
0018-9162/03/$17.00 © 2003 IEEE30 Computer

Challenges
in Computer
Architecture
Evaluation

Q uantitative evaluation has become the mainstay of computer
architecture research. However, the tremendous complexity
of computer systems is making them both difficult to reason
about and expensive to develop. Detailed software simula-
tions have therefore become essential for evaluating ideas in
the computer architecture field. Industry uses simulation

extensively during processor and system design because it is the easiest and
least expensive way to explore design options. Simulation is even more
important in research to evaluate radical new ideas and characterize the
nature of the design space.

Table 1 shows a dramatic shift toward simulation-based research reflected
in papers presented at the International Symposium on Computer Architecture.
Papers on simulations now constitute 80 to 90 percent of the total at this pre-
mier conference—up from only 28 percent in 1985. By comparison, papers
based on direct measurements of real systems or on mathematical models have
fallen to less than 10 percent from almost 35 percent in 1985.

Unfortunately, it is becoming harder and more time-consuming to construct
accurate simulation models of modern computer systems. Further, the sub-
stantial effort required to develop high-fidelity simulation tools typically yields
few academic rewards. Finally, as the range of important applications becomes
more diverse, creating a suitable set of publicly available benchmarks and met-
rics becomes more challenging. Together, these difficulties are likely to encour-
age researchers to focus on problems suited to the current evaluation
infrastructure—a type of research that only “looks where the light is good.”

Research on multiprocessor systems, in particular, has already hit a wall in
performance evaluation. As Figure 1 shows, the proportion of multiprocessor
papers submitted to ISCA dropped from a peak of 50 percent in 1985 to less
than 10 percent in 2001. This trend is echoed in other forums and seems
due in part to the difficulty of performing in-depth research evaluations related
to these systems.

This research downturn comes at a crucial time. Over the next 10 years,
even single-chip computers will likely be multiprocessor systems. Even in
uniprocessor systems, increased on-chip heterogeneity and specialization as
well as new metrics such as power and temperature will make simulation
and modeling difficult, if not impossible, using current tools and method-
ologies.

A report to the US
National Science
Foundation argues
that simulation and
benchmarking
technology will require
a leap in capability
within the next few
years to maintain
ongoing innovation
in computer systems.

Kevin Skadron
University of Virginia

Margaret Martonosi
David I. August
Princeton University

Mark D. Hill
University of Wisconsin−Madison

David J. Lilja
University of Minnesota

Vijay S. Pai
Rice University

P E R S P E C T I V E S

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

In December 2001, a number of researchers met
under the aegis of the US National Science Foun-
dation’s Computer Systems Architecture program
to discuss the experimental and evaluation prob-
lems that processor architecture research faces.

The 18 workshop panelists agreed that current
limitations and trends in evaluation techniques are
troublesome and could noticeably slow the rate of
computer systems innovation. They recommended
new research to help make quantitative evaluations
of computer systems manageable again (www.
ee.princeton.edu/~mrm/CPUperf.html).

Specifically, the panel’s report advocated support
for research in the areas of simulation frameworks,
benchmarking methodologies, analytic methods,
and validation techniques.

SIMULATION FRAMEWORKS
Quantitative evaluation of computer architec-

tures relies heavily on simulators and simulator
infrastructure, yet today’s robust and publicly avail-
able simulation tools are by no means capable of
supporting the full range of studies that the archi-
tecture community must pursue.

Problems
Current simulation infrastructures are written

in ways that pose several problems. First, sequen-
tial C or C++ simulator code does not resemble
the systems under study. This discrepancy forces
simulator writers to perform a complex mapping
from the concurrent, structural nature of the sys-
tems to the sequential, procedural nature of the
simulator’s underlying programming language.
The mapping process is typically ad hoc and error-
prone. As a result, simulator code obscures the
machine actually being modeled, which can com-
promise the validity of conclusions drawn from
the simulation results.

Further, the mapping schemes used between sim-
ulators—and even within a single simulator—are
typically distinct. These differences limit the inter-
operability of simulator code, which in turn limits
code reuse and the collaboration potential of cur-
rent simulation methodologies.

Given the difficulty of reusing the code in current
tools, computer architecture research tends to focus
on questions relating to machines for which simu-
lation models exist. This restricted focus means that
parts of the design space as well as potentially inter-
esting new ideas are inadequately explored because
the available tools do not support them.

