
Global Multi-Threaded Instruction Scheduling:
Technique and Initial Results

Guilherme Ottoni David I. August

Department of Computer Science
Princeton University

{ottoni, august}@princeton.edu

Recently, the microprocessor industry has reached hard
physical and micro-architectural limits that have prevented
the continuous clock-rate increase, which had been the ma-
jor source of performance gains for decades. These im-
pediments, in conjunction with the still increasing transis-
tor counts per chip, have driven all major microprocessor
manufacturers toward Chip Multiprocessor (CMP) designs.
Although CMPs are able to concurrently pursue multiple
threads of execution, they do not directly improve the per-
formance of most applications, which are written in sequen-
tial languages. In effect, the move to CMPs has shifted even
more the task of improving performance from the hard-
ware to the software. In order to support more effective
parallelization of sequential applications, computer archi-
tects have proposed CMPs with light-weight communica-
tion mechanisms [26, 24, 22]. Despite such support, pro-
posed multi-threaded scheduling techniques have generally
demonstrated little effectiveness [15, 16] in extracting par-
allelism from general-purpose, sequential applications. We
call these techniqueslocal multi-threaded scheduling, be-
cause they basically exploit parallelism within straight-line
regions of code. A key observation of this paper is that lo-
cal multi-threaded techniques do not exploit the main fea-
ture of CMPs: the ability to concurrently execute instruc-
tions from different control-flow regions. In order to ben-
efit from this powerful CMP characteristic, it is necessary
to performglobal multi-threaded scheduling, which simul-
taneously schedules instructions from different basic blocks
to enable their concurrent execution. This paper presents al-
gorithms to perform global scheduling for communication-
exposed multi-threaded architectures. Byglobal we mean
that our technique simultaneously schedules instructions
from an arbitrary code region. Very encouraging prelimi-
nary results, targeting a dual-core Itanium 2 model, are pre-
sented for selected benchmark applications.

1 Introduction

In the last few years, the microprocessor industry has
been undergoing what is being considered one of its major
changes. Suddenly, hard physical limitations, aligned with
the diminishing returns of micro-architectural improve-
ments, have prevented the design of faster microprocessors.

Nevertheless, the number of transistors available on a chip
continues to increase exponentially over time. Combined,
these factors have directed all major microprocessor man-
ufacturers toward multi-core designs, also known as chip
multiprocessors (CMPs). Unfortunately, while CMPs in-
crease throughput for multiprogrammed and multi-threaded
codes, many important applications are single-threaded and
thus do not benefit from CMPs.

This change in paradigm has resulted in a tremendous
interest on parallel applications. Although ideally pro-
grammers could rewrite all the applications in a parallel
paradigm, parallel programming has long been recognized
as more time-consuming, error-prone, and harder to debug
than its sequential counterpart. Furthermore, it is imprac-
tical to rewrite all the existing applications. A more viable
alternative is to use parallelizing compilers to automatically
generate parallel code from sequential programs. Unfortu-
nately, despite decades of research on parallelizing compil-
ers, these have only proved effective in the restricted do-
main of scientific applications, which have remarkably reg-
ular array-based memory accesses and little control flow.

Because the parallelism available in non-scientific ap-
plications is typically much more fine-grained, computer
architects have proposed simple hardware support mech-
anisms to enable light-weight fine-grained communica-
tion [26, 24, 22, 21], generally calledscalar operand net-
works. These mechanisms typically consist of an on-
chip interconnect between the processor cores, and spe-
cial produce and consume instructions to communi-
cate scalar values from one core to another. To the soft-
ware, these communication mechanisms look like sets of
hardware-implemented queues. Extracting parallelism for
these processors consists of partitioning the computation
into threads, to execute on different cores, and inserting
communication instructions to satisfy inter-thread depen-
dences. The parallelism exposed by these processors is of
finer granularity than what is typically exploited by pro-
grammers in parallel systems, making it even harder to man-
ually explore these opportunities. Therefore, generating
code that exploits these opportunities is better performed
by a compiler’s instruction scheduler.

Instruction scheduling techniques can be classified as



either local or global. While local techniques schedule
the instructions of each basic block independently, global
approaches simultaneously consider instructions from dif-
ferent basic blocks. Most of the existing multi-threaded
scheduling techniques are based on local scheduling [15,
16]. We call these techniqueslocal multi-threaded(LMT)
scheduling.

One of our key observations is that LMT scheduling
techniques do not exploit the main advantage brought by
multi-threaded architectures: the ability to simultaneously
follow different execution paths in different processor cores.
Given the typically small size of basic blocks in general-
purpose applications, we believe it is crucial to exploit par-
allelism beyond basic block boundaries in order to suc-
cessfully extract parallelism from these applications. As
an example, consider the sample C code in Figure 1. Al-
though these loops may iterate for a large number of it-
erations, very little instruction-level parallelism is avail-
able within each individual basic block. For such control-
intensive codes, any local scheduling technique will hardly
extract any thread-level parallelism. Notice, however, that
the computation in each loop is independent, and there-
fore they can be executed in parallel. Nevertheless, in or-
der to exploit such sources of parallelism, it is necessary
to performglobal multi-threaded(GMT) scheduling, i.e.
to simultaneously consider instructions from different ba-
sic blocks during scheduling. The major complication of
going from any local analysis or optimization to its cor-
responding global version is the presence of control flow.
In this paper, we demonstrate how control flow can effec-
tively be handled to enable GMT scheduling. Our technique
combines a global multi-threaded list scheduling heuristic
with a novel global multi-threaded code generation algo-
rithm. These algorithms are based on aProgram Depen-
dence Graph(PDG) representation [6], which includes both
data and control dependences.

Overall, this paper makes the following contributions:

1. It introduces the concept of global multi-threaded
(GMT) scheduling, which we believe is key to fully
take advantage of multi-threaded architectures, in par-
ticular to parallelize general-purpose applications.

2. It shows how to handle control flow in order to enable
GMT scheduling, and presents a novel global multi-
threaded list scheduling heuristic.

3. It presents an effective dynamic programming algo-
rithm to efficiently perform GMT scheduling on large
code regions composed of complex loop nests.

