
CGPA: Coarse-Grained Pipelined Accelerators

Feng Liu Soumyadeep Ghosh Nick P. Johnson David I. August

Princeton University, Princeton, NJ
{fengliu, soumyade, npjohnso, august}@princeton.edu

Abstract
High-level synthesis (HLS) tools dramatically reduce the non-
recurring engineering cost of creating specialized hardware accel-
erators. Existing HLS tools are successful in synthesizing efficient
accelerators for program kernels with regular memory accesses
and simple control flows. For other programs, however, these tools
yield poor performance because they invoke computation units for
instructions sequentially, without exploiting parallelism. To ad-
dress this problem, this paper proposes Coarse-Grained Pipelined
Accelerators (CGPA), an HLS framework that utilizes coarse-
grained pipeline parallelism techniques to synthesize efficient spe-
cialized accelerator modules from irregular C/C++ programs with-
out requiring any annotations. Compared to the sequential method,
CGPA shows speedups of 3.0x–3.8x for 5 kernels from programs
in different domains.

1. Introduction
Since technology scaling no longer provides previously seen rates
of performance improvements, microprocessor designers have
adopted a number of other techniques to improve processor per-
formance at reasonable energy costs. An entire class of techniques
improves performance by offloading computation intensive parts
of programs from a general-purpose processor to customized ac-
celerators [15, 17, 18, 24, 31, 34]. One approach to build these
customized accelerators is to manually design dedicated circuit
modules for each application using hardware description languages
(HDLs) [24, 26]. While this approach often yields the best result,
it requires significant non-recurring engineering costs to convert
algorithms to HDL specifications. Another less labor-intensive ap-
proach is to use high-level synthesis (HLS) tools to generate cus-
tomized accelerators from programs written in C or other high-level
programming languages [4, 12, 13, 16, 30, 31, 32, 37].

HLS tools have been successful in creating customized accelerators
for scientific computation [30] and digital signal processing (DSP)
applications [12, 13, 16, 32, 37]. One typical feature of these ap-
plications is that their hot spots consist of affine loop nests. Such
loop nests enable a series of loop transformations that expose loop-
level parallelism to overlap instruction execution [7, 29, 35]. Ad-
ditionally, the affine loops may also enable special circuit modules,
such as systolic arrays and shift registers, to reduce memory traf-
fic and improve performance [9, 10]. However, in the presence of
loops with complex control flows or irregular memory accesses,
these HLS tools do not extract loop-level parallelism well, leading
to poorly performing accelerator designs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DAC’14, June 01–05, 2014, San Francisco, CA, USA.
Copyright © 2014 ACM 978-1-4503-2730-5/14/06. . . $15.00
http://dx.doi.org/10.1145/2593069.2593105

In reality, a large portion of programs are implemented with non-
array data structures and imperfect loop nests. This restricts the
scope for parallelism within one or a few loop iterations, and gen-
erates hardware modules with limited performance improvement
over general-purpose processors [31]. A new technique is required
to generate efficient accelerators for a large class of programs with
irregular memory accesses and imperfect loop nests.

To meet this requirement, this paper proposes Coarse-Grained
Pipelined Accelerators (CGPA), an HLS framework which uses
coarse-grained pipeline parallelism to generate efficient hardware
accelerators for loops from unannotated C/C++ programs. CGPA
leverages two distinct insights to improve efficiency and applica-
bility for HLS. First, complex loop bodies with irregular memory
accesses and imperfect loops usually contain coarse-grained code
sections performing different tasks. HLS tools should separate and
modularize these tasks to build an efficient system. Second, these
complex loop bodies usually contain sections which are paralleliz-
able. Coarse-grained decoupled pipelining techniques [28, 27] can
exploit the presence of these parallelizable sections to enable a type
of parallelism not exploited by existing HLS tools.

CGPA automatically partitions individual loops into separate
pipelined stages and generates buffer-connected hardware modules
for these stages. Pipelining enables the overlapping of execution
of an earlier iteration of the loop with a later iteration and also
allows the synthesized hardware to tolerate variable memory la-
tency. CGPA also utilizes hidden data-level parallelism within the
pipelined stages to achieve high performance. Experiments show
that for 5 kernels from different domains, CGPA gives a 3.3x ge-
omean performance improvement at 20% average energy overhead
compared to non-parallelized hardware specialization results.

In summary, the contributions of this paper are:

1. the CGPA framework, which can identify and split paralleliz-
able sections from non-parallelizable ones for individual loops
with complex control flow and irregular memory access,

2. the CGPA tool, the first high-level synthesis tool to exploit
coarse-grained pipeline parallelism for single loops to create
highly efficient hardware accelerators, and

3. an experimental evaluation of the performance and energy effi-
ciency of hardware accelerators generated by CGPA.

The rest of the paper is organized as follows: Section 2 provides
background information on the loop parallelism techniques used
in existing HLS tools and presents a motivating example to show
the limitations of these tools. Section 3 describes the design and
implementation of our pipelining technique. Section 4 contains the
evaluation, followed by conclusions in Section 5.

