
Optimizations for a Simulator Construction System
Supporting Reusable Components

David A. Penry
Department of Computer Science

Princeton University

dpenry@cs.princeton.edu

David I. August
Department of Computer Science

Princeton University

august@cs.princeton.edu

ABSTRACT
Exploring a large portion of the microprocessor design space
requires the rapid development of efficient simulators. While
some systems support rapid model development through the
structural composition of reusable concurrent components,
the Liberty Simulation Environment (LSE) provides addi-
tional reuse-enhancing features. This paper evaluates the
cost of these features and presents optimizations to reduce
their impact. With these optimizations, an LSE model using
reusable components outperforms a SystemC model using
custom components by 6%.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Algorithms; B.8.2 [Performance and Reliability]: Per-
formance Analysis and Design Aids—Algorithms

General Terms
Algorithms, Measurement, Performance

Keywords
Liberty Simulation Environment, synchronous-reactive

1. INTRODUCTION
Microprocessor architects use processor simulation mod-

els to predict important design characteristics such as per-
formance and power. Ideally, they would like to generate
and use a large number of models to explore significant por-
tions of the microarchitectural design space. This can only
be possible if development time for the models is short and
simulation speed is high enough to allow simulation of sig-
nificant samples of code.

High model reuse is essential to obtaining short devel-
opment times. Writing new code to model each point in
the design space will not be acceptable. Several modeling
systems, such as EXPRESSION[8], Asim[5], HASE[3], and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003,June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/001 ...$5.00.

Ptolemy[7] have attempted to provide reuse by providing li-
braries of components. Hardware or system description lan-
guages such as VHDL, Verilog, or SystemC[9] also provide
facilities to create libraries of components. Models are built
by instantiating components and connecting them together.

Components in such systems are written as if they execute
concurrently. To provide semantics to the concurrent execu-
tion, some model of computation must be implemented by
the system. The most common such model of computation is
the well-known Discrete-Event model, used by VHDL, Ver-
ilog, SystemC, and others. The choice of a specific model of
computation has two significant effects:

• Some models of computation, such as those used by
EXPRESSION and Asim, limit the amount of reuse
possible by forcing manual partitioning of the com-
ponents in some situations or by requiring code to be
written to explicitly control when components execute.

• Different models of computation experience different
amounts and kinds of simulation overhead. For exam-
ple, a Discrete-Event model requires maintenance of
an event queue while EXPRESSION’s model of com-
putation does not.

Characteristics of the components themselves can also af-
fect reuse and simulation speed. Two characteristics nec-
essary to achieve very high degrees of reuse1 and having
potential performance impact are:

• Components must conform to explicit, standard com-
munication contracts so that they may be connected
together freely. These contracts should separate tim-
ing from data computation and flow control from data
flow. These standard contracts may increase the num-
ber of signals in the model relative to custom contracts
and thus may slow simulation.

• Individual components must be medium-grained; they
need not be primitive logic components such as AND-
gates, but they should be smaller than a functional
unit. For example, a monolithic cache unit is too
coarse-grained for reuse; it does not allow modeling of
differences in timing between different arrays or such
things as insertion of virtual to physical translations at
different points in the data path. It is better to com-
pose the cache out of components such as controllers,
arrays, and TLBs. Using medium-grain components

1A discussion of why these characteristics are necessary can
be found in [10].

instead of large-grain components implies that more
components and more signals are required, and thus
may slow simulation.

We call any reduction in simulation speed caused by the
use of components with these characteristics the reuse penalty.

While all of the aforementioned systems improve reuse
compared to previous approaches, all of these systems fail
to achieve the highest degrees of reuse because of difficul-
ties with their models of computation or lack of standard
commmunication contracts. SystemC is perhaps the best of
these systems; its Discrete-Event model of communication
does not prevent reuse, and its object-oriented nature as de-
scribed in [2] might support the addition of contracts, but
this has not yet been done.

