · 107

1.00 · 108

1.25 · 108

1.50 · 108

1.75 · 108

D
y
n

am
ic

In
st

ru
ct

io
n

N
u

m
b

er

0 1 · 105 2 · 105 3 · 105 4 · 105 5 · 105 6 · 105

0

2 · 104

4 · 104

6 · 104

IP
C

0 1 · 105 2 · 105 3 · 105 4 · 105 5 · 105 6 · 105

Cycle

(a) Normal Plot

0.00

2.50 · 107

5.00 · 107

7.50 · 107

1.00 · 108

1.25 · 108

1.50 · 108

1.75 · 108

D
y
n

am
ic

In
st

ru
ct

io
n

N
u

m
b

er

0 1 · 104 2 · 104 3 · 104 4 · 104 5 · 104 6 · 104 7 · 104

0

5 · 104

1 · 105

1.5 · 105

IP
C

0 1 · 104 2 · 104 3 · 104 4 · 104 5 · 104 6 · 104 7 · 104

Cycle

(b) Plot Ignoring Stack Pointer

Figure 22: DIN versus ready-time plot for 181.mcf (ppc,gcc,inf)

0.00

2.50 · 107

5.00 · 107

7.50 · 107

1.00 · 108

1.25 · 108

1.50 · 108

1.75 · 108

D
y
n

am
ic

In
st

ru
ct

io
n

N
u

m
b

er

0 1 · 104 2 · 104 3 · 104 4 · 104 5 · 104 6 · 104 7 · 104

0

5 · 104

1 · 105

1.5 · 105

IP
C

0 1 · 104 2 · 104 3 · 104 4 · 104 5 · 104 6 · 104 7 · 104

Cycle

Figure 23: DIN versus ready-time plot for 181.mcf
(ia64,gcc,inf), ignoring predicate registers.

In summary, we can see from the above overall IPC numbers pre-
sented earlier that the architecture can make a difference in the
overall maximum amount of ILP available. However, when a few
key bottlenecks are removed (e.g., the stack pointer dependences
for spill-fill code on x86 and lack of predicate prediction on Ita-
nium), it is clear that the ISA does not have a profound influence on
the overall pattern of available far-ILP in a program. This matches
the notion that far-ILP ought to be a product of application char-
acteristics, not ISA particulars. Notice, however, that subtle differ-
ences in the treatment of architectural features and implementation
details in the application-binary interface (ABI) can play a signif-
icant role in the availablity of far-ILP and the overal ILP pattern.
For x86 and PowerPC, the decision to reduce memory operations
by implementing arithmetic stack pointer updates dramatically lim-
ited the availability of ILP, especially far-ILP. On Itanium, treat-
ing predicate register based “control-flow” differently than branch
based control flow dramatically limited far-ILP. Thus, when design-
ing systems to extract far-ILP, the compiler and ABI implementa-
tion must be carefully tuned to avoid artificially limiting far-ILP for
little-to-no gain in near-ILP.

4. RELATED WORK
As we have seen, understanding the limits and origins of ILP, es-
pecially distant ILP, can be instrumental to future research towards
better performance and utilization of emerging chip multi-threaded
and chip multi-processor architectures. Numerous researchers have
presented ILP limit studies in the past [23, 18, 12, 13, 24, 19, 25,
26]. Unfortunately, many of these studies are out-of-date, and pro-
vide only limited information about distant ILP and the role of com-
piler and ISA on the availability (and origins) of this ILP.

Though outdated, previous research provides a rich set of infor-
mation regarding the behavior of near ILP. Wall studies the effect
of branch windows, memory disambiguation, load-latency, branch
prediction, and a variety of other factors on the ILP extractable

from applications, assuming an instruction window capable of hold-
ing 2000 instructions (henceforth referred to as a 2k-instruction
window). Wall shows that in the absence of near perfect branch
prediction and memory disambiguation, extracting much of the ILP
within the 2k-instruction window is very difficult, leading to sup-
porting the claim in Section 1 that extracting near-ILP is difficult.
A number of later studies confirm Wall’s findings [23, 19, 25].
When the study in this paper examined conditions similar to the
prior work, we observed similar results. Unfortunately, Wall’s re-
search has an extremely limited instruction window and thus does
not characterize distant ILP.

For near ILP, control flow is known to be a major limiting factor and
the effect on ideal ILP of methods to overcome these effects have
also been studied [18]. Postiff showed that certain non-essential de-
pendences (such as those based on arithmetic stack pointer updates)
are also extremely harmful to near ILP [19]. The results contained
in this paper confirm Postiff’s findings. Once again, these studies
do not examine the effects of compiler and ISA on the ILP avail-
able in an application, making it difficult to sort out application
properties from these other factors.