2. Background and Motivation
2.1 Loop Parallelism in Existing HLS tools

Exploiting parallelism by finding independent operations in pro-
grams and overlapping their execution is an effective way to cre-
ate high performance hardware for programs. Existing HLS tools

...
1 for (; nodelist; nodelist = nodelist->next)

2 for (int i=0; i<nodelist->from_count; i++) {
3 node_t *from = nodelist->from_nodes[i];
4 double coeff = nodelist->coeffs[i];
5 double value = from->value;
6 nodelist->value -= coeff * value;

}

R

P

P P P P

R
nodelist

(c) Pipeline parallelism(b) Replicated data-level parallelism

(a) em3d loop code example

R R R R
P P P P

1

2

3 4

5

6

(d) Simplified PDG

int task_seq(live-ins, Qs) {
for (int i=0; nodelist; nodelist = nodelist->next, i++) {

produce(Qs, i&MASK, nodelist);
produce_broadcast(Qs, nodelist==NULL);

}
return 0;

}

int task_par(live-ins, Qs, WorkerID) {
int it = 0;
while(1) {

if((it & MASK) == WorkerID) {
nodelist=consume(Qs);
for (int i=0; i<nodelist->from_count; i++) {

node_t *from = nodelist->from_nodes[i];
double coeff = nodelist->coeffs[i];
double value = from->value;
nodelist->value -= coeff * value;

}
end=consume(Qs);

} else
end=consume(Qs);

it++;
if(end) return 0;

}
}

(e) Pseudo code
after transformation

task for worker in stage1

Stage1

Register dependency

Control dependency

Stage2

task for workers in stage2

loop body 1

loop body 2

define iteration counter

determine loop body

update iteration counter

Figure 1: (a) Source code of the main loop of em3d program, with sections annotated as replicable or parallel; (b) Data-level parallelism is
exploited by duplicating the replicable section; (c) Coarse-grained pipeline parallelism is exploited by separating the replicable section from
the rest of the loop; (d) A simplified source-level Program Dependence Graph (PDG) of the main loop in em3d; (e) Pseudo-code of tasks for
both hardware stages. The code in red is the overhead generated by the compiler.

exploit parallelism at both instruction-level and loop-level [2,
33, 29, 18, 15]. Unless combined with other techniques such
as if-conversion or loop unrolling, the scheduling window for
instruction-level parallelism (ILP) techniques is small. Thus, these
techniques usually yield limited performance benefits [23]. As a
result, modern HLS tools also utilize loop-level parallelism, which
increases the scheduling scope across multiple loop iterations and
can potentially yield higher performance.

Existing HLS tools target two main types of loop-level parallelism.
One class of tools targets loops with data-level parallelism [3].
If each loop iteration operates on disjoint data, parallel hardware
modules can be designed for to fully interleave loop iterations. In
extreme cases, each iteration executes the same sequence of oper-
ations, leading to Single Instruction Multiple Data (SIMD) style
parallelism [3]. In reality, however, few outer loops fit this pattern
without additional transformations, thus limiting the applicability
of HLS tools that exploit this kind of parallelism.

A second class of HLS tools exploits loop pipelining to partially
interleave loop iterations [33, 29, 15, 18, 2]. Different pipelining
schemes such as pipeline vectorization [33] and software pipelin-
ing [29, 15, 18, 2] have been adapted to HLS for this purpose.
Pipeline vectorization is applicable to loops without true loop-
carried dependencies or with only regular loop-carried dependen-
cies. Software pipelining has been widely used to overlap compu-
tations from different iterations. However, complicated control and
data dependencies existing in loops limit the number of indepen-
dent operations found from different iterations.

Complementary loop transformations such as loop unrolling, flat-
tening, permutation interchange and tiling can be used by HLS
tools to expose loop-level parallelism for innermost loops [35, 36].
However, these transformations fall short when specializing pro-
grams with either complex control flows or irregular memory ac-
cesses. The following subsection uses an example to show the lim-
itations of existing work and how CGPA address these issues.

2.2 Motivating Example

Figure 1 shows the source code of the main loop in em3d, which
simulates electron microscope tomography by constructing two
linked-lists to build a N-to-N bipartite graph [5]. This code has a

number of features that motivate CGPA: recursive data structures,
irregular memory accesses, and non-affine loop nests.

The input to the core em3d algorithm consists of nodes in a linked
list. Each node has four data members: value, from count, an
array of from nodes which points to the nodes of the other linked-
list, and an array of coeffs (coefficients) for each from nodes.
The outermost loop traverses the linked list, and updates the
value of each node by subtracting all the weighted values of
its from nodes using an inner loop. Even though this inner loop
has some independent instructions across iterations, an attempt to
exploit loop parallelism for this inner loop may fail because:

1. The iteration count, determined by nodelist->from count
(less than 10 for most cases), limits the amount of parallelism
that can be exploited and also introduces the overhead of deter-
mining the control of loop exits. As a result, loop optimizations
such as software pipelining cannot be applied.

2. The final weighted value reduction step in the loop induces
a loop-carried dependency, which prevents a full application
of data-level parallelism. Also the non-constant loop iteration
numbers for each node disable the applicability of a circuit
structure like the reduce module in [26].

Thus, the scheme for generating efficient accelerators for em3d
should focus on its outer loop. At the algorithm level, we can
divide the outer loop computations into two sections: traversal
and update. The linked list traversal section (line 1 in Figure 1(a))
determines the address of the node used in an iteration and also the
termination of the loop. We call this set of instructions a Sequential
Section because fetching the node addresses must be serialized.
Furthermore, because this section has no side-effects (for example,
among other things, it does not store to the memory), we refer to
this special sequential section as a Replicated Section, which means
it is safe for multiple hardware modules to execute it redundantly.
The update section for each node (lines 2-6 in Figure 1(a)) in
one iteration is independent of updates to all other nodes, and can
thus be executed in parallel (as long as the node addresses are
known). We refer to this section as a Parallel Section. Existing HLS
tools can not optimize this outer loop, due to the existence of the
Sequential Section, which introduces a loop-carried dependency,
non-affine memory access and non-constant loop boundary.