4. It presents a general algorithm to generate multi-
threaded code from arbitrary partitions of the instruc-
tions among the threads. This algorithm is a gener-
alization for arbitrary CFGs of the algorithm used for
loop scheduling in [19], and it can be used withany
GMT scheduling heuristic.

s1 = 0;
s2 = 0;
for (p = head; p != NULL; p = p->next) {

s1 += p->value;
}
for (i = 0; a[i] != 0; i++){

s2 += a[i];
}
printf("%d\n", s1 * s1 / s2);

Figure 1. Example code in C.

5. It shows initial promising experimental results target-
ing a highly accurate dual-core Itanium 2 model.

The rest of the paper is organized as follows. Section 2
gives some background on PDGs. We present our GMT
scheduling heuristics in Section 3, followed by our multi-
threaded code generation algorithm in Section 4. In Sec-
tion 5, we present experimental results. Finally, we discuss
related work in Section 6, and conclude in Section 7.

2 Program Dependence Graphs

Local scheduling techniques operate by constructing a
data dependence graph representing all data dependences
that must be respected in order to keep the original pro-
gram’s semantics. At a low-level representation, data de-
pendences can take two forms: register data dependences,
or memory data dependences. Furthermore, data depen-
dences can be of three kinds, depending on whether the
involved instructions read or write the data location [13]:
flow dependence, which goes from a write to a read;anti-
dependence, which goes from a read to a write; andout-
put dependence, which goes from a write to another write.
Register data dependences can be efficiently and precisely
computed through data-flow analysis. For memory data de-
pendences, compilers typically rely on the result of pointer
analysis to determine which loads and stores may access the
same memory locations. Although computationally much
more complicated, practical existing pointer analysis can
typically disambiguate a large number of non-conflicting
memory accesses even for type-unsafe languages like C.

The key addition from a local scheduling to a global
scheduling technique is the necessity of handling control
flow. In other words, in addition to the data dependences
typically used for local scheduling, it is necessary to add
control dependencearcs to the dependence graph. A control
dependence arc from a branch instructionX to an instruc-
tion Y means that, depending on the direction taken atX,
Y either must or may not be executed. Dependence graphs
including both data and control dependences are generally
calledProgram Dependence Graphs(PDGs) [6]. Cytron et
al. [4] proposed an efficient algorithm to compute control
dependences for arbitrary CFGs, based onpost-dominance
frontiers.



(A) B1: move r1 = 0 ;; r1 contains s1
(B) move r2 = 0 ;; r2 contains s2
(C) load r3 = [head] ;; r3 contains p
(D) B2: branch r3 == 0, B4
(E) B3: load r4 = [r3] ;; load p->value
(F) add r1 = r1, r4
(G) load r3 = [r3+4] ;; load p->next
(H) jump B2
(I) B4: move r5 = @a ;; r5 pts. to a[i]
(J) B5: load r6 = [r5] ;; load a[i]
(K) branch r6 == 0, B7
(L) B6: add r2 = r2, r6
(M) add r5 = r5, 4
(N) jump B5
(O) B7: mult r7 = r1, r1
(P) div r8 = r7, r2

Figure 2. Low-level IR for the code in Figure 1.

2.1 PDG for Global Multi-Threaded Scheduling

The PDG for global multi-threaded (GMT) scheduling
contains one vertex for each instruction in the code, with
the exception ofjump instructions. These instructions are
left aside because their effect is embedded in the control
dependences. Besides this, they only serve to put the basic
blocks of the CFG into a linear representation.

We now precisely define the PDG dependence arcs nec-
essary for our GMT scheduling. We denoteVG andEG,
respectively, the sets of vertices and arcs of a graphG.

• Register data dependences: only flow dependences
through registers need to be considered, and anti- and
output dependences can be ignored. The reason for
this is that, if two instructions involved in an anti- or
output dependence are scheduled on different threads,
they will execute in two processors with different reg-
ister sets. In other words, the use of different register
sets automatically eliminates false dependences. Addi-
tionally, for instructions scheduled on the same thread,
our algorithm preserves their order, thus naturally re-
specting intra-thread dependences. A register depen-
dence from instructionX to Y involving ri is denoted
X →ri Y .

• Memory data dependences: for memory, all flow, anti-
and output dependences need to be taken into account,
as the memory store is shared by the threads. Memory
dependences are denotedX →M Y .

• Direct control dependences: our PDG includes con-
trol dependences. We denoteX →T Y for taken and
X →F Y for not-taken branch directions.

• Transitive control dependences: for each dependence
(X → Y ) ∈ EPDG , and for each branch instructionB
on whichX is dependent, a transitive control depen-
dence arcB →∗ Y is added toEPDG . The reason for
these dependences will become evident in Section 4,
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Figure 3. (a) CFG, (b) post-dominance tree,
and (c) PDG.

when we describe our multi-threaded code generation
algorithm.

Figure 2 illustrates a low-level representation for the
code in Figure 1, and Figure 3 contains the corresponding
CFG, post-dominance tree, and PDG.

Using the PDG constructed as described above, differ-
ent GMT scheduling heuristics can be applied to choose a
global schedule, i.e. a partition of the instructions among
the threads. For example, for the PDG in the example of
Figure 3(c), a heuristic may decide to partition the code in
two threads as depicted by the dashed line. This partition
corresponds to scheduling each loop of Figure 1 onto a sep-
arate thread.



3 Global Multi-Threaded Instruction
Scheduling

In this section, we describe in details our GMT schedul-
ing algorithms, and illustrate them on the example of Fig-
ure 1. This section is only concerned with the thread-
level scheduling decisions, i.e. mapping the instructions of
the original sequential program onto threads. The multi-
threaded code generation algorithm is presented in Sec-
tion 4. Because each thread generated by our technique is
intended to execute on a different core, we interchangeably
say that an instruction is scheduled on a thread or core.

Although a multi-threaded instruction scheduler can be
combined with a traditional single-threaded scheduler, we
opted not to do so in this work. One reason for this is that
the multi-threaded code generated by our technique can be
further optimized before the actual assembly code genera-
tion. Additionally, exposing all the machine details to the
GMT scheduler would make its implementation more com-
plex. Instead, we preferred to keep our GMT scheduler sim-
pler by providing it with just a few key characteristics of the
target processor, namely the number of cores and the issue-
width of each core. A latency of one cycle is assumed for
most instructions (except for function calls), and no infor-
mation about structural hazards is used.

