
Procedure Boundary Elimination for EPIC Compilers

Spyridon Triantafyllis Manish Vachharajani David I. August

Departments of Computer Science and Electrical Engineering
Princeton University
Princeton, NJ 08544

{strianta, manishv, august }@cs.princeton.edu

Abstract
Procedures are the basic units of compilation in traditional

optimization frameworks. This presents problems to compil-
ers targeting EPIC architectures, since the limited scope of
a single procedure is usually insufficient for extracting ILP
and identifying enough optimization opportunities. Although
inlining can expand the scope of optimization routines, it is
not applicable to all call sites and can cause excessive code
growth, which can in turn adversely affect cache performance
and compile-time resource usage.

In this paper we propose a novel compilation strategy
called Procedure Boundary Elimination (PBE). PBE unifies
the whole program into a single compilation unit, which is then
restructured into units better suited to optimization than the
original procedures. A targeted specialization phase exposes
further optimization opportunities while limiting code growth
only to the cases where it is beneficial. Unlike inlining, PBE
can eliminate all procedure calls while avoiding the cost of
excessive code growth.

1. Introduction
Achieving good performance on a modern wide-issue ar-

chitecture is critically dependent on compiler support. Apart
from traditional code simplification and redundancy elimina-
tion optimization routines, a modern aggressively optimizing
compiler has to efficiently exploit complex computational re-
sources, expose instruction-level parallelism (ILP), and avoid
performance pitfalls such as memory stalls and branch mis-
prediction penalties. The dependence of performance on com-
piler quality is especially pronounced on EPIC architectures,
since these architectures require compiler-constructed explicit
schedules.

In order to meet the challenges posed by EPIC architec-
tures, a compiler has to rely on a rich set of aggressive opti-
mization and analysis routines. The ability of such routines to
produce efficient code can be greatly hampered by the tradi-
tional procedure-based compilation approach. This is because
the original breakup of a program into procedures serves soft-
ware engineering rather than optimization goals, and thus indi-
vidual procedures may not present the best scope to optimiza-
tion and analysis. For example, procedure calls within loops

can conceal cyclic code from the compiler, and breaking up a
task into too many small procedures may prevent a scheduling
routine from constructing traces long enough to provide suf-
ficient ILP opportunities. Modern software engineering tech-
niques such as object-oriented programming, which typically
encourage small procedures and frequent procedure calls, ex-
acerbate the problem.

To alleviate the effects of inconveniently placed procedure
boundaries, traditional compilers have employed interproce-
dural analysis and aggressive inlining. Interprocedural analy-
sis exposes more information to the optimizer and can be em-
ployed as extensively as compile time permits. However, de-
signing interprocedural analysis routines is complicated by the
fact that such routines have to take into account parameter-
passing mechanisms and other calling conventions. Inlin-
ing ([1],[2],[3]), originally proposed to limit call overhead,
copies the body of a callee procedure into the body of the
caller. This not only exposes more code to analysis routines,
but also allows subsequent optimization routines to specialize
the code of the callee for each particular call site. Unfortu-
nately, the benefits of aggressive inlining come at the cost of
extensive code growth. This can lead to poor instruction cache
performance, as well as slow down the compilation process.
Since the adverse effects of code growth can very quickly be-
come prohibitive, inlining is usually limited to frequently exe-
cuted call sites with relatively small callees. The applicability
of inlining is further limited by its inability to handle recursive
and virtual procedure calls. Inlining is therefore only a partial
solution to the optimization scope problem.

This paper proposes a novel compilation strategy, called
Procedure Boundary Elimination (PBE), to overcome the lim-
itations of traditional procedure-based compilation. The PBE
approach first eliminates procedure boundaries without caus-
ing any code growth. The program is then partitioned into
regions[4] in order to present to subsequent optimization rou-
tines a set of compilation units that are both manageable in
size and adequate in scope. Targeted code specialization is
then applied in order to create more optimization opportuni-
ties, while limiting code growth only where it is likely to pro-
duce significant benefits. Standard optimization and analysis
routines, with some essential modifications, are subsequently



applied to each region. In this way PBE offers increased opti-
mization scope and specialization opportunities, while keeping
code growth in check. Unlike inlining, PBE handles all call
sites in a uniform way, regardless of recursive cycles or callee
size. An added benefit of PBE is that the design of global anal-
ysis routines is simplified, since such routines do not have to
navigate around procedure calls and platform-specific calling
conventions.