The challenge is even greater for multiprocessor
simulators than for uniprocessor simulators.

Multiple processors and the system structures that
connect them already stress the capabilities of cur-
rent modeling tools. As system complexity contin-
ues to skyrocket, these tool-related problems will
only worsen.

Simulation recommendations
All workshop participants agreed that simulation

frameworks and simulator construction frameworks
were superior to monolithic simulators or simula-
tor code libraries written in sequential languages.

Simulation frameworks provide an infrastruc-
ture for pluggable components and hierarchical

August 2003 31

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f p
ap

er
s

19
77

19
82

19
87

19
92

19
97

Other (including microarchitecture)
Fault tolerance
Data flow
Interconnection networks
Multiprocessors

IS
CA

 d
id

 n
ot

 m
ee

t i
n

19
75

Figure 1. Relative percentage of papers by topic category submitted to the
International Symposium on Computer Architecture from 1973 to 2001.
Multiprocessor papers have declined especially rapidly since 1993. Source:
M.D. Hill and R. Rajwar, “The Rise and Fall of Multiprocessor Papers in the
International Symposium on Computer Architecture (ISCA),” 2001; www.cs.
wisc.edu/~markhill/mp2001.html. Reprinted with permission.

Table 1. Performance evaluation methodologies used in a sampling of
papers from the Proceedings of the International Symposium on Computer
Architecture.

Total Mathematical
Year papers* Simulation Measurement modeling Other

2001 25 22 2 0 2
1997 30 24 6 0 0
1993 32 23 9 6 1
1985 43 12 1 14 16
1973 28 2 0 5 21

*Note: Total papers are not necessarily the sum of papers across the columns because some

papers used more than one evaluation technique.

32 Computer

abstraction by defining interfaces that resem-
ble concurrent communication in real sys-
tems—not the function-call interface found
in sequential programming languages such
as C. Simulation frameworks encourage shar-
ing of component models across research
groups by nullifying conventions specific to
any given monolithic simulator or code
library.

Simulation construction frameworks enable
rapid exploration of design alternatives by
automatically weaving architectural compo-
nent models together as implied by a machine
description. Abstracting the machine descrip-

tion from the simulator code gives researchers a
clear picture of the machine actually being
modeled.

Modularity and portability. Framework modularity
lets researchers consider different evaluation levels.
For instance, they can use abstract evaluations
with analytic models to study ideas in the earliest
stages of development and increase the detail in
evaluations as the work progresses. Frameworks
also encourage code reuse and expose a machine’s
structure through its description, thereby speeding
validation of machine models. Examples of
recently developed frameworks include Asim1 and
the Liberty Simulation Environment.2

Support for constructing simulator frameworks
will have important long-term benefits by making
it easier to extend, reuse, and validate simulator
components. Relatively unrestricted machine
description languages encourage consideration of
unconventional machines, and multilevel simula-
tions let researchers substitute analytic or real-time-
logic models for specific components.

The NSF workshop panelists accordingly rec-
ommended that the computer architecture com-
munity encourage research to develop modular
and portable frameworks. Government and indus-
try sources should fund efforts in two phases:

• develop new frameworks to foster maximal
innovation, and

• advance the most successful frameworks for
wide distribution in the R&D community.

Model accuracy. The community must also arrive
at some consensus on what constitutes appropri-
ate validation for various types of research stud-
ies. Models of even an existing architecture are
unlikely to capture every nuance of actual hard-
ware behavior, and for many studies such detail
simply slows research unnecessarily.

A key question is whether absolute or relative
accuracy is required—that is, are exact performance
projections necessary or is it sufficient to produce
only a reliable projection of how different parts of
the design space perform relative to each other? The
answer may dictate different validation strategies.3

Multiprocessor infrastructure is a particular con-
cern. Significant research is needed to develop reli-
able abstractions for multiprocessor simulators and
to improve their speed, accuracy, and modularity.
Both shared-memory and message-passing systems
need models.

Other challenges lie in simulating the heterogene-
ity inherent in many upcoming embedded systems
while preserving portability of common components
between general-purpose and embedded-system
processor simulations.

Funding and disseminating research. Funding agen-
cies can play an important role in advancing simu-
lation technology by aggressively supporting
research programs to develop new frameworks and
components. The academic community can in turn
support this important research area by creating a
forum for disseminating these contributions and
recognizing them in peer-reviewed publications.