Our GMT scheduler uses a PDG as intermediate repre-
sentation for both scheduling decisions and code genera-
tion. Because our technique is global, targeting arbitrary
code regions, it must deal with the possibility of cycles in
a PDG. Scheduling of cyclic graphs is more complex than
scheduling of acyclic graphs. The goal of a scheduler is to
minimize the critical (i.e. longest) path through the graph.
Although scheduling of acyclic graphs in the presence of
resource constraints is NP-hard, at least finding the critical
path in such graphs can be solved in time linear, through a
topological sort. For cyclic graphs, however, even finding
the longest path is NP-hard [8].

Given the inherent difficulty of the global scheduling
problem for cyclic code regions, we use a simplifying ap-
proach that reduces it to the acyclic scheduling problem, for
which well-known heuristics based on list scheduling [9]
exist. In order to reduce the cyclic scheduling problem to
an acyclic one, we make two simplifications to the prob-
lem. First, when scheduling a given code region, each of
its inner loops is coalesced to a single node, with an aggre-
gated latency that assumes its average number of iterations.
Secondly, if the code region being scheduled is a loop, all
the loop-carried dependences are disregarded. To deal with
the possibility of irreducible code, we use a loop hierarchy
that includes irreducible loops [10]. It is important to notice
that these simplifying assumptions are used for scheduling
decisions only; our code generation algorithm takes all de-
pendences into account to generate correct code.

To distinguish from a full PDG, we call the dependence
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Figure 4. (a) HPDG for the PDG from Fig-
ure 3(c). (b) Clustered HPDG. (c) Chosen
Schedule.

graph for a region with its inner loops coalesced and its
loop-carried dependences ignored aHierarchical Program
Dependence Graph(HPDG). In a HPDG, the nodes repre-
sent either a single instruction, called asimple node, or a
coalesced inner loop, called aloop node. Figure 4(a) il-
lustrates the HPDG corresponding to the PDG from Fig-
ure 3(c). The nodes are labeled by their corresponding
nodes in the PDG, followed by their estimated latency.
There are only two loop nodes in this example: DEFG and
JKLM.

Even after eliminating the cycles in the PDG, control
flow still poses additional complications to GMT instruc-
tion scheduling that do not exist for local scheduling. In
local scheduling, there is a guarantee that all instructions
will execute, i.e. all instructions being scheduled arecontrol
equivalent. Therefore, as long as the dependences are satis-
fied and resources are available, the instructions can safely
be issued simultaneously. The presence of arbitrary control



flow complicates the matters for GMT scheduling. First,
control flow causes many dependences not to occur during
the execution. Second, not all instructions being scheduled
are control equivalent anymore. For example, the fact that
instructionA executes may not be related to the execution
of B, or may even imply thatB will not execute. To deal
with the different possibilities, we introduce three different
control relationsamong instructions, which are used during
our scheduling algorithms.

Definition 1 (Control Relations) Given two HPDG nodes
A andB, we call them:

1. Control Equivalent, if bothA andB are simple nodes
with the same direct control dependences.

2. Mutually Control Exclusive, if the execution ofA im-
plies thatB does not execute, or vice-versa.

3. Control Conflicting, otherwise.

To illustrate these relations, consider the HPDG from
Figure 4(a). In this example, A, B, C, I, O and P are all con-
trol equivalent. Nodes DEFG and JKLM are control con-
flicting with every other node. No pair of nodes is mutually
control exclusive in this example.

Another problem intrinsic to GMT scheduling is that the
multiple threads generated will execute on different cores,
and so it is necessary to take the communication overhead
into account while making scheduling decisions. For ex-
ample, even though two instructions can be issued in par-
allel on different threads, this might not be profitable due
to necessary communication to move their operands from
one core to another. To address this problem, we use aclus-
tering pre-scheduling pass on the HPDG, which takes into
account the inter-core communication overhead. The goal
of this pass is to cluster together HPDG nodes that are likely
to not benefit from schedules that assign them to different
threads. Section 3.1 explains the clustering algorithm we
use, and our multi-threaded instruction scheduling heuristic
is described in Section 3.2.

3.1 Clustering Algorithm

Our clustering algorithm is an adaptation of theDom-
inant Sequence Clustering (DSC)algorithm [29], widely
used for task scheduling in parallel computing. Here we
briefly describe DSC, and point out the modifications we in-
corporated to more adequately deal with powerful ILP pro-
cessor cores.

The DSC algorithm, like all multi-processor task
scheduling algorithms, performs clustering on a directed
acyclic graph (DAG). Therefore, because of the simplifi-
cations we performed to reduce our cyclic scheduling prob-
lem into an acyclic one, we can rely on previous research
on multi-processor task scheduling. We chose to use DSC
because it has been shown to be both effective and efficient,

being able to handle graphs with thousands of nodes [29].
Efficiency is important for instruction scheduling because
of the potentially huge number of nodes in a HPDG.

The DSC algorithm assumes that each cluster will be
executed on a different processor (core for us). The later
scheduling pass may schedule multiple clusters on the same
thread to cope with a smaller number of processors.

DSC starts by assigning each instruction to a different
cluster. The critical path passing through each node of the
graph is then computed, considering both the execution la-
tencies of nodes and the communication latencies. The
communication latency is assumed to be zero if and only
if the nodes are in the same cluster. DSC then processes
each node at a time, following a topological order priori-
tized by the nodes’ critical path length. At each step, the
benefit of merging the node being processed with each of
its predecessors is analyzed. The advantage of merging a
node with another cluster is that the communication latency
from nodes in that cluster will be saved. The downside of
merging is that the instructions assigned to the same cluster
are assumed to execute sequentially, in the order they are
added to the cluster. Therefore, the delayed execution after
a merge may outweigh the benefits of the saved communi-
cation. The node being processed is then merged with its
predecessors’ cluster that reduces this node’s critical path
the most. If all such cluster increase the critical path, this
node is left alone in its own cluster.

In this work, we use a slight modification of the DSC
algorithm to deal with the ILP power available in modern
processor cores. To do that, we do not assume a sequential
execution inside each cluster. Instead, we assume the node
being merged will be issued at the earliest cycle such that:
(a) its inter-cluster dependences are satisfied (including the
communication cost), (b) its intra-cluster dependences are
fulfilled, (c) its control conflictingnodes inside the cluster
are finished, and (d) there is an issue slot available.