CGPA can apply two novel loop parallelism techniques to build
high performance hardware modules for this outer loop. One tech-
nique, called replicated data-level parallelism leverages the in-
sight that computations from replicated sections can be safely ex-
ecuted as multiple parallel copies [19]. For example, CGPA could
create four identical copies of the traversal section — one for each
hardware module, as shown in Figure. 1(b). During execution, each
hardware module executes both fetch and update in one iteration. In
the next three iterations, the module skips update and only executes
fetch. By replicating fetch and distributing updates in a round-robin
manner across the four hardware modules, CGPA can create repli-
cated data parallel accelerators for em3d. The redundant fetching is
useful to calculate the correct node addresses for the corresponding
updates. However, it causes unnecessary memory access overhead
in each module.

CGPA can also adopt an approach, called decoupled pipeline par-
allelism to improve outer loop performance and generate accelera-
tors similar to the results of manual accelerator designs [27]. This
approach uses a set of FIFO buffers to separate the linked list traver-
sal module from that for node updates. Since the traversal section
only goes over the linked list and fetches node addresses, it can
progress much faster than the update section. Thus one sequential
traversal module can supply node addresses to multiple parallel
update modules in another stage, as shown in Figure. 1(c).

With this decoupled pipeline design, when control enters the loop,
the hardware modules for both stages are invoked by the same start
signal. The module in the first (sequential) stage begins fetching
node addresses one by one, and assigns the node address values
to the FIFO buffers of the parallel modules in the parallel stage in
a round-robin fashion. The sequential stage stalls when there are
cache misses or the corresponding buffers are full. Each module in
the second (parallel) stage waits until there are node addresses in its
buffer, and starts to process the update by fetching the node address
directly from the buffer. After completing one iteration, the module
in the parallel stage can get another pointer from the buffer, or stalls
if the buffer is empty. This pipelining execution method brings the
following two benefits:

1. Tolerating Variable Latency: In this example, memory ac-
cesses during the linked list traversal are irregular and might
have variable latency due to cache misses. However, the buffers
between stages ensure that the impact of variable latency is lim-
ited to one stage and does not cause stalls in the subsequent
stages as long as the buffers are not empty.

2. Enabling More Parallelism: Since the sequential stage is split
from the parallel stage by FIFO buffers, the updates of nodes
from different iterations become completely independent of
each other, thus enabling data-level parallelism within the par-
allel stage.

The decoupled pipeline model has proved efficient for streaming
applications [16], and has also been used to design accelerators for
applications such as hash indexing [21]. CGPA is the first HLS tool
to automatically extract this type of parallelism from a single loop
and generate efficient pipelined hardware modules for it.

3. Exploiting Coarse-Grained Pipeline
Parallelism

3.1 CGPA Accelerator Architecture Overview

Figure 2 shows a logical view of coarse-grained pipelined acceler-
ators with a Sequential–Parallel–Sequential (S-P-S) pipeline. The
number of stages for different applications is not fixed, and is de-
termined automatically for each application by the CGPA com-

Dcache Request and Response Crossbars

<q, id, val>

Dcache Banks

<val>

CPU

Stage 1
(sequential)

Stage 2
(parallel)

worker worker worker worker

workerworker

Stage 3
(sequential)

Figure 2: A logical view of CGPA architecture within the dashed
box. Each grey box contains circuit modules customized for the
targeted loop and generated by CGPA compiler. In this figure, a
Sequential–Parallel–Sequential (S-P-S) 3-stage pipeline is shown.

piler’s partition algorithm. The significant difference between the
CGPA designs and existing accelerator designs is that there are
multiple stages of the accelerator for one single loop and they are
separated by FIFO buffers. Each hardware module with indepen-
dent control that implements instructions from the original loop is
called a worker. Each worker has its own independent control cir-
cuit and dedicated memory ports to the cache.

The design of this pipelined accelerator can be embedded in a
general-purpose co-processor such as conservation cores [31] and
Legup accelerator [4] to improve the performance of these co-
processors. It can alternatively be implemented as a standalone
accelerator to improve the performance of targeted loops. This
paper explores the first configuration.

3.2 CGPA Workflow

Figure 3 shows the workflow of the CGPA tool. The tool is built
on top of the LLVM compiler infrastructure [22] (revision 164307).
The tool accepts unannotated sequential C/C++ programs. The
LLVM frontend (clang) translates the source code to intermedi-
ate representation (IR) for further analyses and optimizations. The
compiler identifies hotspots in the code via a simple profiling step.
A series of analyses and code transformations are applied to cre-
ate the pipeline specifications from the IR. Subsequently, the com-
piler splits the program into two parts: one to be executed on
the general-purpose processor and the other (containing the trans-
formed pipelines) to be implemented as accelerators. Additionally,
the compiler generates wrapper functions to invoke the accelera-
tors from the processor and pass it the necessary arguments. The
code to be executed on the general-purpose processor is then com-
piled to binary, and a hardware backend translates the second part
to Verilog descriptions and finally the device programming files.

3.3 Pipeline Generation

The specification of the pipeline is generated during the analy-
sis and optimization phase. In this phase, a set of common op-
timization passes such as dead code elimination, strength reduc-
tion, and scalar optimizations are applied before generating the ac-
tual pipeline. There are three main steps in the pipeline generation
stage: building the program dependence graph (PDG), pipeline par-
tition, and pipeline transformation.

