
Hardware-Modulated Parallelism in Chip Multiprocessors

Julia Chen, Philo Juang, Kevin Ko,
Gilberto Contreras, David Penry, Ram Rangan, Adam Stoler,

Li-Shiuan Peh and Margaret Martonosi
Departments of Computer Science and Electrical Engineering

Princeton University
Email:peh@princeton.edu

Abstract

Chip multi-processors (CMPs) already have widespread com-
mercial availability, and technology roadmaps project enough
on-chip transistors to replicate tens or hundreds of current pro-
cessor cores. How will we express parallelism, partition appli-
cations, and schedule/place/migrate threads on these highly-
parallel CMPs?

This paper presents and evaluates a new approach to highly-
parallel CMPs, advocating a new hardware-software contract.
The software layer is encouraged to expose large amounts of
multi-granular, heterogeneous parallelism. The hardware, mean-
while, is designed to offer low-overhead, low-area support for
orchestrating and modulating this parallelism on CMPs at run-
time. Specifically, our proposed CMP architecture consists of
architectural and ISA support targeting thread creation, schedul-
ing and context-switching, designed to facilitate effective hard-
ware run-time mapping of threads to cores at low overheads.

Dynamic modulation of parallelism provides the ability to
respond to run-time variability that arises from dataset changes,
memory system effects and power spikes and lulls, to name a
few. It also naturally provides a long-term CMP platform with
performance portability and tolerance to frequency and relia-
bility variations across multiple CMP generations. Our sim-
ulations of a range of applications possessing do-all, stream-
ing and recursive parallellism show speedups of 4-11.5X and
energy-delay-product savings of 3.8X, on average, on a 16-
core vs. a 1-core system. This is achieved with modest amounts
of hardware support that allows for low overheads in thread
creation, scheduling and context-switching. In particular, our
simulations motivated the need for hardware support, show-
ing that the large thread management overheads of current
run-time software systems can lead to up to 6.5X slowdown.
The difficulties faced in static scheduling were shown in our
simulations with a static scheduling algorithm, fed with ora-
cle profiled inputs suffering up to 107% slowdown compared
to NDP’s hardware scheduler, due to its inability to handle
memory system variabilities. More broadly, we feel that the
ideas presented here show promise for scaling to the systems
expected in ten years, where the advantages of high transistor
counts may be dampened by difficulties in circuit variations

In Proceedings of Workshop on Design, Architecture and
Simulation of Chip Multi-Processors Conference (dasCMP),
held in conjunction with the 38th Annual International Sym-
posium on Microarchitecture (MICRO), Barcelona, Spain,
November 2005.

and reliability. These issues will make dynamic scheduling and
adaptation mandatory; our proposals represent a first step to-
wards that direction.

1. Introduction

Chip multiprocessors with modest numbers of cores are com-
monplace in product lines today, and technology trends will
allow CMP designs with tens or hundreds of processor cores
in the future. From a hardware perspective, multi-core designs
are very appealing because replicated cores allow very high-
performance and high-transistor-count chips to be built with
manageable complexity and power-efficiency.

From a software perspective, however, problems of parti-
tioning and mapping applications onto these multiple cores re-
main fraught with difficulty. On the one hand, traditional von
Neuman parallelism (identified either by the programmer or
the compiler) is often insufficient to effectively use the avail-
able cores on-chip. On the other hand, dataflow parallelism has
frequently suffered from being too fine-grained, thus swamp-
ing hardware resources with many tasks that are difficult to
schedule appropriately onto the cores and requiring program-
mers to fundamentally change the way they code.

Thus, the overall problem involves two parts: (1) partition-
ing a problem into parallel chunks of work, and (2) mapping
and scheduling these chunks onto the underlying hardware.
Currently, both phases are carried out in tandem—most ap-
plications are parallelized and mapped manually, hand-tuned
specifically for a targeted underlying hardware platform. This
requires programmers to not only uncover legal parallelism,
and partition the application correctly, but also to load-balance
application threads across the cores to ensure high performance.
Moving to a CMP with a different configuration of cores often
requires re-partitioning and mapping/scheduling of an applica-
tion. Automatic compiler-driven partitioning and mapping of
sequential programs is an appealing solution, but is difficult
in its current form. In particular, run-time factors such as in-
put data variability and long-latency memory stalls continue to
make compile-time partitioning and mapping highly challeng-
ing.

In this paper, we argue instead for a new hardware-software
contract or execution model based on potential parallelism.
For (1), programmers or compilers aggressively partition ap-
plications into as many threads as possible, with the goal of ex-
posing all potential parallelism rather than partitioning the pro-
gram to run on a specific architecture. This philosophy draws
somewhat from dataflow approaches. For (2), we propose and
evaluate modest amounts of run-time hardware support for this
style of parallelism. In particular, we investigate support to
modulate the level of parallelism through dynamic scheduling
and mapping of threads to cores and by leveraging program in-
formation exposed through the ISA. Such a hardware-software

contract hides the underlying hardware intricacies from the
software, allowing programmers (and compilers) to partition
a program only once for execution on multiple core configura-
tions. Likewise, it empowers hardware to perform a range of
dynamic adaptations that improve the power and performance
efficiency of the underlying platform.

A key aspect of the system we propose and evaluate here
hinges on the fact that efficiently supporting aggressive, het-
erogeneous (multi-granular) parallelism requires that thread cre-
ation, context-switching and scheduling be supported at very
low overheads. Currently, support for parallelism is handled in
software, either through user-level threads packages (Cilk [1],
Pthreads [2]) or the operating system. User level thread man-
agement has low overheads but cannot leverage parallel hard-
ware without going through OS thread management, since user-
level threads belong to a single process. OS thread manage-
ment, on the other hand, comes with significant overheads for
thread creation, scheduling and context-switching. Just as an
example, on a machine with an XScale processor running Linux,
we measured POSIX-compliant thread creation times to be
roughly 150K cycles and thread scheduling latencies of roughly
20K cycles. These overheads are aggravated by memory ac-
cess delays, as the thread status data structures are, due to their
infrequent access, not likely to be cached. Using hardware per-
formance counters on the XScale measurement platform, we
found that roughly 75% of the above cycles were spent access-
ing the memory for scheduling tables.

With these measurements and observations, it is clear that
software thread management imposes significant costs, mak-
ing it unsuitable for handling our proposed software model
which encourages the aggressive exposing of parallelism of
varying granularities. In this paper, we thus propose a CMP
architecture that includes a suite of hardware microarchitec-
tural mechanisms that significantly lower thread management
overheads:

• Thread creation: Storing thread information entirely in
hardware, in dedicated scratchpad memories at each core,
thus enabling fast book-keeping;

• Thread scheduling: Performing scheduling in hardware,
and placing these hardware structures at the network level
to minimize the overheads of accessing scheduling in-
formation and placing threads remotely. ISA extensions
allow program characteristics to be exposed to the hard-
ware schedulers.