2. The Optimization Scope Problem

In a traditional compiler each procedure is treated as a sep-
arate compilation unit. Since procedures are defined by the
programmer according to software engineering considerations,
they may not be ideally suited for achieving maximum opti-
mization efficiency. In modern EPIC architectures, where the
dependence of performance on aggressive optimization is es-
pecially pronounced, limiting the scope of optimization and
analysis routines to a single procedure may lead to significant
performance degradation. Section 2.1 analyzes this problem in
more detail.

To address the problem of performance degradation due
to inconveniently placed procedure boundaries, most modern
compilers employ aggressive inlining. Although inlining can
lead to large performance gains, it is a solution of limited ap-
plicability and effectiveness. Section 2.2 presents inlining and
explains the need for a more general solution to the problem
of optimization scope.

2.1. Problems with Procedure-Based Compilation

In modern software systems the breakup of a large program
into smaller, more manageable procedures serves two unre-
lated and ultimately contradictory purposes. As a program-
ming unit a procedure must be small, elegantly written, and
conceptually coherent. As a unit of optimization and analy-
sis a procedure must be large enough to provide an adequately
wide scope for optimization and analysis, and should ideally
contain pieces of code that are strongly correlated, both in the
sense that they usually execute together and in the sense that
they operate on common data.

The reason why these two roles may be contradictory is best
illustrated through an example. In Figure 1a we can see a small
proceduref with two arguments, which is called from two dif-
ferent locations: one is in basic blockC, which is part of a loop
L, and one is in the less frequently executed blockK. Hot basic
blocks are shown with a thicker border. In the following dis-
cussion we will assume that these blocks, that isB, C, D, E, F
andH, execute much more frequently than the rest. As for the
small pieces of code within the blocks, letLI1 andLI2 be two
instructions that are invariant with respect to the loop formed
by blocksB, CandDAlso, letf(rx, ry) be an abbreviation
for making a call to proceduref with parametersrx andry ;
depending on the calling convention, this may correspond to a
multiple instruction sequence, including instructions that copy

the parameters to specified locations, as well as instructions
that save and restore caller-saved registers.

Putting the blocksE, F, GandH into a separate procedure
may be a good decision from a software engineering perspec-
tive. As we can see in Figure 1a, this allows the code of these
four blocks to be reused in blockK. The code in these four
blocks may also be conceptually different from that in loop
L. However, partitioning the code in this way conceals opti-
mization opportunities. Although the code off is frequently
executed as part ofL, it is not part of the loop as far as opti-
mization and analysis are concerned. Thus, loop unrolling or
software pipelining would benefit only the three blocks inL,
despite the fact that executing code inf probably accounts for
a significant portion of the time spent inL during program ex-
ecution. Moreover, instructions in blocksC andD cannot be
scheduled together. This may limit the ability of the scheduler
to exploit instruction-level parallelism.

Classical optimization routines can also suffer from the in-
conveniently placed procedure boundaries in Figure 1a. For
example, although parameterb in f has the constant value
5, no constant propagation is possible. That’s because most
dataflow analysis routines operate on the procedure level, and
would therefore miss this fact. Also, instructionLI2 cannot
be moved out of the loopL, even though it is loop invariant.

Various efforts to remedy this situation have been made in
the past. One such effort is to generalize certain analysis rou-
tines, so that they can take into account interprocedural in-
formation. In the example in Figure 1a, an interprocedural
dataflow analysis routine might be able to detect the oppor-
tunities for constant propagation in parameterb. Although
interprocedural analysis can be very useful, it is usually too
expensive to be applied extensively.