In addition, in our DSC variation, we use a more refined
breakdown of the communication overhead components,
which suits better the inter-core communication mechanism
we assume. Whenever there is an inter-cluster dependence
from instructionA to instructionB, we assume the follow-
ing communication latencies:

• Producing Latencyin A’s cluster, afterA executes.

• Consuming Latencyin B’s cluster, beforeB executes.

• Communication Latency, which is added toA’s finish
cycle to estimate whenA’s value will be available for
use byB.

Finally, in our DSC implementation, we perform a post-
pass to eliminate some trivial clusters. Specifically, we look
for all clusters that contain a single simple node and that has
dependences with instructions from a single cluster. When



such a trivial cluster is found, it is merged with its single
adjacent cluster.

Figure 4(b) illustrates the clusters resulting from this al-
gorithm. For simplicity, we assume here that the produc-
ing, consuming, and communication latencies are all one
cycle. Initially, each node is its own cluster. The first nodes
to be processed are B and L, which have priority (i.e. the
length of the longest, critical path through it) equal to 23.
For example, for B, the longest path includes 17 cycles of
execution latency, plus 2 cycles of producing latency (for
B and JKLM), 2 cycles of communication latency (for arcs
B→JKLM and JKLM→P), and 2 cycles of consuming la-
tency (for both JKLM and P). As neither B nor I have pre-
decessors, they are left on their own clusters. Next, node
JKLM is processed, which also has priority 23. Merging
this node with any of its predecessors will not increase its
priority, so we arbitrarily merge it with B. After that, nodes
A and C are processed, and each remains in its own clus-
ter. Notice that, even though node P has higher priority,
it does not have all its predecessors processed yet. Next,
node DEFG is processed and, similarly to what happened to
JKLM, it is arbitrarily merged with one of its predecessors,
A. At this point, node O is processed, and it is merged with
its only predecessor cluster, which contains A and DEFG.
Finally, P is processed, and it is merged with the cluster
containing B and JKLM, what reduces the critical path to
20. At this point, the trivial-cluster elimination post-pass is
performed, and two trivial clusters are merged: (1) node C
is merged with the cluster containing A, DEFG, and O; and
(2) node I is merged with the cluster containing B, JKLM,
and P.

3.2 Global Multi-Threaded List Scheduling

After the clustering pass on the HPDG, the actual
scheduling decisions are made. Here again, because of our
reduction to an acyclic scheduling problem, we can rely on
well-known acyclic scheduling algorithms. In particular,
we use a form of list scheduling with resource constraints,
with some adaptations to better deal with our problem. This
section describes list scheduling and our enhancements to
it.

The basic list scheduling algorithm assigns priorities to
nodes and schedules each node following a prioritized topo-
logical order. Typically, the priority of a node is computed
as the longest path from it to a leaf node. A node is sched-
uled at the earliest time that satisfies its input dependences
and that conforms to the currently available resources.

For traditional, single-threaded instruction scheduling,
the resources correspond to the processor’s functional units.
For GMT instruction scheduling, there are two levels of re-
sources: the target processor contains multiple cores, and
each core has a set of functional units. Considering these
two levels of resources, instead of simply assuming the to-

tal number of functional units in all cores, is important for
many reasons. First, it enables us to consider the commu-
nication overhead to satisfy dependences between instruc-
tions scheduled on different cores. Furthermore, it allows us
to benefit from opportunities available in aglobal schedul-
ing problem, in particular the simultaneous issue of control
conflicting instructions. Because each core has its own con-
trol unit, control-conflicting instructions can be issued in
different cores in the same cycle.

Thread-level scheduling decisions are made when
scheduling the first node in a cluster. At this point, the best
thread is chosen for that particular cluster, given what has
already been scheduled. When scheduling the remaining
nodes of a cluster, we simply schedule it on the thread pre-
viously chosen for this cluster.

The choice of the best thread to schedule a particular
cluster takes into account a number of factors. Broadly
speaking, these factors try to find a good equilibrium be-
tween two conflicting goals: maximizing the parallelism,
and minimizing the inter-thread communication. For each
thread, we compute the total overhead of assigning the cur-
rent cluster to it. This total overhead is the sum of the fol-
lowing components:

1. Startup Overhead: this is the difference between the
first cycle in which the node in consideration can be
scheduled on the given thread and the current cycle.

2. Communication Overhead: this is the total number of
cycles that will be necessary to execute allproduce
andconsume instructions to satisfy dependences be-
tween this cluster and instructions in clusters already
scheduled on different threads.

3. Resource-Conflict Overhead: this is an estimated num-
ber of cycles by which the execution of this cluster will
be delayed when executing in this thread, consider-
ing the current load of unfinished instructions already
assigned to this thread. This takes into account both
the average resource utilization per cycle for the un-
finished instructions, as well as the total latency of the
current cluster. In effect, this overhead is more impor-
tant for larger clusters, and it is useful to improve the
load balance among threads.

4. Control-Conflict Overhead: this is an estimated num-
ber of cycles in which instructions in this cluster will
not be able to execute in this thread due to control con-
flicts with unfinished instructions of other clusters al-
ready scheduled on this thread. To compute this es-
timate, we use the latency of the unfinished instruc-
tions in other clusters assigned to this thread, weighted
by the probability that a control conflict will impede
the issue of each instruction in the cluster being sched-
uled. This control conflict probability is computed as
the latency of the unfinished instructions that are con-



trol conflicting with the one being considered, over the
total latency of all unfinished instructions.

Once we choose the thread in which a HPDG node is to
be scheduled, it is necessary to estimate the cycle in which
that node can be issued in this core. Although we do not
perform the actual scheduling at this point, this estimate is
used to guide the GMT scheduling for the remaining nodes.