• Thread context-switching: Pre-fetching thread contexts,
instructions and data initiated by the hardware scheduler;

The rest of this paper elaborates and evaluates the proposed
architecture, the Network-Driven Processor (NDP). Section 2
presents the overall architecture, software model and hardware-
software contract of NDP. Section 3 discusses each aspect of
the architecture in detail, explaining our rationale for the var-
ious microarchitectural design decisions. Section 4 presents
our simulation results on a variety of benchmarks exhibiting
fairly diverse types of parallelism. Section 5 compares NDP
with prior related work, and Section 6 wraps up the paper.

2. NDP architecture overview

The key driving goal behind NDP is the support for a new
hardware-software contract where applications are aggressively
partitioned in order to expose and exploit all potential paral-
lelism. In particular, we view NDP as offering a hardware-
software dividing line below which hardware dynamically mod-
ulates application parallelism. Above this line, we encour-

age a software model which exposes large amounts of multi-
granular, heterogeneous parallelism. Such parallelism can be
achieved via a range of techniques, including: traditional do-
all parallelism, traditional and decoupled software pipelined
parallelism [3], producer-consumer streaming parallelism as
seen in multimedia codes [4, 5], transactional parallelism [6],
and other techniques including speculative parallelism. While
our current studies use hand-ported applications coded on se-
quential C, automated compilation and concurrent languages
to ease exposing parallelism are among our longer-term future
work plans.

The remainder of this section offers details on the hardware
and software support we envision. Detailed explorations of
the architectural issues faced in each component’s design are
further discussed in Section 3.

2.1 NDP software model

NDP provides API and corresponding ISA instructions which
allow the software to create threads and expose thread char-
acteristics to the hardware, while abstracting from the pro-
grammer/compiler the actual physical mapping and temporal
scheduling of the threads onto cores.

Thread creation is supported directly by hardware, through
the thread spawn call in the API and its corresponding ISA in-
struction. To efficiently support aggressive do-all and stream-
ing parallelism, NDP supports run-time thread cloning. A sin-
gle thread spawn can be dynamically parallelized into multiple
threads at run-time. For do-all parallelism, this allows a pro-
grammer to spawn a single thread for all the iterations, while
the hardware dynamically clones additional threads when it de-
cides to further parallelize the program. This supports aggres-
sive do-all parallelism without unnecessary overheads. When
a do-all is running on a single core, it will be as efficient as
single-thread performance, since the hardware will simply iter-
ate repeatedly over the thread, rather than incur thread creation
and context-switching delays as if each iteration were exposed
as a distinct thread. This will also reduce the hardware per-
thread overhead.

For streaming parallelism, the cloning support allows the
programmer to create a single thread for each producer/consumer
stage of the streaming application, rather than aggressively cre-
ating a thread for each streaming data item. In addition to
saving on hardware resources and cutting down on threading
overheads, this allows streaming threads to expose a long-lived
producer-consumer data flow to the hardware, which can then
be monitored and used to guide the run-time cloning of pro-
ducer and consumer threads in order to balance the produce-
consume rate and arrive at the ideal parallelization for stream-
ing applications.

In addition to support for threading, a critical component of
NDP’s software model is the exposing of data flow between
threads through queues. Queues expose inter-thread commu-
nication, allowing the hardware to appropriately provision net-
work bandwidth. They also convey critical thread dependen-
cies that enable the scheduler to track the critical path of a pro-
gram and the data required to guide the hardware in prefetching
prior to thread execution. This notion of logical queues is en-
capsulated in the software model as queue handles, or queue
IDs. The hardware maintains the binding or connecting of
queues to threads, as well as the current location of threads.
For clonable threads, the hardware also transparently manage
the splitting and merging of queues.

While our current design focuses on homogeneous tiles, fu-
ture heterogeneous NDP systems might have broader sets of
thread annotations in the API and ISA, such as a thread’s need

 L1 Instruction$

Processor Core Prefetch
unit

Q
N/W
I/F

Stats
N/W
I/F

L2$

Queue Table Thread Table Tile Table

Scheduler
Thread
Table-
N/W I/F

NDP Network

Directory

L1 Data $ Thread

router

Mem
N/W

context$

Figure 1. Sketch of NDP tile architecture. Hardware
elements are not drawn to scale. We estimate that
non-processor NDP hardware to represent roughly
10% or less of the total core area.

for specialized hardware accelerators, or real-time execution
deadlines.

2.2 NDP hardware architecture

Field Description

Thread Table
ThreadID Per-process thread identifier across the chip
Program counter (PC) Program counter address for this thread
Stack pointer (SP) Stack pointer for this thread
State Thread status

{invalid, blocked, active, ready}
Priority Current thread scheduling priority
Flow Queues Points to queues in the Queue Table
Cloneability Whether or not the thread can clone itself

Queue Table
Software QueueID Per-process queue identifier
Hardware QueueID Physical queue identifier
Producer ThreadID ID of thread which produces into the queue
Producer TileID Tile which currently houses the producer thread
Consumer ThreadID ID of thread which consumes from the queue
Consumer TileID Tile which currently houses the consumer thread

Tile Table
TileID Per-chip tile identifier
Load Latest-known load situation

Table 1. Entries of the Thread, Queue and Tile Tables
on each NDP tile.

Figure 1 sketches the proposed architecture for each tile in
the NDP chip-multiprocessor1. In the middle of the figure,
the network interface comprises much of the hardware support
for run-time thread creation, context-switching and schedul-
ing. In particular, NDP has dedicated hardware memories or
scratchpads that store information of threads, queues and tiles.

1While the tile counts are flexible, we are targeting 16 tiles in 50nm
technology, and envision up to 100 tiles per chip. Furthermore, while
we assume identical, homogeneous tiles in this paper for simplic-
ity, the architecture remains unchanged for heterogeneous processor
cores. All that would change is that the scheduler would need to
account for varying resources per core when mapping threads onto
cores.

Table 1 depicts the specific fields in these tables. In particu-
lar, the Thread Table stores thread information that facilitates
their execution, much like its counterpart process structure in
the OS. Upon a non-blocking thread spawn call, an entry is
created in the Thread Table, and marked as ready for schedul-
ing, setting its PC and SP appropriately. Every spawned thread
will first have an entry in the Thread Table of the core at which
it is spawned (i.e. where its parent thread is executed). The
Queue Table keeps track of the exposed producer-consumer
data flow queues between threads, interfacing with the net-
work to effect communication when producer and consumer
threads are mapped onto different cores. When queue create
is called, it creates an entry in the tile’s Queue Table, setting up
a uni-directional hardware queue. The producer and consumer
threads of a queue are bound at spawn time for parent-child
communications, or at the first queue send and queue recv.
These bindings are maintained automatically by the hardware,
which also tracks the locations of producer/consumer threads.
When the producer and consumer of a queue is on the same
tile, the hardware queue essentially functions like a register;
when the receiver is remote, the queue interface logic maps the
queue to the network, so its contents are automatically pack-
etized, injected into the network and sent towards the tile on
which the receiver thread is housed. The third hardware table,
Tile Table keeps track of the load situation on all tiles across
the chip, and is directly maintained by the network, to aid the
scheduler in load balancing.