BENCHMARKING
While benchmarking issues are diverse, a few

problems seem particularly acute for architecture
research.

Problems
First, current benchmarks focus almost exclu-

sively on high-performance/desktop workloads, rep-
resented by the SPECcpu benchmarks, and on
scientific workloads, such as the SPLASH bench-
marks. No benchmark suite can be a one-size-fits-
all solution. While the SPEC and SPLASH appli-
cation classes remain important, other classes are
growing too rapidly to ignore. Examples include
embedded systems (for which the University of
Michigan recently released the MiBench suite4),
mobile computing (for which the University of
California, Los Angeles, has released the Media-
Bench suite5), real-time computing, server work-
loads, and networking workloads. Behavior types
such as dependability, power, and pointer usage also
need benchmarks.

Second, all benchmark suites, including SPEC
and SPLASH, require better characterization to
show what portion of the total “behavior space”
they really represent. Unfortunately, it is unclear
whether the current SPECcpu suite adequately rep-
resents today’s high-performance/desktop applica-

Significant research
is needed to develop
reliable abstractions
for multiprocessor
simulators and to

improve their speed,
accuracy, and

modularity.

tions, let alone other application classes such as
mobile computing. Similarly, nonscientific work-
loads have become at least as important as scientific
workloads in multiprocessor systems, especially in
the small-scale systems used by servers. Yet the
R&D community does not have a system for iden-
tifying important benchmark characteristics and
how benchmark applications embody them. Such
a system would also help in identifying character-
istics that a suite does not represent well and
thereby guide the development of new benchmarks.

Third, full-size (“macro”) benchmarks can com-
bine many behaviors in ways that can be hard to
conceptualize. Microbenchmarks offer a way to
isolate individual program behaviors or individual
aspects of a processor’s performance. In addition,
researchers can combine them to construct more
thorough application and system performance
models and to determine the importance of vari-
ous system behaviors.6,7 Yet microbenchmarks are
almost completely lacking at this time.

Fourth, the batch-processing mode of running
benchmarks—as if each one had exclusive access to
the CPU for the duration—is unrealistic. Many sys-
tems run multiple processes simultaneously, often
sharing the hardware at a fine granularity. The com-
munity needs a sound methodology for modeling
workloads in addition to individual benchmarks.
The methodology must include operating system
effects, especially in multiprocessor applications.
Moreover, we need more work to understand com-
plex workloads, such as database management sys-
tems, whose exact execution path is a function of
many system parameters.8

Benchmarking recommendations
The NSF workshop panelists recommended

aggressive support for programs to develop and
characterize robust, portable benchmarks for appli-
cation domains outside the traditional high-per-
formance/desktop domain. In addition, research is
needed to develop techniques for characterizing
and abstracting benchmarks and for providing
parameterized, synthetic workloads.

Reward structure. Developing benchmarks, bench-
marking methodologies, and tools is hard work.
While developers of widely accepted benchmark
suites and methodologies see significant payoff for
their work in citations and other recognition, the
community’s tendency to support only a small set
of benchmark suites leads to a winner-takes-all sit-
uation. Consequently, the current reward structure
makes research in this area too risky for most aca-
demics.

The academic architecture community
must provide a forum for evaluating and dis-
seminating benchmarks. Such a forum, per-
haps organized as a standing committee,
could encourage benchmark creation in
areas of increasing importance as well as vet
benchmark quality and characterization.
Hopefully, both committee service and
benchmark submission will, in time, be seen
as prestigious. The committee might take on
some characteristics of a conference program
committee, and a benchmark’s approval
might include an accompanying publication that
will have the stature of a more traditional peer-
reviewed paper.

Open source. The panelists envision a benchmark
suite for research purposes and so recommend that
all benchmarks be publicly available with source
code. Users should be permitted to improve the
algorithms in benchmarks with the proviso that
they make such changes publicly available as well.
Some means for incorporating improvements back
into the standardized form of the benchmarks is
also important.

Synthetic benchmarks. Finally, the panelists recom-
mend synthetic benchmarks that are coded to run
on a real computer but parameterized to provide a
range of different behaviors. Synthetic benchmarks
would let researchers explore a wider range of the
application behavior space, even when no publicly
available benchmark exists. Parameterization
would allow a single benchmark to produce a vari-
ety of behaviors, covering a larger portion of the
behavior space. With a suitable choice of parame-
ters, the synthetic benchmarks should be able to
demonstrate behaviors similar to those demon-
strated by “real” benchmarks. This concept could
be extended to create parameterized workloads
with a variable mix of program behaviors and rates.