Building the PDG: The compiler first builds a program depen-
dence graph (PDG) for each program. Each node in the PDG repre-
sents an instruction in LLVM IR and each edge between the nodes
represents a control or data dependency. During this process, a set
of alias analyses can be applied to remove dependency edges be-
tween two memory instructions. For example, in the example of

C/C++ Source Code

Analysis & Optimization

SW/HW partition

IR-to-MIPS IR-to-Verilog

SW HW

Place & Route

Assembly + Accelerators Programming File

Profiling
LLVM IR

Building PDG

Pipeline Partition

Pipeline Transform

Verilog Generation Verilog

RTL Generation

Transform
ation

Backend

Figure 3: Workflow for CGPA HLS Framework

Section 2.2, several static analysis algorithms can determine that
from and nodelist nodes are from different linked-lists and dis-
joint from each other [14]. After the PDG is built, the compiler
consolidates all the strongly connected components (SCCs) in the
PDG to create a directed acyclic graph (DAG) [11, 20]. Each com-
ponent is classified as: parallel, replicable, or sequential [19]. Par-
allel SCCs contain no loop-carried dependencies and thus, can be
executed in parallel. The other SCCs are either replicable (do not
contain an instructions with side-effects) or sequential (may con-
tain instructions with side-effects).

Pipeline Partition: This is a coarse-grained instruction scheduling
step that assigns instructions to different pipeline stages. The par-
titioning algorithm is adapted from the Parallel Stage Decoupled
Software Pipelining (PS-DSWP) [27] algorithm. The main differ-
ence between CGPA and PS-DSWP lies in the identification of
replicable sections, and deciding whether it should be inserted in
the parallel stage as replicas or into the sequential stage. Gener-
ally, inserting replicable sections into a sequential stage will in-
crease communication, because the results of the replicable sec-
tions must be sent explicitly to the following stages. Conversely,
duplicating the replicable section in parallel stages will increase the
amount of computation and memory accesses. The CGPA frame-
work only duplicates lightweight replicable sections which do not
contain load and multiply instructions. This is based on the intuition
that time and resources required for the replicable section with-
out these instructions are less than those for communicating results
via FIFO buffers. Figure 1(d) shows that replicable sections with
heavyweight load instructions are identified and inserted into a se-
quential stage (Stage 1), and the remaining instructions are grouped
as one parallel stage (Stage 2). The required number and stage con-
nections of the buffers are also determined at this step.

Pipeline Transform: This step forms a set of control-equivalent
loops for the workers based on the results of the partition step.
Control-equivalent means that all workers from all stages have
the same loop iterations and exit points as the original loop, even
though their bodies have been assigned different instructions. Then
the compiler creates tasks for each stage, with the loop live-ins and
buffers as arguments. Tasks for parallel stages have one additional
argument to indicate the unique identification (ID) for the worker
(relative to all other workers in the same stage). For the body of the
tasks, the instructions of the original loop are distributed according
to the result of the pipeline partition. Moreover, loop control branch
instructions of the targeted loop are also duplicated across the tasks
and the destination of original branch instructions are modified to
recreate the original loop structure in each task.

Both register and control dependencies between stages are com-
municated via FIFO buffers, and the compiler automatically inserts

communication primitives into tasks. For data dependencies, if the
definition and use of a variable are in different stages, a produce
primitive is inserted after the definition, and a consume primitive is
inserted at the point in the later stage which corresponds to the defi-
nition. Also for control dependencies, the compiler needs to broad-
cast the condition of the branch instructions to all the workers in
the following stages as a data dependency, as shown in Figure 1(e).

One significant difference between CGPA partitioning and previ-
ous work [27] is the handling of the replicable section and loop
termination. Duplicating lightweight replicable sections introduces
loop-carried dependencies in the parallel stage. To solve this, the
CGPA compiler creates two copies of the loop body in the tasks for
workers in a parallel stage, as shown in Figure. 1(e). One copy (loop
body 1) has real computations which are the instructions (both par-
allel and replicable sections) assigned to this worker; another copy
(loop body 2) is only for the replicable section. The compiler cre-
ates a new basic block to use the worker ID and iteration counter to
decide which loop body the control should enter at the beginning
of each iteration. For the loop termination of workers in the parallel
stage (when the parallel stage is not the first stage), we adopt the
same strategy, and consume the branch condition from the previ-
ous stage in both loop bodies, and guarantee that it can exit in any
iteration, as shown in Figure 1(e).

Once tasks are generated, the original loop in the parent function
can be replaced by a set of calls to the generated tasks. This is
done by inserting parallel fork and parallel join primitives with the
corresponding arguments. The live-outs are communicated back
to the original parent function by inserting store liveout exactly
before the exits of the tasks, and retrieve liveout before the uses
of the liveouts. Table 1 summarizes all the primitives inserted by
the compiler during the pipeline transformation.

3.4 CGPA Compiler Backend

RTL Generation: The backend of the compiler builds the RTL
description of the hardware modules from IR. We adapt an open-
source Verilog backend of LLVM for this purpose [4]. The instruc-
tion scheduling phase creates a control flow graph (CFG) of the
offloaded program. The nodes of the CFG can be split into multi-
ple states of a finite state machine (FSM), after scheduling instruc-
tions at different clock cycles (represented by one state in the FSM).
Since our compiler generates pipelined parallel modules, schedul-
ing constraints for the new primitives should be added to ensure
correctness and performance. We use the notations from [8] to ex-
press the set of new constraints that must be preserved: svbeg(v)
represents the scheduling variable associated with the starting state
of instruction v; Ck(l) are primitives from Class k with LoopId l
(Table 1), M is the set of memory access instructions, B repre-
sents branch instructions. Then the following additional scheduling
constraints are introduced:

∀fi, fj ∈ C1(l) : svbeg(fi)− svbeg(fj) = 0 (1)

∀fi ∈ C1(l1), fj ∈ C1(l2) : |svbeg(fi)− svbeg(fj)| ≥ 1 (2)