All the above structures are used by the Scheduler in de-
termining when to map threads onto which remote cores, as
well as when to run them locally. The Scheduler is thus em-
bedded within the network interface where the hardware tables
are housed to ensure fast, efficient updates. Clearly, there are
a rich set of scheduling algorithms, with myriad design trade-
offs; we propose and evaluate simple policies in this paper that
consume little hardware resources, but more elaborate schemes
may be fruitful in managing complex interactions of perfor-
mance, power, and reliability goals.

Both the Thread and Queue Tables are sized so they can be
accessed within a cycle. Upon an overflow, entries are evicted
by the hardware to off-chip DRAM. When an off-chip entry is
accessed, say upon the arrival of a data item for a queue, it is
swapped back in. The eviction policy is tied with the schedul-
ing algorithm – lower priority thread entries are evicted over
higher priority ones, along with their associated queue entries.

At the bottom of the figure, the NDP network (per-tile router)
is architected to efficiently support the needs of hardware thread
scheduling. Specifically, it provides fast access to thread schedul-
ing information such as the Tile Table which is updated di-
rectly by the network through its statistics protocol. Producer-
consumer rate information is also available, providing ’queue
transparency’ via virtual circuits. This means that schedulers
can infer the rate of consumption at the remote end of a queue
by looking at the output buffer of the queue’s local produc-
ing end, without incurring any communication latency. The
network also supports fast placement of threads through high-
priority scout messages, which effect the moving of thread
and queue table entries from the original tile to the destination
tile and seamlessly manage communication through queues as
threads move.

At the top of Figure 1 is a nearly-standard processor core
and directory-based coherent cache memory system, with one
primary exception – the NDP Scheduler is responsible for ini-
tiating execution on the processor core. We chose to support a
shared memory space so as to ease application partitioning.

3. Architectural Support for Parallelism
and Scheduling

3.1 Support for Fast Thread Creation

In order to support exposing aggressive amounts of paral-
lelism of heterogeneous granularity, thread creation delay has
to be lowered, as this is on the critical path of each thread.
High thread creation overheads have severe impact on the per-
formance of fine-grained threads.

In NDP, through our hardware thread tables at each tile,
spawning of new threads can be done efficiently. A thread
spawn requires only the creation of a new entry in the tile’s
Thread Table and the allocation of space on the stack. The for-
mer can be performed within a cycle when an entry is available
in the Thread Table, blocking only when the table is full and
an entry needs to be evicted. Then the scheduler will decide
which thread entry to swap out to memory.

While it is possible to provide hardware support for the
management of stacks to minimize thread creation delay, we
chose to keep stack allocation under the management of the
OS, which can amortize the cost of a stack allocation across
multiple threads, and lower it to approximately 30 cycles. This
is done by initially allocating a large segment of memory and
partitioning them into fixed-size thread stacks as necessary.
Since stacks are fairly large in size (ranging from 1KB to 2MB
in Linux), using hardware-managed scratchpad memories for
their storage leads to rather high area overheads.

Also, on a thread spawn, the parent thread creates a struc-
ture with the input arguments to the child thread, so the input
arguments are contiguous in memory. A pointer to the input ar-
guments is passed onto the newly spawned thread’s stack. The
scheduler can then access this pointer and begin prefetching
from memory the arguments needed by the thread in advance,
prior to launching its execution. This features benefits both fast
thread creation and fast thread context switching.

We estimate that 50 cycles are needed for a spawn; threads
in the thread table are implicitly ordered and can be quickly
accessed, and thus the scheduling delay is on the order of 10
cycles. In an operating system, simply accessing the process
table can cause the processor to incur cache misses and there-
fore induce a significant delay; executing the scheduling code
to choose the new thread further increases the delay. More-
over, the NDP schedulers can be executing concurrently with
an application on the same tile; much of the delay can thus be
hidden, unlike OS or user-level scheduling code, which must
uproot a running thread in order to execute.

3.2 Support for Fast Thread Scheduling

Thread scheduling involves three phases: first, accessing
thread and tile information used by the scheduler, second, mak-
ing the decision as to which thread to execute, and third, ef-
fecting scheduling decisions in moving threads onto remote
cores. NDP provides hardware support to reduce the over-
heads of each of the above phases. More specifically, NDP
proposes embedding such hardware support within the net-
work, with the network designed from the ground up to lower
the delays of each of the above phases. First, the network is
architected for fast access of scheduling information such as
tile load. Second, the scheduler ASIC which makes the de-
cisions is implemented within the network interface, so it can
very quickly access scheduling information maintained and di-
rectly updated by the network. In addition, once the scheduler
decides to move a thread, the network is responsible for effect-

ing the placement, with fast table updates and seamless queue
management.

3.2.1 Fast access to tile table and queue rate

By embedding accessing and updating of the Tile Table
within the network hardware, with routers directly maintain-
ing the Tile Tables, the communication overhead involved can
be reduced to the minimum, providing the scheduler with fast,
up-to-date information without occupying processor resources.

Several alternative protocols with different trade-offs in re-
cency vs. communication overhead were considered. At one
extreme, the snooping protocol observes the movement of passer-
by threads, recording thread destinations, thus updating the
Tile Table without additional traffic. When there is substan-
tial thread movement across the chip, snooping will be able to
gather a fairly complete and accurate picture. Another alterna-
tive is the token ring protocol, where tiles are logically viewed
as a ring. Periodically, each tile sends a token containing its
load to its right immediate neighbor in the ring, so a tile always
has a view of all tiles that is, at most, (N-1)-hops-old, where
N is the number of tiles, trading off scalability for known de-
lay and low communication overhead. A third option, the one
we chose in NDP, is neighbor broadcasting. Whenever the
tile workload changes passes a threshold level, it informs its
four neighbors of its load situation, piggybacking on the same
message the load information of its own neighbors as well,
so that each message contains load information of five tiles.
While this incurs a higher communication overhead, it delivers
a fairly up-to-date view of the Tile Tables and scales well to a
large number of cores.

By exposing queues in the ISA, NDP allows the sched-
uler to monitor the producing/consuming rate of the queues
and balance the producer and consumer threads appropriately.
The NDP network is architected for queue transparency, i.e.
the local status of one end of a queue accurately reflects its
status on the remote end. In other words, when an outgoing
queue from tile A to B fills up, it can be inferred that tile B
is not reading the queue fast enough, and thus there is an im-
balance between the producer on tile A and its consumer on
tile B. Without queue transparency, a local queue can fill up
due to network contention from unrelated threads, so producer-
consumer thread relationships can only be tracked through ex-
plicit messages to the remote tile, incurring costly round-trip
communication delays.