A much more systematic effort to solve the problems
caused by procedure boundaries is aggressive inlining. The
benefits and drawbacks of aggressive inlining are presented in
the next section.

2.2. Inlining: An incomplete solution
Inlining eliminates inconveniently placed procedure bound-

aries by duplicating the callee’s code into the call site. Al-
though the original purpose of inlining was to eliminate call
overhead, in today’s optimizing compilers inlining is used ag-
gressively in order to increase the scope of optimization. By
making the code of the callee visible to its caller, new opti-
mization opportunities can be identified. At the same time im-
portant call sites acquire a private copy of the callee’s code,
which can then be specialized in that particular context. Inlin-
ing has been extensively studied in the literature ([1], [2], [3],
[5], [6]).

The small piece of code shown in Figure 1a can be trans-
formed by inlining to the equivalent piece of code shown in
Figure 1b. Here the code off has been copied inside the loop
L. In addition to eliminating the frequently incurred call over-
head in blockC, this creates new optimization opportunities.



r6=5
f(r5,r6)

�

K

f(a,b)

...
...=a

E

...
...=b

F
...

G
�

...
LI2

H

...
r2=5

A

...
r1=2

B

...
f(r1,r2)
C

...
LI1

D

L

f(a,b)
�

...
...=a

E

...
...=b

F
...

G
�

...
LI2

H

...
r2=5

A

...
r1=2

B

...
LI1

D

...
...=a

E'

...
...=b

F'
...G'

...
LI2

H'

...C1
�

...C2
�

L

(a) (b)

r6=5
f(r5,r6)

K

Figure 1: A small procedure with two call sites, (a) before and (b) after inlining

Now instructionLI2 can be moved out of the loop, and con-
stant propagation can be performed on botha andb. Loop
optimization and scheduling routines can now operate on the
whole body of the loop, instead of being limited to blocksB,
C, andD.

Unfortunately, the benefits of aggressive inlining come at
the cost of extensive code growth. For example, in Figure 1b
the body of loopL has grown from 3 to 7 basic blocks. Such
code growth can adversely affect instruction cache perfor-
mance, often negating performance benefits due to new opti-
mization opportunities. Moreover, a modern compiler includes
many routines of superlinear complexity. When presented with
larger procedures as a result of extensive inlining, a compiler’s
time and memory usage during optimization may grow exces-
sively.

Experimental results found in the literature verify the above
observations. For example, the inliner presented in [2] causes
an average performance improvement of 11% at the cost of
17% average code growth on a set of eight benchmarks, and
[4] reports an increase by 8.3 times in the optimization time of
the Perl benchmark when 20% of call sites are inlined.

Code growth concerns limit the applicability of inlining to
frequently executed call sites with small callees. Moreover,
the steep increase in compile time due to aggressive inlinining
forces most compilers to make conservative inlining choices
in order to keep optimization tractable. Finally, inlining cannot
handle recursive functions properly. Although recursive cycles
are in essence loops, inlining cannot expose the looping behav-
ior of recursive functions, which would allow the optimizer to
apply loop optimizations to recursive function bodies. Instead,
inlining can only eliminate the first stages of recursion, but

must ultimately leave the recursive call in place.
The drawbacks of inlining as a solution to the optimiza-

tion scope problem stem to a great extent from the fact that it
was not designed to solve this particular problem. Indeed, al-
though inlining alleviates some of the problems caused by pro-
cedure boundaries, it is itself constrained by those boundaries.
That is because inlining operates on the procedure level: it can
respond to optimization scope problems only by duplicating
whole procedures. This leads, among other things, to exces-
sive code growth. In the example in Figure 1b, the whole body
of proceduref is duplicated, when most optimization benefits
are likely to come only from the “hot” path,E→F→H. Par-
tial inlining ([5], [6]) has been proposed to address this prob-
lem. However, the freedom of partial inlining to specialize
code is still constrained by the original procedure boundaries,
the quality of its results depend on the structure of the callee,
and it is still not applicable to recursive, virtual, and certain
large callees. Thus partial inlining is an effort to alleviate the
drawbacks of inlining, rather than an effort to eliminate these
drawbacks.