The Liberty Simulation Environment (LSE) [10] is a sim-
ulator construction framework which has been designed to
support higher degrees of reuse than previously possible.
Explicit, standard communication contracts are supported
by the framework. It includes a medium-grained compo-
nent library designed for microprocessor development. This
library includes such modules as branch resolvers, cache ar-
rays, cache controllers, register renamers, queues, arbiters,
and pipelines. This library can be extended, as was done to
create the Orion interconnect power modeling libraries[11].
The model of computation is a Heterogeneous Synchronous
Reactive model; this model provides performance advan-
tages over the Discrete-Event model while not limiting reuse.

It is common wisdom that reuse comes at a price. In this
paper we illustrate that with proper choice of the model
of computation and additional optimization techniques it is
possible to eliminate the reuse penalty when compared with
systems using the popular Discrete-Event model of compu-
tation. We begin by describing LSE in Section 2. In Sec-
tion 3 we compare equivalent models in LSE and SystemC
to show the performance difference between the Heteroge-
nous Synchronous Reactive model of computation and the
Discrete-Event model of computation. We then measure the
reuse penalty in LSE. In Section 4 we describe optimization
techniques used in LSE to reduce the reuse penalty. In Sec-
tion 5 we evaluate these optimization techniques and show
that these optimizations allow an LSE model built out of
reusable components to exceed the performance of a Sys-
temC model built out of custom speed-optimized compo-
nents.

2. LIBERTY SIMULATION ENVIRONMENT
LSE is a framework for construction of microarchitectural

simulation models. A model is structural and concurrent,
consisting of a netlist of connected instances of components
called modules. These modules execute with concurrent se-
mantics and communicate with each other through ports.
This familiar style of modeling is similar to Verilog, VHDL,
and SystemC, but there are a number of important differ-
ences. These differences can be classified as specification,
infrastructure, and model of computation differences.

2.1 Specification differences
The specification differences between LSE and other sys-

tems are not the focus of this paper and space constraints
prevent discussing them in detail. They exist principally to
support higher reusability. For more information, see [10].
It is necessary, however, to explain two facets of the specifi-

cation.
First, a Liberty model description is a two-level descrip-

tion. The top level of the description describes the instanti-
ation and parameterization of modules and the connections
between them. Modules are described separately as code
templates in a target language, currently C augmented with
API calls. These templates make up the module library.
This two-level description makes it possible for the modules
to be treated as black boxes (thus arbitrary C code can be
in the modules) while still allowing analysis and use of the
connectivity of the system.

Second, the communication contract between modules in-
volves three signals per connection: a data signal in the
forward direction, an enable signal in the forward direction,
and an acknowledge signal in the backward direction. Mod-
ules use these signals to provide flow control behavior. For
example, an arbiter module will look at its input data sig-
nals to determine which have priority and then assert the
acknowledge signals for those ports which have won arbitra-
tion. This standard flow control contract greatly increases
reuse of modules but creates more signals to be manipu-
lated, which may decrease performance. The flow control
behavior can be changed at each port through override code
called control functions in the top-level description.

2.2 Infrastructure differences
A Liberty description is never directly interpreted like

Verilog or VHDL sometimes are, nor is it directly compiled
like SystemC. Instead, the description is used to generate
the code of the simulator. The module template code in
the library is “woven” with simulator API implementation
code, control functions, and various pieces of the descrip-
tion to produce the code for each module instance. The
template is not fully parsed as C; the generation process re-
sembles macro expansion. This generation process enables
the simulator optimizations described in Section 4.

2.3 Model of computation differences
The underlying model of computation of LSE is also differ-

ent. Verilog, VHDL, and SystemC all use a Discrete-Event
(DE) model. LSE uses the Heterogeneous Synchronous Re-
active (HSR) model proposed by Edwards in [4]. This model
is an extension of the Synchronous Reactive model (used in
languages such as Esterel[1]) for situations where the pre-
cise input-to-output data flow of blocks of code are unknown
(such as when the block is being treated as a black box).