ABSTRACTIONS AND METHODOLOGY
Computer architecture’s heavy emphasis on sim-

ulation effectively discourages the research com-
munity from exploring other useful and possibly
more informative modeling techniques. The few
published papers using and proposing analytic
models have not stimulated significant follow-up
efforts. Stories abound of such papers receiving
knee-jerk negative rejections from program com-
mittees and other researchers. Among the NSF
workshop participants, however, even skeptics
admit that analytic models have a place and that
some aspects of the research community’s hostility
are cause for concern.

August 2003 33

Nonscientific
workloads have
become at least
as important as

scientific workloads
in multiprocessor

systems.

34 Computer

Analytic models and simulation are not
mutually exclusive. Analytic models can help
to understand a system in ways that simulation
does not. They can also be used to validate
a simulation-based model. Some panelists
described experiences in which such validation
exercises proved extremely valuable.

Problems
The research community’s preference for

papers that emphasize measurements with
detailed simulation has generated valuable

results, but it has also undermined work on more
far-reaching approaches that cannot yet be ade-
quately simulated. In general, we should be care-
ful to value quantitative results for the
understanding they provide, applying Richard
Hamming’s dictate to computer systems evaluation:
“The purpose of computing is insight, not num-
bers.”

Further, some aspects of very detailed evaluation
can be unrealistic and wasteful when exploring a
technology that is sufficiently speculative to lack
detailed behavior and timing data. More impor-
tantly, researchers cannot pursue futuristic investi-
gations when they are limited only to systems that
can already be simulated and for which no bench-
mark programs are available. For instance, analyt-
ical performance-evaluation tools can model the
expected behavior of future systems; they can also
model the expected impact of future compiler and
hardware modifications, thereby avoiding unnec-
essary costs associated with more detailed simula-
tion models or actual implementations.

In domains currently without good benchmarks,
new abstract workloads could help if we can justify
the abstractions and characterize their representa-
tiveness. Further, as system and workload com-
plexity increases, detailed simulation studies will
take far too much time. This constraint already lim-
its multiprocessor simulations. Increasing hetero-
geneity in uniprocessor systems-on-a-chip foretells
a similar problem. We need scientific methods for
abstracting evaluations to explore the desired
design space accurately but efficiently.

Recommendations for analytic models
Workshop panelists agreed that developing sci-

entific methods for abstracting evaluations to
explore large design spaces is imperative. Analytic
models, both as modules within an overall evalua-
tion framework and as a way of validating simula-
tor behavior, are important tools that the research
community is mostly lacking today.

Statistical or other techniques that clearly demon-
strate how analytic models capture important
behaviors would substantially improve the way
most practitioners view such models, especially if
the models are easy to use and understand. Some
techniques, such as performance counters and
related tools, are driven by direct measurements yet
offer many of the same benefits as analytic models.

METRICS, EVALUATION ACCURACY,
AND VALIDATION

Quantitative evaluations must give accurate
insights about trends and behavior. Model inac-
curacies can lead to incorrect predictions and
even spurious research threads that take years to
resolve.

Yet many studies need not predict exact values
for performance, power, and other metrics. Rather,
they need only provide a reliable projection of how
different parts of the design space perform relative
to one another. Such results are especially impor-
tant for exploring hypothetical architectures and
targeted future technologies in which the lack of
detailed design information makes absolute accu-
racy impossible.

Problems
Some modeling assumptions are essential for

achieving relative accuracy, while others add need-
less complexity. The current understanding of cor-
rect abstraction levels and other important aspects
of accurate models is poor. This leads to wasted
effort on models and simulations that contain
unnecessary detail while simultaneously lacking
certain essential information. For hypothetical sys-
tems, high precision—no matter how detailed the
model—can be wasted if the assumptions that
underlie the detail are inappropriate or change over
time. Early-stage studies should focus on charac-
terizations of broad parameter spaces.

Another problem with simulation evaluation
accuracy and validation is that most architecture
research uses the same basic, aggregated statistics:
average instructions per second (IPC), cache miss
rate, branch misprediction rate, and so on.
However, average values conceal bursty behavior
and can therefore be misleading by aggregating
underestimates and overestimates over time.
Unfortunately, simple standard deviations are not
helpful because the events being measured seldom
fit a Gaussian distribution. We need a wider range
of methods and metrics for analyzing processor per-
formance as well as a better understanding of how
to use them appropriately.