3. Procedure Boundary Elimination
As discussed in section 2, optimization and analysis rou-

tines in compilers for modern architectures can suffer from
limited optimization scope. Although inlining can extend the
scope of optimization routines by copying callee procedures to
their call sites, its benefits are offset by significant drawbacks,
including excessive code growth and limited applicability.

Our goal in this section is to define a code transformation
that eliminates problems caused by inconveniently placed pro-
cedure boundaries without causing unnecessary code growth.
Such a transformation would obviate the need for inlining,



while at the same time exposing more optimization opportuni-
ties and exhibiting better compile-time behavior than inlining.
Although some code growth will be allowed, code duplication
will only happen when it is deemed beneficial for optimization,
and not for the purpose of eliminating procedure calls. We call
the proposed method Procedure Boundary Elimination (PBE).

PBE involves three separate phases. The first phase ispro-
cedure unification, which transforms the whole program into
one single compilation unit. In the second phase,region for-
mation, this single compilation unit is repartitioned in more
manageable pieces using the algorithm proposed in [4]. In the
third phase,targeted code specialization, selected parts of the
program are duplicated in order to provide code specialization
opportunities. Apart from these three phases PBE also requires
certain modifications in existing optimization and analysis rou-
tines in order to be effective.

Procedure unification, region formation and targeted code
specialization are covered in Sections 3.1, 3.2, and 3.4 respec-
tively. Required modifications in existing optimization and
analysis routines are covered in Section 3.3.

3.1. Procedure Unification

The first step in PBE, called Procedure Unification, is to
eliminate procedure boundaries by replacing call and return
instructions with normal branches. Thus the whole program
effectively becomes a single procedure. As a result, optimiza-
tion and analysis routines can operate on the widest possible
scope. To return to the example in figure 1, the original code
will be transformed by procedure unification to the code in fig-
ure 2a.

Apart from replacing calls and returns with branches, pro-
cedure unification must also take care of the rest of the se-
mantics of a procedure call. These include parameter passing
and stack frame setup, as well as saving and restoring caller-
and callee-saved registers. We will first present the solution to
these problems for nonrecursive procedures, and then we will
adapt our solutions to the recursive case.

3.1.1. Parameter passing

PBE is applied early on in the optimization process, before reg-
ister allocation. Parameter passing can therefore be performed
by creating a new virtual register for each parameter of each
procedure. Before branching into a (former) procedure body, a
piece of code needs to move the procedure’s (former) param-
eters into the virtual registers designated for that procedure.
Parameters that are too big to fit into registers can be moved
into designated memory locations. Parameter passing for re-
cursive calls requires some extra complication, as discussed in
section 3.1.4.

3.1.2. Stack frame setup

Since we are dealing with nonrecursive procedures, there is no
need to maintain a stack for activation frames. Instead, the ac-
tivation frame of each procedure can occupy a constant mem-
ory address range into the global variable space. This can be
achieved by simply assigning a separate memory address range
for the activation frame of each procedure. A more sophisti-
cated implementation can avoid wasting memory space by as-
signing overlapping memory spaces to procedure stack frames.
This is possible, since only procedures that can be active at the
same time need non-overlapping stack frames. An interference
graph between procedures needs to be created, where two pro-
cedures are considered interfering if they can be active at the
same time. A graph coloring algorithm can then be used to
assign address ranges to activation frames in a near-optimal
way.

3.1.3. Handling caller-saved and callee-saved registers

Since we are dealing with nonrecursive procedures, we can
just rename virtual registers so that each procedure uses a dis-
joint range of virtual registers. The register allocation routine
can then find an optimal allocation of these virtual registers to
actual machine registers.