In the HSR model of computation, signals can take on
an unresolved value which is “less than” all other values.
No other values are comparable with each other. All code
blocks in the system which manipulate signals must compute
monotonic functions on the signal values; if input values in-
crease (relative to the partial order), output values must
increase or remain the same. Changes to signal values are
seen instantly by all receiving blocks. Computation within
a time step takes place by setting all signal values to unre-
solved and invoking blocks until the signal values converge.
The schedule of invocations can be either static (determined
at system build time) or dynamic (as a signal changes val-
ues, its receivers are scheduled, as in Discrete-Event). The
HSR model of computation does not require repartitioning
of blocks as some other models do because the availability
of the unresolved value permits blocks to partially evaluate
their outputs.

This model of computation offers several potential perfor-
mance benefits over the Discrete-Event model when creating
and using a medium-grain library:

• Per-signal overhead is less as there is no double-buffer-
ing of non-state signal values and tests for changes to
values are simpler.

• Blocks can use the unresolved value as an indicator of
input availability and prevent premature computation
of outputs that need that input when the input is not
yet available. They can also use the absence of an
unresolved value as an indicator that an output signal
has already been computed, preventing redundant re-
computation of that output.

• Modules can update internal state as soon as all inputs
producing the new state value are available and all out-
puts depending upon the old state value are generated.
This can be extremely useful when writing modules
which implement Mealy state machines.

• The order of execution of blocks can be determined
optimally and then encoded statically into generated
scheduler code. This removes the need to dynamically
schedule any code and may also reduce the number of
executions of a block. It also removes the need for an
event queue.

Note that a block and a module are not the same thing;
a block is the smallest unit of scheduling granularity, but
a module can contain more than one block. In particular,
control functions are separate blocks.

3. EFFECTS UPON SIMULATION SPEED
In this section we measure the effects of the model of

computation and reuse upon simulation speed.

3.1 Experimental methodology
We measure the effects upon simulation speed caused by

the model of computation and reuse by measuring the run-
ning time of three simulation models of the same simple
4-way out-of-order processor implementing the Alpha ISA
having an instruction window of 16 instructions, a reorder
buffer of 32 instructions, perfect caches, and perfect fetch.
These three models are:

1. A SystemC model using custom modules designed for
speed for this particular configuration for each stage
(fetch, decode/rename/commit, execute) plus a mod-
ule to contain the other modules.

2. An LSE model using custom modules designed for
speed for this particular configuration for each stage,
as in the first model. No code for a “containing” mod-
ule is required in LSE.

3. An LSE model using modules from the reusable li-
brary.

SystemC is used for comparison because it uses a Discrete-
Event model of computation and is gaining wide acceptance
for architectural modeling. There are three ways in which
the custom modules are more configuration-specific than the
reusable modules:

Table 1: Model characteristics
Non-edge

Model Instances Signals Signals
Custom SystemC 4 71 32

Custom LSE 3 138 48
Reusable LSE 11 489 423

• Custom modules do as much work as possible at the
clock edge rather than combinationally during the clock
cycle. Generally, the only non-edge-sampled signals
are flow control signals. Reusable modules often sepa-
rate combinational logic and state elements into differ-
ent modules. This leads to both data and flow control
being non-edge-sampled. Edge-sampled logic is more
efficient because it is executed at most once per cycle.

• Custom flow control contracts are made. For exam-
ple, if information is always removed from a multiple-
output buffer in FIFO order, only a count of how many
items to remove needs to be used for flow control rather
than individual remove signals.

• Custom modules do not have any support for options
unneeded in this configuration.

Characteristics of the models are given in Table 1, including
the number of signals which are not sampled solely at the
clock edge.

All models were compiled using gcc 2.96 for x86 with flags
-g -O2. Version 2.0.1 of SystemC was used; it was compiled
with the same compiler using the default installation flags.
Flags -g -O3 were tried for the SystemC model, but the
results for all experiments differed by less than 1% and are
not reported.