∀m ∈ M, ∀pc ∈ C2 : |svbeg(m)− svbeg(pc)| ≥ 1 (3)

∀b ∈ B, ∀lo ∈ C3 : svbeg(b)− svbeg(lo) = 0 (4)

Constraint 1 guarantees that the parallel invocation of hardware
modules from the same loop will be within the same cycle, and
only when all the modules finish, the state machine of the parent
module will continue. Constraint 2 guarantees that the parallel
invocation of hardware modules for different loops will not be
invoked in the same cycle. Constraint 3 makes sure the produce and
consume primitives will not be scheduled with memory operations,
since memory operations can stall the circuit, and cause multiple

Class Primitive Arguments Description

1
parallel fork LoopID, Task, Liveins,

Buffer, WorkerID
In the current state, invoke a hardware module for Task (associated with LoopID) and read register
values of Liveins as input. If this is a parallel worker, WorkerID is used as one extra input.

parallel join LoopID Stall in current state until all the workers related to LoopID have raised the finish signal

2
produce Buffer, WorkerID, Value Push Value to the FIFO Buffer with index WorkerID
produce broadcast Buffer, Value Push Value to all the workers connected to the FIFO Buffer
consume Buffer Pop a value from the connected FIFO Buffer

3
store liveout LiveoutID, Value Store a liveout value, Value with ID LiveoutID in a register
retrieve liveout LiveoutID Read value for a liveout with ID LiveoutID from the corresponding register

Table 1: New primitives added to LLVM IR to support worker invocation, dependency communication, and register value passing across hardware modules.

pops/pushes to the FIFO buffers if they are scheduled within the
same state. Finally, constraint 4 allows stores of live-out values only
when the loop exits. The backend in [4] is fully utilized to translate
the FSM with scheduled instructions to the RTLs of datapath and
control circuits.

Verilog Generation: Given the RTL specification, the backend
generates the Verilog code automatically. We also create a hard-
ware circuit library to support all the primitives shown in Table 1.
During the Verilog generation phase, the wire connections between
the generated modules and the hardware module in the library is
completed automatically. Besides the Verilog code, the compiler
also generates a testbench to verify the design. All the Verilog de-
signs of our benchmarks passed the verification.

4. Experiments
4.1 Methodology

Evaluation Framework: The CGPA compiler is based on LLVM
(revision 164307). We adapt the backend for CGPA from an open
source Verilog backend [4], which generates both design and test-
bench files. The CPU/accelerators heterogeneous system from [4]
is based on Altera DE4 which features a Stratix IV FPGA [1]. A
32-bit MIPS software core executes the CPU part of the program.
Both the instruction cache and the data cache are directly-mapped
with 512 lines and 128 byte blocksize. The instruction cache and
the data cache have 1 and 8 ports, respectively. For all the pipelined
accelerators, we fixed the width of FIFO buffers to 32 bit, the depth
to 16 entries and the number of workers in the parallel stage to 4.
We use Quartus II 11.0 to synthesize, fitter and simulate the acceler-
ator part of the program. We set the targeted synthesis frequency to
200MHz. The accelerators generated by CGPA have all been im-
plemented and verified. For performance, we measured the number
of cycles for which the kernels of various programs were running.
The ALUT resource usage is obtained after place and route, and the
power estimated is given by PowerPlay [1] with obtained activity
files from a post-fitter simulation.

Benchmarks: Table 2 shows the descriptions of a set of kernels that
were accelerated using CGPA and also the corresponding pipelined
stages generated by CGPA. We chose these benchmarks because
they belong to different domains such as machine learning, graph
partitioning, and image processing. Additionally, we are not aware
of HLS synthesized accelerators for some of these kernels (hash
indexing, em3d, and ks).

4.2 Results

Performance: We consider three data points for each loop ker-
nel: (1) Performance on a MIPS software core; (2) Performance of
hardware accelerators generated by Legup [4]; and (3) Performance
of hardware accelerators generated by CGPA. Legup was chosen
for comparison because it could generate accelerators for each ker-
nel mentioned in Table 2. Additionally, other HLS tools targeting
general-purpose programs use a framework similar to Legup [31].
Figure 4 shows the loop speedup numbers for the kernels, relative
to the performance on the MIPS software core. The Legup HLS

Benchmark Domain Description P1 P2

K-
means [6]

Machine
Learning

finding the nearest cluster for each
node and updating its position

P-S -

Hash-
indexing [21]

Database computing hash key for each node
and indexing it in a linked-list

S-P-S -

ks Graph
Partition

traversing doubly-nested linked-
lists to find a max grain of swapping

S-P-S -

em3d [5] 3D Sim-
ulation

updating value for each node in a
linked-list by subtracting weighted
value in from nodes

S-P P

SIFT 1D-
Gaussblur
[25]

Image
Process-
ing

1D row Gaussian blurring; pipeline
vectorization has been applied to re-
duce memory access

S-P P

Table 2: Descriptions of benchmarks used. P1: Pipeline Partition with
Replicable Section in Sequential Stage; P2: Pipeline Partition with Replica-
ble Section in Parallel Stage

 0X

 2X

 4X

 6X

 8X

 10X

K−means Hash−indexing ks em3d 1D−Gaussblur GeoMean

L
oo

p
sp

ee
du

p,
 n

or
m

al
iz

ed
 to

 M
IP

S
so

ft
w

ar
e

co
re

Legup
CGPA

Figure 4: Speedup Results for Loop Kernels of the Benchmarks

tool gives a 1.85x geomean speedup over the software core. CGPA
gives a geomean of 3.3x speedup over the performance achieved
by Legup and a geomean of 6.0x speedup over the MIPS software
core.