Queue transparency is realized through virtual circuits—
pre-reservation of bandwidth at every router between the sender
and receiver. This pre-reservation is done with a scout packet
which also installs thread and queue table entries at the remote
node and initiates prefetches (see Section 3.2.3). At each router
hop, the scout computes the next hop along the route and arbi-
trates for a virtual channel [7]. Once a virtual channel is ob-
tained, the requested bandwidth is factored as a weight guiding
the switch allocator to ensure that the virtual channel gets its
allocated physical channel bandwidth. If there is insufficient
bandwidth, the circuit is rejected through a return-to-sender
nack. The reservation table stores this weight, as well as the
input and output virtual channel mapping for the queue, so sub-
sequent packets need not go through routing, virtual channel
or switch allocation. Pre-reservation of bandwidth not only
enables fast access to queue information, but also minimizes
thread communication delay since routes are set up ahead of
time. Reducing thread communication overhead is critical in
our quest to support heterogeneous threads of variable gran-
ularities. With the ever-increasing wiring resources available
on-chip, we feel that the potential bandwidth inefficiency due
to pre-reservation can be mitigated.

3.2.2 Fast scheduler decision logic

We considered several alternatives in the implementation of
the scheduler decision logic. First, it can remain in the OS, run-
ning as a thread in each core, accessing the hardware thread,
queue, and tile tables. This requires context-switching to this
kernel thread for thread scheduling, occupying processor re-
sources during scheduling and incurring context-switching de-
lays. Alternatively, the scheduler software thread can run on
a separate hardware co-processor housed within the network
interface. This allows for fast access to scheduling informa-
tion without interfering with actual computation. We chose to
go with a purely hardware ASIC implementation of the NDP
scheduler in our aggressive push towards lower thread schedul-
ing delays. Our simple scheduling policies result in manage-
able hardware area and energy overheads.

3.2.3 Fast remote thread placement

The execution of a thread on a remote tile involves first set-
ting up the thread table entry on the remote tile, then main-
taining and prefetching the thread’s queues so communications
occur seamlessly and efficiently. NDP lowers remote thread
placement delay by architecting the network to support these
operations explicitly.

When the thread is placed on a remote tile (or pulled from a
remote tile), a network scout packet containing the thread and
queue table entries is sent to the specific tile. Upon receipt of
a scout packet, the network interface installs these entries into
the local tables.

The network is also responsible for the seamless manage-
ment of queues as threads move and clone. During the transit
of threads, the queues at the source tile are frozen until the table
entries have been set up and the queue contents forwarded. For
clonable threads, the queue network interface logic is respon-
sible for mapping software to hardware queues as well, main-
taining the merging and splitting of queues. When a thread is
cloned, new hardware queues are created and mapped to the
original software queue IDs, and a confirmation message is
sent back to the producer tile, informing it of these new hard-
ware queue ids.

A possible concern is that cloning may destroy the order-
ing of data within queues, when doling out data in a round-
robin fashion to different tiles. This is not an issue as there
will be separate hardware queues from the producer to each
of the cloned consumers, and separate hardware queues from
each of these consumers to a later stage, and data items are
tagged at the producer.

3.2.4 NDP Scheduler

In NDP, every tile has a lightweight, hardware scheduler
which keeps track of threads spawned in the Thread Table
and selects threads for execution on the local core in order
of their priorities. By exposing thread characteristics through
the hardware-software contract, NDP allows for myriad thread
scheduling policies based on the rich information tracked ef-
ficiently by NDP’s hardware mechanisms. In this paper, we
evaluate a simple distributed, random work-stealing scheduler
fashioned after that used in the Cilk’s runtime software sys-
tem [1]. It chooses another tile randomly from its Tile Table
and sends a request to steal across the network to that tile. If
that tile has a thread that is ready or blocked, it sends a confir-
mation, along with the information required to run that thread
(Thread Table entry, associated Queue Table entries, state con-
text). If it does not have a thread to spare, it sends a nega-
tive confirmation and the idle tile chooses another tile to steal
from. The implementation of such a simple scheduler clearly

has very low hardware overheads. Despite its simplicity, our
simulation over a suite of applications with diverse parallelism
profiles show that NDP is able to dynamically modulate the
parallelism and realize significant speedups and power savings.

3.3 Support for Fast Thread Context Switching

With a large number of threads, the frequency of context
switching becomes correspondingly higher. We therefore need
hardware support for low-latency context switching between
threads. A large portion of the context switching delay is in-
volved in swapping in and out each thread’s machine state,
which can consist of hundreds of registers.

Our solution is to prefetch the machine state and the input
arguments of the desired next thread. Since the NDP hardware
scheduler determines which thread to launch onto the proces-
sor core based on priorities, it can initiate a hardware prefetch
of the machine state and input arguments of the highest-priority
thread into the regular cache. This avoids adding the latency
of warming up cold caches to the context-switching delays, as
the prefetcher ensures that one or more threads have what they
need to execute ready in the cache. With a hardware prefetcher,
normal program execution will not be interrupted, though con-
flicts in the cache may hurt performance. Another alternative
to keeping threads’ hardware register contexts in the regular
cache is to store them in local scratchpad memory to avert
cache conflicts. An even more aggressive alternative is to have
hardware register contexts within the local processor core so
active threads need not suffer a pipeline flush when swapped
out [8]. While we considered these alternatives, we chose to
simply prefetch machine state into the regular cache.

Our design choice is heavily guided by the software model
NDP is built to support—aggressive, heterogeneous threading,
which renders techniques such as hardware register contexts
unsuitable as they constrain the number of threads. Our ap-
proach allows for an unlimited number of thread contexts in
the memory hierarchy; so long as the prefetcher can effectively
predict and fully fetch the state of a ready thread before it is
needed, a low-latency context switch can be performed on any
number of threads. Moreover, machine state of blocked threads
can be forwarded to or a prefetch initiated by the new core.

4. Simulation Results

4.1 Simulator setup

Cores simple in-order
L1 Data/Instr Cache 32KB each: 4-way associative, 32-byte block size,

write-back + write-allocate, 1 cycle hit
L2 Data Cache 4MB: 16-way associative, 16 banks, 32-byte blocks,
(shared, directory) write-back+write-allocate, 15 cycle hit, 200 cycle miss
Memory Network 4x4 grid, dimension-order routing
Queue Network implemented as hardware queues with ideal delay
Distributed Scheduler random work-stealing

Table 2. Simulator Setup

We developed our simulator models using the Liberty Sim-
ulation Environment (LSE) [9]’s automatic simulator builder
framework. Table 2 describes the various hardware blocks and
their parameterizations. The processor core is a simple RISC
core capable of executing one instruction every cycle and stalls
on misses. We model all transactions in the cache hierarchy
in full detail, including transactions for load reservation and
store conditional instructions that are necessary to implement

locking. All contention including banking and cache port con-
tention are also accurately modeled. The distributed L2 con-
trollers model a MSI directory-based cache coherence proto-
col.

The memory network comprises a 4x4 grid that connects
all the L2 cache controllers in the 16-way NDP configuration.
This allows us to model memory traffic bottlenecks accurately
in the network. The tile-to-tile network is modeled as requiring
one cycle for injection into and ejection from the network, with
three cycles per hop communication cost.

The distributed scheduler is modeled as interacting with its
corresponding core through dedicated ports. These ports are
used to exchange control and status information between the
scheduler and the core (to activate context switches, to inform
the scheduler of thread creations and destructions, etc.). When
Thread and Queue Tables overflow, they are evicted to off-chip
DRAM, with the same penalty as a L2 miss of 200 cycles.