The models were run on nine benchmarks chosen from the
SPEC CPU2000 and MediaBench suites. The benchmarks
were 181.mcf, 186.crafty, 197.parser, 253.perlbmk, 179.art,
183.equake, jpegdec, jpegenc, and g721enc. All these bench-
marks were compiled for the Alpha ISA for OSF Unix with
gcc 2.95.2 19991024 (release) using flags -static -O2. Runs
took place on a dual-processor 2.4 GHz Xeon system with 2
GB of physical memory running Redhat 7.3 (Linux 2.4.18-
5smp). The benchmarks were run to the earliest of com-
pletion or 50,000,000 fetched instructions. Cycle counts for
each benchmark were verified to be equal for each model.

All reported mean cycles/sec are the unweighted mean cy-
cles/sec achieved over five runs of each benchmark. Speedups
reported are obtained by computing the speedup of each
benchmark (over five runs) and taking the mean of the
speedups. Individual benchmark results are not reported
due to space limitations, but the standard deviations (σ)
of the speedups on a per-benchmark basis are very small,
indicating that the speedup results are independent of the
benchmarks.

All reported build times are the average time in seconds
to build the model from source code to an executable over
five runs of the build process.

3.2 Results
Table 2 shows the cycles/sec, speedups, and build time

obtained by the three models. None of the optimizations
described in the next section are applied to the LSE models
and the schedule of block execution is completely dynamic.

Table 2: Performance of models
Mean σ of Build

Model cycles/s Speedup speedup time(s)

Custom
SystemC

53722 – – 49.06

Custom
LSE

155111 2.88 vs.
SystemC

0.12 15.4

Reusable
LSE

40649 0.26 vs.
Custom
LSE

0.01 33.9

Note that the speedup of the custom LSE model is with re-
spect to the SystemC model and the speedup of the reusable
LSE model is with respect to the custom LSE model.

The custom LSE model outperforms the equivalent cus-
tom SystemC model by 188%. The greater performance of
LSE stems from the reduction in overhead allowed by the
Heterogeneous Synchronous Reactive model of computation,
use of the unresolved signal value to prevent premature com-
putation, the static instantiation of modules (which leads
to increased constant propagation and dead-code elimina-
tion in the compiler), and differences in run-time overhead
and compiler quality between C and C++. While an ex-
act breakdown of how much improvement comes from each
factor is not available, we believe the model-of-computation
related components (the first two) to be most significant
because compiler optimizations and differences rarely show
this magnitude of performance effects. Note again that this
improvement occurs even with modules which have been
carefully written for speed in this particular configuration
and in spite of the larger number of signals which the cus-
tom LSE model contains.

The reusable LSE model shows a large reuse penalty of
74% performance loss when compared with the custom LSE
model. This stems principally from the increase in the num-
ber of signals that must be handled in the reusable model,
which in turn is due to the standard flow control contracts.
Note that the ratio of performance is approximately equal
to the reciprocal of the ratio of number of signals. The
large number of non-edge-sampled signals in the reusable
LSE model does not play a significant role because the mod-
ules use the presence or absence of unresolved signal values
to avoid premature or redundant signal value calculations
when a module is executed more than once.

4. OPTIMIZATIONS
LSE introduces improvements upon the scheduling algo-

rithm provided by Edwards[4]. It also makes optimizations
to the generated code in order to mitigate the reuse penalty.
These scheduling improvements and optimizations are de-
scribed in this section.

Previous work in compiling and optimizing Synchronous
Reactive languages has assumed that all the code is visible
and parsed by the compiler, which is not true of a Het-
erogeneous Synchronous Reactive system. An overview of
previous Synchronous Reactive work can be found in [6].

4.1 Dynamic sub-schedule embedding
The Heterogeneous Synchronous Reactive (HSR) model,

as proposed by Edwards, allows optimal static schedules to
be generated. These schedules are optimal with respect to

the amount of information present about the input to output
dependencies of blocks in the system. In the absence of
information, all outputs of a block are assumed to depend
upon all inputs of the block. When there are far fewer real
dependencies than the assumed dependencies, it can happen
that the “optimal” schedule actually executes blocks far too
many times in an effort to guarantee convergence. We will
take advantage of this property in a moment.