Area and Power: Table 3 shows the area and energy overheads
for each kernel. For most benchmarks, the ALUT usage relative
to Legup is approximately 4.1x. This is not surprising since CGPA
creates four parallel workers in the parallel stage to increase perfor-
mance. Another type of overhead comes from the usage of BRAM
to build the FIFO buffers, which are not included in the ALUT us-
age. Table 3 also shows the power and energy dissipation for each
benchmark. The results show that a geomean of 20% energy dissi-
pation overhead is generated by CGPA, over the accelerators gen-
erated by Legup for the benchmarks. The sources of the energy
overhead are passing values via the FIFO buffers, multi-port cache
support and other computation overhead.

Tradeoff: To explore the tradeoff between computation and com-
munication in the presence of replicable sections, we enable repli-
cated data-level parallelism for em3d and 1D-Gaussblur by dupli-
cating the replicated stage in the parallel workers (reported as P2
in Table 3). The pipelining method (P1) outperforms the duplicated
replicable section method (P2) by 6% and 15% for em3d and 1D-

Benchmark Type
ALUT power energy energy

(mW) (uJ) efficiency

K-means
Legup 1696 46 22.1 7.3

CGPA (P1) 7197 162 22.9 6.9

Hash- Legup 421 47 12.1 6.7
indexing CGPA (P1) 2052 150 14.6 5.5

ks
Legup 1371 60 104.5 6.7

CGPA (P1) 5741 233 131.7 5.3

em3d
Legup 623 72 1.66 6.4

CGPA (P1) 2842 292 2.24 4.7
CGPA (P2) 2624 305 2.49 4.2

SIFT 1D- Legup 1319 53 1.27 7.4
Gaussblur CGPA (P1) 3806 183 1.35 6.9

CGPA (P2) 4168 194 1.55 6.0

Table 3: Comparison between CGPA and related frameworks

Gaussblur, respectively. Moreover, as shown in Table 3, the pipelin-
ing method can reduce energy dissipation by 11% and 14% respec-
tively for these two benchmarks. For the other benchmarks, repli-
cated data-level parallelism was not found applicable.

The appendix shows case studies of two benchmarks and also
includes a discussion of the scalability of CGPA.

5. Conclusion
This paper presents Coarse-Grained Pipelined Accelerators (CGPA),
an HLS framework that synthesizes efficient specialized accelerator
modules for individual loops by utilizing coarse-grained pipeline
parallelism techniques. The combination of coarse-grained pipelin-
ing and exploitation of parallelism within each pipelined stage al-
lows CGPA to design efficient accelerators for C/C++ programs
with irregular memory accesses and complex control flows. Com-
pared to the unparallelized version, CGPA shows speedups of
3.0x–3.8x for 5 kernels from programs in different domains.

Acknowledgments
We thank the entire Liberty Research Group for their support and
feedback during this work. We also thank the anonymous reviewers
for their insightful comments. This research was funded in part by
National Science Foundation grants 0964328 and 1047879 and by
DARPA contracts FA8750-10-2-0253 and HR0011-13-C-0005. All
opinions, findings, conclusions, and recommendations expressed
throughout this work are those of the authors and do not necessarily
reflect the views of the aforementioned funding agencies.

References
[1] Altera corp. Web site: http://www.altera.com.

[2] Autoesl. http://www.xilinx.com/products/design-tools/ise-design-
suite/index.htm.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. In
PLDI, 2008.

[4] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Ander-
son, S. Brown, and T. Czajkowski. Legup: High-level synthesis for
fpga-based processor/accelerator systems. In FPGA, 2011.

[5] M. C. Carlisle and A. Rogers. Software caching and computation
migration in Olden. In PPoPP, 1995.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC, 2009.

[7] J. Cong, P. Zhang, and Y. Zou. Optimizing memory hierarchy alloca-
tion with loop transformations for high-level synthesis. In DAC, 2012.

[8] J. Cong and Z. Zhang. An efficient and versatile scheduling algorithm
based on sdc formulation. In DAC, 2006.

[9] P. Diniz and J. Park. Automatic synthesis of data storage and control
structures for FPGA-based computing engines. In FCCM, 2000.

[10] B. Draper, W. Nar, W. Bohm, J. Hammes, B. Rinker, C. Ross,
M. Chawathe, and J. Bins. Compiling and optimizing image process-
ing algorithms for fpgas. In CAMP, 2000.

[11] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Pro-
gramming Languages and Systems, 9(3):319–349, July 1987.

[12] E. Fiksman, Y. Birk, and O. Mencer. ASC-Based Acceleration in an
FPGA with a Processor Core Using Software-Only Skills. In FCCM,
2006.

[13] J. Frigo, M. Gokhale, and D. Lavenier. Evaluation of the streams-C
C-to-FPGA Compiler: An Applications Perspective. In FPGA, 2001.

[14] R. Ghiya and L. J. Hendren. Is it a Tree, DAG, or Cyclic Graph? In
POPL, 1996.

[15] M. Gokhale and J. Stone. NAPA C: Compiling for a Hybrid RISC/F-
PGA Architecture. In FCCM, 1998.

[16] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski. Stream-
oriented fpga computing in the streams-c high levellanguage. In
FCCM, 2000.

[17] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor,
and R. Laufer. Piperench: a coprocessor for streaming multimedia
acceleration. In ISCA, 1999.

[18] J. Hauser and J. Wawrzynek. Garp: a MIPS processor with a reconfig-
urable coprocessor. In FCCM, 1997.

[19] T. B. Jablin. Automatic Parallelization for GPUs. PhD thesis, 2013.