For the power modeling, we use Wattch [10] capacitance-
based power models. We assume 50nm technology factors
taken from the ITRS 2003 report [11], with 1 GHz cores at
1.1V with perfect clock gating for unused functional units. For
all our simulations, we fast-forward and warm caches until
we hit the first thread spawn instruction in the main thread,
at which point we begin detailed simulation and statistics col-
lection.

4.2 Benchmarks

Studies focusing on fine-grained thread-level parallelism face
a chicken-and-egg problem in their evaluations. Since high
per-thread overheads plague current systems, few fine-grained
parallel applications exist to test future architectures that lower
these overheads. For our evaluations, we have hand-ported ap-
plications from SPEC and MediaBench to expose the sort of
fine-grained aggressively-parallel behavior we wish to encour-
age. We were able to port the suite of applications with rela-
tively low effort, using the NDP API function calls, and were
able to achieve high-degrees of threading (ranging from 60 to
2000+ threads per application, ranging in granularity from be-
tween 5,000 to 9,000+ dynamic instructions per thread). In fu-
ture systems, we plan to expose this parallelism automatically,
by exploring a range of automated techniques. In particular,
approaches allowing modest speculation (such as transactional
coherence [6]) are promising for encouraging aggressive par-
allelism well-suited to our architecture.

We parallelized art and equake from SPEC2000, jpegdec
from MediaBench, and two other programs with highly dy-
namic behavior quicksort and othello. The types of parallelism
found in these programs can be broken up into three categories:
do-all, recursive, and streaming. The first type of parallelism,
do-all, is constituted by a single parent thread spawning many
independent computational threads, each corresponding to one
or more iterations of a critical program loop. Each of these will
return a result to the parent thread or a synchronization thread
to signify its completion.

Programs art and equake are both partitioned with do-all
style parallelism. The amount of parallelism and the granu-
larity of the threads vary across these benchmarks. Equake
has parallelism exposed in the computationally-intensive time
integration loop. Each of the nodes of the simulation can be
computed independently for each time step, but must be syn-
chronized after each time step. In art, the parallelism is within
an inner loop that is a significant portion of the total execution
time. Here the parallelism is more fine grained with less work
per thread and more synchronization points. In both programs,
parallel sections occurs in phases of very similar threads.

The second type of parallelism we utilize in our benchmarks
is recursive parallelism, exhibited by othello and quicksort.
othello is an AI game player that calculates the best possi-
ble next move by looking ahead in the game tree of possible
moves. At each level in the tree, new threads are spawned
for each of the possible moves given the game board setup,
so the number of threads spawned for each possible move is
unpredictable until the board setup is known. Quicksort is a
typical sorting algorithm with the array being divided into two
smaller arrays based on a pivot value. A new thread is recur-
sively spawned for each of the two sub arrays and the amount
of work for each is based on the pivot’s division of the main
array.

The third type of parallelism we look at is the pipelined
parallelism of streaming applications. Our parallel implemen-
tation of jpegdec involves a main thread that divides the image
into smaller blocks that can be independently decoded. The
first stage of the streaming pipeline takes the block and per-
forms the inverse DCT operation on the data. The second stage
takes this information and does the color mapping for the final
image. The last stage takes the output of these previous stages
and arranges the decoded blocks into the final image. The com-
putational stages of the I-DCT and the color mapping can be
duplicated as needed in order to match the rate at which the
main thread produces the blocks for processing.

Table 3 characterizes our benchmarks in terms of the num-
ber of threads created as well as the granularity of each thread.
All benchmarks aggressively expose parallelism and vary fairly
widely in thread granularity.

4.3 NDP Performance

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

SpeedUp 11.498 7.994 4.092 4.391 5.643

art equake jpegdec othello-nm qsort

Figure 2. NDP 16 Core Speed-up vs Single Core.

To evaluate the potential performance from NDP’s low-overhead
hardware support mechanisms for dynamic parallelism, we sim-
ulated our parallelized applications under optimal scenarios in
both 1-core and 16-core, 4x4 mesh configurations. Here, we
define optimality by eliminating hardware constraints associ-
ated with thread and queue tables and by lifting congestion
effects on the thread migration network. All other elements of
the model remain unchanged, with the core and cache hierar-
chy following the description in Table 2.

Hardware constraints on thread and queue tables are two-
fold: size and execution time in processing the respective data.
We handle the former by allowing for an infinite number of
thread and queue table entries. This nullifies the need for pag-
ing on overflow and presents a best case scenario of a single-
cycle hit per local thread or queue entry access. The simulated
thread scheduler executes concurrently with the core as a state-
machine and thus incurs a one-cycle delay on top of accesses
to respond to thread-related events. For this ideal situation,
we assume that register contexts are cached in the local thread

Benchmark #Threads Avg Inst/Thread Inst/Thread Stddev Avg Thread Life (cycles) Life Stddev
art (phase) 60 6,745 26 320,216 1,544
equake (phase) 2,742 9,408 324 59,004 10,857
jpegdec 674 6,113 621 27,143 5,515
othello 722 5,640 5,219 26,679 12,597
qsort 469 8,468 7,236 24,701 16,024

Table 3. Granularity of parallelism in our benchmarks, in terms of thread count and number of instructions per thread.

entry and can be performed in three cycles.
In the 16-core case, we model randomized task stealing over

a congestion-free free network by assuming a uniform 20-cycle
penalty for each thread steal/migration. For the mesh topology,
this pessimistically assumes the worst-case 6-hop traversal un-
der dimension-ordered routing, allowing 3 cycles per hop and
1 cycle for extraction and insertion at the source and destina-
tion. The one-core model is directly connected to the cache
hierarchy, but it possesses NDP structures so that it can pro-
cess the exact same executable as the 16-core version. Since
only one tile is available, task-stealing degenerates into a FIFO
processing of spawned threads.

Figure 2 illustrates the performance of the 16-way config-
uration as compared to the 1-way instantiation. We observe
promising speedups from 4X for jpegdec to 11.5X for art. In
particular, the do-all style parallelizations for art and equake
excel, showing the greatest benefit. While it is not surprising to
expect healthy speed-ups from these sorts of applications under
static orchestration, it must be emphasized that these speed-ups
were achieved through dynamic scheduling of finely exposed
parallelism.

qsort and othello both utilize recursive-style parallelism,
which imposes a penalty due to dynamic workloads. Looking
at data in Table 3, we see that both applications create chil-
dren threads with small average lifetimes and high variability.
This combined with the synchronization of threads in our par-
allelization decreased the potential for speed-up.

Although jpegdec’s parallel performance is the lowest among
the applications, we found that our parallelization is funda-
mentally limited by a bottleneck in the main thread, which pro-
duces work for all subsequent stages. This stems from overlap-
ping the preprocessing stage, which must perform a huffman
decoding of the input bitstream, with the more independent
block decoding. This 4X speedup actually beats a hand-tuned
placement of jpegdec.

Subsequent subsections will extend on these potential re-
sults to show the effects of adding various real-world con-
straints.