Forcing each procedure to use a distinct set of virtual regis-
ters may cause a huge increase in the number of virtual regis-
ters used in a program. However, the increase in register pres-
sure will be much more modest. This is because only virtual
registers in procedures that can be active together can interfere
with each other. Even then, live range splitting should be able
to reduce register pressure in most cases. In the example in
figure 2a, a virtual register that is defined in blockB and used
in block D increases register pressure in the former body off .
However, since such a register is just “live through” blocksE,
F, G, andH, its live range can be split just before the branch to
E and restored just after the branch back toC2. In the worst
case, live range splitting will have to insert as many saves and
restores as the original calling convention. However, in most
cases live range splitting will be able to exploit its extra de-
grees of freedom in order to make much better decisions than
the original calling convention.

3.1.4. Dealing with recursive procedures

By “recursive procedure” we mean any procedure that partic-
ipates in a cycle in the original call graph of a program. This
covers both simple and mutual recursion. Such procedures can
be easily identified before procedure unification.

It is ultimately impossible to implement the semantics of
recursive procedure calls without using a stack. Therefore
the solutions discussed above for parameter passing, activation
frame setup and saving registers are not applicable to recursive



...
...=a

E

...
...=b

F
...

G
�

...
LI2

H

...
r2=5

A
�

...
r1=2

B

...
LI1

D

...
r6=5

K1

...
K2

...C1
�

...C2
�

...
r2=5

A

...
r1=2

B

...
LI1

D'

...C1'
�

...C2'
�

...
...=a

E

...
...=b

F
...

G
�

...
LI2

H

...
r6=5

K1

...
K2

...
...=a

E'

...
...=b

F'

...
LI2

H'

...
LI1

D

...C2
�

L

SB
�

(a) (b)

Figure 2: A small procedure with two call sites after (a) procedure unification and (b) procedure unification and su-
perblock formation

procedures. Even after procedure unification, recursive proce-
dures will have to allocate their parameters and local variables
in the stack, and save and restore any registers they modify
around recursive procedure calls.

However, recursive procedures can also benefit from pro-
cedure unification. After procedure unification, recursive call
sequences will be transformed to loops. Traditional optimiza-
tions can then be applied on those loops. Such optimizations
can take advantage of loop invariant code motion and copy
propagation in order to reduce the number of registers used
within the recursive loop, and therefore the amount of data that
has to be saved on the stack.

3.2. Region formation

The result of procedure unification is a single, huge com-
pilation unit. Since aggressive optimizers incorporate many
superlinear optimization and analysis routines, a compilation
unit of that size is bound to cause an explosion in time and
memory usage during optimization. Therefore, PBE cannot be
practical unless this compilation unit can be repartitioned into
more manageable pieces.

Fortunately a method for partitioning large compilation
units into smaller, more manageable pieces has already been
proposed. This method, calledregion formation, has been de-
scribed in detail in [4]. Region formation has been originally
developed in order to cope with the compile-time explosion
caused by over-aggressive inlining, but it becomes even more
valuable in the context of PBE.

Region formation uses profile information in order to break

up a large compilation unit intoregions, i.e. pieces of code that
usually execute together. These regions are subsequently used
as units of compilation. Experimental results in [4] demon-
strate that region formation can keep optimization time con-
stant in the presence of ever-growing procedure size, at the cost
of insignificant performance penalties at runtime. Although
these experimental results refer to inlining, there is no reason
to assume that region formation cannot be just as effective in
the context of PBE.

3.3. Modifications in existing optimization and
analysis routines

Expanding the scope of optimization and analysis rou-
tines cannot be accomplished by simply eliminating proce-
dure boundaries. This is because procedure unification intro-
duces irregular program structures that existing compiler rou-
tines may not be able to deal with.

For example, as shown in figure 2a, the natural loopL
is lost after procedure unification. That is because blocks
E, F, G, and H are not dominated by the loop’s head,B.
Moreover, a traditional dominator analysis routine would con-
clude that blocksC2 andD can be reached through the path
K1→E→F→H→C2→D, although this path is in fact never
taken. Therefore loop optimizations are not available on these
blocks. For example, although the loop-invariant instruction
LI1 can be safely moved in blockA, traditional analysis rou-
tines would conclude that such a move is not legal.