[20] N. P. Johnson, T. Oh, A. Zaks, and D. I. August. Fast condensation of
the program dependence graph. In PLDI, 2013.

[21] O. Kocberber, B. Grot, P. J., F. B., L. K., and R. P. Meet the walkers:
Accelerating index traversals for in-memory databases. In MICRO,
2013.

[22] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO, 2004.

[23] H. H. Lee, Y. Wu, and G. Tyson. Quantifying Instruction-Level
Parallelism Limits on an EPIC Architecture. In ISPASS, 2000.

[24] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch.
Thin servers with smart pipes: designing SoC accelerators for mem-
cached. In ISCA, 2013.

[25] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91–110, 2004.

[26] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz. Convolution Engine: Balancing Efficiency and
Flexibility in Specialized Computing. In ISCA, 2013.

[27] E. Raman. Parallelization Techniques with Improved Dependence
Handling. PhD thesis, Princeton University, 2009.

[28] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August.
Parallel-stage decoupled software pipelining. In CGO, 2008.

[29] B. R. Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In MICRO, 1994.

[30] J. Tripp, K. Peterson, C. Ahrens, J. Poznanovic, and M. Gokhale.
Trident: an fpga compiler framework for floating-point algorithms. In
FPL, 2005.

[31] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation cores:
Reducing the energy of mature computations. In ASPLOS, 2010.

[32] J. Villarreal, A. Park, W. Nar, and R. Halstead. Designing Modular
Hardware Accelerators in C with ROCCC 2.0. In FCCM, 2010.

[33] M. Weinhardt and W. Luk. Pipeline vectorization. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
20(2):234–248, 2001.

[34] M. Wirthlin and B. Hutchings. A dynamic instruction set computer.
In FCCM, 1995.

[35] M. Wolf, D. Maydan, and D. Chen. Combining loop transformations
considering caches and scheduling. In MICRO, 1996.

[36] M. E. Wolf and M. S. Lam. A loop transformation theory and an
algorithm to maximize parallelism. IEEE Transactions on Parallel
and Distributed Systems, 2(4):452–471, October 1991.

[37] J. Xu, N. Subramanian, A. Alessio, and S. Hauck. Impulse C vs.
VHDL for Accelerating Tomographic Reconstruction. In FCCM,
2010.

APPENDIX

A. Case Studies
This section shows the applicability of CGPA by describing two
interesting cases from the evaluated set of benchmarks.

A.1 K-means

for (int i = 0; i < numNodes; ++i) {

int index = findNearestPoint (nodes[i], nFeatures, clusters, nClusters);

if(membership[i] != index)
delta += 1;

membership[i] = index;
new_centers_len[index] += 1;
for(int j = 0; j < nFeatures; ++j)

new_centers[index][j] += nodes[i][j];
}

P

S

R

Figure 1: The targeted loop for K-means algorithm, along with the
identification of different sections.

For K-means, the CGPA compiler builds a pipelined accelerator
by targeting the loop for deciding cluster membership for each
point and updating new cluster centers. Figure 1 shows the source
code for the loop. This loop first finds the membership of each
input data point by using the findNearestPoint function. This
function calculates the Euclidean distance between a data point
and the center of each cluster, then returns the index of the cluster
corresponding to the minimum distance. The returned index is used
to assign membership to the data point and to update the positions
of the corresponding cluster center.

The CGPA framework indicates that the targeted loop can be sep-
arated into three unique sections (shown in Figure 1). The induc-
tion variable calculation, which determines the index of data points
used in an iteration and also the termination of the loop, is identi-
fied as a Replicable Section. The call to the findNearestPoint
function can be executed independently for each data point, and
thus is identified as a Parallel Section. The rest of the loop con-
tains updates to three objects: membership, new center len, and
new centers. These updates are executed for each iteration, and
cannot be overlapped with the updates from the other iterations.
The CGPA framework identifies these updates as belonging to a
Sequential Section.

In the pipeline transformation step of CGPA, the Parallel Section
is deployed as the parallel stage in the pipeline, which then is
translated into parallel hardware modules as shown in Figure 2. The
Sequential Section is transformed to one hardware worker, which
is connected to the parallel workers in the earlier stage via FIFO
buffers. The compiler also identifies that the Replicable Section
is lightweight, so it is duplicated across all workers. Thus, each
worker has its own induction variable calculation. One 4-channel
FIFO buffer is generated to hold the index from the workers in the
parallel stage. The sequential worker completes its task by fetching
index values from the buffers on a round-robin basis. By separating
the sequential worker from the main parallel computations in the
algorithm, maximum parallelism can be exploited while ensuring
correctness of execution.

Some existing HLS tools have targeted inner loop for the K-means
kernel. For example, Gokhale et al. propose the use of a systolic
array structure for the calculation of Euclidean distances within the
findNearestPoint function, based on an language extension of
C, called Stream-C [16]. However, the CGPA framework differs
from this approach in the following ways:

P

index

P P P

S

index

R R R R

R

Stage1:
Parallel

Stage2:
Sequential

Figure 2: Pipeline generated for K-means by CGPA.

• The results of CGPA are more general (in terms of the number
of different clusters and input data points), since CGPA does
not assume a fixed number of clusters; and

• CGPA targets the outer loop, which potentially has a higher de-
gree of parallelism, since the number of data points is typically
orders of magnitude larger than the number of cluster centers.

CGPA is a coarse-grained pipeline parallelism technique for in-
dividual loops, and its transformation technique usually does not
change the code structure of inner loops, which can be targeted by
existing HLS techniques. In this example, the calculation of the
Euclidean distances between the nodes and the centers can still be
optimized by applying systolic array structures if the number of
clusters is a constant. Thus, CGPA can be seen as complementary
to existing work.