4.4 Effect of hardware constraints

In order to determine the effect of finite hardware area, we
ran the same set of tests on a more constrained version of the
aforementioned best-case 16-core model. We imposed limi-
tations on the thread table and evaluated performance over a
varying number of local entries. In each case, overflow is
handled by a least recently used eviction strategy that is en-
forced on every access to an entry. Hit costs remain unchanged
from before; however, a miss to the local entry imposes a con-
stant 210 cycle cost, which mimics a complete miss to off-chip
memory in our model, along with a safety factor.

Across our application suite, we found that this constraint
marginally affects performance and varies slightly as the num-
ber of entries changes. At worst, throughput drops to 95%
of that seen previously. This occurred with jpegdec and is
likely an offshoot of our parallelization, which introduces a
large number of queue communications and hence opportuni-

ties for context switching.
The delays introduced for paging sometimes had a very mi-

nor positive effect. This can be seen in the 8-entry case for
qsort, which performs better than the other versions. Here, the
inclusion of delays alters scheduling behavior of the task steal-
ing scheduler and manages to find a more optimal solution.
In general, however, the significance of this constraint seems
most dependent on the parallelization approach chosen.

4.5 Effect of thread scheduling and spawning delays

Alluding back to our motivation in the introduction, we
measured thread spawn and scheduling delays on the order of
tens to 100K cycles or more under a traditional operating sys-
tem.

To model the effects of such costs on our simulation and
application environment, we conducted a sensitivity analysis
to observe the flexibility of our application suite’s granularity
with respect to thread spawn and scheduling latencies. Keep-
ing our control points stable, we utilized the ideal resource
model from before and inserted a fixed delay to all scheduler
operations. Our scheduler still runs concurrently with the core,
which is a benefit; however, its decisions are latent with respect
to the specified cost. To mimic thread spawn delay, we appro-
priately restricted the scheduler’s view of new threads.

In every case, we found our program run times to degener-
ate severely between a 10,000 cycle and a 100,000 cycle delay,
up to a 6.5X slowdown in jpegdec (Figure 3). Under 10,000 cy-
cle delays, we see throughputs ranging from 74% to 96% of the
ideal scenario, averaging 84% with standard deviation 10%.
Our do-all style parallel programs likely do well because of
their independent execution patterns, while benchmarks with
highly variable dynamic instruction counts per thread (Table 3)
show more susceptibility to such delays. Thus, by reducing
thread spawn and thread scheduling delays to below 10,000 cy-
cles, NDP’s hardware support can adequately support the level
of granularity exhibited by our applications.

4.6 Discussion of Parallelization Overheads

Benchmark Unparallelized (cycles) 1 Core Parallelized
art 7,629,335 7,768,263
equake 28,611,779 62,569,725
othello 4,137,632 19,803,059
qsort 3,803,969 11,805,770

Table 4. Overhead of Parallelization.

To measure the overhead of parallelization, we simulated
a single core configuration of NDP running the unparallelized
application and compared it to a parallelized version using the
NDP API function calls. Interestingly, the do-all application
art had a trivial 1.8% run time overhead from parallelization,
but a recursive-style program qsort suffered a much larger over-
head. We traced the cause of this to cache effects due to the
current lack of support in the simulator for prefetching—when
running the simulator with an ideal cache, the parallelization

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

art equake jpegdec othello-nm qsort

R
at

io
 A

g
ai

n
st

 In
fi

n
it

e
T

h
re

ad
 E

n
tr

ie
s

8 entries 32 entries 64 entries

0

1

2

3

4

5

6

7

art equake jpegdec othello-nm qsort

F
ac

to
r

S
lo

w
-d

o
w

n
 f

ro
m

 A
d

d
ed

 D
el

ay
s

1000 cycles 10000 cycles 100000 cycles

Figure 3. Sensitivity Analysis: (a) Thread Table Entry Constraints, and (b) Run Time vs. Spawn and Scheduling Delays

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

art equake jpegdec othello qsort

Benchmark

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Predicted MCP Actual NDP

Figure 4. Predicted, actual, and NDP results with
static scheduling using MCP.

overhead for all applications was low: 0.01% for art, 1.9%
for equake, 5.0% for othello, and 1.5% for qsort. In part, this
overhead is incurred, because we lose cache locality as NDP’s
non-blocking thread spawns spawn threads successively, allo-
cating stack space and input argument space in the cache for
each of them, before running them. This is done in order to un-
cover more of the task graph of the program for the scheduler.
Unfortunately, by the time the first thread is run, its associated
stack and arguments are long evicted from the cache. This is
especially severe in a single-core run, where all threads share
a single cache. In the future, we plan to design more sophisti-
cated schedulers that can aggressively prefetch stack and local
variables before executing a thread.

4.7 Effectiveness of hardware vs. software schedul-
ing

As a yardstick for static software scheduling, we evalu-
ated a static scheduling algorithm, MCP [12], that has been
found to lead to superior schedules as compared to the other
state-of-the-art scheduling algorithms [13]. MCP is based on
critical-path scheduling, i.e. it schedules critical-path threads
over non-critical-path ones. Since deriving an oracle schedule
is an NP-hard problem [14], MCP is a heuristics-based algo-
rithm. However, it is supplied with oracle thread load and criti-
cal path information that is obtained through profiling with the
exact data inputs.

Figure 4 shows the performance of MCP’s generated sched-
ule, based on MCP’s offline prediction, as well as the actual
performance when MCP’s schedule is fed back into the sim-
ulator and used to orchestrate thread placement in place of
NDP’s hardware scheduler. Across our applications, we see
MCP’s offline-predicted schedule resulting in 32-60% speedup

as compared to our simple random work-stealing hardware sched-
uler on 16 cores. However, when MCP’s schedule is fed back
into the simulator, the performance gains are wiped out, with
actually a 12-107% slowdown vs. our simple hardware sched-
uler. The reason lies in MCP’s inability to factor in the new
cache effects that are introduced by its schedule statically. These
memory variabilities highlight the difficulties faced in static
scheduling in handling runtime variabilities.

4.8 NDP’s impact on energy-delay-product

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

art equake jpegdec othello qsort

Benchmark

N
o

rm
al

iz
ed

 E
n

er
g

y-
D

el
ay

-P
ro

d
u

ct
EDP Potential EDP with DVFS

Figure 5. Energy-delay-product of our 16-core archi-
tecture normalized against the energy-delay-product
of a single core, with and without oracle dynamic volt-
age and frequency scaling.

Figure 5 shows the energy-delay product (EDP) of a 16-
core machine versus the EDP of a single core. Even with the
additional cores added, as well as the additional performance
impact due to contention in the memory system, contention for
locks on shared values, as well as synchronization overhead,
the 16-core machine still improves on energy-delay product by
a significant amount. Note that each core in the 16-core ma-
chine is the same as the single core; thus, while the total energy
of the 16-core machine is higher than the single core, because
of the significant performance improvement one could use sim-
pler, smaller cores to consume less energy and still achieve a
lower energy-delay product than the single core machine.