Researchers cannot
pursue futuristic

investigations when
they are limited to

systems for which no
benchmark programs

are available.

In fact, the computer architecture community
continually searches for new metrics to provide bet-
ter insight and simplify evaluation. Thermal pack-
aging is a recent case in point: How do we abstract
away specific thermal packaging details to obtain
a generalized metric for heat regulation, similar to
the way IPC abstracts away circuit-design and
clock-cycle-time details? The difficulty of evaluat-
ing and generalizing new ideas in temperature-
aware computing is a serious obstacle to effective
research in this area, and similar difficulties appear
in many areas of architecture research.

More generally, how do we effectively capture
tradeoffs between the continuing need for perfor-
mance and other design needs? How do we reflect
real-time and reliability requirements? How do we
reflect soft real-time application requirements, with
a range of acceptable quality-of-service levels, so
that architects can understand how to trade qual-
ity of service against other design goals?

Recommendations for validation techniques
The community must improve its understanding

of an accurate model’s essential components. This
understanding underlies the development of tech-
niques for defining less-detailed simulations that
still provide relative accuracy. It also supports the
development of methods to verify that accuracy.

Computer architects need better metrics as well
as statistical techniques and tools that are accessi-
ble and easy to use.9 They also need metrics for new
areas, including power, temperature, reliability, and
quality of service. Even existing metrics, such as the
energy-delay product now widely used for power-
aware computing, need expansion to encompass
real-time computing and other design goals.

The field is rife with different simulation techniques.
There is little agreement on when to use certain bench-
marks or inputs or, despite recent work,10-12 on what
configurations to model for various types of experi-
ments and what areas require the greatest investment
in modeling detail. Sound and verifiable modeling
methodologies require further research.

Unlike most other scientific research disciplines,
published computer architecture results are rarely
independently verified. This lack of independent
experiment replication appears to result primarily
from the lack of an appropriate reward structure.
Workshops such as the successful 2002 and
2003 Workshops on Duplicating, Deconstructing,
and Debunking (www.ece.wisc.edu/~wddd/) are a
step in the right direction, but a publication with
the imprimatur of a refereed journal is needed to
completely legitimize the replication and verifica-

tion of results. Existing journals might offer a dis-
tinct track for publishing results of this nature.

W ithout major advances in the areas dis-
cussed here, limitations in the current
evaluation infrastructure will likely

restrict computer architecture research to a narrow,
incremental, and ultimately irrelevant enterprise.
The research community must play its part by
embracing high-quality work in these areas.
However, because the work involves a large invest-
ment of time and effort, the NSF workshop panel
argued that a substantial investment of government
and industry research funds is required to jump-
start it.

New venues for publishing and disseminating
work are also necessary. Without funding and
promising prospects for academic recognition,
research and development in these areas is likely to
languish at its current slow pace. The current short-
comings in computer systems evaluation could ulti-
mately even obstruct the innovation that is driving
the information-technology revolution. �

References
1. J. Emer et al., “Asim: A Performance Model Frame-

work,” Computer, Feb. 2002, pp. 68-76.
2. M. Vachharajani et al., “Microarchitectural Explo-

ration with Liberty,” Proc. 35th Ann. IEEE/ACM
Int’l Symp. Microarchitecture, IEEE CS Press, 2002,
pp. 271-282.

3. R. Desikan, D.C. Burger, and S.W. Keckler, “Mea-
suring Experimental Error in Microprocessor Simu-
lation,” Proc. 28th Ann. Int’l Symp. Computer
Architecture, IEEE CS Press, 2000, pp. 266-277.

4. M.R. Guthaus et al., “MiBench: A Free, Commer-
cially Representative Embedded Benchmark Suite,”
Proc. 4th Ann. IEEE Int’l Workshop Workload
Characterization, IEEE CS Press, 2001, pp. 3-14.

5. C. Lee et al., “MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communications
Systems,” Proc. 30th Ann. Int’l Symp. Microarchi-
tecture, IEEE CS Press, 1997, pp. 330-335.

6. R.H. Saavedra and A.J. Smith, “Analysis of Bench-
mark Characteristics and Benchmark Performance
Prediction,” Trans. Computer Systems, Nov. 1996,
pp. 344-384.