A.2 1D Row Gaussian Blur

for (int i = 0; i < height; ++i) {
float img0 = img[i][0];
float img1 = img[i][1];
float img2 = img[i][2];
float img3 = img[i][3];
float img4 = img[i][4];

for (int j = 0; j < width-4; ++j) {

intermediate[i][j] = coef0*img0 + coef1*img1 + coef2*img2
+coef3*img3+ coef4*img4;

img0 = img1;
img1 = img2;
img2 = img3;
img3 = img4;

img4 = img[i][j+5];
}

}

R3

P

R1

R2

Figure 3: Source code for targeted loop in 1D Gaussian Blur, along
with the identification of different sections.

CGPA is able to generate parallel accelerator designs for both the
1D row and column Gaussian Blur kernels in SIFT program. This
section only shows the result of the 1D row Gaussian Blur kernel,
whose code is shown in Figure 3. For a certain row i, the loop has a
window of size 5 moving from the left to the right of that row, and
calculates a weighted sum reduction of all the image points within
the window. In prior work, a series of optimizations, namely scalar
replacement and pipeline vectorization [9], have been utilized to

optimize the number of memory accesses for the loop. In our
evaluation, these optimizations are applied for the CPU baseline,
Legup and CGPA.

The CGPA framework is able to identify four different code sec-
tions for the targeted loop. Three of the four sections are identi-
fied as Replicable Sections. The first replicable section (labelled
R1) performs induction variable calculations, which gives out the
column index of the image data. The second replicable section (la-
belled R2) performs data swaps. The third replicable section (la-
belled R3) fetches new image data. The fourth section is a parallel
section, which performs a weighted sum reduction of each window
position. The sum reduction for each position can be performed in-
dependently of that for other positions, thus explaining why this
section is identified as a parallel section.

CGPA handles the three replicable sections in different ways, ac-
cording to their features. Since R1 and R2 are lightweight, they are
replicated in the workers. R3 has a load instruction, thus it is in-
serted into a separated sequential pipeline stage. As a result, R1 is
replicated in both the sequential stage and parallel stage, because
it performs all the induction variable calculations. R2 is only repli-
cated in the parallel stage, because its result is only used in the
parallel stage. For each iteration, R3 fetches image data and broad-
casts it to all four shift register chains (R2) in the second stage. A
final pipeline partition and transformation generated by CGPA is
shown in Figure 4.

P P P P

Stage1:
Sequential

Stage2:
Parallel

R1

R3

R1 R1 R1 R1

R2 R2 R2 R2

Figure 4: Pipeline generated for 1D Row Gaussian Blur by CGPA.

Compared to the pipeline vectorization technique which can only
generate one reduction window [9], CGPA builds four parallel
reduction windows to generate four intermediate data concurrently.
This is not just a simple duplication of reduction windows that
allows them to work independently (like the results generated by
inserting R3 in a parallel stage), and experimental results show that
the decoupled pipelining technique improves the performance by
15% and reduces the energy cost by 14%. Furthermore, the map-
reduce style circuit in [26] can also be applied in the Parallel
stage to improve the sum reduction performance. Again, that is
complementary to CGPA.

B. Discussions
This section discusses the scalability of CGPA and the potential
improvements that could be achieved by combining it with prior
work.

B.1 Scalability

Due to the limitations of the experimental platform, this paper only
shows cases with a maximum of 4 parallel workers in the parallel
stage. The degree of parallelism that can be potentially exploited
by CGPA is larger than this number for all the benchmarks. In the
ideal case, the scalability of CGPA depends on three issues:

Workloads of the Sequential Stage: Increasing the workload on
the sequential stages has two effects: (1) it may stall the parallel
stage through the FIFO buffers, and (2) it may limit the overall
speedup in accordance with Amdahl’s law. The pipeline partition
algorithm in CGPA tries to find maximum parallel section of the
loop body, thus reducing the workloads of the sequential stages.

Workloads of the Replicable Sections in the Parallel Stage: If
the number of workers in the parallel stage is increased, there is an
increase in the chance that execution enters the loop body which
contains only the replicable section. This could result in higher
overheads for the whole accelerator system. Thus, it is important
for efficiency and scalability to decide where the replicable section
must be inserted. In CGPA, the partition algorithm can intelligently
calculate the pipeline balance and decide which replicable sections
should be inserted in the parallel stage.

Memory system support: As shown in the experiments, CGPA
tries to reduce memory access by reusing input data from a sequen-
tial stage. However, in CGPA, since each worker in the parallel
stage has its own memory ports, the overhead of building shared
memory system becomes large if the number of parallel workers
increases To solve this problem, some existing memory optimiza-
tions, such as private cache and memory partition techniques can
be applied. CGPA’s pipeline partition design enforces an assign-
ment of aliasing memory instructions to the same stage (by cre-
ating SCCs), and this indicates that there are no data access con-
flicts from different stages and this helps the application of existing
memory optimizations.

B.2 Potential Improvements

The CGPA compiler focuses on outer loops and relies on the adap-
tive backend to optimize inner loops which are suitable for target-
ing by traditional methods. Since CGPA is a coarse-grained paral-
lelism technique, it usually keeps the code structure of inner loops,
which enables additional optimizations using the existing research
results such as prefetching and other loop-level parallelism tech-
niques. Normally, these additional techniques can be applied to
each stages seperately. Additionally, the bandwidth of the mem-
ory system can be increased by synchronizing the memory accesses
from parallel stage workers [19]. We leave these potential improve-
ments as future work.