Increasing the instruction issue window size unlocks more-distant
ILP. To fully characterize the available parallelism for future archi-
tectures, it is important to examine this unlocked parallelism, and
to determine its utility. Previous analyses [23, 24] demonstrate the
increase in available parallelism with larger window sizes but fall
short at explaining the source of this parallelism with respect to the
application under consideration. Furthermore, these studies, once
again, do not characterize how different compiler optimizations in-
fluence ILP, especially distant ILP, nor do they examine multiple
ISAs under similar experimental setups.

Finally, the availability of ILP based on increasing the window
size, shows a marked dependence on application characteristics, yet
no attempt has previously been made to explain this observation.
Previous studies fail to categorize the available parallelism. Our
study compares architectures, compilers and window sizes, while
attributing the increase or decrease in ILP to one of these factors.
Such an extensive comparison allows a deeper understanding of the
underlying issues that need to be immediately addressed in order to
exploit the stated parallelism gains.

In summary, prior ILP limit studies show that there is much paral-
lelism available, but that near-ILP will be difficult to extract. None
of the studies described above examine features of the ILP that are
needed to guide research into extracting this ILP for use on multi-
core systems. The study presented in this paper begins just such an
analysis by examining the role of compiler and ISA on distant ILP,
and presenting an initial method to characterize the origins of that
ILP.

5. CONCLUSIONS AND FUTURE WORK
Parallelism, historically, has been the primary architectural means
for enhancing performance of computer systems. Unfortunately,
existing means of exploiting near instruction level parallelism (ILP)
such as more aggressive hardware and more advanced peephole
compiler optimizations are reaching their limits. This is evidenced
by the emergence of multi-core and multi-threaded systems as the
design path of choice. These multi-core and multi-threaded sys-
tems improve threaded applications, but do little for single-threaded
programs.

This paper presents an ILP limit study that examines the intrinsic
distant ILP in applications with the aim of revealing promising di-
rections for exploiting multi-core architectures for single-threaded
programs. The study focuses on examining the role of the compiler
in exposing and creating distant parallelism, as well as the role of
the ISA in allowing the exposure of distant parallelism. Contrary
to common wisdom and intuition, the results show that local com-
piler optimizations can have a dramatic effect on the overall ILP
in an application binary. Furthermore, results indicate that the ma-
jor features of an ISA only play a minor role in the character of
distant ILP, however minor platform implementation details (e.g.,
the mechanism used to manipulate the stack pointer) can have a
much larger effect. These counter-intuitive results warrant a more
detailed explanation. In particular, a close examination of how dif-
ferent optimizations affect distant ILP is in order. The observation
that compiler efforts to extract near ILP often destroys distant ILP
is particularly interesting.

Most importantly, this study identifies several characteristics of dis-
tant ILP, two of which are of particular interest. The first is the
notion of critical dependences (small sets of dependences that un-
lock large amounts of future parallelism), and parallel dependence
chains (independent parallel chains of instructions unlocked by crit-
ical dependences). These results suggest several promising avenues
of research for threading programs including value predictions of
critical values and dynamic threading of applications when paral-
lel dependence chains are unlocked. Though much work remains in
fully characterizing the nature of distant ILP and exploiting this ILP
in actual hardware, these initial results give promise for improved
single-thread performance by exploiting multi-core platforms.

Acknowledgements
We thank Carole Dulong and Intel for the donation of resources
and the Itanium workstations used in this study. We also thank Vi-
jay Janapa Reddi and the Pin team at Intel for their support in using
the Pin tool. We also thank the Liberty group and Jonathan Chang
for the PowerPC emulator ans support in using it. Finally, we
thank Martin Burtscher for his support with the TCgen trace com-
pression utility. Computer time was provided by NSF ARI Grant
#CDA-9601817, NSF MRI Grant #CNS-0420873, NASA AIST
grant #NAG2-1646, DOE SciDAC grant #DE-FG02-04ER63870,
NSF sponsorship of the National Center for Atmospheric Research,
and a grant from the IBM Shared University Research (SUR) pro-
gram. Other support was provided by donations from Intel.

6. REFERENCES
[1] D. N. Armstrong, H. Kim, O. Mutlu, and Y. N. Patt, “Wrong

path events: Exploiting unusual and illegal program behavior
for early misprediction detection and recovery,” in
MICRO-37: Proceedings of the 37th International
Symposium on Microarchitecture, pp. 119–128, IEEE
Computer Society, 2004.

[2] T. Moreshet and R. I. Bahar, “Power-aware issue queue
design for speculative instructions,” in DAC ’03:
Proceedings of the 40th conference on Design automation,
pp. 634–637, ACM Press, 2003.

[3] A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and
P. Bose, “Energy efficient co-adaptive instruction fetch and
issue,” in ISCA ’03: Proceedings of the 30th annual
international symposium on Computer architecture,
pp. 147–156, ACM Press, 2003.