For the apps in Figure 5, all except quicksort consume ap-
proximately the same energy as the single core machine, within
10%. Quicksort consumes 3.3X the energy of the single core
machine, due to massively increased overhead in obtaining a
lock on mallocs. However, because of the performance im-
provement, quicksort still has a lower energy-delay product.
With 16-cores, on average NDP improves EDP by 3.8X.

By moving scheduling into the hardware, the NDP hard-

ware scheduler is uniquely placed to also schedule dynamic
voltage and frequency scaling of the cores. Here, we explore
the further energy-delay-product savings achievable with an
oracle DVFS scheduler that knows precisely the idle times be-
tween scheduled threads and during failed thread steals. For
some programs, such as othello, many threads complete and
sit idle, waiting for other cores to finish. Coupled with a sig-
nificant number of failed steals—the performance impact of
which is masked due to the sheer number of cores attempting
to steal— this translates into significant opportunities to use
DVFS. Figure 5 shows the potential EDP savings of an oracle
DVFS scheduler – up to 6.25X savings in EDP.

5. Related Work

Dynamically vs. statically-mapped parallelism. Research
projects in chip multiprocessors have focused on statically-
mapped parallelism, either explicitly uncovered by program-
mers, or automatically extracted by compilers [5, 15, 16, 17,
18]. RAW [5] not only statically partitions code onto the 16
tiles, but also statically orders communications between these
tiles so as to lower communication delay, enabling fine-grained
parallelism. Morphable architectures such as TRIPS [15] and
Smart Memories [16] can be configured dynamically for dif-
ferent execution granularities, but the configuration occurs oc-
casionally to suit different application classes; applications are
then statically mapped onto the specific configuration. Syn-
chroscalar [18] goes further with statically-mapped parallelism,
with the compiler/user statically controlling power as well, de-
termining the suitable paritioning of code and corresponding
frequency/voltage to run each cluster of cores at for optimal
power-performance.

Run-time mapping of parallelism has been proposed in vari-
ous forms. Cilk [1] advocated software management of thread
scheduling and mapping with a user-level library. To map that
onto a CMP, Cilk requires underlying OS support, thus incur-
ring high OS thread management delays.

The hardware mapping of parallelism in NDP is reminis-
cent of dataflow architectures, which have been proposed and
shown to be feasible for future CMPs in Wavescalar with the
addition of a Wavecache [17]. Threaded data flow architec-
tures have similar hardware mechanisms for ensuring low-cost
thread creation and context-switching delays [19, 20, 21, 22,
23]. However, prior architectures assume naive greedy local
scheduling policies which round-robin instructions or threads
onto cores. As pointed out by Culler in [24], these schedul-
ing policies, which do not have access to program information
such as thread relationships and resource usage patterns, lead
to poor mapping of instructions or threads onto cores. This
motivated dataflow architectures such as TAM [25] and Mon-
soon [19] where the compiler statically maps threads onto
processing elements while the dataflow hardware schedules
the threads locally in each processing element’s queue. While
TAM proposes hardware exposing this scheduling mechanism
to compilers or programmers, NDP takes it one step further –
have the hardware itself perform this more sophisticated schedul-
ing and mapping of threads onto processing elements. This not
only ensures very low scheduling overheads as the scheduler
can quickly access thread and tile information, but also gives
the scheduler access to run-time information.

Current uniprocessor architectures provide dynamic, hardware-
modulated parallelism at the instruction level. Out-of-order su-
perscalar architectures dynamically issue instructions to mul-
tiple functional units, while simultaneous multithreaded archi-
tectures [26] dynamically modulate the degree of parallelism
of each thread onto the multiple processing resources. Archi-

tectures such as ILDP [27] and clustered microarchitectures [28,
29] dynamically manage parallelism at the instruction level
as well. Multiscalar [30] explores dynamic paralellism at the
coarser function level, focusing on speculative parallelism.

Previous architectures have targeted streaming parallelism
– both Imagine [4] and RAW [5] used streams which capture
data flow relationships between threads to better orchestrate
memory and communication. However, both statically place
and parallelize programs, and hence will not be able to dy-
namically modulate the degree of parallelism and flow balance
streaming programs.

Hardware support embedded at the network level. The
efficiency of embedding hardware support at the network level
has been leveraged to speed up execution in parallel proces-
sors in the past. Message-driven processors (J-Machine [31]
and M-Machine [32]) embed hardware support for message
sending and handling at the network level, proposing register-
mapped interfaces, message-triggered interrupts, and dedicated
message handling threads to lower the overhead of sends and
receives in multicomputers. Cache-coherent shared-memory
processors have coherence controllers at the network interfaces [33,
34] to minimize the coherence protocol overhead, and architect
the network to ensure ordering and priority for different classes
of coherence messages. Recent fine-grained CMPs such as
Raw and TRIPs re-architect the network to lower communica-
tion overhead, with Raw having statically-scheduled operand
networks [35], and TRIPs proposing dynamic pre-reservation
of communication bandwidth [15].

6. Conclusions

Chip multiprocessors are already a commercial reality, and
are likely to continue scaling to higher degrees of parallelism
in the near future. Given the long-standing difficulties in par-
allelizing applications and workloads, our work here seeks to
address these difficulties by rethinking the hardware-software
dividing line. In particular, the hardware methods we pro-
pose are effective at reducing the overheads of thread creation,
scheduling, and context switching. As a result, hardware can
now play an active and effective role in managing parallelism
in the face of runtime variations due to memory-system effects
and dataset dependencies.

This paper provides initial proof-of-concept for several of
the key building blocks we propose. In particular, we learn
that:

• Our proposed approach offers good speedups (4X-11X)
for programs with quite diverse styles of parallelism, in-
cluding recursive, streaming and do-alls.

• Dedicated support for thread scheduling and management
is crucial to these performance numbers. Embedding
thread creation, context-switching and scheduling in the
hardware allows these operations to have low delays (tens
or hundreds of cycles), which is critical for supporting
aggressive parallelism. Our sensitivity studies showed
that higher delays caused significant slowdowns: up to
85% slowdown with 10000, and up to 6.5X slowdown
with 100000 cycle thread delays. While we explore a
hardware-oriented approach in this paper, there are still
possibilities for further variants. In particular, we are also
planning future work addressing some of the remaining
memory latencies encountered during thread spawns.

• The support required can be achieved with modest hard-
ware overheads. For example, a 64-entry-per-core thread
table sees only a 3% slowdown compared to assuming
infinite hardware resources.

• Even in do-all parallelism, the variations of task lifetimes
make dynamic thread scheduling important and useful.
For our application suite, our simple distributed dynamic
task scheduler achieves better performance than an elab-
orate offline static scheduler with profiled knowledge of
thread lifetimes, instruction count, and full knowledge
of the task graph. We plan further future work to de-
velop more elaborate online schedulers in which cores
share performance information to guide on-the-fly ad-
justments.