In order to find the estimated cycle in which a node can
be issued in the chosen thread, it is necessary to consider
two restrictions. First, we need to make sure that the node’s
input dependences will be satisfied at the chosen cycle. For
inter-thread dependences, it is necessary to account for the
communication latency and correspondingconsume in-
structions overhead. Second, the chosen cycle must be such
that there are available resources in the chosen core, given
the other nodes already scheduled on it. However, not all
the nodes already scheduled on this thread should be con-
sidered. Resources used by nodes that are mutually con-
trol exclusive to this one are considered available, as these
nodes will never be issued simultaneously. On the other
hand, the resource utilization of control equivalent nodes
must be taken into account. Finally, the node cannot be is-
sued in the same cycle as any previously scheduled node
that has a control conflict with it. This is because each core
has a single control unit, but control-conflicting nodes have
unrelated conditions of execution. Notice that, however, for
target cores that support predicated execution, this is not
necessarily valid: two instructions with different execution
conditions may be issued in parallel. But even for cores
with predication support, loop nodes cannot be issued with
anything else.

We now show how our list scheduling algorithm works
on our running example. For illustration purposes, we use
as target a dual-core processor that can issue two instruc-
tions per cycle in each core (see Figure 4(c)). The list
scheduling algorithm processes the nodes in the clustered
HPDG (Figure 4(b)) in topological order. The nodes with
highest priority (i.e. longest path to a leaf) are B and I. B
is scheduled first, and it is arbitrarily assigned to core 1’s
first slot. Next, node I is considered and, because it belongs
to the same cluster as B, the core of choice is 1. Because
there is available resource (issue slot) in core 1 at cycle 0,
and the fact that B and I are control equivalent, I is sched-
uled on core 1’s issue slot 1. At this point, we may schedule
nodes A, C, or JKLM. Even though JKLM has the high-
est priority, its input dependences are not satisfied in the
cycle being scheduled, cycle 0. Therefore, JKLM is not a
candidatenode in the current cycle. So node A is sched-
uled next, and the overheads described above are computed
for scheduling A in each thread. Even though thread 1 (at
core 1) has lower communication overhead (zero), it has
higher startup, control-conflict, and resource-conflict over-
heads. Therefore, core 0 is chosen for node A. The algo-

rithm then proceeds, and the remaining scheduling deci-
sions are all cluster-based. Figure 4(c) illustrates the final
schedule built and the partitioning of the instructions among
the threads.

3.3 Handling Loop Nests

Although our scheduling algorithm follows the clusters
formed a priori, we make an exception when handling inner
loops. The motivation to do so is that inner loops may fall
on the region’s critical path, and they may also benefit from
execution on multiple threads.

We handle inner loops as follows. For now, assume
that we have an estimate for the latency to execute one
invocation of an inner loopLj using a number of cores
i from 1 up to the numberN of cores on the target pro-
cessor. LetlatencyLj

(i), 1 ≤ i ≤ N , denote these la-
tencies. ConsideringLj ’s control conflicts, we compute
the cycle in which each core will finish executingLj ’s
control-conflicting nodes already scheduled on it. From
that, we can compute the earliest cycle in which a given
number of coresi will be available forLj , denoted by
cycle availableLj

(i), 1 ≤ i ≤ N . With that, we choose
to schedule this loop node on a number of coresk such that
cycle availableLj

(k) + latencyLj
(k) is minimized. Intu-

itively, this will find the best balance between the wait to
have more cores available and the benefit from executing the
loop node on more threads. If more thank threads are avail-
able atcycle available(k) (e.g. all threads will be available
in the same cycle, but we do not need all of them), then we
pick thek threads among them with which the loop node
has more affinity. The affinity is computed as the number
of dependences between this loop node and nodes already
scheduled on each thread.

The question that remains now is: how do we compute
thelatencyLj (i) for each child loopLj in the HPDG? Intu-
itively, this is a recursive question, since what we have been
doing is scheduling a code region on multiple threads, with
the goal of minimizing its execution latency. This naturally
leads to a recursive solution. But even better, we can apply
dynamic programming to efficiently solve this problem in
polynomial time. In addition, were our list scheduling al-
gorithm perfect, this would be able to compute theoptimal
scheduling for an arbitrary code region.

More specifically, our dynamic programming solution
works as follows. First, we compute the loop hierarchy for
the region we want to schedule. This can be viewed as a
loop tree, where the root represents the whole region (in
case the region is not a loop itself). The algorithm then pro-
ceeds bottom-up on this loop tree and, for each tree node
Lj (either a loop or the whole region) it applies the GMT
list scheduling algorithm to compute the latency to exe-
cute one iteration of that loop, with a number of threads
i varying from 1 toN . This latency returned by the list



scheduling algorithm is then multiplied by the average num-
ber of iterations per invocation of this loop, resulting in
the latencyLj

(i) values to be used for this loop node when
scheduling its parent. In the end, we choose the best sched-
ule for the whole region by picking the number of threads
k for the loop tree’s root,R, such thatlatencyR(k) is the
minimum. The corresponding partitioning of instructions
onto threads can be obtained by keeping and propagating
the partitionpartitionLj

(i) of instructions corresponding
to the value oflatencyLj

(i).
As a final note, we point that this dynamic programming

approach can be used in a general framework that considers
other loop parallelization and scheduling techniques, such
as DOALL, DOACROSS and DSWP [19], besides the GMT
list scheduling described here. The evaluation of such gen-
eral framework is beyond the scope of this paper.

4 Multi-Threaded Code Generation

We now describe our Multi-Threaded Code Generation
(MT-CG) algorithm. For any global schedule chosen, this
algorithm generates corresponding multi-threaded code, au-
tomatically inserting the communication and synchroniza-
tion instructions necessary to preserve the program’s depen-
dences.

Figure 5 presents the MT-CG algorithm, which takes as
input the original control-flow graph (CFG), thePDG con-
structed as described in Section 2.1, and the chosen global
schedule (GS). As output, this algorithm produces a new
CFG for each of the resulting threads, containing its corre-
sponding instructions, and including the necessary commu-
nication and synchronization instructions.

In essence, the MT-CG algorithm works as follows. For
each of the threads specified by the global schedule, it gen-
erates a new CFG with only the necessary basic blocks
for this thread. Then, the instructions are inserted in the
thread to which they were scheduled. After that, the nec-
essary inter-thread communication and synchronization in-
structions are inserted into the code. Finally, branch and
jump instructions are adjusted to account for missing basic
blocks in the new CFGs.

Before going into the details of the algorithm in Fig-
ure 5, let us introduce the notation used.Pi denotes a par-
tition (thread) inGS, andCFG i denotes its corresponding
control-flow graph. For a given instructionI, bb(I) is the
basic block containingI in theCFG , andpointj(I) is the
point in CFGj corresponding to the location ofI in the
CFG .