The solution lies in realizing the relation between call and
return arcs. In the example of figure 2a, the definition of dom-



inator analysis has to be modified in order to account for the
fact that the arcsC1→E andH→C2 are always executed to-
gether. Also, arcC1→E can never be followed by arcH→K2,
and arcH→C2can never be preceded by arcK1→E. Using this
fact, a modified dominator analysis routine can conclude that
blockD is dominated by blockB. This in turn makes loop opti-
mizations available on blocksB, C1, C2, andD. For example,
instructionLI1 can now be moved out of the loop using loop
invariant code motion. On the contrary, instructionLI2 can-
not be moved, since it is shared between the loop and blocks
K1-K2.

Every analysis and optimization routine in the compiler has
to be modified in a similar fashion, in order to take into account
call and return arc relations.

3.4. Targeted code specialization
Although the modifications described above increase the

optimizer’s ability to handle the irregular control flow graphs
produced by procedure unification, the resulting optimizer still
misses many opportunities that were available during inlining.
The reason is that inlining, apart from eliminating calls, also
makes a private copy of the callee available for specialization.

Instead of duplicating whole procedure bodies, PBE relies
on atargeted code specializationphase. A targeted specializa-
tion routine can duplicate only selected parts of the program,
without being constrained by the original procedure breakup.
Therefore it is much less likely than inlining to cause unnec-
essary code growth. Such a code specialization routine can
also benefit all parts of the program, even the ones that don’t
involve procedure calls.

The first code specialization routine we tried in the context
of PBE is an implementation ofsuperblock formationthat is
aware of call and return arc relations. As described in [7],
superblock formation identifies hot paths through the code,
and then uses tail duplication in order to eliminate side en-
trances to these paths. Thus each such path can become a
single, straight-line “superblock”. In our simple example, su-
perblock formation will choose to form a superblock out of the
hot pathB→C1→E→F→H→C2→D, resulting to the code in
Figure 2b.

One can easily see that all optimization opportunities iden-
tified in Section 2.2 also exist in the code of Figure 2b. Notice
however that the “cold” blockGhas not been duplicated. Since
it is well known that only a small portion of each procedure’s
code is hot, this difference can lead to significantly less code
growth in comparison to inlining.

Although superblock formation is a valuable technique in
the context of PBE, a more sophisticated code specialization
routine is needed. One of the drawbacks of superblock for-
mation in the context of code specialization is that it can only
duplicate a single path through a hot code segment. In many
cases making several paths simultaneously available for spe-
cialization may be desired. The fact that superblock forma-
tion makes its choices relying only on execution weight data

is also a drawback. A more sophisticated code duplication
method should be able to rule out cases where code dupli-
cation does not generate specialization opportunities. Such
a method should also be able to duplicate selected portions
of the control-flow graph, even portions that do not constitute
straight-line paths. We are in the process of developing such a
code specialization routine for PBE.

4. Preliminary experimental results

In order to perform a preliminary evaluation of the PBE
concept, we used a simple experimental setup. In it, we used
the IMPACT compiler [8], in conjunction with procedure unifi-
cation and superblock formation routines1 implemented in the
Liberty compiler [9]. Since region formation was not avail-
able, this system could only handle small benchmarks due to
compile time limitations.

Figure 3 compares the results of PBE with those of inlining
on three benchmarks:129.compress from the SPEC’95
benchmark suite, and the UNIX utilitiesgrep andyacc .

Results for inlining were obtained using IMPACT’s de-
fault inlining routines. For PBE each benchmark was com-
piled in IMPACT up to a low-level intermediate representation
(Lcode). This involved some high-level optimization, but no
inlining. The intermediate representation was then saved to a
file and passed on to the Liberty compiler for procedure unifi-
cation and superblock formation. The resulting intermediate
representation was fed back to IMPACT for low-level opti-
mization and scheduling.