• In today’s and future computer systems, good performance
behavior is only a partial solution. Energy characteris-
tics also play a fundamental role. For our system, we
found that parallelization itself buys up to 85% savings
in energy-delay-product, demonstrating the importance
of leveraging parallel hardware. Fusing energy adjust-
ments (power-gating or frequency scaling) with thread
scheduling is expected to offer even further gains, due to
the clean abstraction layers that NDP offers in this regard.
From our simulations, dynamic voltage and frequency
scaling can potentially save a further 50% of energy, im-
proving the energy-delay-product up to over 93%.

Looking forward to future technologies and architectures,
dynamic techniques for tolerating variations will only become
more central. In addition to variations stemming from tradi-
tional sources such as dataset and memory-system variability,
future systems will encounter a range of new sources of speed,
energy, and reliability variability. Maintaining performance
and parallelism on these high-variation chips will require tech-
niques that can dynamically react to a range of events. The
NDP architecture proposed here offers, we feel, a clean sub-
strate for supporting aggressive parallelism in current systems,
as well as variation-tolerant design in the future.

Acknowledgments
We thank David August and his group at Princeton for their support of our

use of the Liberty Simulation Environment (LSE) and for extensive discus-
sions on the NDP architecture. We also wish to thank Niraj Jha, Fei Sun and
Anish Muttreja of Princeton for their pointers towards the MCP static schedul-
ing algorithm as a comparison yardstick for NDP and performance macro-
models. This work is supported in part by the MARCO Gigascale Systems
Research Center, NSF grants CNS-0410937 and CNS-0305617.

7. References
[1] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for

multiprogrammed multiprocessors,” in SPAA ’98: Proceedings of the
tenth annual ACM symposium on Parallel algorithms and architectures,
. 1998, pp. 119–129.

[2] G. J. Narlikar and G. E. Blelloch, “Pthreads for dynamic and irregular
parallelism,” in Supercomputing ’98: Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM), . 1998, pp. 1–16.

[3] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August,
“Decoupled software pipelining with the synchronization array,” in
Proc. 13th International Conference on Parallel Architectures and
Compilation Techniques, 2004.

[4] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas,
P. R. Mattson, and J. D. Owens, “A bandwidth-efficient architecture for
media processing,” in Proceedings of the 31st annual ACM/IEEE
international symposium on Microarchitecture. IEEE Computer
Society Press, 1998, pp. 3–13.

[5] M. B. Taylor et al., “Evaulation of the RAW microprocessor: An
exposed-wire-delay architecture for ILP and streams,” in Proc.
International Symposium on Computer Architecture, June 2004.

[6] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen,
C. Kozyrakis, and K. Olukotun, “Programming with transactional
coherence and consistency,” in ASPLOS ’04, Oct. 2004, pp. 1–13.

[7] W. J. Dally, “Virtual channel flow control,” IEEE Transactions on
Parallel and Distributed Systems, vol. 3, no. 2, pp. 194–205, Mar. 1992.

[8] e. a. Agrawal, A, “The mit alewife machine: A large-scale
distributed-memory multiprocessor,” Kluwer academic Publishers,
1991.

[9] M. Vachharajani et al., “Microarchitectural exploration with Liberty,” in
Proceedings of the 35th International Symposium on Microarchitecture
(MICRO), November 2002, pp. 271–282.

[10] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architecture-Level Power Analysis and Optimizations,” in Proc.
ISCA-27, ISCA 2000.

[11] “International technology roadmap for semiconductors,”
http://public.itrs.net.

[12] M.-Y. Wu and D. D. Gajski, “Hypercool: a programming aid for
message-passing systems,” vol. 1, no. 3, 1990, pp. 330–343.

[13] Y.-K. Kwok and I. Ahmad, “Benchmarking and comparison of the task
graph scheduling algorithms,” vol. 59, 1999, pp. 381–421.

[14] P. Brucker, “Scheduling algorithms, 4th edition.” Springer, 2004,
ISBN 3540205241.

[15] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture,” in Proc. of the 30th
International Symposium on Computer Architecture, June 2003, pp.
422–433.

[16] K. Mai et al., “Smart memories: A modular reconfigurable
architecture,” in Proc. Int. Symp. Computer Architecture, Nov. 2000, pp.
161–171.

[17] S. Swanson et al., “Wavescalar,” in Proc. MICRO, November 2003.
[18] J. Oliver et al., “Synchroscalar: A multiple clock domain, power-aware,

tile-based embedded processor,” in Proceedings of the International
Symposium on Computer Architecture, 2004.

[19] K. Traub, M. Beckerle, G. Padadopoulous, J. Hicks, and J. Young,
“Overview of the monsoon project,” in Proceedings of ICCD, 1991.

[20] V. Grafe, G. Davidson, J. Hoch, and V. Holmes, “The epsilon dataflow
processor,” in Proc. Int. Symp. Computer Architecture, 1989.

[21] Y. Yamaguchi and S. Sakai, “An architectural design of a highly parallel
dataflow machine,” in IFIP, 1989.

[22] J. R. Gurd, C. C. Kirkham, and I. Watson, “The manchester prototype
dataflow computer,” Communications of the ACM, vol. 28, no. 1,
Jan./Feb. 1985.

[23] Arvind and R. Nikhil, “Executing a program on the mit tagged-token
dataflow architecture,” IEEE Transactions on Computers, vol. 39, no. 3,
1990.

[24] D.E.Culler, K.E.Schauser, and T. von Eicken, “Two fundamental limits
on dataflow multiprocessing,” in IFIP, 1993.

[25] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von Eicken, “Tam -
a compiler controlled threaded abstract machine,” 1993.

[26] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
multithreading: Maximizing on-chip parallelism,” in Proc. ISCA-22,
June 1995, pp. 392–403.

[27] H.-S. Kim and J. E. Smith, “An instruction set and microarchitecture for
instruction level distributed processing,” in Proceedings of the 29th
annual international symposium on Computer architecture. IEEE
Computer Society, 2002, pp. 71–81.

[28] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” in Proceedings of the 24th annual international
symposium on Computer architecture. ACM Press, 1997, pp. 206–218.

[29] J.-M. Parcerisa et al., “Efficient interconnects for clustered
microarchitectures,” in Proc. PACT, 2002.

[30] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar
processors,” in Proceedings of the 22nd annual international
symposium on Computer architecture. ACM Press, 1995, pp. 414–425.

[31] M. D. Noakes, D. A. Wallach, and W. J. Dally, “The j-machine
multicomputer: an architectural evaluation,” in Proceedings of the 20th
annual international symposium on Computer architecture. ACM
Press, 1993, pp. 224–235.

[32] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang,
Y. Gurevich, and W. S. Lee, “The m-machine multicomputer,” in
Proceedings of the 28th annual international symposium on
Microarchitecture. IEEE Computer Society Press, 1995, pp. 146–156.

[33] J. Kuskin et al., “The stanford flash multiprocessor,” in Proceedings of
the 21ST annual international symposium on Computer architecture.
IEEE Computer Society Press, 1994, pp. 302–313.

[34] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufman Publishers, 2004.

[35] M. B. Taylor et al., “Scalar operand networks: On-chip interconnect for
ilp in partitioned architectures,” in Proc. HPCA, February 2003.