The first step of the algorithm is to find the set of the
relevant basic blocksfor each partition (thread)Pi in GS.
The set of relevant basic blocks forPi contains the set of
blocks that will composeCFG i. Additionally, CFG i is
carefully constructed so that each of its basic blocks has
exactly the same condition of execution as its correspond-

ing block inCFG . The procedure RelevantBBs, lines 26-
31 in Figure 5, describes how to compute such set of basic
blocks. This set contains one block for each block in the
original CFG that contains either (a) an instruction sched-
uled toPi, or (b) an instruction on which any ofPi’s in-
structions depends (i.e. a source of a dependence with an
instruction inPi as the target). The reason for including ba-
sic blocks containing instructions inPi is obvious, as they
will hold these instructions in the generated code. The rea-
son for adding the basic blocks containing instructions on
whichPi’s instructions depend is related to a property used
to preserve the semantics in the transformed code: inter-
thread communication instructions are inserted at the point
of the source instruction, so as to keep the exact condi-
tion under which this dependence happens. Notice that this
particular choice of where to communicate a dependence
is somewhat arbitrary, and may not be optimal. However,
this choice does simplify the proof of correctness of the al-
gorithm. This choice of where dependences are communi-
cated is also the motive for making the transitive control de-
pendence arcs explicit in the PDG: if these dependence arcs
connect instructions scheduled to different threads, these
branches need to be communicated so that the inter-thread
dependences keep their condition of execution. The call to
createcorrespbbi(B) (line 28) creates the blockBi corre-
sponding toB in CFG i. The mappings betweenB andBi

are denoted by:correspbbi(B) = Bi, andorig bb(Bi) =
B.

The next step of the MTCG algorithm (lines 3-5) is to
insert the instructions inPi into their corresponding basic
blocks inCFG i. The instructions are inserted in the same
relative order as in the original code, so that intra-thread
dependences are naturally satisfied. After this, the code in
lines 6-18 inserts communication and synchronization in-
structions in order to preserve the inter-thread dependences.
For each such dependence, a separate communication queue
is used1. Notice that, as mentioned above, the communica-
tion instructions are always inserted at the point correspond-
ing to the instruction that is the source of the dependence.
The actual communication instructions inserted depend on
the type of the dependence. Register dependences are im-
plemented by communicating the register in question right
after the point that it is produced in the source thread. For
memory dependences, purely synchronization instructions
are inserted to enforce that their relative order of execution
is preserved. Finally, control dependences are more involv-
ing. In the source thread, before the branch is executed, its
register operand is sent. In the thread that is the sink of the
dependence, aconsume instruction is inserted to get the
corresponding register value, and then an equivalent branch
instruction is inserted to mimic the same control behavior.

1A separate queue is used just for simplicity. Later, a queue-allocation
algorithm can reduce the number of queues necessary.



MT CG (CFG, PDG, GS )
(1) for eachPi ∈ GS do
(2) VCFGi

← RelevantBBs(CFG, PDG, Pi)
(3) for eachI ∈ VPDG , in original program order, do
(4) let i be such thatI ∈ Pi

(5) addlast(corresp bbi(bb(I)), I)
(6) for each(I → J) ∈ EPDG , whereI ∈ Pi, J ∈ Pj , Pi 6= Pj do
(7) q ← get free queue()
(8) if dep type(I → J) = rk then
(9) addafter(corresp bbi (bb(I )), I, “produce [q] = rk”)
(10) addbefore(corresp bbj (bb(I )), pointj (I ), “consumerk = [q]”)
(11) else ifdep type(I → J) = M then
(12) addafter(corresp bbi (bb(I )), I, “produce [q]”)
(13) addbefore(corresp bbj (bb(I )), pointj (I ), “consume [q]”)
(14) else // control dependence
(15) rk ← register argument(I)
(16) addbefore(corresp bbi (bb(I )), I, “produce [q] = rk”)
(17) addbefore(corresp bbj (bb(I )), pointj (I ), “consumerk = [q]”)
(18) addbefore(corresp bbj (bb(I )), pointj (I ), I)
(19) for eachPi ∈ GS do
(20) addSTART andEND nodes toCFGi

(21) for each branchI ∈ Pi do
(22) redirecttarget(I, closest relevant postdomi (target(I )))
(23) for eachB ∈ VCFGi

do
(24) CRS← closest relevant postdomi (succ(orig bb(B)))
(25) addlast(B, “jump CRS”)

RelevantBBs(CFG,PDG, Pi)
(26) RB ← ∅
(27) for eachI ∈ Pi do
(28) RB ← RB ∪ {create corresp bbi (bb(I ))}
(29) for eachJ | (J → I) ∈ EPDG do
(30) RB ← RB ∪ {bb(J)}
(31) returnRB

Figure 5. Multi-threaded code generation al-
gorithm.

The last step of the algorithm (lines 19-25) is to insert
STARTand END nodes in the new CFGs, and to fix the
branch targets and insertjump instructions to properly con-
nect the basic blocks in each of the new CFGs. Because not
all the basic blocks in the original CFG have a correspond-
ing one in each new CFG, finding the adequate branch/jump
targets is non-trivial. In order to preserve the control de-
pendences, the branch/jump targets need to be retargeted to
theclosest post-dominator basic block Bof the original tar-
get/successor, in the original CFG, such thatB is relevant
to the new CFG. We call such blockB the closest rele-
vant post-dominator, in the new CFG, of the original tar-
get/successor. Notice that such post-dominator basic block
always exists as every vertex is post-dominated byEND,
which is relevant to every CFG.

A simple optimization, not illustrated in the algorithm
in Figure 5, is that dependences between the same pair of
threads that have the same source instruction need only to
be communicated once. Moreover, many jump instructions
inserted to connect the blocks in each new CFG can be elim-
inated by code layout and jump optimizations.

(a) Code forP1’s thread (b) Code forP2’s thread

(c) P1’s post-
dom. tree

(d) P2’s post-
dom. tree

Figure 6. Resulting multi-threaded code and
corresponding post-dominance trees.

We have proved that our MTCG algorithm preserves all
the dependences in the PDG. Combined with Sarkar’s re-
sult showing that any transformation that preserves all de-
pendences in the PDG also preserves the program’s seman-
tics [25], this leads to the correctness proof of the MTCG
algorithm. In interest of space, we omit these proofs.