The first column of the graph in Figure 3 shows the code
size of the executables resulting from PBE as a percentage of
the code size of the corresponding executables obtained using
inlining. The second column does the same for dynamic cycle
count. Dynamic cycle counts were obtained by scheduling the
programs using IMPACT’s scheduling routines for a hypothet-
ical 8-issue EPIC machine, and estimating their cycle counts
using profile data, without taking into account cache misses or
branch prediction behavior.

As we can see, PBE on average reduces the cycles executed
by 16.8%, while producing executables that are 5.7% smaller.
The improvements in runtime performance are in fact under-
stated, since our preliminary experiment does not account for
the improvement in instruction cache behavior resulting from
less code growth. Implementing a better code specialization
routine is likely to reduce code growth, improve performance,
or both.

5. Conclusion

In this paper we discuss how procedure-centric compiler
design methodologies limit the potential of EPIC architectures
by limiting the optimization scope available. We then discuss

1IMPACT has its own superblock formation routine, but that routine was
disabled for the purposes of this experiment.



0%

20%

40%

60%

80%

100%

120%

129.compress grep yacc Average

% Code Size

% Cycle Count

Figure 3: Comparison between inlining and PBE in terms of code growth (a) and static cycle count (b)

how inlining can resolve the issues with optimization scope
but only at the cost of code-size. We then propose a new com-
pilation strategy, Procedure Boundary Elimination (PBE) that
eliminates procedure boundaries early in the compilation cy-
cle, without code growth. PBE then selects new compilation
units via region formation. Since the compiler selects these
compilation units, they are selected for optimization potential,
and not software engineering concerns as is the case with pro-
gram procedures. To recover the benefits of code specializa-
tion provided by code duplication in inlining, PBE uses a tar-
geted code specialization technique to duplicate code, but only
code that will result in performance improvement, instead of
entire procedures. In this way PBE achieves all the benefits
of inlining without the code size growth and associated per-
formance penalties. After proposing PBE, we discuss the key
challenges in building a compiler that uses this technique.

By rethinking the overall strategy that the compiler uses to
select compilation units, it should be possible to dramatically
improve the performance of EPIC architectures. The prelimi-
nary results obtained by implementing only a limited version
of PBE are promising, motivating the effort necessary to con-
struct a compiler with full PBE support. We expect that such
an implementation of PBE will prove valuable in compilation
for EPIC architectures.

References
[1] W. W. Hwu and P. P. Chang, “Inline function expansion for compiling

C programs,” inProceedings of the ’89 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 246–257, June
1989.

[2] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “Profile-guided
automatic inline expansion for C programs,”Software Practice and Expe-
rience, vol. 22, pp. 349–370, May 1992.

[3] A. Ayers, R. Schooler, and R. Gottlieb, “Aggressive inlining,” inProceed-
ings of the ’97 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 134–145, June 1997.

[4] R. E. Hank, W. W. Hwu, and B. R. Rau, “Region-based compilation: An
introduction and motivation,”International Journal of Parallel Program-
ming, vol. 25, pp. 113–146, April 1997.

[5] T. Way, B. Breech, and L. Pollock, “Region formation analysis with
demand-driven inlining for region-based optimization,” inProceedings
of the 2000 International Conference on Parallel Architectures and Com-
pilation Techniques, pp. 24–33, October 2000.

[6] T. Way and L. L. Pollock, “A region-based partial inlining algorithm for
an ILP optimizing compiler,” inProceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applications
(PDPTA’02), June 2002.

[7] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G.
Holm, and D. M. Lavery, “The superblock: An effective structure for
VLIW and superscalar compilation,” tech. rep., Center for Reliable and
High-Performance Computing, University of Illinois, Urbana, IL, Febru-
ary 1992.

[8] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier,
B. Cheng, P. R. Eaton, Q. B. Olaniran, and W. W. Hwu, “Integrated pred-
ication and speculative execution in the IMPACT EPIC architecture,” in
Proceedings of the 25th International Symposium on Computer Architec-
ture, pp. 227–237, June 1998.

[9] “The Liberty Project Website.” http://liberty.princeton.edu/.