7. M. Seltzer et al., “The Case for Application-Specific
Benchmarking,” Proc. 7th Workshop Hot Topics in
Operating Systems, IEEE CS Press, 1999, pp. 102-
107.

August 2003 35

36 Computer

8. A. Alameldeen et al., “Simulating a $2M Commercial
Server on a $2K PC,” Computer, Feb. 2003, pp. 50-
57.

9. J.J. Yi, D.J. Lilja, and D.M. Hawkins, “A Statistically
Rigorous Approach for Improving Simulation
Methodology,” Proc. 9th Int’l Symp. High-Perfor-
mance Computer Architecture, IEEE CS Press, 2003,
pp. 281-291.

10. T. Sherwood et al., “Automatically Characterizing
Large Scale Program Behavior,” Proc. 10th Int’l
Conf. Architectural Support for Programming Lan-
guages and Operating Systems, ACM Press, 2002,
pp. 45-57.

11. J.W. Haskins Jr. and K. Skadron, “Memory Refer-
ence Reuse Latency: Accelerating Sampled Microar-
chitecture Simulation,” Proc. 2003 IEEE Int’l Symp.
Performance Analysis of Software and Systems, IEEE
Press, 2003, pp. 195-203.

12. T. Conte, M.A. Hirsch, and K.N. Menezes, “Reduc-
ing State Loss for Effective Trace Sampling of Super-
scalar Processors,” Proc. 1996 Int’l Conf. Computer
Design, IEEE CS Press, 1996, pp. 468-477.

Kevin Skadron is an assistant professor in the
Department of Computer Science at the University
of Virginia. His research interests are in computer
architecture and performance analysis, especially
temperature- and power-aware computing, appli-
cations of feedback control, and branch prediction.
Skadron received a PhD in computer science from
Princeton University. He is a member of the IEEE
and the ACM. Contact him at skadron@cs.
virginia.edu.

Margaret Martonosi is an associate professor in
the Department of Electrical Engineering at Prince-

ton University. Her research interests are in com-
puter architecture and the hardware/software inter-
face, particularly power-efficient microarchitectures
and power-adaptive mobile systems. Martonosi
received a PhD in electrical engineering from Stan-
ford University. She is a senior member of the IEEE
and a member of the ACM. Contact her at
martonosi@princeton.edu.

David I. August is an assistant professor in the
Department of Computer Science at Princeton Uni-
versity, where he also directs the Liberty Research
Group to develop open source tools for systematic
processor design-space exploration (http://lib-
erty.princeton.edu). His research interests are in
computer architecture and back-end compilation.
August received a PhD in electrical and computer
engineering from the University of Illinois at
Urbana-Champaign. He is a member of the IEEE
and the ACM. Contact him at august@cs.princeton.
edu.

Mark D. Hill is professor and Romnes Fellow in
both the Computer Sciences Department and the
Electrical and Computer Engineering Department
at the University of Wisconsin–Madison. With
David Wood, he also codirects the Wisconsin Mul-
tifacet project to improve commercial servers. His
research interests include cache design, cache simu-
lation, translation buffers, memory consistency
models, parallel simulation, and parallel computer
design. Hill received a PhD in computer science from
the University of California, Berkeley. He is an IEEE
Fellow. Contact him at markhill@cs.wisc.edu or
www.cs.wisc.edu/~markhill.

David J. Lilja is a professor of electrical and com-
puter engineering at the University of Minnesota
in Minneapolis. His research interests are in com-
puter architecture, parallel processing, nanocom-
puting, and computer systems performance
analysis. Lilja received a PhD in electrical engi-
neering from the University of Illinois at Urbana-
Champaign. He is a senior member of the IEEE
and a member of the ACM. Contact him at
lilja@umn.edu.

Vijay S. Pai is an assistant professor in the Depart-
ment of Electrical and Computer Engineering at
Rice University. His research interests include com-
puter architecture, high-performance networking,
and performance evaluation. Pai received a PhD in
electrical and computer engineering from Rice Uni-
versity. Contact him at vijaypai@rice.edu.

Computer is always looking for interesting editorial
content. In addition to our theme articles, we have
other feature sections such as Perspectives,
Computing Practices, and Research Features as
well as numerous columns to which you can
contribute. Check out our author guidelines at
http://computer.org/computer/author.htm
for more information about how to contribute to
your magazine.

Computer
Wants YouComputer
Wants You

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