Edwards’ basic static scheduling algorithm is:

1. Build a directed graph where each signal is a node and
an edge (u, v) implies that signal u’s value is needed to
compute signal v. This graph will not be acyclic in the
presence of limited dependency information because
the flow control signals form cycles.

2. Break the graph into strongly-connected components
(SCCs). Topologically order the SCCs.

3. Partition each SCC of more than one signal into two
sub-graphs called the head and the tail. Pick an ar-
bitrary schedule for the head. Schedule the tail recur-
sively. Add to the schedule a loop containing the tail’s
schedule followed by the head’s schedule; this loop ex-
ecutes as many times as there are signals in the head.
Follow the loop with the tail’s schedule again.

The key to the algorithm is the partitioning in the third
step. This raises a question: how should the SCCs be par-
titioned? Trying all partitions to find the optimal one re-
quires time exponential in the number of signals. Edwards
presents a branch-and-bound algorithm and suggests some
further heuristics to prune the search space, but shows em-
pirically that the algorithm remains exponential.

An exponential-time algorithm to find the optimal sched-
ule is not particularly useful for large models. However,
the places in the graph where the algorithm breaks down
(large SCCs) are precisely the locations where information
about dependencies is lacking. Real synchronous hardware
does not usually have cyclic dependencies (there are some
distributed arbitration schemes which do, but these are rela-
tively rare). Thus the cycles within large strongly-connected
components generally are not real dependency cycles and an
“optimal” static schedule will not be truly optimal.

In such a situation it is better to “give up” on the static
schedule for just the signals in large SCCs and to embed
a dynamic schedule into the static schedule at the location
of the SCC than it is to continue searching for an optimal
static schedule. Doing so prevents the scheduler from taking
exponential run-time; it may also improve simulation time.
For SCCs containing 16 or more signals, LSE gives up imme-
diately. For smaller SCCs, LSE tries all partitions to find
the optimal one. Note that average execution time is be-
ing considered; Edwards’ original work needed to bound the
worst case time and dynamic scheduling would have been
less appropriate there.

4.2 Dependency information enhancement
If no knowledge of input to output dependencies is avail-

able for any block, the generated schedule is generally one
large dynamic section. This occurs because the flow control
signals form cycles in the dependency graph. We use three
techniques to increase the amount of dependency informa-
tion available:

• LSE partially parses the control flow overrides (con-
trol functions) to find input/output dependencies and
constant control signals. Dependencies upon constant
control signals are removed. Computation of such con-
stants is removed completely from the schedule and
handled directly by the framework at the start of the
time step.

• We optionally annotate ports with an “independent”
flag in the module definition indicating that the input
signals of this port do not affect any outputs.

• We optionally annotate modules in the library with
their input/output dependencies. This can be tedious,
and would be unacceptable for modules not in a highly
reusable library, but the effort is amortized over the
number of times the module gets reused and is always
useful. Modules without the annotation are assumed
to have all outputs depending upon all inputs.

Note that the relationship between dependency informa-
tion and scheduling is counter-intuitive. When information
is completely missing, it is easy to schedule: the schedule
is dynamic. When information is completely present, it is
also easy to schedule; the dependency graph would likely be
acyclic. It is when some, but not all, information is present
that scheduling becomes difficult. The power of LSE’s mod-
ified HSR scheduling algorithm lies in the way in which it
can gracefully adapt to the available information.

4.3 Block coalescing
The static schedule indicates the order in which signals

should be generated, but blocks generally can produce more
than one output signal per invocation. Edwards’ algorithm
includes a post-processing step to merge or coalesce invoca-
tions of blocks and thus reduce the number of invocations.
The algorithm moves signal generations to the earliest point
in the schedule at which the same block must be invoked
where the move does not violate dependency constraints.

LSE uses a slightly different algorithm. First, LSE unrolls
all the loops in the schedule before performing coalescing;
this removes special cases that Edwards describes and makes
it easier to merge with the last invocation of a block in a
tail. Second, LSE is able to move multiple signals when it
coalesces. One deficiency in Edwards’ algorithm is that if
a signal has no earlier block invocations to merge with, it
prevents anything that depends upon it from moving before
it. We maintain a list of signals to move and add a signal
to the list when it is preventing a later signal from moving;
this makes it possible to re-topologically sort the schedule as
needed and increases the number of merging opportunities.