Figures 6(a)-(b) illustrate the generated code for the two
threads corresponding to the global schedule depicted in
Figure 3(c). In Figures 6(c)-(d), the post-dominator trees
for the new CFGs are illustrated. As can be easily checked,
each of the resulting threads contains only its relevant ba-
sic blocks, the instructions scheduled to it, the instructions
inserted to satisfy the inter-thread dependences, and jumps
inserted to connect the CFG. In this example, there is a
single pair ofproduce andconsume instructions, corre-
sponding to the only cross-thread dependence in the sched-
ule shown in Figure 3(c).

By analyzing the resulting code in Figures 6(a)-(b), it
should be clear that the resulting threads are able to concur-
rently execute instructions in different basic blocks of the
original code, effectively following different control-flow



Core Functional Units: 6 issue, 6 ALU, 4 memory, 2 FP, 3 branch
L1I Cache: 1 cycle, 16 KB, 4-way, 64B lines
L1D Cache: 1 cycle, 16 KB, 4-way, 64B lines, write-through
L2 Cache: 5,7,9 cycles, 256KB, 8-way, 128B lines, write-back
Maximum Outstanding Loads: 16

Shared L3 Cache > 12 cycles, 1.5 MB, 12-way, 128B lines, write-back
Main Memory Latency: 141 cycles
Coherence Snoop-based, write-invalidate protocol
L3 Bus 16-byte, 1-cycle, 3-stage pipelined, split-transaction

bus with round robin arbitration

Table 1. Machine details.

paths. The potential of exploiting such parallelization op-
portunities is unique to aglobal multi-threaded scheduling,
and constitutes its key advantage overlocal multi-threaded
scheduling approaches.

5 Evaluation
We implemented our GMT scheduling technique in

the Velocity compiler, a research compiler derived from
UIUC’s IMPACT compiler [1] that targets Itanium 2. Ve-
locity uses IMPACT’s front-end, and the resulting IM-
PACT’s Lcode is then translated into Velocity’s X code IR.
All traditional code optimizations are performed in Veloc-
ity, as well as some Itanium 2 specific optimizations. Our
GMT list scheduling was performed after traditional op-
timizations, before the code is translated to Itanium 2’s
assembly, where Itanium 2-specific optimizations are per-
formed, followed by register allocation and the final instruc-
tion scheduling pass. Velocity is parameterized with respect
to the number of cores in the target processor.

To evaluate the performance of the code generated by
Velocity, we used a validated cycle-accurate Itanium 2 pro-
cessor [12] performance model (IPC accurate to within 6%
of real hardware for benchmarks measured [20]) to build a
CMP model comprising two Itanium 2 cores connected by
thesynchronization arraycommunication mechanism pro-
posed in [22]. Table 1 provides details about the simulator
model. The simulator was built using the Liberty Simula-
tion Environment [27].

The synchronization array (SA) in the model works as a
set of low-latency queues. In our implementation, there is a
total of 256 queues, each one with 32 elements. The SA has
a 1-cycle access latency and has four request ports that are
shared between the two cores. The IA-64 ISA was extended
with produce andconsume instructions for inter-thread
communication. These instructions use the M pipeline,
which is also used by memory instructions. This imposes
the limit that only 4 of these instructions (minus any other
memory instructions) can be issued per cycle on each core,
since the Itanium 2 can issue only four M-type instructions
in a given cycle. While theconsume instructions can ac-
cess the SA speculatively, theproduce instructions write
to the SA only on commit. As long as the SA queue is not
empty, aconsume and its dependent instructions can exe-
cute in back-to-back cycles.

The highly-detailed nature of the validated Itanium 2

Benchmark Function Exec. %

adpcmdec adpcmdecoder 100
adpcmenc adpcmcoder 100
ks FindMaxGpAndSwap 100
mpeg2enc dist1 58
177.mesa generaltexturedtriangle 32
179.art match 49
300.twolf new dbox a 30
435.gromacs inl1130 75

Table 2. Selected benchmark functions.

model prevented whole program simulation. Instead, de-
tailed simulations were restricted to the functions in ques-
tion in each benchmark. We fast-forwarded through the re-
maining sections of the program while keeping the caches
and branch predictors warm.

To demonstrate the potential of our GMT scheduling
technique, we applied it to important functions of se-
lected applications from the MediaBench, SPEC-CPU, and
Pointer-Intensive benchmark suites. Table 2 lists the se-
lected application functions along with their corresponding
benchmark execution percentages.

Figure 7 presents the speedup for the selected bench-
mark functions. For each benchmark, the two bars illustrate
the speedup achieved with 2 and 10 cycles for the inter-
core communication latency. With a 2-cycle communica-
tion latency, the speedups vary from 3.8% for adpcmenc to
173.3% for 435.gromacs, with a geometric mean of 38.7%.

The 2.7x speedup on two threads for 435.gromacs
came as a surprise. The doubly nested loops in function
inl1130 contains an enormous amount of floating-point
operations. We verified that, in the single-threaded version,
this code suffers from a large number of spills of floating-
point registers during register allocation (using graph color-
ing). In the multi-threaded version, the availability of twice
as many registers enabled a much smaller number of spills,
thus resulting in a reduced schedule height. Even though we
just observed this advantage in one benchmark, we believe
that this usage of additional resources will be even more
beneficial in CMPs with smaller cores.

The results in Figure 7 show that, increasing the com-
munication latency from 2 to 10 cycles, the geometric mean
of the speedup drops from 38.7% to 31.8%. Additionally,
we notice that the sensitiveness to the increased commu-
nication latency varies form benchmark to benchmark. In
general, we noticed that functions with outer loops that it-
erate very fast (i.e. with small loop bodies), such the ones
from adpcmdec and mpeg2enc, are more affected by the
increased inter-core communication latencies. This is be-
cause, for such smaller loops, the communication latency
corresponds to a larger percentage of the time necessary to
execute one iteration of the loop.