[4] R. A. Ravindran, R. M. Senger, E. D. Marsman, G. S.
Dasika, M. R. Guthaus, S. A. Mahlke, and R. B. Brown,
“Increasing the number of effective registers in a low-power
processor using a windowed register file,” in CASES ’03:
Proceedings of the 2003 international conference on
Compilers, architectures and synthesis for embedded
systems, pp. 125–136, ACM Press, 2003.

[5] M. J. Flynn, P. Hung, and K. W. Rudd, “Deep-submicron
microprocessor design issues,” IEEE Micro, vol. 19, no. 4,
pp. 11–22, 1999.

[6] L. Spracklen and S. G. Abraham, “Chip multithreading:
Opportunities and challenges,” in HPCA ’05: Proceedings of
the 11th International Symposium on High-Performance
Computer Architecture (HPCA’05), pp. 248–252, IEEE
Computer Society, 2005.

[7] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang, “The case for a single-chip multiprocessor,” in
ASPLOS-VII: Proceedings of the seventh international
conference on Architectural support for programming
languages and operating systems, pp. 2–11, ACM Press,
1996.

[8] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I.
August, “Decoupled software pipelining with the
synchronization array,” in 13th International Conference on
Parallel Architectures and Compilation Techniques,
pp. 177–188, September 2004.

[9] P. Marcuello and A. Gonzalez, “Clustered speculative
multithreaded processors,” in International Conference on
Supercomputing, pp. 365–372, 1999.

[10] A. Cristal, O. J. Santana, M. Valero, and J. F. Martinez,
“Toward kilo-instruction processors,” ACM Transactions on
Architecture and Code Optimization (TACO)., vol. 1, no. 4,
pp. 389–417, 2004.

[11] I. Martel, D. Ortega, E. Ayguad, and M. Valero, “Increasing
effective ipc by exploiting distant parallelism,” in ICS ’99:
Proceedings of the 13th international conference on
Supercomputing, pp. 348–355, ACM Press, 1999.

[12] D. W. Wall, “Limits of instruction-level parallelism,” in
Proceedings of the 4th Int’l Conference on Architectural
Support for Programming Languages and Operating
Systems, pp. 176–188, April 1991.

[13] D. W. Wall, “Limits of instruction-level parallelism,” Tech.
Rep. 93/6, DEC WRL, November 1993.

[14] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
Building customized program analysis tools with dynamic
instrumentation,” in Proceedings of the 2005 International
Symposium on Programming Language Design and
Implementation (PLDI), (Chicago, IL), June 2005.

[15] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome,
and D. I. August, “Microarchitectural exploration with
Liberty,” in Proceedings of the 35th International
Symposium on Microarchitecture (MICRO), pp. 271–282,
November 2002.

[16] The Liberty Research Group, 2005.
http://www.liberty-research.org/.

[17] M. Burtscher and N. Sam, “Automatic generation of
high-performance trace compressors,” in Proceedings of the
2005 International Conference on Code Generation and
Optimization, 2005.

[18] M. S. Lam and R. P. Wilson, “Limits of control flow on
parallelism,” in Proceedings of the 19th International
Symposium on Computer Architecture, pp. 46–57, May 1992.

[19] M. Postiff, G. Tyson, and T. Mudge, “Performance limits of
trace caches,” Tech. Rep. CSE-TR-373-98, University of
Maryland, Department of Electrical Engineering and
Computer Science, CSE, September 1998.

[20] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead
execution: An alternative to very large instruction windows
for out-of-order processors,” in Proceedings of the 9th
International Symposium on High Performance Computer
Arechitecture, February 2003.

[21] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi,
“Dynamically allocating processor resources between nearby
and distant ilp,” in Proceedings of the 28th annual
international symposium on Computer architecture,
pp. 26–37, ACM Press, 2001.

[22] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and
E. Rotenberg, “A large, fast instruction window for tolerating
cache misses,” SIGARCH Computer Architecture News,
vol. 30, no. 2, pp. 59–70, 2002.

[23] T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi,
“Dynamic dependency analysis of ordinary programs,” in
Proceedings of the 19th International Symposium on
Computer Architecture (ISCA-19), May 1992.

[24] P. Ranganathan and N. P. Jouppi, “The relative importance of
memory latency, bandwidth, and branch limits to
performance,” in Proceedings of the Workshop on Mixing
Logic and DRAM: Chips that Compute and Remember, June
1997.

[25] H. H. Lee, Y. Wu, and G. Tyson, “Quantifying
instruction-level parallelism limits on an epic architecture,”
in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
pp. 21–27, April 2000.

[26] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture
optimizations for exploiting memory-level parallelism,” in
Proceedings of the 2004 International Symposium on
Computer Architecture (ISCA), pp. 76–89, 2004 2004.