4.4 Code specialization
As noted before, module instance code is generated from

templates. This provides the ability to specialize the code
generated by creating different implementations of the port
API for each port of each module. The API implementations
are specialized for:

• Constant control signals

• Static vs. dynamic scheduling of receiving code blocks

• Diversity of receiving blocks across port connections: if
all connections to a port are to the same block, code to
update variables and do scheduling (if any) is simpler.

Table 3: Performance of reusable models
Cycles/sec

(speedup vs. slowest)
Control

Schedule Functions Annotations
Type analyzed None Port All

Dynamic No 40649 40693 40904
(1.00) (1.00) (1.01)

Dynamic Yes 47794 47860 47821
(1.18) (1.18) (1.18)

Static No * 40657 * 41377 * 41306
(1.00) (1.02) (1.02)

Static Yes * 47850 * 47098 57046
(1.18) (1.16) (1.40)

5. EVALUATION OF OPTIMIZATIONS
In this section, the effectiveness of LSE’s optimizations

is evaluated by measuring the running time of simulators
generated with and without different optimizations enabled.
The LSE model using custom modules and the LSE model
using reusable modules are used for these evaluations. The
experimental setup and reporting is the same as in Section 3;
the only difference is that different combinations of opti-
mizations are tried.

Note that no meaningful comparison can be made with
Edwards’ original scheduling algorithm because of its expo-
nential runtime. An attempt to schedule the custom LSE
model using Edwards’ original algorithm did not terminate
after 18 hours of runtime. Such a large runtime would be
impractical for design exploration. As a consequence, all
static scheduling in these experiments is done using LSE’s
dynamic sub-schedule embedding. However, we do compare
the different block coalescing algorithms.

5.1 Static scheduling and dependency infor-
mation enhancement

Table 3 shows the performance of the reusable LSE model
when information enhancement and scheduling are varied.
The enhanced block coalescing algorithm is used. Results
where the framework embedded a dynamic schedule in a
static schedule are marked with a “*”. The maximum build
time was 36.21 seconds; this is about 7% greater than the
build time without optimizations.

The role of information is seen to be very important; a
40% speedup (σ = 0.03) can be obtained by analyzing the
control functions and knowing module input/output depen-
dencies and using these for static scheduling. Even with dy-
namic scheduling there is still an 18% speedup (σ = 0.02) to
be obtained from the control function analysis. The effects
of analysis and module annotations are synergistic; only
when both are present can a fully static schedule and the
maximum speedup be obtained.

Control function analysis alone produces speedup for two
reasons. First, when control functions are analyzed, any
constants found can be used in code specialization. Second,
analysis allows the scheduler to remove an extra invocation
of all control functions which is required in dynamic schedul-
ing to produce any constant outputs of the function.

Module annotations alone produce much less benefit; there
are fewer code specialization opportunities and no extra in-
vocations to remove.

Table 4: Performance of coalescing

Coalescing Mean Speedup vs. σ of
Algorithm cycles/second original speedup

None 20564 0.40 0.01
Original 55983 1.00 –

Enhanced 57046 1.02 0.01

When information enhancement and scheduling are var-
ied for the custom LSE model, equivalent speedups are not
observed. Individual results for optimizations are not given
because of space limitations, but they are all very similar to
each other: no combination of optimizations achieves even a
1% improvement. This is because the custom modules pro-
vide only port independence information (there are no mod-
ule annotations) to the framework and there are no control
functions to analyze; as a result, the schedule is always com-
pletely dynamic and few optimizations come into play. Two
combinations of optimizations show a 1% average slowdown;
in both cases the slowdown is due to a single outlier.

Finally, note that when all the information is used for
static scheduling, the LSE model built from reusable com-
ponents is 6% faster than the SystemC model built from
custom components. The combination of these optimiza-
tions with the HSR model of computation has allowed the
reuse penalty to be completely mitigated when compared
with a conventional Discrete-Event model.