We also conducted experiments to measure how sensi-
tive the parallelized codes are to the size of the communi-
cation queues. Figure 8 shows the resulting speedups on
our base model, with 32-element queues, and with the size
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Figure 7. Speedup over single-threaded, for
different inter-core communication latencies.

of the queues set to 1 element. The experiments show that
only one of the benchmarks, ks, is affected by the reduced
queue sizes. Investigation of the generated codes showed
that, although the algorithms presented here may generate
acyclic multi-threading such as DSWP [19], this was not
the case in general. In fact, this was only observed for
one inner loop in the ks benchmark. All other generated
codes have cyclic multi-threading, in which pairs of cycli-
cally dependent threads will always be less than one itera-
tion apart. This explains why the benchmarks parallelized
here are more susceptible to longer inter-thread latencies
than the ones generated by DSWP [19]. The good side of
this is that a cheaper inter-core communication mechanism,
with simple blocking registers, is enough here.
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Figure 8. Speedup over single-threaded, for
different communication queue sizes.

6 Related Work

There is a broad range of related work on instruction
scheduling. In this section, we briefly describe and con-
trast the techniques mostly related to ours. The techniques
are classified using a unified taxonomy that includes two
orthogonal characteristics.

6.1 Local versusGlobal Scheduling

Instruction schedulers can be classified as eitherlo-
cal or global. Local techniques independently schedule
each straight-line sequence of instructions, typically a ba-
sic block. For each basic block, the instructions are sched-
uled respecting aData Dependence Graph(DDG), where
each vertex corresponds to an instruction and the arcs de-
termine a partial ordering that must be respected in order
to keep the correct program behavior. A classic example of
local scheduling islocal list scheduling[17], used in many
optimizing compilers.

On the other hand, global schedulers simultaneously
consider instructions from different basic blocks when mak-
ing their schedule decisions. The set of basic blocks sched-
uled simultaneously can have different characteristics. For
example, some techniques consider only instructions in ba-
sic blocks that form a trace in the CFG [7, 11]. Oth-
ers schedule all the instructions in a set of basic blocks
that form a loop in the program [14, 19]. The more gen-
eral techniques must be able to simultaneously scheduled
instructions in arbitrary CFG regions, potentially includ-
ing the whole procedure. The special case of simultane-
ously scheduling instructions from control-equivalent ba-
sic blocks has been studied in [2]. A more general ap-
proach, based on integer linear programming and com-
bining scheduling and global code motion, was proposed
in [28]. Compared to local approaches, global schedulers
use a larger scope to help them making decisions, and thus
have potential to obtain a better schedule. Besides data de-
pendences, global schedulers must also preserve control de-
pendences.

6.2 Single-versusMulti-Threaded Scheduling

Depending on the number of simultaneously executing
threads they generate, scheduling techniques can be classi-
fied as eithersingle-threadedor multi-threaded. Of course,
this characteristic is highly dependent on the target archi-
tecture. Single-threaded scheduling is commonly used for
a wide range of single-threaded architectures, from sim-
ple RISC-like processors to very complex ones such as
VLIW/EPIC [14, 3] and clustered architectures [5, 18].

Besides scheduling original program’s instructions (the
computation), multi-threaded schedulers must also generate
communicationinstructions to satisfy inter-thread depen-
dences. It is true that, for clustered single-threaded architec-
tures, the scheduler also needs to insert communication in-
structions to move values from one register bank to another.
However, the fact that dependent instructions are executed
in different threads makes the generation of communication
more challenging for multi-threaded architectures.

Motivated by CMPs, several multi-threaded scheduling
techniques have recently been proposed to generate multi-
threaded code from general-purpose, sequential applica-



Num. of Scope
Threads Basic Block Trace Loop Proc.

Single List Sched. [17] Trace [7, 5, 3] SWP GSTIS [2]
Superblock [11] [14, 18] ILP [28]

Multiple Space-time [15]
Convergent [16] DSWP GMT
DAE Sched. [23] [19]

Table 3. Instruction scheduling space.

tions [15, 16, 19]. Most of these techniques use alocal
multi-threaded(LMT) approach [15, 16]. LMT schedulers
have to insert synchronization at branch instructions: be-
fore jumping to the next block, the thread taking the branch
decision sends the branch direction to the other threads
through the communication queues. The other threads then
mimic this branch, so that all threads follow the same path
through the program’s control-flow graph (CFG) [15, 16].
A similar approach is used by schedulers for decoupled ac-
cess/execute architectures, which may even use specialized
queues to communicate branch directions [23].

Although suitable for single-threaded architectures, the
problem of using local scheduling for multi-threaded ma-
chines is that it effectively only exploitsinstruction-level
parallelism inside basic blocks. Unfortunately, general-
purpose applications typically have a very small number of
instructions per basic block, usually less than 10. Not sur-
prisingly, existing compilers based on local scheduling for
multi-threaded architectures have shown little effectiveness
in extracting parallelism from general-purpose, sequential
applications [15, 16].

In [19], we recently proposed a global multi-threaded
scheduling technique, called decoupled software pipelining
(DSWP). This technique utilizes separate threads to execute
different stages of a loop in a pipelined fashion. Although
DSWP is classified as global scheduling, it is limited to loop
regions. Besides that, the technique described in [19] im-
poses some extraneous loop dependences, which we later
proved unnecessary.

In this paper, we presented generalglobal multi-threaded
scheduling algorithms, which can simultaneous schedule
instructions in arbitrary code regions. Table 3 summarizes
how various existing scheduling techniques are classified
according to our taxonomy. Horizontally, the more a tech-
niques is to the right, the more general is its handling of
control flow.

7 Conclusion

The recent trend in the microprocessor industry to build
chip multiprocessors (CMPs) has increased the interest
in automatic thread extraction for the large base of non-
scientific applications. Despite this interest and CMPs’
ability to simultaneously execute different control paths,
existing multi-threading techniques have mostly been re-
stricted to local scheduling approaches. This paper intro-
duced the concept of global multi-threaded (GMT) instruc-

tion scheduling, a general technique that can exploit fine-
grained thread-level parallelism on modern CMPs. Op-
posed to local approaches, GMT scheduling exposes thread-
level parallelism, enabling the concurrent execution of in-
structions from different regions of the control-flow graph.
This paper also described algorithms to find profitable GMT
schedules for arbitrary code regions using a PDG represen-
tation, as well as an algorithm to generate multi-threaded
code for any GMT schedule decision. Experimental results
on a number of benchmarks demonstrated the enormous po-
tential of our techniques.
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