5.2 Block coalescing
Table 4 shows the effects of the block coalescing improve-

ments for the reusable model with all information available
and static scheduling. Skipping the coalescing step results in
a 60% slowdown, so coalescing is very important. However,
the improved coalescing algorithm gives only a marginal im-
provement over the original coalescing algorithm.

6. CONCLUSIONS
Architects wishing to explore the design space of micro-

processors require models which are both reusable and suf-
ficiently fast. A simulation framework supporting a library
of medium-grain, structurally-composed, concurrent compo-
nents with explicit communication contracts can meet the
reuse requirements. The Liberty Simulation Environment is
such a framework. However, the speed of simulation can be
affected by both the model of computation and the reusabil-
ity of the components.

We show that for a simple out-of-order processor a model
built in the Liberty Simulation Environment, which uses
a Heterogenous Synchronous Reactive model of computa-
tion, can outperform an equivalent SystemC model using
the Discrete-Event model of computation by 188%. This
performance advantage occurs principally because of char-
acteristics of the HSR model of computation and despite
both models using components specially written for speed
in their respective models.

We also show that when using reusable rather than custom
components for the processor model, LSE experiences a 74%
reuse penalty, illustrating the potentially large cost of reuse.

By optimizing the generation of simulator code to fur-
ther exploit the Heterogeneous Synchronous Reactive model
of computation, a 40% speed improvement can be achieved
relative to an unoptimized simulator for the processor model

using reusable components. These optimizations significantly
reduce the reuse penalty.

The optimizations and the low overhead of the Hetero-
geneous Synchronous Reactive model together enable the
speed of an LSE model for this processor built using reusable
components to exceed that of a SystemC model using cus-
tom components designed for speed by 6%.

7. ACKNOWLEDGEMENTS
We would like to thank Manish Vachharajani, Neil Vach-

harajani, and the anonymous reviewers for their insightful
comments.

8. REFERENCES
[1] G. Berry and G. Gonthier. The Esterel synchronous

programming language: Design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, 1992.

[2] L. Charest and E. M. Aboulhamid. A VHDL/SystemC
comparison in handling design reuse. In Proceedings of
2002 International Workshop on System-on-Chip for
Real-Time Applications, July 2002.

[3] P. Coe, F. Howell, R. Ibbett, and L. Williams. A
hierarchical computer architecture design and
simulation environment. ACM Transactions on
Modeling and Computer Simulation, 8(4), October
1998.

[4] S. A. Edwards. The Specification and Execution of
Heterogeneous Synchronous Reactive Systems. PhD
thesis, University of California, Berkeley, 1997.

[5] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk,
S. Manne, S. S. Mukherjee, H. Patil, S. Wallace,
N. Binkert, R. Espasa, and T. Juan. Asim: A
performance model framework. IEEE Computer,
0018-9162:68–76, February 2002.

[6] N. Halbwachs. Synchronous programming of reactive
systems, a tutorial and commented bibliography. In
Tenth International Conference on Computer-Aided
Verification, June 1998.

[7] J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
S. Neuendorffer, S. Sachs, and Y. Xiong. Discplining
heterogeneity – the Ptolemy approach. In ACM
SIGPLAN 2001 Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES 2001), June
2001.

[8] P. Mishra, N. Dutt, and A. Nicolau. Functional
abstraction driven design space exploration of
heterogeneous programmable architectures. In
Proceedings of the International Symposium on System
Synthesis (ISSS), pages 256–261, October 2001.

[9] Open SystemC Initiative (OSCI). Functional
Specification for SystemC 2.0, 2001.
http://www.systemc.org.

[10] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A.
Blome, and D. I. August. Microarchitectural
exploration with Liberty. In Proceedings of the 35th
International Symposium on Microarchitecture,
November 2002.

[11] H.-S. Wang, X.-P. Zhu, L.-S. Peh, and S. Malik. Orion:
A power-performance simulator for interconnection
networks. In Proceedings of 35th Annual International
Symposium on Microarchitecture, November 2002.

